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Abstract. Let π be an irreducible unitary cuspidal representation of GLd(QA).
Let L(π, s) be the L-function attached to π. For real k ≥ 0 let

Ik(π, T ) =

Z T

1

|L (π, 1/2 + it)|2k dt

be the k-th (power) moment of L(π, s). Let απ(p, j) ∈ C (1 ≤ j ≤ d) be the
local parameters at prime p. We prove that if

|απ(p, j)| ≤ pγ

for unramified primes and for a fixed 0 ≤ γ < 1/4, then

Ik(π, T ) � T (log T )k2

for any rational k ≥ 0. As a corollary of this result we establish uncondi-
tional lower bounds of the conjectured order of magnitude for the fractional
k-th moments of Dirichlet L-functions, modular L-functions, twisted modular
L-functions, and Maass L-functions. We derive our results as corollaries of
more general theorems related to the lower bounds for fractional moments of
analytic functions which have Dirichlet series representations on a complex
half-plane. We also establish lower bounds for the k-th moments of Artin
L-functions and Dedekind zeta functions of number fields.

1. Introduction

Let s = σ+it denote a point in the complex plane. Let g(s) =
∑∞

n=1
ag(n)

ns be a
Dirichlet series absolutely convergent for σ > 1 that can be continued analytically
to the region σ ≥ 1/2, t ≥ 1. For fixed σ ≥ 1/2 and non-negative real k, we define
the k-th (power) moment of g at σ as

Ik(g, σ, T ) =
∫ T

1
|g (σ + it)|2k dt.

For σ = 1/2, we denote Ik(g, 1/2, T ) by Ik(g, T ) and we call it the k-th (power)
moment of g. We are interested in studying the behaviour of Ik(g, σ, T ) as
T →∞.

If (g(s))k has a representation on σ > 1 as an absolutely convergent Dirichlet
series

∑∞
n=1

gk(n)
ns , then from the mean value theorem for Dirichlet series [19,

Theorem 7.1] we know that

(1.1) Ik(g, σ, T ) ∼ T

∞∑
n=1

|gk(n)|2

n2σ
,

for σ > 1, as T →∞. Very little is known about the behaviour of Ik(g, σ, T ) for
1/2 ≤ σ ≤ 1. However for several classes of Dirichlet series arising in number
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theory it is conjectured that (1.1) holds for 1/2 < σ ≤ 1. Another interesting
feature is the close connection of the behaviour of Ik(g, σ, T ) with the size of
Ik(g, T ). In fact for certain g it is known that if Ik(g, T ) � T 1+ε for any ε > 0,
then (1.1) holds for σ > 1/2 (see [18, Section 9.51]).

In this paper, we are interested in finding lower bounds of Ik(g, T ) in terms
of T for certain number theoretical L-functions g which have Dirichlet series
representations on the half plane σ > 1. The special case when g is the Riemann
zeta function ζ(s) is classical and has been under investigation for a long time.
For k = 1 and 2 the asymptotic formulas are known. One of the first results
on this subject which treats all integral values of k is due to Titchmarsh [19,
Theorem 7.19], who showed that∫ ∞

o

∣∣∣∣ζ (1
2

+ it

)∣∣∣∣2k

e−t/Tdt� T (log T )k2
.

The first general lower bound for the k-th moment of ζ(s) was given by Ra-
machandra. In [14, Theorem 1] he proved that

Ik(ζ, T ) � T (log T )k2
(log log T )−ck

for real k ≥ 1/2, where ck is a constant depending possibly on k. Moreover he
proved that under the assumption of the Riemann Hypothesis this lower bound
holds for any real k ≥ 0. Later in [15] Ramachandra studied the general problem
of finding lower bounds for the moments of Dirichlet series and in this direction
obtained several important results. One of his results is the following.

Theorem 1.1 (Ramachandra). Let F (s) be a Dirichlet series convergent for
σ > 1 that can be continued analytically to the region σ ≥ 1/2, t ≥ 1, and in
this region |F (s)| ≤ exp ((log t)c0) where c0 is a fixed positive constant. Moreover
assume that F (s) has a representation in the form

F (s) =

( ∞∑
n=1

a(n)
ns

)2

for σ > 1, where for 1/2 < σ < 1 the series
∑∞

n=1
|a(n)|2

n2σ converges and

1
(σ − 1/2)α

�
∞∑

n=1

|a(n)|2

n2σ
� 1

(σ − 1/2)α

for some positive constant α. Then

I1/2(F, T ) � T (log T )α.

Proof. This is a special case of [15, Theorem 2]. �

Letting F (s) = ((g(s))k/2)2 = (g(s))k in Ramachandra’s theorem we get the
following.

