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ABSTRACT. We study generalizations of some results of Jean-Louis Nicolas regarding the relation between
small values of Euler’s function ϕpnq and the Riemann Hypothesis. Among other things, we prove that for
1 ď q ď 10 and for q “ 12, 14, the generalized Riemann Hypothesis for the Dedekind zeta function of the
cyclotomic field Qpe2πi{qq is true if and only if for all integers k ě 1 we have

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, 1q
.

Here Nk is the product of the first k primes in the arithmetic progression p ” 1 pmod qq and
Cpq, 1q is the constant appearing in the asymptotic formula

ź

pďx
p”1 pmod qq

ˆ

1´
1
p

˙

„
Cpq, 1q

plog xq
1

ϕpqq

,

as x Ñ8. We also prove that, for q ď 400, 000 and integers a coprime to q, the analogous inequality

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, aq

holds for infinitely many values of k. If in addition a is a not a square modulo q, then there are infinitely many
k for which this inequality holds and also infinitely many k for which this inequality fails.

1. INTRODUCTION

Let ϕpnq be Euler’s totient function. A result of Landau from 1909 captures the minimal behavior of ϕpnq
n .

Theorem 1.1 ([4, Theorem 328]). Let γ be the Euler-Mascheroni constant. Then

lim sup
nÑ8

n
ϕpnq log log n

“ eγ.

A proof of Theorem 1.1 follows by considering the sequence of primorials, Nk :“
śk

i“1 pi, alongside
Mertens’ theorem [4, Theorem 429] and the Prime Number Theorem [4, Theorem 6]. Theorem 1.1 is
visually expressed in Figure 1. (Colored plots throughout this paper have been generated using MapleTM 1

[11].)
In [23], Rosser and Schoenfeld studied the behavior of the expresssion n

ϕpnq log log n in a more explicit
manner.

Theorem 1.2 ([23, Theorem 15]). For n ą 2,
n

ϕpnq log log n
ď eγ `

2.50637
plog log nq2

.

Rosser and Schoenfeld also remarked that they do not know whether there are infinitely many natural
numbers n satisfying

(1)
n

ϕpnq log log n
ą eγ.

In [18], Nicolas expressed the preceding remark by asking the following question.
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2 AMIR AKBARY AND FORREST J. FRANCIS

FIGURE 1. Visualization of Theorem 1.1. Points represent pn, n
ϕpnq log log nq for n between 29

and 30055. Points marked with red diamonds correspond to the primorials 30, 210, 2310,
and 30030.

Question 1.3 ([18, p. 375]). Do there exist infinitely many n P N for which n
ϕpnq log log n ą eγ?

In the same paper, he resolves this question in the following theorem.

Theorem 1.4 ([18, Theorem 1]). There exist infinitely many n P N for which n
ϕpnq log log n ą eγ.

Nicolas’ proof leverages properties of the Riemann zeta function, ζpsq, against the behavior of ϕpnq at
primorials. Recall that the Riemann zeta function has a pole at s “ 1 and trivial zeroes at s “ ´2,´4,´6 . . ..
Its nontrivial zeroes are those found in the critical strip 0 ă <psq ă 1. The Riemann Hypothesis (RH)
predicts the location of these nontrivial zeroes.

Hypothesis 1.5 (RH). The nontrivial zeroes of ζpsq have real part 1{2.

In relation to Question 1.3, Nicolas considered the behavior of ϕpNkq under two possible resolutions to
the Riemann Hypothesis.

Theorem 1.6 ([18, Theorem 2]). If the Riemann Hypothesis is true, then for all primorials Nk “
śk

i“1 pi,
where pi is the i-th prime, we have

Nk

ϕpNkq log log Nk
ą eγ.

If the Riemann Hypothesis is false, then there are infinitely many primorials for which the above inequality
holds and also infinitely many primorials for which the above inequality does not hold.

As a direct corollary of the above theorem, we have the following criterion for the Riemann Hypothesis.

Criterion 1.7 (Nicolas’ Criterion for the RH). The Riemann Hypothesis is true if and only if there exists
k0 ą 0 such that for all k ě k0,

Nk

ϕpNkq log log Nk
ą eγ.

In this article, we are motivated to generalize the above criterion in the context of Dirichlet L-functions.
Towards this aim we seek a generaliziation of Theorem 1.6 to a setting involving primes in arithmetic
progressions. We will restrict our attention to the behavior of ϕpnq at elements of the set

S q,a :“ tn P N ; p | n ùñ p ” a pmod qqu ,

where q, a are coprime natural numbers. This set contains an analogue of the primorials, the k-th primorial
in S q,a given by

Nk “ Nq,apkq :“
k
ź

i“1

pi,

where pi is the i-th prime in the arithmetic progression a pmod qq. Throughout this article, q and a will
be fixed and coprime. For notational convenience, we often suppress reference to q and a and use Nk to
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denote the k-th primorial in S q,a. (Note that for q “ a “ 1, we have Nk “ Nk.) In this context, we
have analogues for both Mertens’ theorem and the Prime Number Theorem. The analogue of Mertens’
theorem was originally established by Williams [25]. Here, however, we refer to the work of Languasco
and Zaccagnini ([6], [7], [8]) where they have provided an explicit form for the constant appearing in the
generalized Mertens’ theorem.

Theorem 1.8 ([6, p. 46]). Let x ě 2 and q, a P N be coprime. Then,
ź

pďx
p”a pmod qq

ˆ

1´
1
p

˙

„
Cpq, aq

plog xq
1

ϕpqq

,

as x Ñ8, where

Cpq, aqϕpqq “ e´γ
ź

p

ˆ

1´
1
p

˙αpp;q,aq

and

αpp; q, aq “

#

ϕpqq ´ 1 if p ” a pmod qq,
´1 otherwise.

We note that, in agreement with the classical Mertens’ theorem, Cp1, 1q is e´γ since αpp; 1, 1q “ 0 for
all primes p.

For an analogue of the prime number theorem, we have

(2) θpx; q, aq „
x

ϕpqq
,

as x Ñ8 (see [17, Theorem 6.8]), where

θpx; q, aq :“
ÿ

pďx
p”a pmod qq

log p.

Hence, we have all of the tools required to establish a generalization of Theorem 1.1 for primes in arith-
metic progressions.

Theorem 1.9. Let q, a P N be coprime. Then

lim sup
nPS q,a

n
ϕpnqplogpϕpqq log nqq1{ϕpqq

“
1

Cpq, aq
,

where Cpq, aq is defined in Theorem 1.8.

In each fixed set S q,a, one can observe behavior congruous with the behavior in Figure 1. Figures 2 and
3 visualize Theorem 1.9 for q “ 5 and a “ 1, 3.

At this point, it seems reasonable to extend this generalization along the line of study begun by Nicolas.
We are interested in the following question.

Question 1.10. Let q, a P N be coprime and consider the inequality

(3)
n

ϕpnqplogpϕpqq log nqq
1

ϕpqq

ą
1

Cpq, aq
.

Are there infinitely many n P S q,a for which (3) is satisfied?

Nicolas [18, pp. 376-77] observed that one can encode information regarding (3) at primorials in S 1,1,
using a real-valued function. Mimicking his construction, let p represent any prime in the progression a
pmod qq. Define

f px; q, aq :“
plogpϕpqqθpx; q, aqqq

1
ϕpqq

Cpq, aq
¨
ź

pďx

ˆ

1´
1
p

˙

.
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FIGURE 2. Visualization of Theo-
rem 1.9 for q “ 5, a “ 1.
Points represent pn, n

pϕpnq log log nq
1

ϕpqq
q

for n P S 5,1 between 11 and 49991.
Points marked with red diamonds
correspond to 11, 341, and 13981,
the first three primorials in S 5,1. The
red line is Cp5, 1q´1 « 1.2252.

FIGURE 3. Visualization of Theo-
rem 1.9 for q “ 5, a “ 3.
Points represent pn, n

pϕpnq log log nq
1

ϕpqq
q

for n P S 5,3 between 3 and 49993.
Points marked with red diamonds
correspond to 3, 39, 897, and 38571,
the first four primorials in S 5,3. The
red line is Cp5, 3q´1 « 0.8060.

Hence, for any x P
“

pk, pk`1
˘

,

f px; q, aq “

´

logpϕpqq log Nkq

¯
1

ϕpqq

Cpq, aq
¨
ϕpNkq

Nk
.

It is therefore apparent that (3) holds for Nk if and only if f px; q, aq ă 1 for any x P
“

pk, pk`1
˘

or, equiva-
lently,

(4) log f px; q, aq “
log logpϕpqqθpx; q, aqq

ϕpqq
`

ÿ

pďx

log
ˆ

1´
1
p

˙

´ log Cpq, aq ă 0,

for x P
“

pk, pk`1
˘

.
We supply plots of log f ppk; q, aq for several values of q and a. Since log f px; q, aq is fixed between

primes in the progression a pmod qq, the horizontal axis in each plot is k, the index of pk, rather than x.
Each plot presents data for primes pk ă 50, 000. For example, the first plot indicates that f px; 1, 1q ă 1
for x ď 49, 999. In Theorem 3(a) of [18], Nicolas showed (using estimates of Rosser and Schoenfeld [23])
that f px; 1, 1q ă 1 for 2 ď x ď 108 and further that, assuming RH, it will remain negative for all values
of x. The plots distinguish between three cases of residues modulo q. For a “ 1, log f ppk; q, aq is black;
for other square a, log f ppk; q, aq is red or yellow; for non-square a, log f ppk; q, aq is a cool color. These
plots suggest that the behavior of log f ppk; q, aq around 0 differs depending on whether a is a square or
a non-square modulo q. Of note is the plot for q “ 7, where we come across several examples where
log f ppk; 7, aq ą 0, all of which occur when a is not square modulo 7.

