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EULER’S FUNCTION ON PRODUCTS OF PRIMES IN PROGRESSIONS

AMIR AKBARY AND FORREST J. FRANCIS

ABSTRACT. We study generalizations of some results of Jean-Louis Nicolas regarding the relation between
small values of Euler’s function ¢(n) and the Riemann Hypothesis. Among other things, we prove that for
1 < g < 10 and for ¢ = 12, 14, the generalized Riemann Hypothesis for the Dedekind zeta function of the
cyclotomic field Q(e?/4) is true if and only if for all integers k > 1 we have

Nk 1
— — > .
o(No) (log(e(q) log Ny~ Cla:1)

Here N is the product of the first k primes in the arithmetic progression p = 1 (mod ¢) and
C(g, 1) is the constant appearing in the asymptotic formula

e

1
p<x log x) #(@
p=1 (mod q)

as x — 00. We also prove that, for ¢ < 400, 000 and integers a coprime to g, the analogous inequality
Nk 1
— — — > C
o(Ny) (log(p(q) log Ny)) #@ (g.a)

holds for infinitely many values of k. If in addition a is a not a square modulo g, then there are infinitely many
k for which this inequality holds and also infinitely many k for which this inequality fails.

1. INTRODUCTION

Let ¢(n) be Euler’s totient function. A result of Landau from 1909 captures the minimal behavior of @.

Theorem 1.1 ([4, Theorem 328]). Let y be the Euler-Mascheroni constant. Then

lim sup S
n—oo  @(n)loglogn ’

A proof of Theorem 1.1 follows by considering the sequence of primorials, Ny = Hle pi, alongside
Mertens’ theorem [4, Theorem 429] and the Prime Number Theorem [4, Theorem 6]. Theorem 1.1 is
visually expressed in Figure 1. (Colored plots throughout this paper have been generated using Maple™ !

[11].)

In [23], Rosser and Schoenfeld studied the behavior of the expresssion ——————
¢(n)loglogn
manner.

Theorem 1.2 ([23, Theorem 15]). Forn > 2,
n 2.50637
———— <+ ———.
¢(n)loglogn (loglogn)?
Rosser and Schoenfeld also remarked that they do not know whether there are infinitely many natural
numbers 7 satisfying

(D

In [18], Nicolas expressed the preceding remark by asking the following question.

in a more explicit

n y

_— >
¢(n)loglogn ¢
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FIGURE 1. Visualization of Theorem 1.1. Points represent (n, m) for n between 29
and 30055. Points marked with red diamonds correspond to the primorials 30, 210, 2310,

and 30030.

Question 1.3 ([18, p. 375]). Do there exist infinitely many n € N for which e > e¥?

—_n__
loglogn
In the same paper, he resolves this question in the following theorem.

Theorem 1.4 ([18, Theorem 1]). There exist infinitely many n € N for which ) > e,

_n_

loglogn

Nicolas’ proof leverages properties of the Riemann zeta function, £(s), against the behavior of ¢(n) at

primorials. Recall that the Riemann zeta function has a pole at s = 1 and trivial zeroes at s = —2,—4, —6. . ..

Its nontrivial zeroes are those found in the critical strip 0 < R(s) < 1. The Riemann Hypothesis (RH)
predicts the location of these nontrivial zeroes.

Hypothesis 1.5 (RH). The nontrivial zeroes of {(s) have real part 1/2.

In relation to Question 1.3, Nicolas considered the behavior of ¢(Ny) under two possible resolutions to
the Riemann Hypothesis.

Theorem 1.6 ([18, Theorem 2]). If the Riemann Hypothesis is true, then for all primorials Ny = ]_[f;l Di,
where p; is the i-th prime, we have
Ny
¢(No)loglog N, ~ ¢
If the Riemann Hypothesis is false, then there are infinitely many primorials for which the above inequality
holds and also infinitely many primorials for which the above inequality does not hold.

’y-

As a direct corollary of the above theorem, we have the following criterion for the Riemann Hypothesis.

Criterion 1.7 (Nicolas’ Criterion for the RH). The Riemann Hypothesis is true if and only if there exists
ko > 0 such that for all k = ko,
Ny -
—— >e¢
©(Ny) loglog Ny

In this article, we are motivated to generalize the above criterion in the context of Dirichlet L-functions.
Towards this aim we seek a generaliziation of Theorem 1.6 to a setting involving primes in arithmetic
progressions. We will restrict our attention to the behavior of ¢(n) at elements of the set

Y

S4a:={neN;p|n = p=a(modq)},
where g, a are coprime natural numbers. This set contains an analogue of the primorials, the k-th primorial
in§ 4, given by

k
Ni = Nya(k) = [ [ Ps
i=1

where p; is the i-th prime in the arithmetic progression a (mod ¢). Throughout this article, ¢ and a will
be fixed and coprime. For notational convenience, we often suppress reference to ¢ and a and use Ny to
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denote the k-th primorial in §,,. (Note that for ¢ = a = 1, we have Ny = Ng.) In this context, we
have analogues for both Mertens’ theorem and the Prime Number Theorem. The analogue of Mertens’
theorem was originally established by Williams [25]. Here, however, we refer to the work of Languasco
and Zaccagnini ([6], [7], [8]) where they have provided an explicit form for the constant appearing in the
generalized Mertens’ theorem.

Theorem 1.8 ([6, p. 46]). Let x > 2 and q,a € N be coprime. Then,

[ (1)~ Coo
p<x p (log x) =)
p=a (mod q)

as x — oo, where

and

| _Je(g) =1 if p=a(mod q),
a(p;q.a) = {_1 otherwise.

We note that, in agreement with the classical Mertens’ theorem, C(1, 1) is e~ since a(p;1,1) = 0 for
all primes p.
For an analogue of the prime number theorem, we have

(2) 0(x;q,a) ~ —

¢(q)

’

as x — oo (see [17, Theorem 6.8]), where

0(x;q,a) = Z log p.

psx
p=a (mod q)

Hence, we have all of the tools required to establish a generalization of Theorem 1.1 for primes in arith-
metic progressions.
Theorem 1.9. Let g, a € N be coprime. Then
n 1

lim su - ,
wes o o(n)(log((q) logn)) V¥@ — C(q,a)

where C(q, a) is defined in Theorem 1.8.

In each fixed set S, 4, one can observe behavior congruous with the behavior in Figure 1. Figures 2 and
3 visualize Theorem 1.9 forg = Sand a = 1, 3.

At this point, it seems reasonable to extend this generalization along the line of study begun by Nicolas.
We are interested in the following question.

Question 1.10. Let g,a € N be coprime and consider the inequality

n 1

3) . |
o(n)(log(p(g) logn) 7o~ €(4:4)

Are there infinitely many n € S ; , for which (3) is satisfied?

Nicolas [18, pp. 376-77] observed that one can encode information regarding (3) at primorials in S i,
using a real-valued function. Mimicking his construction, let p represent any prime in the progression a
(mod ¢). Define

(log(¢(q)0(x; g,a)))

Clg.a) a [ (1 - %) |

f(xq,0) =
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0.9+

0724 -
T

FIGURE 2. Visualization of Theo- FIGURE 3. Visualization of Theo-
rem 19 for ¢ = 5, a = 1 rem 19 for ¢ = 5, a = 3.
Points represent (n, ——*+———) Points represent (n, ——*+———)
(¢(n) loglogn) #(4) (¢(n) loglogn) #(4)
forn € S5, between 11 and 49991. for n € §53 between 3 and 49993.
Points marked with red diamonds Points marked with red diamonds
correspond to 11, 341, and 13981, correspond to 3,39, 897, and 38571,
the first three primorials in S5 ;. The the first four primorials in Ss3. The
red line is C(5, 1)~ ~ 1.2252. red line is C(5,3)~! ~ 0.8060.