Corollary 1.2. Let g(s) be a Dirichlet series convergent for σ > 1 that can
be continued analytically to the region σ ≥ 1/2, t ≥ 1, and in this region
|g(s)| ≤ exp ((log t)c0) where c0 is a fixed positive constant. Let k ≥ 0 be an
integer. Suppose that (g(s))k/2 in σ > 1 can be represented by a Dirichlet series

(g(s))k/2 =
∞∑

n=1

gk/2(n)
ns

.
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Moreover suppose that for 1/2 < σ < 1 the series
∑∞

n=1
|gk/2(n)|2

n2σ converges and

1
(σ − 1/2)α

�
∞∑

n=1

|gk/2(n)|2

n2σ
� 1

(σ − 1/2)α

for some positive constant α. Then

Ik/2(g, T ) � T (log T )α.

Also, if the above conditions hold for real k ≥ 0 and in addition g(s) does not
have any zero in the region σ > 1/2, t ≥ 1, then

Ik(g, T ) � T (log T )α,

for any non-negative real number k.

A special case of the above corollary is the following.

Corollary 1.3 (Ramachandra). For the Riemann zeta function ζ(s), and for
a non-negative integer k we have

Ik/2(ζ, T ) � T (log T )k2/4.

Moreover, under the assumption of the Riemann hypothesis, for non-negative real
k we have

Ik(ζ, T ) � T (log T )k2
.

In [4], Heath-Brown extended the above result to the fractional moments of
the Riemann zeta function.

Theorem 1.4 (Heath-Brown). For the Riemann zeta function ζ(s), and for a
non-negative rational number k we have

Ik(ζ, T ) � T (log T )k2
.

Under the assumption of the Riemann hypothesis, Heath-Brown’s method also
establishes the same lower bound for any non-negative real k.

In recent years several authors have employed the Heath-Brown method to
study the fractional moments of other L-functions. Let χ be a primitive Dirichlet
character mod q and let Ik(χ, T ) denote the k-th moment of the Dirichlet L-
function L(χ, s). Then Kacenas, Laurincikas, and Zamarys [6] proved that for
k = 1/n, n ≥ 2, we have

Ik(χ, T ) � T (log T )k2
.

In [10] Laurincikas and Steuding proved that if f is a holomorphic cusp form of
weight ` and level 1, and Ik(f, T ) is the k-th moment of the modular L-function
attached to f , then for k = 1/n, n ≥ 2 one has

Ik(f, T ) � T (log T )k2
.

Zamarys [20] has generalized this result to the case of the k-th moment of twisted
modular L-functions for positive rational k ≤ 1/2.

The proofs of the above results closely follow [4]. Our first goal in this paper
is to follow the method of Heath-Brown to derive a general theorem in the spirit
of Corollary 1.2. More specifically we prove the following:
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Theorem 1.5. Let g(s) =
∑∞

n=1
ag(n)

ns be a Dirichlet series absolutely convergent
for σ > 1 that has an analytic continuation to the half plane σ ≥ 1/2 with a pole
of degree m at s = 1 (with m possibly equal to 0) and suppose that

(1.2) g(σ + it) � |t|A

for a fixed A > 0, σ ≥ 1/2 and |t| ≥ 1 (the implied constant is independent of σ
and t). For rational k ≥ 0 and σ > 1, we suppose that (g(s))k may be represented
by an absolutely convergent Dirichlet series

(g(s))k =
∞∑

n=1

gk(n)
ns

,

where

(1.3) gk(n) � nη

for some fixed η with 0 ≤ η < 1/2. In addition, assume that there exist fixed
constants c > 0 and α ≥ 0 such that

(1.4)
1

(σ − 1/2)α �
T∑

n=1

|gk(n)|2

n2σ
� (log T )α

uniformly for 1
2 + c

log T ≤ σ ≤ 1 and T ≥ 2. Then for any rational k ≥ 0 we have

(1.5) Ik(g, T ) � T (log T )α.

Moreover if the above conditions (1.3) and (1.4) hold for real k ≥ 0 and in
addition g(s) does not have any zeros in the half plane σ > 1/2 then (1.5) holds
for any non-negative real k.

We next employ the above theorem to establish lower bounds for moments of
certain number theoretical L-functions. The L-functions we consider include the
following:

(a) Principal automorphic L-functions
Let π be a principal automorphic L-functions whose local parameters απ(p, j)

at unramified primes satisfy
|απ(p, j)| ≤ pγ ,

for a fixed 0 ≤ γ < 1/4 (see Section 2 for terminology). Then, for rational k, we
prove that

Ik(π, T ) � T (log T )k2
.