In this paper we study Question 1.10 by examining the function log f px; q, aq along the line of approach
developed by Nicolas for the case q “ 1 in [18]. Among other results we propose an answer regard-
ing the different behaviour of log f px; q, aq when a is not a square modulo q. We will study the function
log f px; q, aq by appealing to the behavior of Dirichlet L-functions Lps, χq arising from Dirichlet characters
χ pmod qq. As with the Riemann zeta function, we say that the nontrivial zeroes of Lps, χq are located on
the critical strip 0 ă <psq ă 1. The relevant analogue of the Riemann Hypothesis for Dirichlet L-functions
mod q is the following.
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Hypothesis 1.11 (GRHq). For fixed q and all Dirichlet characters χ modulo q, all the nontrivial zeroes of
Lps, χq have real part 1{2.

It is known that
ζQpe2πi{qqpsq “

ź

χ pmod qq

Lps, χ1q,

where ζQpe2πi{qqpsq is the Dedekind zeta function of the cyclotomic field Qpe2πi{qq and χ1 is the primitive
Dirichlet character that induces the Dirichlet character χ modulo q (see [3, Theorem 65, p. 296]). Since

FIGURE 4. Plot of log f ppk; 1, 1q. FIGURE 5. Plot of log f ppk; 3, aq.
The black plot corresponds to a “ 1
and the blue plot to a “ 2.

FIGURE 6. Plot of log f ppk; 5, aq.
The black plot corresponds to a “ 1,
the red plot to a “ 4, the blue plot to
a “ 2, and the purple plot to a “ 3.

FIGURE 7. Plot of log f ppk; 6, aq.
The black plot corresponds to a “ 1
and the blue plot to a “ 5.

FIGURE 8. Plot of log f ppk; 7, aq.
The black plot corresponds to a “ 1,
the yellow plot to a “ 2, the red plot
to a “ 4, the blue plot to a “ 3, the
purple plot to a “ 5, and the cyan
plot to a “ 6.

FIGURE 9. Plot of log f ppk; 10, aq.
The black plot corresponds to a “ 1,
the red plot to a “ 9, the blue plot to
a “ 3, and the purple plot to a “ 7.
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the nontrivial zeroes of ζQpe2πi{qqpsq are located in the critical strip 0 ă <psq ă 1, Hypothesis 1.11 (GRHq)
is equivalent to the statement of the Generalized Riemann Hypothesis (GRH) for ζQpe2πi{qqpsq (i.e., all the
nontrivial zeroes of ζQpe2πi{qqpsq are located on the line <psq “ 1{2). Also note that GRHq is equivalent to
the statement that all the singularities of the function

L ps; q, 1q “
ÿ

χ pmod qq

L1

L
ps, χq

on the critical strip are located on the line<psq “ 1{2.
An important function in this article is the following linear combination of logarithmic derivatives of the

Dirichlet L-functions Lps, χq. For q and a, fixed coprime integers, we set

L ps; q, aq “
ÿ

χ pmod qq

χpaq
L1

L
ps, χq.

The function L ps; q, aq has a potential singularity at s when s is a nontrivial zero of a Dirichlet L-
function corresponding to a character modulo q. We formulate the following Singularity Hypothesis (SHq,a)
for L ps; q, aq.

Hypothesis 1.12 (SHq,a). Let q and a be fixed coprime integers. Then the singularities of L ps; q, aq on the
critical strip 0 ă <psq ă 1 are located on the line<psq “ 1{2.

Note that GRHq implies SHq,a, however SHq,a for a ‰ 1 does not eliminate the existence of the nontrivial
zeroes ρ of Lps, χq with<pρq ‰ 1{2. More precisely, SHq,a implies that if there exists a nontrivial zero ρ of
Lps, χq for some χ modulo q for which<pρq is not 1{2, then

ÿ

χ pmod qq

χpaqmρpχq “ 0,

where mρpχq is the multiplicity of the zero ρ of Lps, χq. For a “ 1, SHq,1 is equivalent to GRHq.
It comes as a consequence of the work of Platt [20, Theorem 10.1, Theorem 10.2] that for L-functions

associated with primitive Dirichlet characters of modulus q less than 400,000, there are no zeroes on the
interval (0,1). Moreover such L-functions have zeroes on the line<psq “ 1{2. Hence, by the definition of
L ps; q, aq, we have the following corollary.

Corollary 1.13. For all pairs pq, aq with q ď 400, 000 and a coprime to q, the function L ps; q, aq has no
singularities on the interval p0, 1q and has singularities on the line<psq “ 1{2.

Our next result states that it is possible to resolve Question 1.10 under certain assumptions on the singu-
larities of L ps; q, aq.

Theorem 1.14. If L ps; q, aq has a singularity ρ for which 0 ă <pρq ă 1, but does not have singularities
on the interval p0, 1q, then there exists a sequence of x that tends to infinity for which log f px; q, aq ă 0.

The following is a direct corollary of Theorem 1.14 and Corollary 1.13.

Corollary 1.15. Let q ď 400, 000. Then there are infinitely many primorials Nk in S q,a for which

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, aq
.

We will write Θ :“ Θpq, aq to denote the supremum of the real parts of the singularities of L ps; q, aq in
the strip 0 ă <psq ă 1. By appealing to the functional equations of Dirichlet L-functions, it is straightfor-
ward to show that the falsehood of SHq,a is equivalent to Θ ą 1{2. The following theorem provides more
precise answers to Question 1.10 under certain assumptions on the singularities of L ps; q, aq.

Theorem 1.16. (a) Suppose Hypothesis 1.12 (SHq,a) is false. For 1 ´ Θ ă b ă 1
2 assume that L ps; q, aq

has no singularities on the segment p1´ b, 1q. Then, we have

log f px; q, aq “ Ω˘px´bq,
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as x tends to infinity.2

(b) For integer a that is not a square modulo q, suppose Hypothesis 1.12 (SHq,a) is true and L ps; q, aq
does have a singularity on the line <psq “ 1{2 and does not have a singularity at s “ 1{2. Then, for
1
2 ă b ă 2

3 ,

log f px; q, aq “ Ω˘px´bq,

as x tends to infinity.

Combining the results of part (a) and (b) of the above theorem for a not a square modulo q with Corollary
1.13 yields the following.

Corollary 1.17. Let q ď 400, 000 and let a not be a square modulo q. Then there are infinitely many k P N
for which

(5)
Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, aq

and also infinitely many k P N for which (5) does not hold.

Theorem 1.16 provides a satisfactory answer to Question 1.10 when a is not a square modulo q and for a
square a mod q when SHq,a is false. It remains to study Question 1.10 when a is a square modulo q under
the assumption of the truth of SHq,a. We study this case by developing an explicit formula for log f px; q, aq.
We start with some notation.

Let Indqpaq, the index of a pmod qq, be the least natural number n ą 1 for which a is an n-th power
modulo q and let

Rq,a “ #tb P pZ{qZqˆ; bIndqpaq ” a pmod qqu.

Observe that since q and a are coprime, we have aϕpqq`1 ” a pmod qq. Therefore, 2 ď Indqpaq ď ϕpqq ` 1
and thus Indqpaq and Rq,a are well-defined. Also note that a is a square modulo q if and only if Indqpaq “ 2.

With the additional notation

Zpχq “ tρ P C ; Lpρ, χq “ 0,<pρq ě 0 and ρ ‰ 0u,

where as before χ1 denotes the primitive Dirichlet character which induces the Dirichlet character χ, we
have the following explicit formula for log f px; q, aq.

Theorem 1.18. Assume Hypothesis 1.12 (SHq,a). Writing m “ Indqpaq, we have
(6)

log f px; q, aq “
1

ϕpqq

¨

˝

1
?

x log x

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
´

m ¨ Rq,a

pm´ 1qx
m´1

m log x

˛

‚`O

ˆ

1
?

x log2 x

˙

.

For m “ 2, we observe that the negative term in (6) is of the same order of magnitude as the term
corresponding to the sum over zeroes. Furthermore, if the constant 2Rq,a is larger than the limit superior
(with respect to x) of

(7)
ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
,

then we would have that log f px; q, aq ě 0 for only finitely many x. It is suspected that as x varies, (7)
oscillates in sign, so if 2Rq,a is not larger than the limit superior of (7), then the sign of log f px; q, aq will
change infinitely often. On the other hand, if m ą 2, then the negative term has smaller order of magnitude
than the order of magnitude of the error term in (6). In this case, the oscillatory behavior of (7) will dominate
the behavior of log f px; q, aq, so as we proved in part (b) of Theorem 1.16 log f px; q, aq will change sign
infinitely often.