Hence, for any x € [ﬁk, D +1),

1

(log(tp(q) log Nk)) = o(NY)
C(q.a) ' Nk

It is therefore apparent that (3) holds for Ny if and only if f (x;9,a) < 1 forany x € [ﬁk,]_)k +1) or, equiva-
lently,

4) log f(x:q.a) = loglog(“";fz]?xq’ +Zlog< > log C(q.a) <0,

f(x;q,a) =

for x € [Prs Prs1)-
We supply plots of log f(py; g, a) for several values of ¢ and a. Since log f(x; g, a) is fixed between

primes in the progression a (mod ¢), the horizontal axis in each plot is k, the index of p,, rather than x.
Each plot presents data for primes p;, < 50,000. For example, the first plot indicates that f(x;1,1) < 1
for x < 49,999. In Theorem 3(a) of [18], Nicolas showed (using estimates of Rosser and Schoenfeld [23])
that f(x;1,1) < 1for2 < x < 10® and further that, assuming RH, it will remain negative for all values
of x. The plots distinguish between three cases of residues modulo g. For a = 1, log f(px; ¢, a) is black;
for other square a, log f(px; g, a) is red or yellow; for non-square a, log f(pk; g, a) is a cool color. These
plots suggest that the behavior of log f(pk; ¢, a) around O differs depending on whether a is a square or
a non-square modulo g. Of note is the plot for ¢ = 7, where we come across several examples where
log f(py; 7,a) > 0, all of which occur when a is not square modulo 7.

In this paper we study Question 1.10 by examining the function log f(x; ¢, a) along the line of approach
developed by Nicolas for the case ¢ = 1 in [18]. Among other results we propose an answer regard-
ing the different behaviour of log f(x; ¢,a) when a is not a square modulo g. We will study the function
log f(x; g,a) by appealing to the behavior of Dirichlet L-functions L(s, y) arising from Dirichlet characters
x (mod g). As with the Riemann zeta function, we say that the nontrivial zeroes of L(s, y) are located on
the critical strip 0 < R(s) < 1. The relevant analogue of the Riemann Hypothesis for Dirichlet L-functions
mod g is the following.



EULER’S FUNCTION ON PRODUCTS OF PRIMES IN PROGRESSIONS 5

Hypothesis 1.11 (GRH,). For fixed q and all Dirichlet characters y modulo q, all the nontrivial zeroes of
L(s, x) have real part 1/2.

It is known that
Lo(exniray () = H L(s,x),
X (mod ¢)

where {Q(Ezm/q)(s) is the Dedekind zeta function of the cyclotomic field Q(¢2/4) and y’ is the primitive
Dirichlet character that induces the Dirichlet character y modulo ¢ (see [3, Theorem 65, p. 296]). Since

FIGURE 4. Plot of log f(px; 1, 1). FIGURE 5. Plot of log f(p;; 3, a).
The black plot corresponds to a = 1
and the blue plot to a = 2.

// s
FIGURE 6. Plot of log f(ps;5,a). FIGURE 7. Plot of log f(p;6,a).
The black plot corresponds toa = 1, The black plot corresponds to a = 1
the red plot to a = 4, the blue plot to and the blue plotto a = 5.

a = 2, and the purple plot to a = 3.

FIGURE 8. Plot of log f(py;7,a). FIGURE 9. Plot of log f(p; 10,a).
The black plot corresponds toa = 1, The black plot corresponds toa = 1,
the yellow plot to a = 2, the red plot the red plot to a = 9, the blue plot to
to a = 4, the blue plot to @ = 3, the a = 3, and the purple plottoa = 7.

purple plot to a = 5, and the cyan
plottoa = 6.
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the nontrivial zeroes of {g,xi/q) (s) are located in the critical strip 0 < R(s) < 1, Hypothesis 1.11 (GRHy)
is equivalent to the statement of the Generalized Riemann Hypothesis (GRH) for gQ(ezm-/q)(s) (i.e., all the
nontrivial zeroes of ¢ ni/q (s) are located on the line R (s) = 1/2). Also note that GRH,, is equivalent to
the statement that all the singularities of the function
L/
Z(s;:9,1) = — (s,
(ssq.1) = >, T(sx)

X (mod q)

on the critical strip are located on the line R(s) = 1/2.
An important function in this article is the following linear combination of logarithmic derivatives of the
Dirichlet L-functions L(s, x). For ¢ and a, fixed coprime integers, we set
_ L
L(siqa)= ), X@)L(sx).
X (mod g)

The function £ (s; ¢, a) has a potential singularity at s when s is a nontrivial zero of a Dirichlet L-
function corresponding to a character modulo g. We formulate the following Singularity Hypothesis (SH, ,)
for Z(s;q,a).

Hypothesis 1.12 (SH, ,). Let g and a be fixed coprime integers. Then the singularities of £ (s;q, a) on the
critical strip 0 < R(s) < 1 are located on the line R(s) = 1/2.

Note that GRH, implies SH, ,, however SH, , for a # 1 does not eliminate the existence of the nontrivial
zeroes p of L(s, x) with R(p) # 1/2. More precisely, SH, , implies that if there exists a nontrivial zero p of
L(s, x) for some y modulo ¢ for which R (p) is not 1/2, then

>, x(@my(x) =0,
x (mod ¢)
where my,(x) is the multiplicity of the zero p of L(s, x). Fora = 1, SH,; is equivalent to GRH,.

It comes as a consequence of the work of Platt [20, Theorem 10.1, Theorem 10.2] that for L-functions
associated with primitive Dirichlet characters of modulus ¢ less than 400,000, there are no zeroes on the
interval (0,1). Moreover such L-functions have zeroes on the line R (s) = 1/2. Hence, by the definition of
Z(s;q,a), we have the following corollary.

Corollary 1.13. For all pairs (q,a) with ¢ < 400,000 and a coprime to q, the function £ (s;q,a) has no
singularities on the interval (0, 1) and has singularities on the line R (s) = 1/2.

Our next result states that it is possible to resolve Question 1.10 under certain assumptions on the singu-
larities of Z(s; ¢, a).

Theorem 1.14. If £ (s; q,a) has a singularity p for which 0 < R(p) < 1, but does not have singularities
on the interval (0, 1), then there exists a sequence of x that tends to infinity for which log f(x; q,a) < 0.

The following is a direct corollary of Theorem 1.14 and Corollary 1.13.
Corollary 1.15. Let g < 400,000. Then there are infinitely many primorials Ny in S g.a for which

]\_]k 1
>

o(Ny)(log(¢(q) log Ny)) o~ C(a-9)

We will write ® := (g, a) to denote the supremum of the real parts of the singularities of .Z(ss; g, a) in
the strip 0 < R(s) < 1. By appealing to the functional equations of Dirichlet L-functions, it is straightfor-
ward to show that the falsehood of SHy, is equivalent to ® > 1/2. The following theorem provides more
precise answers to Question 1.10 under certain assumptions on the singularities of £ (s; ¢, a).

Theorem 1.16. (a) Suppose Hypothesis 1.12 (SH, ) is false. For 1 —©® < b < % assume that £ (s;q,a)
has no singularities on the segment (1 — b, 1). Then, we have

log f(x;9,a) = Q4 (x?),
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as x tends to infinity.”

(b) For integer a that is not a square modulo g, suppose Hypothesis 1.12 (SH, ) is true and £ (s;q, a)
does have a singularity on the line R(s) = 1/2 and does not have a singularity at s = 1/2. Then, for
I<b<i

log f(x;9,a) = Qu(x7"),

as x tends to infinity.

Combining the results of part (a) and (b) of the above theorem for a not a square modulo g with Corollary
1.13 yields the following.

Corollary 1.17. Let g < 400,000 and let a not be a square modulo q. Then there are infinitely many k € N
for which
N I
; N e Cad
o(Ny) (log(¢(q) log Ni)) #@ q

and also infinitely many k € N for which (5) does not hold.

Theorem 1.16 provides a satisfactory answer to Question 1.10 when a is not a square modulo g and for a
square a mod g when SH,, is false. It remains to study Question 1.10 when a is a square modulo g under
the assumption of the truth of SH, ,. We study this case by developing an explicit formula for log f(x; ¢, a).
We start with some notation.

