$$
\text { ON } L^{(r+1)}(\pi, 1 / 2)
$$

AMIR AKBARY

> Abstract. Let r be the order of vanishing of the automorphic L-function $L(\pi, s)$ at $s=1 / 2$. We study the non-vanishing of the derivative of order $r+1$ of $L(\pi, s)$ at $s=1 / 2$.
> RÉSUMÉ. Soit r l'ordre d'annulation de la fonction L automorphe $L(\pi, s)$ à $s=1 / 2$. Nous étudions la non-annulation de la dérivée d'ordre $r+1$ de $L(\pi, s)$ à $s=1 / 2$.

1. Introduction

Let F be a number field of degree d and $\pi=\otimes_{\nu} \pi_{\nu}$ be an irreducible cuspidal automorphic representation of GL_{m} over F with unitary central character and contragradient representation $\tilde{\pi}$. Let $L(\pi, s)$ and $L(\tilde{\pi}, s)$ be the associated L functions to π and $\tilde{\pi}$. We have

$$
L(\tilde{\pi}, s)=\overline{L(\pi, \bar{s})}
$$

It is known that $L(\pi, s)$ and $L(\tilde{\pi}, s)$ satisfy the functional equation

$$
\begin{equation*}
q^{s / 2} L\left(\pi_{\infty}, s\right) L(\pi, s)=\omega q^{(1-s) / 2} L\left(\tilde{\pi}_{\infty}, 1-s\right) L(\tilde{\pi}, 1-s) \tag{1}
\end{equation*}
$$

where the positive integer q is the conductor of π, ω is the root number (a complex number of modulus 1) and

$$
L\left(\pi_{\infty}, s\right)=\prod_{j=1}^{m d} \pi^{-s / 2} \Gamma\left(\frac{s+\mu_{j}}{2}\right), L\left(\tilde{\pi}_{\infty}, s\right)=\prod_{j=1}^{m d} \pi^{-s / 2} \Gamma\left(\frac{s+\bar{\mu}_{j}}{2}\right)
$$

Note that each side of the equation (1) represents a meromorphic function in the whole complex plane with at most two simple poles. Moreover, by a theorem of Luo, Rudnick and Sarnak [LRS], we have

$$
\Re \mu_{j} \geq \frac{1}{m^{2}+1}-\frac{1}{2}, j=1, \cdots, m d
$$

which implies that $L\left(\pi_{\infty}, s\right)$ and $L\left(\tilde{\pi}_{\infty}, s\right)$ are analytic and non-zero on the half plane $\Re s>\frac{1}{2}-\frac{1}{m^{2}+1}$. Let

$$
r=\operatorname{ord}_{s=1 / 2} L(\pi, s)
$$

So we have $L^{(i)}(\pi, 1 / 2)=0$ for $0 \leq i \leq(r-1)$ and $L^{(r)}(\pi, 1 / 2) \neq 0$. In this note we will exploit the functional equation (1) to investigate the possible values of $L^{(r+1)}(\pi, 1 / 2)$. In fact, we show that in several cases this value is non-zero.

[^0]
2. The Main Lemma

The following lemma is a generalization of Exercise 5.5.22 of [M].
Lemma 2.1. With the above notation we have

$$
\frac{L^{(r+1)}(\pi, 1 / 2)}{L^{(r)}(\pi, 1 / 2)}+\frac{L^{(r+1)}(\tilde{\pi}, 1 / 2)}{L^{(r)}(\tilde{\pi}, 1 / 2)}=-(r+1)\left(\log q+\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}\right)
$$

Proof. Let $A(s)=q^{s / 2} L\left(\pi_{\infty}, s\right)$ and $B(s)=q^{s / 2} L\left(\tilde{\pi}_{\infty}, s\right)$. So from (1) we have

$$
A(1 / 2) L^{(r)}(\pi, 1 / 2)=\omega(-1)^{r} B(1 / 2) L^{(r)}(\tilde{\pi}, 1 / 2)
$$