By the above discussion, we have established the following assertion as a corollary of Theorem 1.18.

2See Notation 1.25 at the end of this section for a definition of the Ω notation.
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Corollary 1.19. Suppose that a is a square modulo q and that Hypothesis 1.12 (SHq,a) holds. Then there is
a positive number x0 such that

log f px; q, aq ă 0

for x ą x0 if and only if

(8) lim sup
xÑ8

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
ă 2Rq,a.

Computing the limit superior in Corollary 1.19 appears to be difficult. Towards an understanding of this
limit, we note that the sum over zeroes in Corollary 1.19 can be bounded in absolute value by

ÿ

χ pmod qq

ÿ

ρPZpχ1q
<pρq“1{2

1
ρp1´ ρq

.

Under the assumption of GRHq the above sum is the same as

(9) Fq :“
ÿ

χ pmod qq

ÿ

ρPZpχ1q

1
ρp1´ ρq

.

For several small values of q, we have computed Fq as listed in Table 1 using a combination of theoretical
tools (most notably formulas (49) and (50)) and Sage [24].

TABLE 1. Fq for some small values of q

q Fq q Fq

1 0.04619 8 0.75326
2 0.04619 9 1.41121
3 0.15942 10 0.60919
4 0.20176 11 4.26098
5 0.60919 12 0.64516
6 0.15942 13 6.45484
7 1.41418 14 1.41418

Note that for q ‰ 11, 13 and a square a mod q, none of the values of Fq in the above table are larger than
the smallest possible value of 2Rq,a, which is 4 for q ą 2. (We have also calculated the values of Fq for
q “ p, 2p for primes p ď 149. However, once p ą 7, we found that Fp “ F2p is larger than 4 “ 2Rq,a for
square a mod q.) Therefore, we have the following proposition.

Proposition 1.20. Let q ď 10 or q “ 12, 14 and assume GRHq. We have

lim sup
xÑ8

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
ď Fq ă 2Rq,a.

Combining the results of Proposition 1.20 and Corollary 1.19 we arrive at the following connection
between GRHq and inequality (3).

Proposition 1.21. Let q ď 10 or q “ 12, 14 and let a be a square modulo q. Assuming GRHq, there are at
most finitely k P N for which

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ď
1

Cpq, aq
.

Combining the results of Proposition 1.21 with part (a) of Theorem 1.16 and by employing Corollary
1.13 and some numerical computations we deduce several generalizations of Criterion 1.7.
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Theorem 1.22. For q ď 10 and for q “ 12, 14, GRHq is true if and only if for all positive integers k we
have

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, 1q
.

Remarks 1.23. (i) By using a theorem of Dirichlet ([4, Theorem 201, p. 218]) on simultaneous approxima-
tion of real numbers by rationals one can show

lim inf
xÑ8

ÿ

χ pmod qq

ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
“

ÿ

χ pmod qq

ÿ

ρPZpχ1q

1
ρpρ´ 1q

“ ´Fq.

(ii) Following an argument analogous to [5, Theorem 33] we can show that

lim sup
xÑ8

ÿ

χ pmod qq

ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
ą

Ress“ρ1L ps; q, 1q
|ρ1p1´ ρ1q|

,

where ρ1 is the first singularity (the singularity with the lowest ordinate) of L ps; q, 1q in the critical strip.
(iii) By employing (49) and (50) we have (for q ą 2)

(10) Fq “
ÿ

d|q
d‰1

ϕ˚pdq log
d
π
` 2

ÿ

d|q
d‰1

ÿ

χ pmod˚ dq

L1

L
p1, χq ´ ϕpqqpγ ` log 2q ` 2γ ´ log π` 2,

where ϕ˚pdq is the number of primitive characters mod d and χ pmod˚ dq denotes a primitive Dirichlet
character mod d. From [21, Theorem 1.4] we know that

1
ϕ˚pdq

ÿ

χ pmod˚ dq

ˇ

ˇ

ˇ

ˇ

L1

L
p1, χq

ˇ

ˇ

ˇ

ˇ

2

“

8
ÿ

n“1

Λpnq2

n2 ´
ÿ

p|d

log2 p
hpp, dq

` Opd´1{10q,

where Λpnq is the von Mangoldt function, hpp, dq “ pp´ 1q2 when p2 | d and hpp, dq “ p2 ´ 1 otherwise.
By applying the Cauchy-Schwarz inequality in the term involving L1

L p1, χq in (10) and employing the above

identity for
ř

χ pmod˚ dq

ˇ

ˇ

ˇ

L1
L p1, χq

ˇ

ˇ

ˇ

2
, we conclude that

(11) Fq “
ÿ

d|q

ϕ˚pdq log
d
π
` Opϕpqqq.

Since ϕ˚pqq “ q
ź

p}q

p1´ 2
pq
ź

p2|q

p1´ 1
pq

2 (see [15, p. 286]) andRq,1 “ Op2ωpqqq (see Proposition 3.2), where

ωpqq is the number of prime divisors of q, from (11) we conclude that

lim
qÑ8
Fq{Rq,1 “ 8.

Thus, one can ask for determination of the finite set of integers q for which Fq ă 2Rq,1.

In view of the above discussion and remarks it would be interesting to investigate the following.

Question 1.24. Is it true that

lim sup
xÑ8

ÿ

χ pmod qq

ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
“ Fq?

By part (iii) of Remarks 1.23, a positive answer to Question 1.24 implies that a Nicolas type criterion for
GRHq (similar to the one given in Theorem 1.22) can be established only for finitely many values of q.

The structure of this paper is as follows. First, we will ensure that the questions we are asking are justified
by proving Theorem 1.9. From there, in Section 3 we will establish several useful estimates for log f px; q, aq
to be used throughout the paper. Once these estimates are in place, in Sections 4 and 5, we will turn our
attention to establishing Theorem 1.14 and Theorem 1.16. In Section 6 we prove Theorem 1.18, which is a
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key tool for examining the behavior of log f px; q, aq. Section 7 is dedicated to computation of several values
of Fq. Finally we prove Theorem 1.22 in Section 8.

Notation 1.25. Throughout this paper, ϕpnq is Euler’s totient function and γ is always the Euler-Mascheroni
constant. The numbers q and a will be fixed positive integers, usually coprime. For a pair of coprime q
and a we have the set S q,a “ tn P N ; p | n ùñ p ” a pmod qqu, which includes every k-th prime pk in
the progression p ” a pmod qq and also every k-th primorial Nk “

śk
i“1 pk arising from this progression.

We follow the usual conventions of analytic number theory with respect to asymptotic notations, with the
inclusion of the less common Ω notation. For one, f pxq “ Ω`pgpxqq if there exists a positive constant c and
an increasing real sequence which tends to infinity along which f pxq ą cgpxq. Likewise f pxq “ Ω´pgpxqq
if there exists a positive constant c and an increasing real sequence which tends to infinity along which
f pxq ă ´cgpxq. If both f pxq “ Ω`pgpxqq and f pxq “ Ω´pgpxqq, we write f pxq “ Ω˘pgpxqq. We
use pZ{qZqˆ to denote the multiplicative group of integers modulo q. The real and imaginary parts of a
complex number ρ are denoted by<pρq and =pρq, respectively.

2. PROOF OF THEOREM 1.9

Proof of Theorem 1.9. The proof is an adaptation of the proof of [4, Theorem 328] to the case of integers
in S q,a. For n P S q,a, let r be the number of prime divisors of n that are larger than ϕpqq log n. Writing
n “ pα1

1 pα2
2 . . . pαk

k , we have pϕpqq log nqr ă n and thus,

r ă
log n

logpϕpqq log nq
.

Employing the above bound for r yields

(12)

n
ϕpnq

“

k
ź

i“1

ˆ

1´
1
pi

˙´1

ď p1´
1

ϕpqq log n
q´r

ź

pďϕpqq log n
p|n

ˆ

1´
1
p

˙´1

ă

ˆ

1´
1

ϕpqq log n

˙

´ log n
logpϕpqq log nq ź

pďϕpqq log n
p”a pmod qq

ˆ

1´
1
p

˙´1

.

The first factor on the right of (12) tends to 1 as n Ñ8. By invoking Theorem 1.8 for the latter product, we
conclude that

(13)
ˆ

1´
1

ϕpqq log n

˙

´ log n
logpϕpqq log nq ź

pďϕpqq log n
p”a pmod qq

ˆ

1´
1
p

˙´1

„
plogpϕpqq log nqq

1
ϕpnq

Cpq, aq
,

as n Ñ8. From (12) and (13), we deduce

lim sup
nPS q,a

n
ϕpnqplogpϕpqq log nqq1{ϕpqq

ď
1

Cpq, aq
.