Let Ind,(a), the index of a (mod q), be the least natural number n > 1 for which a is an n-th power
modulo ¢ and let

Rea = #{b € (Z/qZ)"; ™) = g (mod q)}.
Observe that since g and a are coprime, we have a#(9*! = a (mod ¢). Therefore, 2 < Ind,(a) < ¢(q) +

and thus Ind, (a) and R, , are well-defined. Also note that a is a square modulo ¢ if and only if Ind,(a) =
With the addltlonal notation

Z(x) ={peC;L(p.x) =0,R(p) = 0and p # 0},

where as before y’ denotes the primitive Dirichlet character which induces the Dirichlet character y, we
have the following explicit formula for log f(x; g, a).

Theorem 1.18. Assume Hypothesis 1.12 (SHy ,). Writing m = Ind,(a), we have
(0)

1 1 x/3() m- Ry 1
log f(x:.a) - 7@ - e eo(—r).
¢(q) \ vxlogx H%;i 2 pe;w) Pe—1)  (m—1)x"" logx Vxlog? x

For m = 2, we observe that the negative term in (6) is of the same order of magnitude as the term
corresponding to the sum over zeroes. Furthermore, if the constant 2R, , is larger than the limit superior
(with respect to x) of

i3(p)

@) > w@) Y ﬁ

x(modq)  pez(x) PV

then we would have that log f(x;g,a) > 0 for only finitely many x. It is suspected that as x varies, (7)
oscillates in sign, so if 2R, is not larger than the limit superior of (7), then the sign of log f(x; g, a) will
change infinitely often. On the other hand, if m > 2, then the negative term has smaller order of magnitude
than the order of magnitude of the error term in (6). In this case, the oscillatory behavior of (7) will dominate
the behavior of log f(x; ¢, a), so as we proved in part (b) of Theorem 1.16 log f(x; g,a) will change sign
infinitely often.

By the above discussion, we have established the following assertion as a corollary of Theorem 1.18.

2See Notation 1.25 at the end of this section for a definition of the Q notation.
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Corollary 1.19. Suppose that a is a square modulo q and that Hypothesis 1.12 (SH, ;) holds. Then there is
a positive number xq such that

log f(x;g,a) <0
for x > xq if and only if

(8) lim sup Z x(a) Z

vmoda)  pezon PP

i3(p)
<R,

Computing the limit superior in Corollary 1.19 appears to be difficult. Towards an understanding of this
limit, we note that the sum over zeroes in Corollary 1.19 can be bounded in absolute value by

IR Y

x (mod q) peZ(x')
R(p)= 1/2

Under the assumption of GRH,, the above sum is the same as

©) = 2

X (mod q) peZ(x’

For several small values of ¢, we have computed 7, as listed in Table 1 using a combination of theoretical
tools (most notably formulas (49) and (50)) and Sage [24].

)p( —-p)

TABLE 1. ¥, for some small values of g

Fa 14 Fq
0.04619 | 8 0.75326
0.04619 | 9 141121

0.15942 | 10 0.60919
0.20176 | 11 4.26098
0.60919 | 12 0.64516
0.15942 | 13 6.45484
1.41418 | 14 1.41418

~N O\ kWD~

Note that for ¢ # 11, 13 and a square a mod ¢, none of the values of ¥, in the above table are larger than
the smallest possible value of 2R, ,, which is 4 for ¢ > 2. (We have also calculated the values of ¥, for
g = p,2p for primes p < 149. However, once p > 7, we found that ¥, = %>, is larger than 4 = 2R, , for
square a mod g.) Therefore, we have the following proposition.

Proposition 1.20. Let g < 10 or g = 12, 14 and assume GRH,. We have

i3(p)

X

lim su E E —— < F, < 2R, 4.
p yplo—1) ~ 70 -

F2L (mod q) pezoa

Combining the results of Proposition 1.20 and Corollary 1.19 we arrive at the following connection
between GRH,, and inequality (3).

Proposition 1.21. Let g < 10 or g = 12,14 and let a be a square modulo q. Assuming GRH,, there are at
most finitely k € N for which

Ne o
¢(N) (log(p(g) log Ny) 7o~ €(4:9)

Combining the results of Proposition 1.21 with part (a) of Theorem 1.16 and by employing Corollary
1.13 and some numerical computations we deduce several generalizations of Criterion 1.7.
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Theorem 1.22. For g < 10 and for q = 12,14, GRH, is true if and only if for all positive integers k we
have B
N 1
— L — .
(p<Nk) (log(tp(q) IOgNk))W(Q) C(q’ 1)

Remarks 1.23. (i) By using a theorem of Dirichlet ([4, Theorem 201, p. 218]) on simultaneous approxima-
tion of real numbers by rationals one can show

liminf 2 2 50T Z Y -
(mod ¢ pe.Z()(/ (mod q) peZ(x’)
(ii) Following an argument analogous to [5, Theorem 33] we can show that

Resszpl,,i”(s; q,1)
li
l)rcrl»sogp Z Z lo1(1 = p1))]
(mod q) pEZ(X’

where p; is the first singularity (the singularity with the lowest ordinate) of £ (s; ¢, 1) in the critical strip.
(iii) By employing (49) and (50) we have (for g > 2)

L/
(10) Fg =, ¢"(d)log= +2Z D 7 (1) = () (y +log2) +2y — logm +2,
dlq dlg x (mod* d)
d#1 d#1

where ¢*(d) is the number of primitive characters mod d and y (mod* d) denotes a primitive Dirichlet
character mod d. From [21, Theorem 1.4] we know that

1 L 2 & Am)? log? p
—(1y)| = - +0(d='19),
T o L T 2T i O

n=1 pld
where A (n) is the von Mangoldt function, h(p,d) = (p — 1)> when p? | d and h(p,d) = p* — 1 otherwise.
By applying the Cauchy- Schwarz inequality in the term involving LT/( 1, ) in (10) and employing the above

identity for 3, o4+ 4) (1, /\() we conclude that
(11) Fo=> ¢"(d log + 0(¢(q)).
dlq
Since ¢*(q) = ¢ | [(1 = 2) [ [(1 = £)* (see [15, p. 286]) and R, 1 = O(219)) (see Proposition 3.2), where
2
w(q) is the numbiqof primepdliz/isors of g, from (11) we conclude that
Jim F/Rq1 =

Thus, one can ask for determination of the finite set of integers g for which ¥, < 2R, ;.
In view of the above discussion and remarks it would be interesting to investigate the following.

Question 1.24. Is it true that
xi3(p)

lim sup Z Z =F,?

L (mod q) peZx) P

By part (iii) of Remarks 1.23, a positive answer to Question 1.24 implies that a Nicolas type criterion for
GRHj, (similar to the one given in Theorem 1.22) can be established only for finitely many values of g.

The structure of this paper is as follows. First, we will ensure that the questions we are asking are justified
by proving Theorem 1.9. From there, in Section 3 we will establish several useful estimates for log f(x; g, a)
to be used throughout the paper. Once these estimates are in place, in Sections 4 and 5, we will turn our
attention to establishing Theorem 1.14 and Theorem 1.16. In Section 6 we prove Theorem 1.18, which is a
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key tool for examining the behavior of log f(x; g, a). Section 7 is dedicated to computation of several values
of ¥,. Finally we prove Theorem 1.22 in Section 8.

Notation 1.25. Throughout this paper, ¢(n) is Euler’s totient function and 7y is always the Euler-Mascheroni
constant. The numbers g and a will be fixed positive integers, usually coprime. For a pair of coprime ¢
and a we have the set S,, = {ne€N;p|n — p=a (mod ¢)}, which includes every k-th prime p; in
the progression p = a (mod ¢) and also every k-th primorial N; = Hle Dy, arising from this progression.
We follow the usual conventions of analytic number theory with respect to asymptotic notations, with the
inclusion of the less common Q notation. For one, f(x) = Q4 (g(x)) if there exists a positive constant ¢ and
an increasing real sequence which tends to infinity along which f(x) > cg(x). Likewise f(x) = Q_(g(x))
if there exists a positive constant ¢ and an increasing real sequence which tends to infinity along which
f(x) < —cg(x). If both f(x) = Qy(g(x)) and f(x) = Q_(g(x)), we write f(x) = Q4 (g(x)). We
use (Z/qZ)™ to denote the multiplicative group of integers modulo g. The real and imaginary parts of a
complex number p are denoted by R (p) and I (p), respectively.

