ON L+1(7,1/2)
AMIR AKBARY

ABSTRACT. Let r be the order of vanishing of the automorphic L-function
L(7,s) at s = 1/2. We study the non-vanishing of the derivative of order
r+1of L(T,s) at s = 1/2.

RESUME. Soit r I'ordre d’annulation de la fonction L automorphe L(7,s) &
s = 1/2. Nous étudions la non-annulation de la dérivée d’ordre r+1 de L(7T, s)
as=1/2.

1. INTRODUCTION

Let F' be a number field of degree d and m = ®, 7, be an irreducible cuspidal
automorphic representation of GL,, over F' with unitary central character and
contragradient representation 7. Let L(7,s) and L(7,s) be the associated L-
functions to ™ and 7. We have

L(7,s) = L(T, §).
It is known that L(7,s) and L(7, s) satisfy the functional equation
(1) P L(T o, 8)L(T, 8) = wg' =2 L(F 00,1 — s)L(7,1 — 5),

where the positive integer ¢ is the conductor of 7, w is the root number (a complex
number of modulus 1) and

md md _
— —s/2p (S ~ _ —s/2p (S
L(Woo,s)—Hn F< 5 ,L(Woo,s)—Hn r(—~)
=1 =1
Note that each side of the equation (1) represents a meromorphic function in the
whole complex plane with at most two simple poles. Moreover, by a theorem of
Luo, Rudnick and Sarnak [LRS], we have

1 1

> - -

m2+1 2

which implies that L(7,s) and L(T,s) are analytic and non-zero on the half
plane Rs > - — —}—. Let

m2+41-

7j:17"'7md7

r= Ordszl/gL(ﬂ_, S).
So we have L) (m,1/2) = 0 for 0 < i < (r — 1) and L (m,1/2) # 0. In this
note we will exploit the functional equation (1) to investigate the possible values of
LU+Y(7,1/2). In fact, we show that in several cases this value is non-zero.
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2. THE MAIN LEMMA

The following lemma is a generalization of Exercise 5.5.22 of [M].
Lemma 2.1. With the above notation we have
Lr+1) (71-7 1/2) (r+1)( 1/2)
L) (m,1/2) L) (7r,1/2)

—(r+1) <logq+ LMo, 1/2) + Ll(ﬁ‘”’lm)

L(To0,1/2) ' L(fee,1/2)
Proof. Let A(s) = ¢*/?L(TT 0, s) and B(s) = ¢*/>L(T1,s). So from (1) we have
A(1/2) LM (7,1/2) = w(=1)"B(1/2)L") (7t,1/2).
Similarly from (1) we have
A1/2) LU (7, 1/2) + (r + 1)A'(1/2) L7 (7, 1/2)
=w(=1)"1 (BO/2LUD(E,1/2) + (r + DB/ (1/2) L) (7,1/2))
Dividing the latter equation to the former one yields

LU (m,1/2)  LUTD(7,1/2) A'(1/2)  B'(1/2)
IO(r1j2) | IO 1/2) “(’"“)<A<1/2) * B(1/2>>'

Now the result follows by calculating the logarithmic derivative of A(s)B(s)
¢°*L(T oo, ) L(T oo, 5) at s = 1/2.

O

The following corollary is a direct consequence of the previous lemma.

Corollary 2.2.

LT 1/2) | L (oo 1/2) .
a7 exp (‘ (L(woo,l/z) * L(frm,l/z))) = L, 1/2) # 0

From now on let ¢(s) = I''(s)/I'(s) and p; = o; + it;. An automorphic repre-
sentation 7r is called tempered if o; = 0 for j =1,--- ,md. We have the following.
Corollary 2.3. If  is tempered we have

LUt (,1/2)
( L(mr,1/2)

md
= (2m)™ exp ( Zsech (mt; ) exp (—Z% <1/J(% +itj)>) .

=1

)=0 =

Proof. From Lemma 2.1, we have

LU (m,1/2)\ _ _ L'(T,1/2) | L'(fs,1/2)
§R< L0)(7,1/2) ) =0 = g=exp <_ (L(Woo,l/2) " L(froo,l/2)>>'

md
= a=r"lew (—%Z (vG +iP +o —i%)))

=1
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The last equivalence is a consequence of calculating the logarithmic derivative of
the identity

: (o 2)r (15%) = ve e ()
(D], p. 73) at s = 1/2 + it;. Next note that
(4) R (tan G + z%t]» = sech (t;).