To establish a sequence which attains this bound, consider Nk, the k-th primorial in S q,a. Then, by
Theorem 1.8

Nk

ϕpNkq
“

ź

pďpk
p”a pmod qq

ˆ

1´
1
p

˙´1

„
plog pkq

1
ϕpqq

Cpq, aq
,

as k Ñ8. Next, we apply (2) to obtain

logpϕpqq log Nkq “ logpϕpqqθppk; a, qqq „ log pk,
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as k Ñ8. Hence, we have

Nk

ϕpNkq
„

´

logpϕpqq log Nkq

¯
1

ϕpqq

Cpq, aq
,

as k Ñ8. That is,

lim
kÑ8

Nk

ϕpNkqplogpϕpqq log Nkqq
1{ϕpqq

“
1

Cpq, aq
.

This concludes the proof. �

3. USEFUL EXPRESSIONS FOR log f px; q, aq

To establish an initial expression for log f px; q, aq in terms of prime counting functions, it is beneficial to
develop a variety of estimates for some related functions. First, let

gpxq :“ ´
d2

dx2 plog log xq “
1` log x

x2 log2 x
.

Second, for a given arithmetic progression consider the error term in the prime number theorem, which
will be denoted

S px; q, aq :“ θpx; q, aq ´
x

ϕpqq
.

We next obtain an identity for log f px; q, aq with respect to

Kpx; q, aq :“
ż 8

x
S pt; q, aqgptq dt.

Proposition 3.1. Let q, a P N be fixed coprime integers. Then, as x Ñ8,

(14) log f px; q, aq “ Kpx; q, aq ` O
`1

x

˘

.

Proof. By partial summation
ÿ

pďx
p”a pmod qq

1
p
“
θpx; q, aq

x log x
`

ż x

p1

θpt; q, aqgptq dt.

From here with the substitution θpt; q, aq “ S pt; q, aq ` t
ϕpqq , we obtain

(15)

ÿ

pďx
p”a pmod qq

1
p
“

S px; q, aq
x log x

`
1

ϕpqq log x
`

ż x

p1

S pt; q, aqgptq dt `
1

ϕpqq

ż x

p1

1
t

log t ` 1
log2 t

dt.

Hence, we may write (15) as

(16)
ÿ

pďx
p”a pmod qq

1
p
“

S px; q, aq
x log x

`
log log x
ϕpqq

´ Kpx; q, aq ` Mpq, aq,

where

Mpq, aq “
ż 8

p1

S pt; q, aqgptq dt `
1

ϕpqq log p1
´

log log p1

ϕpqq

is the constant term. By comparison with Mertens’ second theorem for arithmetic progressions ([8, (1-1)]),
it can be shown that this constant has the expression

(17) Mpq, aq “
ÿ

p”a pmod qq

"

log
ˆ

1´
1
p

˙

`
1
p

*

´ log Cpq, aq,
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(see [8, (1-3)]). Now it can be readily verified, by (4) and (17), that

(18)

ϕpqq log f px; q, aq “ log logpϕpqqθpx; q, aqq ` ϕpqq
ÿ

pďx
p”a pmod qq

log
ˆ

1´
1
p

˙

´ ϕpqq log Cpq, aq

“ Upxq ` upxq,

where

(19) Upxq “ log logpϕpqqθpx; q, aqq ´ ϕpqq
ÿ

pďx
p”a pmod qq

1
p
` ϕpqqMpq, aq

and

(20) upxq “ ´ϕpqq
ÿ

pąx
p”a pmod qq

"

log
ˆ

1´
1
p

˙

`
1
p

*

.

By crudely bounding (20) with a geometric series, we see that

(21) 0 ă upxq ď
ϕpqq

2px´ 1q
.

Now from (18), (19), and (21), we have for x ě p1 that

ϕpqq log f px; q, aq “ log logpϕpqqθpx; q, aqq ´ ϕpqq
ÿ

pďx
p”a pmod qq

1
p
` ϕpqqMpq, aq ` upxq.

Substituting equation (16) for the series in the above equation yields

(22) ϕpqq log f px; q, aq “ log logpϕpqqθpx; q, aqq ´
ϕpqqS px; q, aq

x log x
´ log log x` ϕpqqKpx; q, aq ` upxq.

By the mean value theorem for hptq “ log log t, there exists a number c between x and ϕpqqθpx; q, aq for
which

log logpϕpqqθpx; q, aqq “ log log x`
ϕpqqS px; q, aq

c log c
.

From here, we arrive at

(23) log logpϕpqqθpx; q, aqq ´ log log x´
ϕpqqS px; q, aq

x log x
“ ϕpqqS px; q, aq

ˆ

x log x´ c log c
px log xqpc log cq

˙

.

Combining (22) and (23), we have the identity

(24) log f px; q, aq “ Kpx; q, aq ` S px; q, aq
ˆ

x log x´ c log c
px log xqpc log cq

˙

`
upxq
ϕpqq

.

Consider the second term in the right hand side of (24) and assume that x ă ϕpqqθpx; q, aq . We see that
with ε ą 0 chosen so that x ă c ă ϕpqqθpx; q, aq ď p1` εqx, we have

(25)
ˇ

ˇ

ˇ

ˇ

1
x log x

´
1

c log c

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
x log x

´
1

p1` εqx log p1` εqx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

log ξ ` 1
pξ log ξq2

ˇ

ˇ

ˇ

ˇ

!
1

x2 log x

for x ă ξ ă p1` εqx arising from an application of the mean value theorem for the function sptq “ 1{t log t.
Using the upper bound S px; q, aq ! x

log x together with (25), we have
ˇ

ˇ

ˇ

ˇ

S px; q, aq
ˆ

x log x´ c log c
px log xqpc log cq

˙ˇ

ˇ

ˇ

ˇ

!
1

x log2 x
.

A similar bound holds if ϕpqq log log x ă x.
Therefore, recalling (21), (24) becomes

log f px; q, aq “ Kpx; q, aq ` O
` 1

x

˘

,
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as desired. �

Next, we shift our attention from θpx; q, aq to

ψpx; q, aq “
ÿ

pkďx
pk”a pmod qq

log p,

for which we have analogues

(26) Rpx; q, aq :“ ψpx; q, aq ´
x

ϕpqq

and

Jpx; q, aq :“
ż 8

x
Rpt; q, aqgptq dt.

By definition, θpx; q, aq ď ψpx; q, aq, and therefore Kpx; q, aq ď Jpx; q, aq when x ą e´1. In order to
study the precise relation between Kpx; q, aq and Jpx; q, aq we need some notations. Recall that we denoted
by Indqpaq, the index of a pmod qq, the least natural number n ą 1 for which a is an n-th power modulo q.
Furthermore, we set

Rq,a “ #tb P pZ{qZqˆ; bIndqpaq ” a pmod qqu.
It will be useful to have a closed form for Rq,a.

Proposition 3.2. Write q “ 2αqα1
1 qα2

2 . . . qαr
r , where qi are the distinct odd prime divisors of q. Let m “

Indqpaq. We have

Rq,a “

#

śr
i“1

`

m, ϕpqαi
i q

˘

if α ď 1,
pm, 2q

`

m, 2α´2
˘
śr

i“1

`

m, ϕpqαi
i q

˘

otherwise.

Proof. By Theorem 3.21 of [9], we know that the solutions of xm ” a pmod qq are in 1-1 correspondence
with the solutions of the system

$

’

’

’

&

’

’

’

%

xm ” a pmod 2αq,
xm ” a pmod qα1

1 q,
...

xm ” a pmod qαr
r q.

For each odd prime qi, Theorem 4.13 of [9] establishes that there are
`

m, ϕpqαi
i q

˘

solutions to each congru-
ence xm ” a pmod qαi

i q. On the other hand, the congruence xm ” a pmod 2αq has 1 solution if α “ 1,
again by [9, Theorem 4.13]. If α ě 2, then xm ” a pmod 2αq has pm, 2q ¨ pm, 2α´2q solutions via Theorem
4.14 of [9]. The formula for Rq,a follows by taking the product of the number of solutions as we range over
congruences corresponding to prime divisors of q. �

Proposition 3.3. Writing m “ Indqpaq, we have

θpx; q, aq “ ψpx; q, aq ´
Rq,a

ϕpqq
x

1
m ` O

˜

x
1
m

log x

¸

.

Proof. Consider

(27) ψpx; q, aq ´ θpx; q, aq “
8
ÿ

k“2

ÿ

bPpZ{qZqˆ

ÿ

pkďx
pk”a pmod qq
p”b pmod qq

log p.

Equivalently,

θpx; q, aq “ ψpx; q, aq ´
8
ÿ

k“2

ÿ

bPpZ{qZqˆ
ηbpkq

ÿ

pďx
1
k

p”b pmod qq

log p,



14 AMIR AKBARY AND FORREST J. FRANCIS

where

ηbpkq “

#

1 if bk ” a pmod qq,
0 otherwise.

Observe that ηbpkq “ 0 for all k ă m “ Indqpaq. Thus, we have

(28) θpx; q, aq “ ψpx; q, aq ´
ÿ

bPpZ{qZqˆ
ηbpmqθpx

1
m ; q, bq ´

8
ÿ

k“m`1

ÿ

bPpZ{qZqˆ
ηbpkqθpx

1
k ; q, bq.

By [17, Theorem 6.8], we know that, for a positive constant βq, depending only on q,

θpx; q, bq “
x

ϕpqq
` Opx expp´ logβq xqq

and therefore,

(29)
ÿ

bPpZ{qZqˆ
ηbpkqθpx

1
k ; q, bq “

Rq,a

ϕpqq
x

1
k ` Opx

1
k expp´ logβq px

1
k qqq.