2. PROOF OF THEOREM 1.9

Proof of Theorem 1.9. The proof is an adaptation of the proof of [4, Theorem 328] to the case of integers

in S,,. Forn e S,,, let r be the number of prime divisors of n that are larger than ¢(g) logn. Writing
| _ap

n=pl'ps*...p;" wehave (¢(¢)logn)” < nand thus,
logn
< ———
log(¢(¢) logn)
Employing the above bound for r yields

dr105) =0 G 1L (5)

p<¢(q)logn
pln

—logn 1
1 log(¢(q) logn) 1
(12) <<1——) R | (1——) .
¢(q) logn p

p<p(q)logn
p=a (mod gq)

The first factor on the right of (12) tends to 1 as n — co0. By invoking Theorem 1.8 for the latter product, we
conclude that

1 ToxCea g 1\ (log(g(q) logn))@n
13 - ——— ~ ’
(13) ( v(q) logn> H ( P) C(q,a)

as n — o00. From (12) and (13), we deduce

n 1
lim su < .
wes o o(n)(log((q) logn)) V¥@ = C(q,a)

To establish a sequence which attains this bound, consider Ny, the k-th primorial in S ¢a- Then, by
Theorem 1.8

1

N <1 . 1) ' (logp)#

o(Ny) . p C(g,a)
p=a (mod q)

as k — oo. Next, we apply (2) to obtain

log(¢(q) log Ni) = log(¢(q)0(pi: a. q)) ~ log by,
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as k — oo. Hence, we have

N, (log(so(q) log Nk)) @
¢(Nk) Clg.a) ’

as k — oo. That is,

N 1
lim —— k —

=% o(Ny) (log(¢(g) log Ny) /¢l Clg.a)
This concludes the proof. m|

3. USEFUL EXPRESSIONS FOR log f(x; ¢, a)

To establish an initial expression for log f(x; g, a) in terms of prime counting functions, it is beneficial to
develop a variety of estimates for some related functions. First, let
2

d 1 + log x
g(x) = i (loglog x) = ———

x2log? x
Second, for a given arithmetic progression consider the error term in the prime number theorem, which

will be denoted
X
S(x;q,a) :=0(x;q,a) — —.
(x:9,a) := 6(x; q,a) 2@
We next obtain an identity for log f(x; g, a) with respect to

o]

K(x;q,a) = J S(t;q,a)g(t) dt.

X

Proposition 3.1. Let q,a € N be fixed coprime integers. Then, as x — o0,
(14) log f(x;q,a) = K(x;¢q,a) + O (1).
Proof. By partial summation

Z 1 — M + Jx 0(t; q,a)g(t) dt.

et xlog x 5,
p=a (mod q)

From here with the substitution 6(z; ¢, a) = S (t;q,a) + @, we obtain

1 S(xq, 1 x 1 *llogr+1
s == (x:g.9) + +J S(t;q,a)g(r) dt + f S 2+ dr.
(15) = p xlogx  g(g)logx o(q) J5, t log*t
p=a (mod q)

Hence, we may write (15) as

1 S(x;q, log 1
(16) y, 1 Steea) losloex i, pga),
= p xlogx ¢(q)
p=a (mod q)

where

© 1 loglog p,

Mg.0)= | SEa.agdr — o -
B ¢(q)logp, ¢(q)

is the constant term. By comparison with Mertens’ second theorem for arithmetic progressions ([8, (1-1)]),
it can be shown that this constant has the expression

(17) M(g.a)= )] ){log (1 - 11)) + 11)} —logC(gq, a),

p=a (mod ¢
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(see [8, (1-3)]). Now it can be readily verified, by (4) and (17), that

¢(q)log f(x:q,a) = loglog(¢(q)8(x:q.a)) + @(g) >, log (1 - i) — ¢(q) log C(q.a)

Psx
p=a (mod q)
(18) = U(x) + u(x),
where
— 1
(19) U(x) = loglog(¢(q)0(x; q.a)) — ¢(q) ), pRRCILICRD
Psx
p=a (mod q)
and
1 1
(20) u(x) = —¢lq) > {bg(l——)-+—}.
p>x p p
p=a (mod q)
By crudely bounding (20) with a geometric series, we see that
¢(q)
21 S 0/

Now from (18), (19), and (21), we have for x > p, that

o(g)og f(x;q,a) = loglog(e(9)0(x:0,@) —¢(a) S~ +w(g)M(qa) + u(x).

PsX
p=a (mod q)

Substituting equation (16) for the series in the above equation yields

¢(q)S (x; 9, a)

(22) ¢(q)log f(x;q,a) = loglog(¢(q)d(x; g, a)) — o

—loglog x + ¢(q)K(x; q,a) + u(x).

By the mean value theorem for /(7) = loglog, there exists a number ¢ between x and ¢(q)6(x; g, a) for
which (@S )
w(q)S(x;q,a
logl 0(x;q, = logl _
ogloglp(9)6(x: .a)) = loglog x + == ==

From here, we arrive at

S(x:q, logx —cl
(23) loglog(¢(q)6(x; q,a)) — loglog x — —‘p(ql 1(();;] %) = ¢(q)S (x;9,a) (écl(z)gg);) (CCI(()):CC)) )

Combining (22) and (23), we have the identity

xlogx—clogc> u(x)
+ .
(xlogx)(cloge) /)~ ¢(q)

Consider the second term in the right hand side of (24) and assume that x < ¢(q)0(x; gq,a) . We see that
with € > 0 chosen so that x < ¢ < ¢(q)8(x;¢,a) < (1 + €)x, we have

24 g (x4.0) = K(x.0) + S (x.0)

1 1
xlogx clogc

1 1
< _
xlogx (14 e€)xlog(l+ €)x

1
x2log x

logé+1
(€loge)?|

for x < ¢ < (1+ €)x arising from an application of the mean value theorem for the function s(7) = 1/tlog.
Using the upper bound S (x; ¢,a) « @ together with (25), we have

xlogx —clogc 1
S(x;q, .
w00 (Geetons)| < gty

(25)

A similar bound holds if ¢(g) loglog x < x.
Therefore, recalling (21), (24) becomes

log f(x;q,a) = K(x;g,a) —5—0(%),
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as desired. O

Next, we shift our attention from 6(x; ¢, a) to

y(xig.a)= >, logp,

pr<x
pr=a (mod q)
for which we have analogues
X
(26) R(x;q,a) :=y¥(x;9,a) — —
(x:g,a) := ¥(x; g, a) 2@

and

J(x;q,a) := fOOR(t; q,a)g(t) dt.

X
By definition, 6(x;q,a) < ¥(x;q,a), and therefore K(x;q,a) < J(x;q,a) when x > e~!. In order to
study the precise relation between K (x; g, a) and J(x; ¢, a) we need some notations. Recall that we denoted
by Ind,(a), the index of a (mod q), the least natural number n > 1 for which a is an n-th power modulo g.
Furthermore, we set
Rea = #{b € (Z/qZ)™; ™49 = g (mod q)}.
It will be useful to have a closed form for R, .

ay a2

Proposition 3.2. Write ¢ = 2%¢|"q,” . ..qy", where q; are the distinct odd prime divisors of q. Let m =
Ind,(a). We have

R {Hf_l( L(q")) ifa <1,
™ (m, 2)( 207 2) [1i 1(m’90(61?i)) otherwise.

Proof. By Theorem 3.21 of [9], we know that the solutions of x” = a (mod ¢) are in 1-1 correspondence
with the solutions of the system

X" = a (mod 2%),

X" =a (mod ¢{"),

m:

X" = a (mod g;").