Now the results follows from (2), (4) and the fact that
L'(Te,1/2) L' (TTx,1/2)
L(Tw,1/2)  L(TTx,1/2)

is real. O

In the rest of this paper, we apply the above corollaries in some special cases
and as a result we prove that for Dirichlet L-functions and Modular L-functions
LU+D(7r,1/2) # 0. We also investigate the situation for the L-functions associated
to Maass forms.

3. GL(1)

Proposition 3.1. If x is a primitive Dirichlet character mod q, then L1 (x,1/2) #
0.

Proof. We have

L(Too,5) = L(F oo, 5) = {

Then

L'(Teo,1/2)  L'(Too,1/2) _ e~ (/Y i x(=1) =1
eXp<_<L(7roo,1/2) L(froo,1/2)>> = {ne—¢<3/4> it y(=1)=—1

_ etz if y(-1)=1
o 8re? "z if yx(-1)=-1

Here v is the Euler constant and we used the identities 1/1(%) =—y— 5 —3log2
and (2) = —y + Z — 3log 2 (see [W]). Now Corollary 2.2 implies the result. O

4. GL(2), HoLomMORPHIC CASE

Proposition 4.1. If f is a holomorphic cuspidal newform of weight k and level q
and nebentypus x, then LUTD(f1/2) # 0.

Proof. By employing the Legendre duplication formula, we have

- s (s k-1 s k+1
L(T"OO:S)_L(ﬂ-oo;S) = T F<§+T>F<§+T>

Q\k/i (2m)~°T <s + %) .

2

So

LMoo, 1/2)  L'(Too, 1/2)\\ _ (o 32
o <_ <L(7roo,1/2) * L(ﬁoo,l/g))) = (2m)” exp (=24 (k/2)) -



4 AMIR AKBARY

We know that
(5) Y(2) =logz + O(1/]2])

for |z| = oo in the sector —m + 0 < argz < m — ¢ for any fixed § > 0 (see [M],
Exercise 6.3.17). So

lim (27)? exp (~26:(k/2)) = 0.

More precisely by evaluating f(k) = (2m)%exp (—21¢(k/2)) for integer k, using
Maple, we can see that for integer 1 < k < 13, f(k) is not an integer and for
integer k > 13 we have 0 < f(k) < 1. So f(k) never is an integer and therefore
q # f(k). Thus Corollary 2.2 implies the result. O

5. GL(2), REAL ANALYTIC CASE

For t > 0, let g(t) = (2m)? exp (7 sech(rt)) exp (—2R (¢(3 + it))) . From (5) and
lim;_, o, sech(t) = 0 we have
lim g(t) = 0.

t—o00
By employing Maple one can show that g(0) = 46,368.09- -, and 0 < g(t) < 1 for
t > 6.29. The following is the graph of g(t) for 0 <t < 0.7.
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From here it is clear that for any integer 1 < g < 46,368 there exists a unique
0 < tq < 6.29 such that g(t,) = ¢.

Proposition 5.1. If f is an even Maass cuspidal newform of weight zero and
level q, nebentypus x and eigenvalue A, then under the assumption of the Selberg
Eigenvalue Conjecture we have the following.

(i) If ¢ < 46,368, then

o (LTD(51/2)
LU(f,1/2)
(i) If ¢ > 46,369 or \ > 6.54, then

LUH(£,1/2) #0.

1 2
=0 <= )‘:Z+t‘1'

Proof. Let A be the eigenvalue corresponding to f, then A\ = % + 2. In this case for
the oo factors in the functional equation (1) we have p; = it and ps = —it. More
precisely, we have

L(Ta,8) = L(ffw,s) = 7°T <SJ;”> T (8_2”> .
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From the Selberg Eigenvalue Conjecture we know that ¢ is real, so by Corollary 2.3
and the definition of the function g(t) we have

LUD(£,1/2)
< LN(£,1/2)

q= (27r)2 exp (7 sech (7t)) exp <—2% <1/1(% + zt))) = q=g(t).
But ¢ = g(¢) if and only if ¢ = ¢,. O

)0 =

6. CONCLUSION

Our observations here indicate that in several cases L") (m,1/2) # 0. We end
this note by raising the following question.

Question Is there an automorphic representation 7 such that L+ (7,1/2) = 0?
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