Applying (29) in (28) yields the result. �

In order to apply Proposition 3.3 in an expression for Jpx; q, aq we need to integrate a version of the
identity of Proposition 3.3 weighted with gpxq introduced at the beginning of this section. In this direction
we consider

Fspxq “
ż 8

x
tsgptq dt.

The following lemma is due to Nicolas ([19, Lemma 2.2]).

Lemma 3.4. Let s be a complex number such that<psq ă 1. Then, for x ą 1,

Fspxq “ ´
xs´1

ps´ 1q log x
` rspxq,

where

rspxq “ ´
s

1´ s

˜

xs´1

p1´ sq log2 x
`

ż 8

x

2ts´2

ps´ 1q log3 t
dt

¸

.

As a direct consequence of the above expression for rspxq we have

(30) |rspxq| ď

∣∣∣∣∣∣ s
p1´ sq2

∣∣∣∣∣∣
ˆ

x<psq´1

log2 x

˙ˆ

1`
2

|<psq ´ 1| log x

˙

.

Now, by combining Proposition 3.1, Proposition 3.3, Lemma 3.4, and (30) we have the following expres-
sion for log f px; q, aq in terms of Jpx; q, aq.

Proposition 3.5. Let q, a P N be coprime and m “ Indqpaq. Then,

log f px; q, aq “ Jpx; q, aq ´
Rq,a

ϕpqq
m

pm´ 1qx
m´1

m log x
` O

˜

1

x
m´1

m log2 x

¸

.

4. Ω-THEOREMS FOR Jpx; q, aq

We adapt the techniques of [5, Chapter V] to establish several Ω-theorems for Jpx; q, aq. The following
classical theorem plays a fundamental role in our arguments.

Theorem 4.1 (Landau’s Oscillation Theorem). Let h : r1,8q Ñ R be a function which is bounded and
Riemann-integrable on intervals of the form r1,T s, 1 ă T ă 8. Consider the integral

Hpsq “
ż 8

1

hpxq
xs dx.

Suppose that the line <psq “ σ0 is the line of convergence for H, and the function hpxq is of constant
sign on an interval of the form rx1,8q. Then the real point s “ σ0 on the line of convergence must be a
singularity of Hpsq.
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Proof. See [5, Theorem H, p. 88]. �

Under some relatively mild conditions we prove that Jpx; q, aq oscillates.

Theorem 4.2. If L ps; q, aq has no singularities on p0, 1q and it has a singularity ρ with 0 ă <pρq ă 1,
then we have Jpx; q, aq ă 0 for arbitrarily large x and also Jpx; q, aq ą 0 for arbitrary large x.

Proof. We start by finding an expression for an integral involving the error term Rpx; q, aq defined in (26) in
terms of the logarithmic derivatives of Dirichlet L-functions. By way of Exercise 2.1.5 of [16] and formula
(4.28) of [15] we have, for<psq ą 1,

ż 8

p1

ψpt; q, aq
ts`1 dt “

1
s

ÿ

n”a pmod qq

Λpnq
ns “ ´

1
sϕpqq

ÿ

χ pmod qq

χpaq
L1

L
ps, χq.

Using the above identity and definition Rpt; q, aq “ ψpt; q, aq ´ t{ϕpqq, we have, for<psq ą 1,

(31)
ż 8

p1

Rpt; q, aq
ts`1 dt “

1
ϕpqq

˜

´
1
s
L ps; q, aq ´

1
s´ 1

`

ż p1

1

1
ts dt

¸

.

Next let 0 ă δ ă =pρ1q, where ρ1 is a singularity of L ps; q, aq with the smallest positive ordinate. Note
that under the stated conditions on singularities of L ps; q, aq, ρ1 and δ are well-defined. Now let

Wδ “ t s ;<psq ą 1 u Y t s ; 0 ă <psq ď 1 and |=psq| ă δ u.

Observe that the right-hand side of identity (31) is holomorphic on Wδ (the simple pole at s “ 1 of
L ps; q, aq cancels the simple pole at s “ 1 of 1{ps´ 1q). Hence, on Wδ, the right hand side of (31) admits
an antiderivative, call it H1psq, and a second antiderivative H2psq.

For<psq ą 1, from (31) we have

d
ds
pH1psqq “

ż 8

p1

Rpt; q, aq
ts`1 dt “

d
ds

ˆ

´

ż 8

p1

Rpt; q, aq
ts`1 log t

dt
˙

.

By integrating two sides of the above identity along smooth curves in the half-plane <psq ą 1 and with a
fixed initial point we get, for<psq ą 1,

(32)
ż 8

p1

Rpt; q, aq
ts`1 log t

dt “ ´H1psq ` pλ2 ´ λ1q,

where λ1, λ2 are fixed complex constants.
Recalling that the antiderivative of H1 is H2, we integrate along a smooth curve once more to obtain, for

<psq ą 1,

(33)
ż 8

p1

Rpt; q, aq

ts`1 log2 t
dt “ H2psq ` pλ2 ´ λ1qs` µ,

where µ is a fixed complex constant.
Now for<psq ą 1 set

(34) Hpsq:“
ż 8

p1

Jpx; q, aq
xs dx “

ż 8

p1

1
xs

ż 8

x

Rpt; q, aq
t2

plog t ` 1q

log2 t
dt dx.

By changing the order of integration in (34), we arrive at

Hpsq “
1

s´ 1

ˆ

pp1q
1´sJpp1; q, aq ´

ż 8

p1

Rpt; q, aq
ts`1 log t

dt ´
ż 8

p1

Rpt; q, aq

ts`1 log2 t
dt
˙

.

We substitute the integrals in the above equation using their respective identities (32) and (33) to get

(35) Hpsq “
1

s´ 1
pH1psq ´ H2psq ` Epsqq ,

where
Epsq:“pp1q

1´sJpp1; q, aq ´ pλ2 ´ λ1qs´ µ´ pλ2 ´ λ1q.



16 AMIR AKBARY AND FORREST J. FRANCIS

<psq

=psq

1

ρ

0

δ

´δ

Wδ

FIGURE 10. The region Wδ and the singularity ρ.

Observe that Epsq is entire while H1psq and H2psq are holomorphic on Wδ. Moreover H1p1q ´ H2p1q `
Ep1q “ 0. Thus (35) establishes an analytic continuation of Hpsq to Wδ. Thus, crucially, we have extended
Hpsq to the real line in the critical strip. Hence, if we suppose Jpx; q, aq is of constant sign for some interval
rx1,8q, then Theorem 4.1 establishes that the abscissa of convergence of Hpsqmust satisfy<psq ď 0, since
no point with s “ σ ą 0 is a singularity. That is, Hpsq must extend to a function which is holomorphic in
the half-plane<psq ą 0.

Reconsidering (35), we see that the holomorphy of Hpsq implies that H1psq ´ H2psq is holomorphic on
<psq ą 0, and therefore d2

ds2 pH1psq ´ H2psqq is holomorphic in this region as well. We have assumed
L ps; q, aq has a singularity at s “ ρ, where 0 ă <pρq ă 1 and |=pρq| ą 0. Such a singularity must be
simple, since the zeroes of Lps, χq contribute simple poles with residue mρpχq in the logarithmic derivative.
Therefore, in an appropriate deleted neighborhood of ρ,

L ps; q, aq “

ř

χ pmod qq χpaqmρpχq

s´ ρ
` c0 ` c1ps´ ρq ` c2ps´ ρq2 . . . ,

where
ř

χ pmod qq χpaqmρpχq ‰ 0. In the same neighborhood, we therefore have

d2

ds2 pH2psqq “
1

ϕpqq

˜

´1
ρ

ř

χ pmod qq χpaqmρpχq

s´ ρ
´

1
ρ´ 1

`

ż p1

1

1
tρ

dt ` d0 ` d1ps´ ρq ` d2ps´ ρq2 ` . . .

¸

,

where d0, d1, . . . are coefficients arising from the Laurent expansion. Consequently,

d2

ds2 pH1psqq “
1

ϕpqq

˜
ř

χ pmod qq χpaqmρpχq

ρps´ ρq2
` d10 ` d11ps´ ρq ` . . .

¸

,

where d10, d
1
1, . . . are constants. This implies that d2

ds2 H1psq has a pole of order 2 at ρ. However, we have

claimed d2

ds2 pH1psq ´ H2psqq is holomorphic for <psq ą 0. This is a contradiction, and so Jpx; q, aq must
not be of constant sign on some interval rx1,8q. Hence we have established that Jpx; q, aq oscillates for
arbitrary large x. �

We next establish a more precise Ω-theorem for Jpx; q, aq under some assumptions on the location of the
singularities of L ps; q, aq.

Theorem 4.3. For b ą 0, suppose that L ps; q, aq has no singularities on the line segment p1´b, 1q. Assume
that there exists a singularity ρ of L ps; q, aq not at 1 for which<pρq “ β ą 1´ b. Then

Jpx; q, aq “
ż 8

x
Rpt; q, aqgptq dt “ Ω˘px´bq.
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<psq

=psq

1

1´ b

ρ

0

δ

´δ

Wδ,b

FIGURE 11. The region Wδ,b and the singularity ρ.