For each odd prime g;, Theorem 4.13 of [9] establishes that there are (m <p(q?")) solutions to each congru-
ence x" = a (mod ¢;"). On the other hand, the congruence x” = a (mod 2%) has 1 solution if @ = 1,

again by [9, Theorem 4.13]. If @ > 2, then X = a (mod 2%) has (m,2) - (m,2%~?) solutions via Theorem
4.14 of [9]. The formula for R, , follows by taklng the product of the number of solutions as we range over
congruences corresponding to prime divisors of g. O

Proposition 3.3. Writing m = Ind,(a), we have

Rqal x%
0(x;q,a) =¥(x;q9,a) — ——xm +O | —— | .
(5.0) = ¥l .0) — ( )

Proof. Consider

27 Y(x;q,a) — 6(x;q,a Z 2 Z log p.
k=2be(Z/q2)* prex
pF=a (mod q)
p=b (mod q)

Equivalently,

0(x:q.a) = ¥(x:q.a Z >, mk) Y, logp,

k=2 be(z/qz)* 3
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where
(k) =

Observe that 75,(k) = 0 for all k < m = Ind,(a). Thus, we have

1 if b* =a (mod g),
0 otherwise.

(28) 0(x;q,a) = ¥(x;q,a) — Z nb(m)é?(xé;q,b)— Z Z m,(k)@(x%;q,b).

be(Z/qZ)* k=m+1be(Z/qZ)>
By [17, Theorem 6.8], we know that, for a positive constant 3, depending only on g,

0(x; 4. b) = —— + O(xexp(— logh x))

¢(q)
and therefore,
Rya
(29) S mp(k)0(xt:q,b) = —L5xk + O(xt exp(—logh (xt))).
be(Z/q2)* v(a)
Applying (29) in (28) yields the result. O

In order to apply Proposition 3.3 in an expression for J(x;q,a) we need to integrate a version of the
identity of Proposition 3.3 weighted with g(x) introduced at the beginning of this section. In this direction
we consider

Fy(x) = f e d.

X
The following lemma is due to Nicolas ([19, Lemma 2.2]).
Lemma 3.4. Let s be a complex number such that R(s) < 1. Then, for x > 1,

xs—l

Fy(x) = — + rg(x),

(s —1)logx

s xs—l 0 2ts—2
r(x) = . +J ——l
l—s\(1-s)log’x Jx (s—1)log’t
As a direct consequence of the above expression for r;(x) we have
s

x%(s)fl - 2
(1—1s)? log? x IR (s) — lllogx /"

Now, by combining Proposition 3.1, Proposition 3.3, Lemma 3.4, and (30) we have the following expres-
sion for log f(x; ¢, a) in terms of J(x; ¢, a).

where

(30) rs(x)] <

Proposition 3.5. Let q,a € N be coprime and m = Ind,(a). Then,

R 1
log f(x:q,a) = J(x;q,a) — —= o +O| = |
¢(q) (m—1)x = logx x o log”x

4. Q-THEOREMS FOR J(x;q,a)

We adapt the techniques of [5, Chapter V] to establish several Q-theorems for J(x; ¢, a). The following
classical theorem plays a fundamental role in our arguments.

Theorem 4.1 (Landau’s Oscillation Theorem). Let h : [1,00) — R be a function which is bounded and
Riemann-integrable on intervals of the form [1,T], 1 < T < co. Consider the integral

H(s) = fo ) e

xS

Suppose that the line R(s) = o is the line of convergence for H, and the function h(x) is of constant
sign on an interval of the form [x',0). Then the real point s = o on the line of convergence must be a
singularity of H(s).
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Proof. See [5, Theorem H, p. 88]. O
Under some relatively mild conditions we prove that J(x; g, a) oscillates.

Theorem 4.2. If Z(s;q,a) has no singularities on (0, 1) and it has a singularity p with 0 < R(p) < 1,
then we have J(x; q,a) < 0 for arbitrarily large x and also J(x; q,a) > 0 for arbitrary large x.

Proof. We start by finding an expression for an integral involving the error term R(x; g, a) defined in (26) in
terms of the logarithmic derivatives of Dirichlet L-functions. By way of Exercise 2.1.5 of [16] and formula
(4.28) of [15] we have, for ‘R( ) >

“y(rg.a) 1 Aln) | o
T+l Z s Z )((a)—(s,)().
4 § n=a (mod q) n SSO(Q) x (mod q) L

Using the above identity and definition R(z; ¢, a) = ¥/(t; q,a) — t/¢(q), we have, for R(s) > 1,

©R(t;q,a) 1 1 1 e
(31 f T = — -~ ZL(s;q,a ——+J Larl.
: 5 T o(g) \ s (s:4:0) = 75 !

Nextlet 0 < 6 < J(p1), where p; is a singularity of .Z(s; ¢, a) with the smallest positive ordinate. Note
that under the stated conditions on singularities of .Z(s; ¢, a), p1 and ¢ are well-defined. Now let

Ws={s;R(s)>1}u{s;0<R(s)<land|I(s)| <d}.

Observe that the right-hand side of identity (31) is holomorphic on W; (the simple pole at s = 1 of
Z(s;q,a) cancels the simple pole at s = 1 of 1/(s — 1)). Hence, on W;, the right hand side of (31) admits
an antiderivative, call it H(s), and a second antiderivative H;(s).

For R(s) > 1, from (31) we have

d CR(t; q, d “R(t;q,
(Hi(s)) = f_Liﬂm:___J_Liﬂw_
ds 5, T ds 5, Tl logt

By integrating two sides of the above identity along smooth curves in the half-plane R(s) > 1 and with a
fixed initial point we get, for R(s) > 1,

(32) f Rtg.a) , _ —Hi(s) + (L — ),

_ s+l
5, ' logt

where A1, A, are fixed complex constants.
Recalling that the antiderivative of H; is H,, we integrate along a smooth curve once more to obtain, for

R(s) > 1,
“ R(t; 9,

(33) f (—qc;)dl‘:Hz(s)—i-(/lz—/ll)s-i-,u,
5, ttllog ¢

where u is a fixed complex constant.
Now for R(s) > 1 set

: (;¢,a) (logt + 1
(34) H(s):= f xq ) ix _J f q Og;r ) drdx.
log” ¢

By changing the order of integration in (34), we arrive at

H(s) = — @Wﬁmefﬁﬂﬂm\fﬂﬁﬂm)

s—1 B st logt 7, 1 log? 1

We substitute the integrals in the above equation using their respective identities (32) and (33) to get

G5) H(s) = — (Hi(s) ~ Ha(s) + E(5))

where B
E(s):=(p1)' " J(P1:q,a) — (Lo — A)s —p — (1 — 4u).
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3(s)

FIGURE 10. The region W; and the singularity p.

Observe that E(s) is entire while H;(s) and H»(s) are holomorphic on W;s. Moreover H;(1) — Hy(1) +
E(1) = 0. Thus (35) establishes an analytic continuation of H(s) to Ws. Thus, crucially, we have extended
H(s) to the real line in the critical strip. Hence, if we suppose J(x; g, a) is of constant sign for some interval
[x/, 0), then Theorem 4.1 establishes that the abscissa of convergence of H(s) must satisfy R(s) < 0, since
no point with s = o > 0 is a singularity. That is, H(s) must extend to a function which is holomorphic in
the half-plane R (s) > 0.

Reconsidering (35), we see that the holomorphy of H(s) implies that H(s) — H>(s) is holomorphic on
R(s) > 0, and therefore % (Hi(s) — Hz(s)) is holomorphic in this region as well. We have assumed
Z(s;q,a) has a singularity at s = p, where 0 < R(p) < 1 and |J(p)| > 0. Such a singularity must be
simple, since the zeroes of L(s, x) contribute simple poles with residue m,(y) in the logarithmic derivative.
Therefore, in an appropriate deleted neighborhood of p,

2y (mod g) X(@)mp(x) .
§—p
where ZX (mod q))?(a)mp (x) # 0. In the same neighborhood, we therefore have

Z(s;q,a) = co—l—cl(s—p)—i-cz(s—p)z...,

& 1 =12 (mod g X(@)mp(x) 1 P )
— (Ha(s)) = — - +J —dt+dyo+di(s—p)+da(s—p)"+...
ds? e(g) \ p s—p p—1 ) #
where dy, dy, . . . are coefficients arising from the Laurent expansion. Consequently,
d? 1 ZX (mod q) )?(a)mp O()
— (Hy(s)) = +dy+di(s—p)+...],
ds? ¢(q) p(s —p)? oo
where d6, d’l, ... are constants. This implies that %H 1(s) has a pole of order 2 at p. However, we have

claimed % (Hi(s) — Hz(s)) is holomorphic for R(s) > 0. This is a contradiction, and so J(x; g, a) must
not be of constant sign on some interval [x,00). Hence we have established that J(x; g, a) oscillates for
arbitrary large x. O

We next establish a more precise Q-theorem for J(x; ¢, a) under some assumptions on the location of the
singularities of .Z(s; g, a).