Similarly from (1) we have

$$
\begin{gathered}
A(1 / 2) L^{(r+1)}(\pi, 1 / 2)+(r+1) A^{\prime}(1 / 2) L^{(r)}(\pi, 1 / 2) \\
=\omega(-1)^{r+1}\left(B(1 / 2) L^{(r+1)}(\tilde{\pi}, 1 / 2)+(r+1) B^{\prime}(1 / 2) L^{(r)}(\tilde{\pi}, 1 / 2)\right)
\end{gathered}
$$

Dividing the latter equation to the former one yields

$$
\frac{L^{(r+1)}(\pi, 1 / 2)}{L^{(r)}(\pi, 1 / 2)}+\frac{L^{(r+1)}(\tilde{\pi}, 1 / 2)}{L^{(r)}(\tilde{\pi}, 1 / 2)}=-(r+1)\left(\frac{A^{\prime}(1 / 2)}{A(1 / 2)}+\frac{B^{\prime}(1 / 2)}{B(1 / 2)}\right)
$$

Now the result follows by calculating the logarithmic derivative of $A(s) B(s)=$ $q^{s} L\left(\pi_{\infty}, s\right) L\left(\tilde{\pi}_{\infty}, s\right)$ at $s=1 / 2$.

The following corollary is a direct consequence of the previous lemma.

Corollary 2.2.

$$
q \neq \exp \left(-\left(\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}\right)\right) \Rightarrow L^{(r+1)}(\pi, 1 / 2) \neq 0
$$

From now on let $\psi(s)=\Gamma^{\prime}(s) / \Gamma(s)$ and $\mu_{j}=\sigma_{j}+i t_{j}$. An automorphic representation π is called tempered if $\sigma_{j}=0$ for $j=1, \cdots, m d$. We have the following.
Corollary 2.3. If π is tempered we have

$$
\begin{gathered}
\Re\left(\frac{L^{(r+1)}(\pi, 1 / 2)}{L^{(r)}(\pi, 1 / 2)}\right)=0 \Longleftrightarrow \\
q=(2 \pi)^{m d} \exp \left(\frac{\pi}{2} \sum_{j=1}^{m d} \operatorname{sech}\left(\pi t_{j}\right)\right) \exp \left(-\sum_{j=1}^{m d} \Re\left(\psi\left(\frac{1}{2}+i t_{j}\right)\right)\right)
\end{gathered}
$$

Proof. From Lemma 2.1, we have

$$
\begin{gather*}
\Re\left(\frac{L^{(r+1)}(\pi, 1 / 2)}{L^{(r)}(\pi, 1 / 2)}\right)=0 \Longleftrightarrow q=\exp \left(-\left(\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}\right)\right) \\
\Longleftrightarrow q=\pi^{m d} \exp \left(-\frac{1}{2} \sum_{j=1}^{m d}\left(\psi\left(\frac{1}{4}+i \frac{t_{j}}{2}\right)+\psi\left(\frac{1}{4}-i \frac{t_{j}}{2}\right)\right)\right) \\
\Longleftrightarrow \Longleftrightarrow=(2 \pi)^{m d} \exp \left(\frac{\pi}{2} \sum_{j=1}^{m d} \tan \left(\frac{\pi}{4}+i \frac{\pi t_{j}}{2}\right)\right) \exp \left(-\sum_{j=1}^{m d} \psi\left(\frac{1}{2}+i t_{j}\right)\right) \tag{2}
\end{gather*}
$$

The last equivalence is a consequence of calculating the logarithmic derivative of the identity

$$
\begin{equation*}
\left(\cos \frac{\pi s}{2}\right) \Gamma\left(\frac{1-s}{2}\right) \Gamma(s)=\sqrt{\pi} 2^{s-1} \Gamma\left(\frac{s}{2}\right) \tag{3}
\end{equation*}
$$

([D], p. 73) at $s=1 / 2+i t_{j}$. Next note that

$$
\begin{equation*}
\Re\left(\tan \left(\frac{\pi}{4}+i \frac{\pi t_{j}}{2}\right)\right)=\operatorname{sech}\left(\pi t_{j}\right) . \tag{4}
\end{equation*}
$$

Now the results follows from (2), (4) and the fact that

$$
\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}
$$

is real.
In the rest of this paper, we apply the above corollaries in some special cases and as a result we prove that for Dirichlet L-functions and Modular L-functions $L^{(r+1)}(\pi, 1 / 2) \neq 0$. We also investigate the situation for the L-functions associated to Maass forms.