Proof. We consider the integral

Gpsq “
ż 8

p1

Jpx; q, aq ´ x´b

xs dx.

Then, for<psq ą 1, (34) and (35) establish

(36) Gpsq “
1

s´ 1
pH1psq ´ H2psq ` Epsqq ´

1
s´ 1` b

`

ż p1

1

x´b

xs dx,

where H1psq and H2psq are holomorphic in the region Wδ. Furthermore, 1{ps´ 1` bq, Epsq, and
şp1

1
x´b

xs dx
are holomorphic on

Wδ,b “ t s ;<psq ą 1´ b u XWδ.

The right-hand side of (36) therefore extends to a holomorphic function in the region Wδ,b, shown in Figure
11.

By Theorem 4.1, if we assume Jpx; q, aq´ x´b maintains a constant sign on intervals of the form rx1,8q,
then the abscissa of convergence σ0 of Gpsq must satisfy σ0 ď 1 ´ b ă β. This is impossible since,
as in the proof of Theorem 4.2, the second derivative of H1psq ´ H2psq will have a pole of order 2 at
ρ, contradicting the holomorphy of Gpsq in the half-plane <psq ą 1 ´ b. We have a contradiction and
therefore Jpx; q, aq ´ x´b ą 0 on some sequence tending to infinity. Hence,

Jpx; q, aq “ Ω`px´bq.

Considering Jpx; q, aq ` x´b and repeating the above proof establishes that Jpx; q, aq ` x´b ă 0 on
another infinite sequence, i.e.,

Jpx; q, aq “ Ω´px´bq.

�

5. PROOFS OF THEOREMS 1.14 AND 1.16

Proof of Theorem 1.14. By Proposition 3.5, we have, for m “ Indqpaq,

log f px; q, aq “ Jpx; q, aq ´
Rq,a

ϕpqq
m

pm´ 1qx
m´1

m log x
` O

˜

1

x
m´1

m log2 x

¸

.

We observe that

0 ă
Rq,a

ϕpqq
m

pm´ 1qx
m´1

m log x
“ O

˜

1

x
m´1

m log x

¸

.

Therefore, for large enough x,
log f px; q, aq ă Jpx; q, aq.
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From this inequality the result follows, since Jpx; q, aq ă 0 for arbitrarily large x by Theorem 4.2. �

Proof of Theorem 1.16 (a). From Proposition 3.5 we have

log f px; q, aq “ Jpx; q, aq ` O

˜

1

x
m´1

m log x

¸

.

Now since Θ ď 1 and 1´Θ ă b, then by the assertion of Theorem 4.3, there exists a sequence txiu along
which (i.e., for x “ xi)

Jpx; q, aq ą
1
xb .

Along that same sequence,

(37) log f px; q, aq ą
1
xb ` O

˜

1

x
m´1

m log x

¸

“
1
xb

ˆ

1` O
ˆ

1
xr log x

˙˙

,

where r “ m´1
m ´ b ą 0 since b ă 1{2 and pm ´ 1q{m ě 1{2. Hence, the bracketed expression may be

bounded by a positive constant, establishing

log f px; q, aq “ Ω`px´bq.

The proof for log f px; q, aq “ Ω´px´bq follows similarly by employing Jpx; q, aq “ Ω´px´bq. �

Proof of Theorem 1.16 (b). As in the proof of Theorem 1.16 (a), we know that

log f px; q, aq “ Jpx; q, aq ` O

˜

1

x
m´1

m log x

¸

,

where m is at least 3. Also the conditions of Theorem 4.3 for b ą 1{2 holds. Therefore, there exists a
sequence txiu along which

log f px; q, aq ą
1
xb

ˆ

1` O
ˆ

1
xr log x

˙˙

,

where r “ m´1
m ´ b ą 0 since b ă 2{3 and pm´ 1q{m ě 2{3. This establishes

log f px; q, aq “ Ω`px´bq

and the proof for log f px; q, aq “ Ω´px´bq follows in a similar manner. �

6. AN EXPLICIT FORMULA FOR log f px; q, aq

We start with a version of the explicit formula for
şx

1 ψpt; q, aqdt.

Theorem 6.1 ([13, Lemma 3.1]). For a Dirichlet character χ modulo q, write

Zpχq “ tρ P C ; Lpρ, χq “ 0,<pρq ě 0 and ρ ‰ 0u.

Let α be 1 if χ is odd and 0 otherwise, bpχq, cpχq be the constant terms in the Laurent expansion of L1
L ps, χq

about 0 and -1, respectively, and m0pχq be the multiplicity of the zero of Lps, χq at 0. Then, for x ą 1, we
have

ż x

1
ψpt; q, aq dt “

x2

2ϕpqq
´

1
ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

xρ`1

ρpρ` 1q
` R̂px; q, aq,
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where

R̂px; q, aq “ ´
1

ϕpqq

ÿ

χ pmod qq

χpaq
8
ÿ

n“1

x´2n`1´α

2np2n´ 1` 2αq

` x

¨

˝

1
ϕpqq

ÿ

χ pmod qq

χpaqpm0pχq ´ bpχqq

˛

‚

´ x log x

¨

˝

1
ϕpqq

ÿ

χ pmod qq

χpaqm0pχq

˛

‚` log x

¨

˝

1
ϕpqq

ÿ

χ odd

χpaq

˛

‚

`

¨

˝

1
ϕpqq

ÿ

χ even
χpaq

L1

L
p´1, χq `

1
ϕpqq

ÿ

χ odd

χpaqpcpχq ` 1q

˛

‚.

Under the assumption of SHq,a the explicit formula given in Theorem 6.1 allows us to establish a new
expression for Jpx; q, aq.

Lemma 6.2. Suppose that SHq,a is true. Then, for x ą 1, we have

Jpx; q, aq “ ´
1

ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

Fρpxq
ρ

` Ĵpx; q, aq,

where

Fρpxq “
ż 8

x
tρgptq dt,

Ĵpx; q, aq “
ż 8

x
R̂1pt; q, aqgptq dt

with

gptq “
log t ` 1
t2 log2 t

,

and

R̂1pt; q, aq “ ´
1

ϕpqq

ÿ

χ pmod qq

χpaq
8
ÿ

n“1

ˆ

´t´p2n`αq

2n` α

˙

`
1

ϕpqq

ÿ

χ pmod qq

χpaqpm0pχq ´ bpχqq

´
1

ϕpqq

ÿ

χ pmod qq

χpaqm0pχqplog t ` 1q `
1

ϕpqq

ÿ

χ odd

χpaqt´1.

Proof. Since we are assuming SHq,a, recall that for any zero ρ in
Ť

χZpχq whose real part is neither 0 nor
1
2 , we have that

(38)
ÿ

χ pmod qq

χpaqmρpχq “ 0.

Thus, this assumption allows us to prove that
ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

g1ptq
tρ`1

ρpρ` 1q

is integrable on px,8q for any x ą 1 and it can be integrated term by term. In anticipation of an application
of the Dominated Convergence Theorem, for n ě 1, consider the sequence of functions

fnptq “
ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq
|=pρq|ďn

g1ptq
tρ`1

ρpρ` 1q
.
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We see that, for all t P px,8q,

lim
nÑ8

fnptq “
ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

g1ptq
tρ`1

ρpρ` 1q
.

Moreover,

| fnptq| “

∣∣∣∣∣∣∣∣∣∣∣∣g
1ptq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq
|=pρq|ďn

tρ`1

ρpρ` 1q

∣∣∣∣∣∣∣∣∣∣∣∣
ď |g1ptq| ¨

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ÿ

χ pmod qq

χpaq

¨

˚

˚

˚

˚

˚

˝

ÿ

ρPZpχq
<pρq“1{2
|=pρq|ďn

tρ`1

ρpρ` 1q
`

ÿ

ρPZpχq
<pρq“0
|=pρq|ďn

tρ`1

ρpρ` 1q

˛

‹

‹

‹

‹

‹

‚

`
ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq
<pρq‰0,1{2
|=pρq|ďn

tρ`1

ρpρ` 1q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since zeroes are counted with multiplicity, the final sum becomes

ÿ

ρPYχZpχq

<pρq‰0,1{2
|=pρqďn

ř

χ pmod qq χpaqmρpχq

ρpρ` 1q
tρ`1 “ 0

by way of (38). We now have

| fnptq| ď |g1ptq|

¨

˚

˚

˚

˚

˚

˝

t
3
2

ÿ

χ pmod qq

ÿ

ρPZpχq
<pρq“1{2
|=pρq|ďn

1
|ρpρ` 1q|

` t
ÿ

χ pmod qq

ÿ

ρPZpχq
<pρq“0
|=pρq|ďn

1
|ρpρ` 1q|

˛

‹

‹

‹

‹

‹

‚

.