Theorem 4.3. For b > 0, suppose that £ (s; q, a) has no singularities on the line segment (1—b, 1). Assume
that there exists a singularity p of £ (s; q,a) not at 1 for which R(p) = > 1 — b. Then

0

J(x:q.a) = f R(t: g, a)g(t) di — Qs (x~).

X
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3(s)

FIGURE 11. The region W;,, and the singularity p.

Proof. We consider the integral

Then, for R(s) > 1, (34) and (35) establish

1 1 Pryb
36 G(s) = H(s)— H E - —dx,
(36) (5) = T3 (t1(5) ~ Hals) 4 B(s)) = = + || e
where H,(s) and H,(s) are holomorphic in the region Ws. Furthermore, 1/(s — 1 + b), E(s), and S?‘ "x—_f dx
are holomorphic on

W(;’b = {S;%(S) > 1—b}ﬁW5.

The right-hand side of (36) therefore extends to a holomorphic function in the region W, shown in Figure
11.

By Theorem 4.1, if we assume J(x; ¢,a) — x~? maintains a constant sign on intervals of the form [x/, o0),
then the abscissa of convergence oy of G(s) must satisfy o9 < 1 — b < B. This is impossible since,
as in the proof of Theorem 4.2, the second derivative of H;(s) — Hx(s) will have a pole of order 2 at
o, contradicting the holomorphy of G(s) in the half-plane R(s) > 1 — b. We have a contradiction and
therefore J(x; g, a) — x~? > 0 on some sequence tending to infinity. Hence,

J(x;q,a) = Q(x7P).

Considering J(x;q,a) + x~" and repeating the above proof establishes that J (x;q,a) + x~
another infinite sequence, i.e.,

b < 0on

J(x;q,a) = Q_(x7?).

5. PROOFS OF THEOREMS 1.14 AND 1.16

Proof of Theorem 1.14. By Proposition 3.5, we have, for m = Ind,(a),

R 1
log f(x;¢,a) = J(x;q,a) — —= 10—
¢(q) (m—1)x = logx x m log”x

We observe that

R 1
0 < — 2 =0\ 0= |
¢(q) (m—1)x = logx x m logx

Therefore, for large enough x,
log f(x;9,a) < J(x;q,a).



18 AMIR AKBARY AND FORREST J. FRANCIS
From this inequality the result follows, since J(x; g, a) < O for arbitrarily large x by Theorem 4.2. m|

Proof of Theorem 1.16 (a). From Proposition 3.5 we have

log f(x;q9,a) = J(x;q,a) + O (%) )

x m logx

Now since ® < 1 and 1 — O < b, then by the assertion of Theorem 4.3, there exists a sequence {x;} along
which (i.e., for x = x;)
1

J(x;q,a) > @

Along that same sequence,

(37) logf(x;q,a)>ib+0<%> =ib<1+0
X

x o logx X

1
x'logx) )’
m—1

where r = *— — b > Osince b < 1/2 and (m — 1)/m > 1/2. Hence, the bracketed expression may be
bounded by a positive constant, establishing

log f(x;q,a) = Qy (x~").

The proof for log f(x; ¢q,a) = Q_(x~?) follows similarly by employing J(x; g,a) = Q_(x~?). ]

Proof of Theorem 1.16 (b). As in the proof of Theorem 1.16 (a), we know that

log f(x;q,a) = J(x;q,a) + O (%) ,

x o logx

where m is at least 3. Also the conditions of Theorem 4.3 for b > 1/2 holds. Therefore, there exists a

sequence {x;} along which
1 1
1 34, —(1+0 ,
og f(x:q.a) > — < + (xrlogx>>

where r = =1 — b > O since b < 2/3 and (m — 1)/m > 2/3. This establishes

log f(x;q,a) = Q4 (x?)

and the proof for log f(x;q,a) = Q_(x~?) follows in a similar manner. i

6. AN EXPLICIT FORMULA FOR log f(x; ¢,a)

We start with a version of the explicit formula for {} y/(1; ¢, a)dr.
Theorem 6.1 ([13, Lemma 3.1]). For a Dirichlet character y modulo q, write
Z) ={peC; Lip,x) =0, R(p) = 0andp # 0}.

Let a be 1 if x is odd and 0 otherwise, b(x), c(x) be the constant terms in the Laurent expansion of Lfl(s, X)
about 0 and -1, respectively, and my(x) be the multiplicity of the zero of L(s,x) at 0. Then, for x > 1, we
have

X 2 1 _ .X’U+1 .
Jlﬁ(t;q,a)dfz = xla) ) erR(x;q,a),
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where
R 1 _ 0 x72n+170
K(x,0) =~ ¢la) | (mzm q)X(a) ; (20 — 1+ 20)
1 _
+ x @X (I%; q))((a)(mo(/\,/) —b(x))
1 _ 1 _
— xlog x m){ (mzogi q))((a)mo(,y) + log x @X%:d)((a)
= Y @R 0+ = Y w@ew) + 1)
o) 547 LT () Saq

Under the assumption of SH, , the explicit formula given in Theorem 6.1 allows us to establish a new
expression for J(x; ¢, a).

Lemma 6.2. Suppose that SH, , is true. Then, for x > 1, we have

Mg == Y w0 Y 2 i,

$)  modg)  pezio
where
o0
R0 = | #star
~ w A
J(x;q,a) = f R'(t;q,a)g(t) dt
with
logr+1
t = T 5
2log*t
and
Rlead ———— Y 7@y ("_(2"”)) LY w@mol) - b))
f,q,a) = — — X(a + X(a)(mo(x) —
ola) i, o\ nta 0(4) , ki
1 1
- — x(a@)mo(x)(logt + 1) + — > x(a)t ™.
SD(Q) x (mod q) QD(Q) X odd

Proof. Since we are assuming SH, ,, recall that for any zero p in UX Z(x) whose real part is neither 0 nor

%, we have that

(38) >, x(@my(x) =0.
x (mod ¢)

Thus, this assumption allows us to prove that

Z X(a) Z gl(f)m

X (mod q) PEZ(x)

is integrable on (x, c0) for any x > 1 and it can be integrated term by term. In anticipation of an application
of the Dominated Convergence Theorem, for n > 1, consider the sequence of functions
thrl
B = Y X@ Y f0——.
cimda)  pezty PP
I3 (p)I<n
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We see that, for all 7 € (x, 20),

lim ()= Y, ¥x(a) > &)

e vimda) ezt PPt

Moreover,

tp-‘rl

HOI=g0 > Xa) ¥ s

x (mod ¢) peZ(x)
1F(p)I<n

<lgol-| Y, x| ] + ) ) + 2, Xa@) ) p(;p:-l)'

(mod q) oeztr) P (p zm x (mod q) peZ(x)
R(p)=1/2 ?%(p) R(p)#0,1/2
13 (p)I<n 13 (p)l<n 13 (p)I<n
Since zeroes are counted with multiplicity, the final sum becomes
Z Z (mod q ( )mp (/\/) —0
o2 plp+1)
R(p)#0,1/2
13(p)<n

by way of (38). We now have

/ 3 1
BOIIEON = 3 2, pregy Tt L |p<p+

p(p + 1

x (mod q) peZ(x) x (mod q) peZ(y)
R(p)=1/2 R(p)=0
13 (p)I<n 13 (p)I<n

Removing the restriction on J(p) yields

(o <1801 | 7 PIp? et Y Y e

(mod q) peZ(x) x (mod q) pEZ()(
R(p)=1/2 R(p)=0

We note that this upper bound for |, (7)| is integrable on (x, c0) for x > 1, since

,(t)__1<2 L3 2)
& P \logt  log’tr log’t)’

Hence, the dominated convergence theorem allows us to have

1 _ N 1 tﬂ+1
(39) f@ 2, X@ ), gyt = Y, wa@( X J t)-

x(modq)  peZ(y) 4) | (mod ) peZ(x)

Now employing integration by part on the left-hand side of (39) together with Theorem 6.1 yield

© 1 _ , Pl B g(x) _ B’
| z5 = d@ 3 dotoma - -85 % w0 ¥ o

x (mod q) peZ(x) QD(Q) X (mod q) pEZ(x)

1)
(40) + fw g(1) <¢p(z; g.a) — ) f ()R (t; g, a) dt.

