
ON L(r+1)(�;1=2)AMIR AKBARYAbstrat. Let r be the order of vanishing of the automorphi L-funtionL(�; s) at s = 1=2. We study the non-vanishing of the derivative of orderr + 1 of L(�; s) at s = 1=2.R�ESUM�E. Soit r l'ordre d'annulation de la fontion L automorphe L(�; s) �as = 1=2. Nous �etudions la non-annulation de la d�eriv�ee d'ordre r+1 de L(�; s)�a s = 1=2. 1. IntrodutionLet F be a number �eld of degree d and � = 
��� be an irreduible uspidalautomorphi representation of GLm over F with unitary entral harater andontragradient representation ~�. Let L(�; s) and L(~�; s) be the assoiated L-funtions to � and ~�. We have L(~�; s) = L(�; �s):It is known that L(�; s) and L(~�; s) satisfy the funtional equation(1) qs=2L(�1; s)L(�; s) = !q(1�s)=2L(~�1; 1� s)L(~�; 1� s);where the positive integer q is the ondutor of �, ! is the root number (a omplexnumber of modulus 1) andL(�1; s) = mdYj=1 ��s=2��s+ �j2 � ; L(~�1; s) = mdYj=1 ��s=2��s+ ��j2 � :Note that eah side of the equation (1) represents a meromorphi funtion in thewhole omplex plane with at most two simple poles. Moreover, by a theorem ofLuo, Rudnik and Sarnak [LRS℄, we have<�j � 1m2 + 1 � 12 ; j = 1; � � � ;md;whih implies that L(�1; s) and L(~�1; s) are analyti and non-zero on the halfplane <s > 12 � 1m2+1 : Let r = ords=1=2L(�; s):So we have L(i)(�; 1=2) = 0 for 0 � i � (r � 1) and L(r)(�; 1=2) 6= 0. In thisnote we will exploit the funtional equation (1) to investigate the possible values ofL(r+1)(�; 1=2). In fat, we show that in several ases this value is non-zero.1991 Mathematis Subjet Classi�ation. 11F67.Key words and phrases. L-funtions, Non-vanishing of high derivatives of L-funtions.Researh partially supported by NSERC. 1



2 AMIR AKBARY2. The Main LemmaThe following lemma is a generalization of Exerise 5.5.22 of [M℄.Lemma 2.1. With the above notation we haveL(r+1)(�; 1=2)L(r)(�; 1=2) +L(r+1)(~�; 1=2)L(r)(~�; 1=2) = �(r+1)�log q + L0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2)� :Proof. Let A(s) = qs=2L(�1; s) and B(s) = qs=2L(~�1; s). So from (1) we haveA(1=2)L(r)(�; 1=2) = !(�1)rB(1=2)L(r)(~�; 1=2):Similarly from (1) we haveA(1=2)L(r+1)(�; 1=2) + (r + 1)A0(1=2)L(r)(�; 1=2)= !(�1)r+1 �B(1=2)L(r+1)(~�; 1=2) + (r + 1)B0(1=2)L(r)(~�; 1=2)� :Dividing the latter equation to the former one yieldsL(r+1)(�; 1=2)L(r)(�; 1=2) + L(r+1)(~�; 1=2)L(r)(~�; 1=2) = �(r + 1)�A0(1=2)A(1=2) + B0(1=2)B(1=2) � :Now the result follows by alulating the logarithmi derivative of A(s)B(s) =qsL(�1; s)L(~�1; s) at s = 1=2. �The following orollary is a diret onsequene of the previous lemma.Corollary 2.2.q 6= exp���L0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2)��) L(r+1)(�; 1=2) 6= 0:From now on let  (s) = �0(s)=�(s) and �j = �j + itj . An automorphi repre-sentation � is alled tempered if �j = 0 for j = 1; � � � ;md. We have the following.Corollary 2.3. If � is tempered we have<�L(r+1)(�; 1=2)L(r)(�; 1=2) � = 0 ()q = (2�)md exp0��2 mdXj=1 seh (�tj)1A exp0�� mdXj=1<� (12 + itj)�1A :Proof. From Lemma 2.1, we have<�L(r+1)(�; 1=2)L(r)(�; 1=2) � = 0 () q = exp���L0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2) �� :() q = �md exp0��12 mdXj=1� (14 + i tj2 ) +  (14 � i tj2 )�1A(2) () q = (2�)md exp0��2 mdXj=1 tan��4 + i�tj2 �1A exp0�� mdXj=1  (12 + itj)1A :