Removing the restriction on =pρq yields

| fnptq| ď |g1ptq|

¨

˚

˚

˝

t
3
2

ÿ

χ pmod qq

ÿ

ρPZpχq
<pρq“1{2

1
|ρpρ` 1q|

` t
ÿ

χ pmod qq

ÿ

ρPZpχq
<pρq“0

1
|ρpρ` 1q|

˛

‹

‹

‚

.

We note that this upper bound for | fnptq| is integrable on px,8q for x ą 1, since

g1ptq “ ´
1
t3

ˆ

2
log t

`
3

log2 t
`

2
log3 t

˙

.

Hence, the dominated convergence theorem allows us to have

(39)
ż 8

x

1
ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

g1ptq
tρ`1

ρpρ` 1q
dt “

1
ϕpqq

ÿ

χ pmod qq

χpaq
´

ÿ

ρPZpχq

ż 8

x
g1ptq

tρ`1

ρpρ` 1q
dt
¯

.

Now employing integration by part on the left-hand side of (39) together with Theorem 6.1 yield
ż 8

x

1
ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

g1ptq
tρ`1

ρpρ` 1q
dt “ 0´

gpxq
ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

xρ`1

ρpρ` 1q

`

ż 8

x
gptq

ˆ

ψpt; q, aq ´
t

ϕpqq

˙

dt ´
ż 8

x
gptqR̂1pt; q, aq dt.(40)
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Similarly integration by parts on the right-hand side of (39) yields

1
ϕpqq

ÿ

χ pmod qq

χpaq
´

ÿ

ρPZpχq

ż 8

x
g1ptq

tρ`1

ρpρ` 1q
dt
¯

“ 0´
gpxq
ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

xρ`1

ρpρ` 1q

´
1

ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

Fρpxq
ρ

,(41)

where Fρpxq “
ş8

x gptqtρ dt.
The result follows by (39), (40), and (41). �

Corollary 6.3. Under the assumption of SHq,a

(42) Jpx; q, aq “
1

ϕpqq
?

x log x

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

xi=pρq

ρpρ´ 1q
` Ĵpx; q, aq ` O

ˆ

1
?

x log2 x

˙

.

Proof. Applying Lemma 3.4 to Fρpxq in Lemma 6.2 yields

Jpx; q, aq “
1

ϕpqq

¨

˝

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

ˆ

xρ´1

ρpρ´ 1q log x
´

rρpxq
ρ

˙

˛

‚` Ĵpx; q, aq.

If we apply the estimates of (30) to rρpxq at strictly imaginary zeroes arising from an imprimitive character,
we see that these zeroes only contribute terms of order Op 1

x log xq to the sum involving such zeroes. Mean-
while, since we have assumed SHq,a, any other contribution must be from zeroes of the form ρ “ 1{2 ` it,
and therefore the estimate (30) for rρpxq yields the result. �

The next lemma provides an estimation for Ĵpx; q, aq.

Lemma 6.4. We have Ĵpx; q, aq “ Op1{xq.

Proof. In order to bound Ĵpx; q, aq, we aim to bound R̂1pt; q, aq in absolute value. If we write

νpk; q, aq “

$

’

’

&

’

’

%

ÿ

χ odd

χpaq if k is odd,
ÿ

χ even
χpaq if k is even,

then we may observe that

(43)
ÿ

χ odd

χpaq
8
ÿ

n“1

t´2n´1

2n` 1
`

ÿ

χ even
χpaq

8
ÿ

n“1

t´2n

2n
`

ÿ

χ odd

χpaqt´1 “

8
ÿ

k“1

νpk; q, aqt´k

k
,

where the terms on the left all appear in the expression for R̂1pt; q, aq in Lemma 6.2. Since there are ϕpqq
2

even and ϕpqq
2 odd characters respectively, |νpx; q, aq| ď ϕpqq

2 and therefore, for t ą 1,
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

νpk; q, aqt´k

k

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ϕpqq

2

8
ÿ

k“1

t´k

k
“ ´

ϕpqq
2

log
ˆ

1´
1
t

˙

.

Observe that ´ logp1´ 1
t q is always positive and decreasing on p1,8q, and therefore for t ą e4,

(44)

1
ϕpqq

»

–

ÿ

χ odd

χpaq
8
ÿ

n“1

t´2n´1

2n` 1
`

ÿ

χ even
χpaq

8
ÿ

n“1

t´2n

2n
`

ÿ

χ odd

χpaqt´1

fi

fl

ď ´
1
2

log
ˆ

1´
1
t

˙

ď ´
1
2

log
ˆ

1´
1
e4

˙

ď 0.01.
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Returning to expression for R̂1pt; q, aq in Lemma 6.2, we can take the absolute value and apply (44) to
determine that for t ą e4,

(45)

|R̂1pt; q, aq| ď
1

ϕpqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

χ odd

χpaq
8
ÿ

n“1

t´2n´1

2n` 1
`

ÿ

χ even
χpaq

8
ÿ

n“1

t´2n

2n
`

ÿ

χ odd

χpaqt´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

ϕpqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

χ pmod qq

χpaqbpχq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

ϕpqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

χ pmod qq

χpaqm0pχq log t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 0.01`
Bq

ϕpqq
`
Mq log t
ϕpqq

,

where Bq:“
ř

χ pmod qq|bpχq| andMq:“
ř

χ pmod qqm0pχq. With this bound in place, we may now turn our
attention to estimating Ĵpx; q, aq. For x ą e4, we have, by (45),
(46)
ˇ

ˇĴpx; q, aq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż 8

x
R̂1pt; q, aq d

ˆ

´1
t log t

˙ˇ

ˇ

ˇ

ˇ

ď

ż 8

x

ˆ

0.01`
Bq

ϕpqq

˙

d
ˆ

´1
t log t

˙

`

ż 8

x

Mq log t
ϕpqq

d
ˆ

´1
t log t

˙

.

Evaluating integrals in (46) yields

(47)
ˇ

ˇĴpx; q, aq
ˇ

ˇ ď
0.01ϕpqq ` Bq `Mq

ϕpqqx log x
`
Mq

ϕpqqx
.

This implies that Ĵpx; q, aq “ Op1{xq. �

Proof of Theorem 1.18. The result follows by applying Corollary 6.3 and Lemma 6.4 to Proposition 3.5. �

7. COMPUTATION OF Fq

Consider

(48) Fq “
ÿ

χ pmod qq

F pχq,

where,

F pχq “
ÿ

ρPZpχ1q

1
ρp1´ ρq

,

recalling thatZpχq “ tρ P C ; Lpρ, χq “ 0,<pρq ě 0 and ρ ‰ 0u.
Let q “ 1. Corollary 10.14 of [15] establishes

(49) F1 “
ÿ

ρ

1
ρp1´ ρq

“ 2` γ ´ log π´ 2 log 2 « 0.04619,

where the sum is over the non-trivial zeroes of ζpsq.
For larger q, we keep (49) in mind, since the principal character modulo q will always be induced by the

trivial character, and therefore
ÿ

ρPZpχ10q

1
ρp1´ ρq

“ F1

for any q. If χ is not principal, its contribution to Fq is determined by the results of Corollary 10.18 of [15]
which determine that

(50)
ÿ

ρPZpχ1q

1
ρp1´ ρq

“ log
q
π
` 2<p

L1

L
p1, χ1qq ´ γ ´ p1´ αq2 log 2,

where α “ 1 if χ is odd and α “ 0 if χ is even.
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Suppose q “ p is an odd prime, so that all the nonprincipal characters modulo p are primitive. Then,
summing (50) over all characters yields

(51) Fp “ F1 ` 2γp ´ pγ ` p2´ pq log
ˆ

2π
p

˙

` log 2,

where

γp “ γ `
ÿ

χ‰χ0

L1

L
p1, χq

is the Euler-Kronecker constant associated with the cyclotomic field Qpe2πi{pq. Computations of the value
of γp are provided in [2]. Using these and (51) we determine the value of Fp for odd primes up to p “ 149.
Several of these values are listed in Table 2.

TABLE 2. Some values of Fp.

p γp Fp

3 0.94550 0.15942
5 1.72062 0.60919
7 2.08759 1.41418

11 2.41542 4.26098
13 2.61076 6.45484
17 3.58198 13.02067
...

...
...

139 5.88917 356.51847
149 5.98342 392.11323

Now, suppose q “ 2p, where p is either an odd prime or 1. Then all of the characters mod q are induced
by the characters mod p, and so

F2p “ Fp.

For q “ 4, 8, and 12, the matter of computing F pχq via (50) has been left to the Python package MPMATH

[14], in particular for the computation of the logarithmic derivative L1
L p1, χ

1q. We include values related to
(50) towards the computation of F4, F8, and F12 in Tables 3, 4, and 5, respectively . The numbering of the
characters follows [10].

TABLE 3. Values relevant to the computation of F4.

χ α <p L1
L p1, χqq F pχq

χ1p1, ¨q 0 0.0461914
χ4p3, ¨q 1 0.2456096 0.1555680
F4 0.2017594

TABLE 4. Values relevant to the computation of F8.

χ α <p L1
L p1, χqq F pχq

χ1p1, ¨q 0 0.0461914
χ8p3, ¨q 1 -0.0207114 0.3160732
χ8p5, ¨q 0 0.6321150 0.2354316
χ4p3, ¨q 1 0.2456096 0.1555680
F8 0.7532641
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TABLE 5. Values relevant to the computation of F12.