X
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Similarly integration by parts on the right—hand side of (39) yields

1 g xp—i-l
¢(q) 2 X Z J dt) T elg ) Z 9 2, plp+1)
x (mod q) peZ(x) (mod q) PEZ(/\/)
1 _ F,(x
1) o) >, Xl ), Bl
P moaq)  pezi)
where F,(x) = {“g(t) dt.
The result follows by (39), (40), and (41). ]
Corollary 6.3. Under the assumption of SH, ,
1 xi3(p) 1
@) J(xg.a) - Y %@ Y Faa) +0 (=),
( )flogx modq) pEZ(/\/’ p(p_ 1) ﬁlog X

Proof. Applying Lemma 3.4 to F,,(x) in Lemma 6.2 yields

‘g.a —L Y(a ] —rp(X) f(x:q,a
Txg.a) = ¢(q) X(H%Q)X( )p;@() (p(p—l)logx p ) Hlnaq)

If we apply the estimates of (30) to r,(x) at strictly imaginary zeroes arising from an imprimitive character,

we see that these zeroes only contribute terms of order O( 3. g ~) to the sum involving such zeroes. Mean-

while, since we have assumed SH, ,, any other contribution must be from zeroes of the form p = 1 /2 +it,
and therefore the estimate (30) for r,(x) yields the result. m]

The next lemma provides an estimation for J(x; ¢, a).
Lemma 6.4. We have J(x;q,a) = O(1/x).

Proof. In order to bound J (x;g,a), we aim to bound R (t; g, a) in absolute value. If we write
Y x(a) ifkisodd,

Z x(a) if kis even,

then we may observe that

_ L 4~2n—1 2n L © V(k; g a)t_k
(43) PIRODIE eI 9% Yt = Y eI
2n k
x odd —1 X even n=1 x odd k=1
where the terms on the left all appear in the expression for R(; g, a) in Lemma 6.2. Since there are %q)

even and @ odd characters respectively, |v(x; g, a)| < @ and therefore, for ¢t > 1,

0 0
v(k;q,a v(q) . 1
< U C) N PR
k; k 2 g k 2 8 ( z)
Observe that — log(1 — 1) is always positive and decreasing on (1,0), and therefore for ¢ > ¢*,
1 © ~2n—1 0 2 :
G| T H0Y e D Y o+ S Har
1AVl x odd n= 1 X even n=1 x odd

1 1 1 1
44 <—zlog(l—=)<—zlog(1—-—) <00l
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Returning to expression for R'(t;¢,a) in Lemma 6.2, we can take the absolute value and apply (44) to

determine that for z > ¢*,

1 t72n71 0 t72n

R(t;q.0) < —| > ¥ Y v(a)™!
IR (1;q,a)l e X%}dx(a); T +Xezvenx(a)n; > +X§dx(a)t
1 1
+——1 > X@b)|+—=| >, xlaymo(x)logt
¢(q) \ (od ) ¢(q) (ot 0)
(45) <0.01 + 5 +Mqlogt,
¢(q) ¢(q)

where By:=3, (noda ¢)/b(X)l and Mg:=2, (104 ;) Mo(x). With this bound in place, we may now turn our

© M, logt ( -1 >
q
+ d .
L ¢(q) tlogt

attention to estimating J (x;q,a). For x > e*, we have, by (45),

(46)
OOA/ ' —l Q0 Bq —l
J #eaad ()| <[00 )+ (o)

[F(x;q,a)| =
Evaluating integrals in (46) yields

. 00le(q) + B, + M, M
(47) [J(x;q,0)| < ela) + By + My + .
¢(q)xlog x o(q)x

This implies that J(x; ¢,a) = O(1/x). ]

Proof of Theorem 1.18. The result follows by applying Corollary 6.3 and Lemma 6.4 to Proposition 3.5. O

7. COMPUTATION OF ¥,

Consider
(48) Fa= >, Fl)
x (mod q)
where,
1
7: = ’
(/\/) peg(:)(/)p(l _p)

recalling that Z(y) = {p € C; L(p,x) = 0, R(p) = 0 and p # 0}.
Let g = 1. Corollary 10.14 of [15] establishes

1
(49) Fi=) ——— =2+y—logn —2log2 ~ 0.04619,
~ p(1=p)

where the sum is over the non-trivial zeroes of ().
For larger g, we keep (49) in mind, since the principal character modulo g will always be induced by the
trivial character, and therefore
1
> T

e Z0) p(l—p)

for any g. If y is not principal, its contribution to 7, is determined by the results of Corollary 10.18 of [15]
which determine that

(50) >
pEZ(Y

where @ = 1 if y is odd and @ = 0 if y is even.

q L, —
——— =1log = +2R(—(1,x)) —y— (1 —a)2log?2,
)p(l ) gﬂ (L( X)) —v—( )2log
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Suppose ¢ = p is an odd prime, so that all the nonprincipal characters modulo p are primitive. Then,
summing (50) over all characters yields

2
5D Fp=F1+2y,—py+(2—p)log (f) + log 2,

where
LI
= —(1
=7+ 2 7Ly
X7X0

is the Euler-Kronecker constant associated with the cyclotomic field Q(¢?*/?). Computations of the value
of y,, are provided in [2]. Using these and (51) we determine the value of ¥, for odd primes up to p = 149.
Several of these values are listed in Table 2.

TABLE 2. Some values of F,.

P Yp T
3 10.94550 0.15942
5| 1.72062 0.60919
7 | 2.08759 1.41418
11 | 2.41542 4.26098
13 | 2.61076 6.45484
17 | 3.58198 | 13.02067
139 | 5.88917 | 356.51847
149 | 5.98342 | 392.11323

Now, suppose ¢ = 2p, where p is either an odd prime or 1. Then all of the characters mod g are induced
by the characters mod p, and so

7:2]1 = fp.
For ¢ = 4, 8, and 12, the matter of computing ¥ () via (50) has been left to the Python package MPMATH

[14], in particular for the computation of the logarithmic derivative %(1,)7) We include values related to
(50) towards the computation of 74, Fg, and ¥, in Tables 3, 4, and 5, respectively . The numbering of the
characters follows [10].

TABLE 3. Values relevant to the computation of 7.

F )
0.0461914

0.2456096 | 0.1555680
0.2017594

o R(E(1LY)
x1(1,-) |0
(3,1

TABLE 4. Values relevant to the computation of 7.

x e RELY)  F)
x1(1,) [0 0.0461914
X8(3, -) 11]-0.0207114 | 0.3160732
)(3(5, -) 0] 0.6321150 | 0.2354316
X4(3, -) 1 10.2456096 | 0.1555680

Fs 0.7532641
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TABLE 5. Values relevant to the computation of F75.

x e R(E0Y)  Fl)
X1(1,~) 0 0.0461914
X3(2, ~) 1 10.3682816 0.1132300
X4(3, ~) 1 1 0.2456096 0.1555680

)(12(1 1, -) 0| 0.4767499 0.3301666

F1o 0.6451560

Finally, for ¢ = 9 we implemented a naive version of the methods suggested in [2, Section 3.2] to
compute L(1,y) and L'(1, ), for primitive characters y modulo 3 and 9. Then we applied (10) to compute
Fo.