ON L(r+1)(�; 1=2) 3The last equivalene is a onsequene of alulating the logarithmi derivative ofthe identity(3) �os �s2 ���1� s2 �� (s) = p� 2s�1 ��s2�([D℄, p. 73) at s = 1=2 + itj . Next note that(4) <�tan��4 + i�tj2 �� = seh (�tj):Now the results follows from (2), (4) and the fat thatL0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2)is real. �In the rest of this paper, we apply the above orollaries in some speial asesand as a result we prove that for Dirihlet L-funtions and Modular L-funtionsL(r+1)(�; 1=2) 6= 0. We also investigate the situation for the L-funtions assoiatedto Maass forms. 3. GL(1)Proposition 3.1. If � is a primitive Dirihlet harater mod q, then L(r+1)(�; 1=2) 6=0.Proof. We haveL(�1; s) = L(~�1; s) = � �� s2� � s2� if �(�1) = 1�� s2� � s+12 � if �(�1) = �1 :Thenexp���L0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2) �� = � �e� (1=4) if �(�1) = 1�e� (3=4) if �(�1) = �1= � 8�e+�2 if �(�1) = 18�e��2 if �(�1) = �1 :Here  is the Euler onstant and we used the identities  ( 14 ) = � � �2 � 3 log 2and  ( 34 ) = � + �2 � 3 log 2 (see [W℄). Now Corollary 2.2 implies the result. �4. GL(2), Holomorphi CaseProposition 4.1. If f is a holomorphi uspidal newform of weight k and level qand nebentypus �, then L(r+1)(f; 1=2) 6= 0.Proof. By employing the Legendre dupliation formula, we haveL(�1; s) = L(~�1; s) = ��s��s2 + k � 14 ���s2 + k + 14 �= p�2 k�32 (2�)�s��s+ k � 12 � :So exp���L0(�1; 1=2)L(�1; 1=2) + L0(~�1; 1=2)L(~�1; 1=2) �� = (2�)2 exp (�2 (k=2)) :



4 AMIR AKBARYWe know that(5)  (z) = log z +O(1=jzj)for jzj ! 1 in the setor �� + Æ < argz < � � Æ for any �xed Æ > 0 (see [M℄,Exerise 6.3.17). So limk!1(2�)2 exp (�2 (k=2)) = 0:More preisely by evaluating f(k) = (2�)2 exp (�2 (k=2)) for integer k, usingMaple, we an see that for integer 1 � k � 13, f(k) is not an integer and forinteger k > 13 we have 0 < f(k) < 1. So f(k) never is an integer and thereforeq 6= f(k). Thus Corollary 2.2 implies the result. �5. GL(2), Real Analyti CaseFor t � 0, let g(t) = (2�)2 exp (� seh(�t)) exp ��2< � ( 12 + it)�� : From (5) andlimt!1 seh(t) = 0 we have limt!1 g(t) = 0:By employing Maple one an show that g(0) = 46; 368:09 � � � , and 0 < g(t) < 1 fort � 6:29. The following is the graph of g(t) for 0 � t � 0:7.
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tFrom here it is lear that for any integer 1 � q � 46; 368 there exists a unique0 < tq < 6:29 suh that g(tq) = q.Proposition 5.1. If f is an even Maass uspidal newform of weight zero andlevel q, nebentypus � and eigenvalue �, then under the assumption of the SelbergEigenvalue Conjeture we have the following.(i) If q � 46; 368, then<�L(r+1)(f; 1=2)L(r)(f; 1=2) � = 0 () � = 14 + t2q :(ii) If q � 46; 369 or � � 6:54, thenL(r+1)(f; 1=2) 6= 0:Proof. Let � be the eigenvalue orresponding to f , then � = 14 + t2. In this ase forthe 1 fators in the funtional equation (1) we have �1 = it and �2 = �it. Morepreisely, we haveL(�1; s) = L(~�1; s) = ��s��s+ it2 ���s� it2 � :



ON L(r+1)(�; 1=2) 5From the Selberg Eigenvalue Conjeture we know that t is real, so by Corollary 2.3and the de�nition of the funtion g(t) we have<�L(r+1)(f; 1=2)L(r)(f; 1=2) � = 0 ()q = (2�)2 exp (� seh (�t)) exp��2<� (12 + it)�� () q = g(t):But q = g(t) if and only if t = tq . �6. ConlusionOur observations here indiate that in several ases L(r+1)(�; 1=2) 6= 0. We endthis note by raising the following question.Question Is there an automorphi representation � suh that L(r+1)(�; 1=2) = 0?Referenes[D℄ H. Davenport, Multipliative number theory, Third edition, Springer, 2000.[LRS℄ W. Luo, Z. Rudnik, and P. Sarnak, On the generalized Ramanujan onjeture forGL(n), in Automorphi forms, automorphi representations, and arithmeti, Pro.Symp. Pure Math. 66 (1999), 301{310.[M℄ M. R. Murty, Problems in analyti number theory, Springer, 2001.[W℄ E. W. Weisstein, Gauss's digamma theorem, MathWorld{A Wolfram web resoure.http://mathworld.wolfram.om/GausssDigammaTheorem.html.Department of Mathematis and Computer Siene, University of Lethbridge, 4401University Drive West, Lethbridge, Alberta, T1K 3M4, CANADAE-mail address: amir.akbary�uleth.a