3. GL(1)

Proposition 3.1. If χ is a primitive Dirichlet character mod q, then $L^{(r+1)}(\chi, 1 / 2) \neq$ 0.

Proof. We have

$$
L\left(\pi_{\infty}, s\right)=L\left(\tilde{\pi}_{\infty}, s\right)=\left\{\begin{array}{lll}
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) & \text { if } & \chi(-1)=1 \\
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) & \text { if } & \chi(-1)=-1
\end{array}\right.
$$

Then

$$
\begin{aligned}
\exp \left(-\left(\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}\right)\right) & =\left\{\begin{array}{lll}
\pi e^{-\psi(1 / 4)} & \text { if } & \chi(-1)=1 \\
\pi e^{-\psi(3 / 4)} & \text { if } & \chi(-1)=-1
\end{array}\right. \\
& =\left\{\begin{array}{lll}
8 \pi e^{\gamma+\frac{\pi}{2}} & \text { if } & \chi(-1)=1 \\
8 \pi e^{\gamma-\frac{\pi}{2}} & \text { if } & \chi(-1)=-1
\end{array}\right.
\end{aligned}
$$

Here γ is the Euler constant and we used the identities $\psi\left(\frac{1}{4}\right)=-\gamma-\frac{\pi}{2}-3 \log 2$ and $\psi\left(\frac{3}{4}\right)=-\gamma+\frac{\pi}{2}-3 \log 2$ (see [W]). Now Corollary 2.2 implies the result.

4. GL(2), Holomorphic Case

Proposition 4.1. If f is a holomorphic cuspidal newform of weight k and level q and nebentypus χ, then $L^{(r+1)}(f, 1 / 2) \neq 0$.
Proof. By employing the Legendre duplication formula, we have

$$
\begin{aligned}
L\left(\pi_{\infty}, s\right)=L\left(\tilde{\pi}_{\infty}, s\right) & =\pi^{-s} \Gamma\left(\frac{s}{2}+\frac{k-1}{4}\right) \Gamma\left(\frac{s}{2}+\frac{k+1}{4}\right) \\
& =\frac{\sqrt{\pi}}{2^{\frac{k-3}{2}}(2 \pi)^{-s} \Gamma\left(s+\frac{k-1}{2}\right) .}
\end{aligned}
$$

So

$$
\exp \left(-\left(\frac{L^{\prime}\left(\pi_{\infty}, 1 / 2\right)}{L\left(\pi_{\infty}, 1 / 2\right)}+\frac{L^{\prime}\left(\tilde{\pi}_{\infty}, 1 / 2\right)}{L\left(\tilde{\pi}_{\infty}, 1 / 2\right)}\right)\right)=(2 \pi)^{2} \exp (-2 \psi(k / 2))
$$

We know that

$$
\begin{equation*}
\psi(z)=\log z+O(1 /|z|) \tag{5}
\end{equation*}
$$

for $|z| \rightarrow \infty$ in the sector $-\pi+\delta<\arg z<\pi-\delta$ for any fixed $\delta>0$ (see $[\mathrm{M}]$, Exercise 6.3.17). So

$$
\lim _{k \rightarrow \infty}(2 \pi)^{2} \exp (-2 \psi(k / 2))=0
$$

More precisely by evaluating $f(k)=(2 \pi)^{2} \exp (-2 \psi(k / 2))$ for integer k, using Maple, we can see that for integer $1 \leq k \leq 13, f(k)$ is not an integer and for integer $k>13$ we have $0<f(k)<1$. So $f(k)$ never is an integer and therefore $q \neq f(k)$. Thus Corollary 2.2 implies the result.