8. PROOF OF THEOREM 1.22

Proof. Letg < 10or g = 12,14 and a = 1. Recall that the satisfaction of the inequality
Ny 1

>
o(N:) (10g(¢(q) log N7 €(4-1)
for all positive integers k is equivalent to log f(x; ¢, 1) < Oforall x > 1. For ¢ = 1, Theorem 1.22 is exactly
Theorem 2 of [18].

For g > 1, it is a consequence of part (a) of Theorem 1.16 that if log f(x; ¢, 1) < 0 for all x, then SH,,
is true for the given ¢ and a. Since a = 1, SH,, implies (and in fact is equivalent to) GRH,. Hence, to
establish Theorem 1.22, we only need to show that if GRH, is true, then log f (x;9,a) < O for all x. In
the case of ¢ = 2, observe that f(x;1,1) > f(x;2,1) since C(2,1) = 2C(1,1) and therefore the work of
Nicolas shows that 1 > f(x;1,1) > f(x;2, 1), and hence Theorem 1.22 holds in the case g = 2.

For the remaining moduli, (21) and (24) imply that for x > 1

(52) log flx:q.1) < Klxq.1) + 57—,

. : Xlogx—cloge_
since S (-x, q, (l) ((xlogx)(c log C)

) is always negative. Moreover, if x, is defined as the smallest x for which

H(x% :q,b) 0.6

(53) >
X2 v(q)
for all b in (Z/gZ)™, then (28) implies that for x > x,,
0.6R,1 1
(54) 0(x;q,1) < y(x;q,1) — ———x72.
( ) < ¥( ) 2@
It follows from (54) that
0.6R, 1
K(x;q,1) < J(x;9,1) — 4. Fi(x),
(10.1) < J(r:q.1) = =0 Fy ()
which, with (52), establishes
0.6R, 1 1
(55) log f(x:g.1) < J(x3¢,1) = ——=F 1 (x) + 57—,
olq) 2(x—1)
for x > x,.

We aim to show that the right-hand side of inequality (55) is negative. We start by establishing an explicit
upper bound for J(x; g, 1). Recall Lemma 6.2 and observe that

= Yoy 2oL Y vy 2 Yre y 2,

0@ moia) ezt P $@ | oda) pezi) P %e(z)cvz) P
X
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where y’ is the character which induces y. Since we are assuming GRH, we have that R (p) = 1/2 in the
sum involving p € Z(x'). Now employing (30) to estimate ry »(x) and ro(x) yields

(56) _ﬁ Y Y@ Y Foa)] _ 1 (1+@>7’q+(1+@)§q

x (mod q) peZ(x) p SO(Q) ﬁlog X xlog x

for x > 2, where ¥4 1s defined in (9) and

R cr)

(mod q) peZ Cv)
R(p)=0

We can compute G, directly in Maple by recalling that all of the zeroes in the sum are in an arithmetic
progression along the imaginary axis. Furthermore, in Lemma 6.4 if we are less zealous with our use of
absolute values in arriving at (47) we determine that if x > e* we have

00lp(g) ~B,~ M, M,

(57) J(x:q.1) < :
xlog x X

Now by applying (56) and (57) in Lemma 6.2 we conclude that under the assumption of GRH, for x >
max{e*, x,} we have

(+ei) % (1+55)9 0owplg) -8, M, M,

58 J(x;g9,1) < +
(58) (x::1) v(q) Vxlog x xlog x xlog x x

Nicolas [19, (2.4)] establishes that

Fi(x) < 2 n 2
— (x) < —
2 Vxlogx  y/xlog®x

for x > 1 and therefore, with (55) and (58), we arrive at an upper bound for log f(x; ¢, 1) under GRH,.
More precisely, suppose GRH, is true and let x > max{x,, ¢*}. Then,

7"q — I.ZRq’l + pq(x)
¢(q) /xlog x

(59) log f(x;q,1) <

where p,(x) is given by

2
3F, + 1.2R (1 + 1—> Gq  0.01¢(q) — Bpa — M M
Pg(x) = q @a ogx n ¢(q) 9.4 g.a qa ¢(q) . Vxlog x.
log x A VX x 2(x—1)
Each of the constants 7, G,, 8, and M, may be computed precisely. Observe that p,(x) is eventually

positive and decreasing toward 0 as x tends to infinity, and therefore will take a maximum value #, on the
interval [e'?, c0) (note that e'? ~ 22027). It follows that

Fqg—12R50 + Py

¢(q) v/xlog x
for x > max{x,, €'°}. In Table 6 for each g € {3,4,5,6,7,8,9,10, 12, 14} we verify that ¥, — 1.2R,, + P,
is negative, and therefore log f(x; ¢, 1) < 0 for x > max{x,, ¢!°} under GRH,.

In Table 7, we determine the size of x,. First of all using [1, Equation (A.3)] we have a constant ¢;(g) <
0.4 such that

log f(x;4,1) <

0(x;q,b) — —

forall b e ZX and 1 < x < 10'°. This implies that

H(ﬂ :q,b) 0.6
1 >
x2 ¢(q)
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TABLE 6. Values used to verify that log f(x; ¢, 1) < 0 for x > max{x,, ¢!}, under GRH,.

AMIR AKBARY AND FORREST J. FRANCIS

q T G, | Rya B, M| P, [ Fa—12R, + P,
301594208 | 0.0986123 | 2| 2.2367697 | 1| 0.2668522 -1.9736270
4102017594 [ 0.0397208 | 2 | 22744923 | 1 |0.2789234 -1.9193172
50.6091908 | 0.2070784 | 2| 2.3067140 | 2 | 0.3956888 -1.3951204
6 0.1594214 | 0.1177920 | 2| 1.5436226 | 1| 0.2717779 -1.9688008
7| 14141824 | 02972734 | 2| 1.7004570 | 3 | 0.6354003 -0.3504173
8| 0.7532641 | 0.0397208 | 4 | 1.6412439 | 2| 0.6820415 -3.3646943
9 | 1.4112121 | 0.0986123 | 2| 2.0466109 | 3| 0.6305706 -0.3582173

10 [ 0.6091908 | 0.8113486 | 2| 0.9204197 | 3 | 0.3357980 214550112

12 0.6451560 | 0.5439353 | 4| 1.2309413 | 3 | 0.5846683 -3.5701757

14 | 14141824 | 09935082 | 2| -0.3789848 | 5 | 0.6550409 -0.3307767

4
for (w(q)cl(q)) < x < 10%°. For larger x, [22, Theorem 1] provides ¢2(q) < 0.4 for which

04

X X
0(x;q,b) — ——=| < c2(q) ——

¢(q) ¢(q)

forall b € Z; and x > 10'°. Therefore,
1

6(x2;q,b 1-— 0.6
(x2 g ) - clq) _ ’

X3 ¢(q) ¢(q)

4
forallb e Z, and x > 10%°. Hence, for x > Xy = <%> the inequality (53) holds. Thus,

log f(x;¢4,1) <0
for x > max{|x,), e!°}, where |x,]| is given in Table 7.
For 1 < x < max{|x,|,e!%}, we have verified log f(x; ¢, 1) < 0 by direct computation.

TABLE 7. Values used to determine x,.

q| cilg) c2(q) lx] || ¢ | clq) c2(q) | x,]

3] 1.798158 | 0.002238 | 6535 || 8 | 1.817557 | 0.002811 | 109133
4 1.780719 | 0.002238 | 6285 || 9 | 1.108042 | 0.003228 | 76312
5| 1.41248 | 0.002785 | 39805 || 10| 1.41248 | 0.002785 | 39805
6 | 1.798158 | 0.002238 | 6535 || 12 | 1.735501 | 0.002781 | 90720
7 | 1.116838 | 0.003248 | 78764 || 14 | 1.105822 | 0.003248 | 75702

Therefore, for the listed values of ¢, GRH, implies that log f(x; ¢, 1) < 0for all x > 1 and Theorem 1.22
is established. o
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