χ α <p L1
L p1, χqq F pχq

χ1p1, ¨q 0 0.0461914
χ3p2, ¨q 1 0.3682816 0.1132300
χ4p3, ¨q 1 0.2456096 0.1555680
χ12p11, ¨q 0 0.4767499 0.3301666
F12 0.6451560

Finally, for q “ 9 we implemented a naive version of the methods suggested in [2, Section 3.2] to
compute Lp1, χq and L1p1, χq, for primitive characters χ modulo 3 and 9. Then we applied (10) to compute
F9.

8. PROOF OF THEOREM 1.22

Proof. Let q ď 10 or q “ 12, 14 and a “ 1. Recall that the satisfaction of the inequality

Nk

ϕpNkqplogpϕpqq log Nkqq
1

ϕpqq

ą
1

Cpq, 1q

for all positive integers k is equivalent to log f px; q, 1q ă 0 for all x ą 1. For q “ 1, Theorem 1.22 is exactly
Theorem 2 of [18].

For q ą 1, it is a consequence of part (a) of Theorem 1.16 that if log f px; q, 1q ă 0 for all x, then SHq,a
is true for the given q and a. Since a “ 1, SHq,a implies (and in fact is equivalent to) GRHq. Hence, to
establish Theorem 1.22, we only need to show that if GRHq is true, then log f px; q, aq ă 0 for all x. In
the case of q “ 2, observe that f px; 1, 1q ą f px; 2, 1q since Cp2, 1q “ 2Cp1, 1q and therefore the work of
Nicolas shows that 1 ą f px; 1, 1q ą f px; 2, 1q, and hence Theorem 1.22 holds in the case q “ 2.

For the remaining moduli, (21) and (24) imply that for x ą 1

(52) log f px; q, 1q ď Kpx; q, 1q `
1

2px´ 1q
,

since S px; q, aq
´

x log x´c log c
px log xqpc log cq

¯

is always negative. Moreover, if xq is defined as the smallest x for which

(53)
θpx

1
2 ; q, bq

x
1
2

ą
0.6
ϕpqq

for all b in pZ{qZqˆ, then (28) implies that for x ě xq,

(54) θpx; q, 1q ď ψpx; q, 1q ´
0.6Rq,1

ϕpqq
x

1
2 .

It follows from (54) that

Kpx; q, 1q ď Jpx; q, 1q ´
0.6Rq,1

ϕpqq
F 1

2
pxq,

which, with (52), establishes

(55) log f px; q, 1q ď Jpx; q, 1q ´
0.6Rq,1

ϕpqq
F 1

2
pxq `

1
2px´ 1q

,

for x ě xq.
We aim to show that the right-hand side of inequality (55) is negative. We start by establishing an explicit

upper bound for Jpx; q, 1q. Recall Lemma 6.2 and observe that

´
1

ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

Fρpxq
ρ

“
1

ϕpqq

¨

˚

˚

˝

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχ1q

´Fρpxq
ρ

`
ÿ

χ‰χ1

χpaq
ÿ

ρPZpχq
<pρq“0

´Fρpxq
ρ

˛

‹

‹

‚

,
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where χ1 is the character which induces χ. Since we are assuming GRHq we have that <pρq “ 1{2 in the
sum involving ρ P Zpχ1q. Now employing (30) to estimate r1{2pxq and r0pxq yields

(56)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

ρPZpχq

Fρpxq
ρ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ϕpqq

¨

˝

´

1` 3
log x

¯

Fq
?

x log x
`

´

1` 2
log x

¯

Gq

x log x

˛

‚,

for x ą e2, where Fq is defined in (9) and

Gq “
ÿ

χ pmod qq

ÿ

ρPZpχq
<pρq“0

1
|ρp1´ ρq|

.

We can compute Gq directly in Maple by recalling that all of the zeroes in the sum are in an arithmetic
progression along the imaginary axis. Furthermore, in Lemma 6.4 if we are less zealous with our use of
absolute values in arriving at (47) we determine that if x ą e4 we have

(57) Ĵpx; q, 1q ď
0.01ϕpqq ´ Bq ´Mq

x log x
´
Mq

x
.

Now by applying (56) and (57) in Lemma 6.2 we conclude that under the assumption of GRHq for x ą
maxte4, xqu we have

(58) Jpx; q, 1q ď
1

ϕpqq

¨

˝

´

1` 3
log x

¯

Fq
?

x log x
`

´

1` 2
log x

¯

Gq

x log x
`

0.01ϕpqq ´ Bq ´Mq

x log x
´
Mq

x

˛

‚.

Nicolas [19, (2.4)] establishes that

´F 1
2
pxq ď ´

2
?

x log x
`

2
?

x log2 x

for x ą 1 and therefore, with (55) and (58), we arrive at an upper bound for log f px; q, 1q under GRHq.
More precisely, suppose GRHq is true and let x ą maxtxq, e4u. Then,

(59) log f px; q, 1q ď
Fq ´ 1.2Rq,1 ` pqpxq

ϕpqq
?

x log x
,

where pqpxq is given by

pqpxq “
3Fq ` 1.2Rq,a

log x
`

´

1` 2
log x

¯

Gq
?

x
`

0.01ϕpqq ´ Bq,a ´Mq,a
?

x
´

ˆ

Mq,a

x
´

ϕpqq
2px´ 1q

˙

¨
?

x log x.

Each of the constants Fq, Gq, Bq and Mq may be computed precisely. Observe that pqpxq is eventually
positive and decreasing toward 0 as x tends to infinity, and therefore will take a maximum value Pq on the
interval re10,8q (note that e10 « 22027). It follows that

log f px; q, 1q ď
Fq ´ 1.2Rq,a ` Pq

ϕpqq
?

x log x

for x ą maxtxq, e10u. In Table 6 for each q P t3, 4, 5, 6, 7, 8, 9, 10, 12, 14u we verify that Fq ´ 1.2Rq,a `Pq

is negative, and therefore log f px; q, 1q ă 0 for x ą maxtxq, e10u under GRHq.
In Table 7, we determine the size of xq. First of all using [1, Equation (A.3)] we have a constant c1pqq ă

0.4 such that ∣∣∣∣∣∣θpx; q, bq ´
x

ϕpqq

∣∣∣∣∣∣ ď c1pqq
?

x

for all b P Zˆq and 1 ď x ă 1010. This implies that

θpx
1
2 ; q, bq

x
1
2

ą
0.6
ϕpqq
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TABLE 6. Values used to verify that log f px; q, 1q ă 0 for x ą maxtxq, e10u, under GRHq.

q Fq Gq Rq,a Bq Mq Pq Fq ´ 1.2Rq,1 ` Pq

3 0.1594208 0.0986123 2 2.2367697 1 0.2668522 -1.9736270
4 0.2017594 0.0397208 2 2.2744923 1 0.2789234 -1.9193172
5 0.6091908 0.2070784 2 2.3067140 2 0.3956888 -1.3951204
6 0.1594214 0.1177920 2 1.5436226 1 0.2717779 -1.9688008
7 1.4141824 0.2972734 2 1.7004570 3 0.6354003 -0.3504173
8 0.7532641 0.0397208 4 1.6412439 2 0.6820415 -3.3646943
9 1.4112121 0.0986123 2 2.0466109 3 0.6305706 -0.3582173

10 0.6091908 0.8113486 2 0.9204197 3 0.3357980 -1.4550112
12 0.6451560 0.5439353 4 1.2309413 3 0.5846683 -3.5701757
14 1.4141824 0.9935082 2 -0.3789848 5 0.6550409 -0.3307767

for
´

ϕpqqc1pqq
0.4

¯4
ă x ă 1020. For larger x, [22, Theorem 1] provides c2pqq ă 0.4 for which∣∣∣∣∣∣θpx; q, bq ´

x
ϕpqq

∣∣∣∣∣∣ ď c2pqq
x

ϕpqq

for all b P Zˆq and x ě 1010. Therefore,

θpx
1
2 ; q, bq

x
1
2

ě
1´ c2pqq
ϕpqq

ą
0.6
ϕpqq

,

for all b P Zˆq and x ě 1020. Hence, for x ą xq “

´

ϕpqqc1pqq
0.4

¯4
the inequality (53) holds. Thus,

log f px; q, 1q ă 0

for x ą maxttxqu, e10u, where txqu is given in Table 7.
For 1 ă x ď maxttxqu, e10u, we have verified log f px; q, 1q ă 0 by direct computation.

TABLE 7. Values used to determine xq.

q c1pqq c2pqq txqu q c1pqq c2pqq txqu

3 1.798158 0.002238 6535 8 1.817557 0.002811 109133
4 1.780719 0.002238 6285 9 1.108042 0.003228 76312
5 1.41248 0.002785 39805 10 1.41248 0.002785 39805
6 1.798158 0.002238 6535 12 1.735501 0.002781 90720
7 1.116838 0.003248 78764 14 1.105822 0.003248 75702

Therefore, for the listed values of q, GRHq implies that log f px; q, 1q ă 0 for all x ą 1 and Theorem 1.22
is established. �
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