5. GL(2), Real Analytic Case

For $t \geq 0$, let $g(t)=(2 \pi)^{2} \exp (\pi \operatorname{sech}(\pi t)) \exp \left(-2 \Re\left(\psi\left(\frac{1}{2}+i t\right)\right)\right)$. From (5) and $\lim _{t \rightarrow \infty} \operatorname{sech}(\mathrm{t})=0$ we have

$$
\lim _{t \rightarrow \infty} g(t)=0
$$

By employing Maple one can show that $g(0)=46,368.09 \cdots$, and $0<g(t)<1$ for $t \geq 6.29$. The following is the graph of $g(t)$ for $0 \leq t \leq 0.7$.

From here it is clear that for any integer $1 \leq q \leq 46,368$ there exists a unique $0<t_{q}<6.29$ such that $g\left(t_{q}\right)=q$.
Proposition 5.1. If f is an even Maass cuspidal newform of weight zero and level q, nebentypus χ and eigenvalue λ, then under the assumption of the Selberg Eigenvalue Conjecture we have the following.
(i) If $q \leq 46,368$, then

$$
\Re\left(\frac{L^{(r+1)}(f, 1 / 2)}{L^{(r)}(f, 1 / 2)}\right)=0 \Longleftrightarrow \lambda=\frac{1}{4}+t_{q}^{2}
$$

(ii) If $q \geq 46,369$ or $\lambda \geq 6.54$, then

$$
L^{(r+1)}(f, 1 / 2) \neq 0
$$

Proof. Let λ be the eigenvalue corresponding to f, then $\lambda=\frac{1}{4}+t^{2}$. In this case for the ∞ factors in the functional equation (1) we have $\mu_{1}=i t$ and $\mu_{2}=-i t$. More precisely, we have

$$
L\left(\pi_{\infty}, s\right)=L\left(\tilde{\pi}_{\infty}, s\right)=\pi^{-s} \Gamma\left(\frac{s+i t}{2}\right) \Gamma\left(\frac{s-i t}{2}\right)
$$

From the Selberg Eigenvalue Conjecture we know that t is real, so by Corollary 2.3 and the definition of the function $g(t)$ we have

$$
\begin{gathered}
\Re\left(\frac{L^{(r+1)}(f, 1 / 2)}{L^{(r)}(f, 1 / 2)}\right)=0 \Longleftrightarrow \\
q=(2 \pi)^{2} \exp (\pi \operatorname{sech}(\pi t)) \exp \left(-2 \Re\left(\psi\left(\frac{1}{2}+i t\right)\right)\right) \Longleftrightarrow q=g(t)
\end{gathered}
$$

But $q=g(t)$ if and only if $t=t_{q}$.

6. Conclusion

Our observations here indicate that in several cases $L^{(r+1)}(\pi, 1 / 2) \neq 0$. We end this note by raising the following question.
Question Is there an automorphic representation π such that $L^{(r+1)}(\pi, 1 / 2)=0$?

References

[D] H. Davenport, Multiplicative number theory, Third edition, Springer, 2000.
[LRS] W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for $\mathrm{GL}(n)$, in Automorphic forms, automorphic representations, and arithmetic, Proc. Symp. Pure Math. 66 (1999), 301-310.
[M] M. R. Murty, Problems in analytic number theory, Springer, 2001.
[W] E. W. Weisstein, Gauss's digamma theorem, MathWorld-A Wolfram web resource. http://mathworld.wolfram.com/GausssDigammaTheorem.html.

Department of Mathematics and Computer Science, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, CANADA

E-mail address: amir.akbary@uleth.ca

[^0]: 1991 Mathematics Subject Classification. 11F67.
 Key words and phrases. L-functions, Non-vanishing of high derivatives of L-functions.
 Research partially supported by NSERC.