As a corollary of this general result we deduce unconditional lower bounds of the
conjectured order of magnitude for the fractional moments of classical Dirichlet
L-functions, modular L-functions, and the twisted modular L-functions. Our
results generalize the lower bound results of Kacenas-Laurincikas-Zamarys [6]
and Laurincikas-Steuding [10] to rational values of k ≥ 0, and the lower bound
result of Zamarys [20] to rational values of k ≥ 1/2.

Moreover, we derive an unconditional lower bound for the fractional k-th mo-
ment of Maass L-functions. Let L(f, s) be a Maass cusp newform of weight zero
and level N with nebentypus ψ. Then for any rational k ≥ 0 we prove that

Ik(f, T ) � T (log T )k2

.

To our knowledge this result is the first established unconditional lower bound
for the k-th moment of an L-function for which the truth of the Generalized
Ramanujan Conjecture (GRC) (see Section 2 for terminology) is not known.



LOWER BOUNDS FOR POWER MOMENTS OF L-FUNCTIONS 5

Remark 1.6. Ji [5] has established lower bounds for k-th moments of principal
automorphic L-functions over short intervals. As a consequence of [5, Theorem
1.1], for real non-negative k, one has

Ik(π, σ, T ) � T

uniformly for σ ≥ 1/2. Our results give conditional improvements of this lower
bound for σ = 1/2.

(b) Artin L-functions
Under the assumption of the Artin holomorphy conjecture we deduce a lower

bound for the fractional k-th moment Ik(K/Q, ρ, T ) of the Artin L-function
L(K/Q, ρ, s) associated to a representation ρ of the Galois group of a number
field K/Q. We prove that for any non-negative rational k,

Ik(K/Q, ρ, T ) � T (log T )〈ϕ,ϕ〉k2
,

where ϕ is the character associated to ρ and 〈ϕ,ϕ〉 is the inner product of ϕ and
ϕ as defined in Proposition 2.11.

As a direct corollary of this result we derive an unconditional lower bound for
the fractional k-th moment Ik(ζK , T ) of the Dedekind zeta function ζK(s) of a
number field K. More precisely, for non-negative rational k we prove that

Ik(ζK , T ) � T (log T )nk2
,

where n is the degree of the Galois extension K/Q.
Our result improves the following theorem of Ramachandra [14, Theorem 2]

for rational values of k.

Theorem 1.7 (Ramachandra). Let K be a degree n Galois extension of Q,
and let ζK(s) be the Dedekind zeta function of K. Then for real k ≥ 1/2 we have

Ik(ζK , T ) � T
(log T )nk2

(log log T )c

where c is a positive constant.

Remarks 1.8. (a) The Generalized Riemann Hypothesis (GRH) for an L-function
implies that the L-function does not have any zeros in the half plane σ > 1/2.
Thus by Theorem 1.5, upon the assumption of GRH for an L-function g, the
result for the fractional k-th moments of g can be extended to non-negative real
values of k as long as (1.3) and (1.4) hold for (g(s))k.

(b) In 2005, Rudnick and Soundararajan [17] devised a method that establishes
lower bounds of the conjectured order of magnitude for integral k-th moments of
several families of L-functions. They also commented that their method general-
izes to the fractional k-th moments for k ≥ 1. This procedure is also applicable
to the integral k-th (power) moment of the Riemann zeta function. Using this
method, Chandee [1, Theorem 1.2] has established a lower bound of the conjec-
tured order of magnitude for the integral shifted (power) moment of the Riemann
zeta function.

(c) In [4], Heath-Brown also considered the upper bound of the k-th (power)
moment of the Riemann zeta function, and by the method similar to the one used
in establishing lower bound, he proved that

Ik(ζ, T ) � T (log T )k2
,

unconditionally for k = 1/n > 0, where n is an integer, and under the assumption
of the Riemann Hypothesis for all real values of 0 ≤ k ≤ 2. It would be possible
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to generalize this method to obtain upper bounds for the k-th (power) moments
of general L-functions. However, other than the case of the Dirichlet L-functions,
the results would be conditional upon GRH and only true for some specific values
of k < 1. See [10, Theorem 1] for an example of such a result.

The structure of the paper is as follows. In Section 2 we describe some appli-
cations of Theorem 1.5. To do this we first observe that if the sequence {|ag(p)|2}
has regular distribution then the technical condition (1.4) holds. We prove this
result in Section 3. Using this observation in Section 2, we establish a new version
(Theorem 2.3) of our main Theorem. Our results on lower bounds for moments
of principal automorphic L-functions, Artin L-functions and Dedekind zeta func-
tions are simple consequences of Theorem 2.3. Finally in Sections 4 and 5 we
prove Theorem 1.5.

Notation 1.9. s = σ + it denotes a point in the complex plane and p denotes
a prime number. We use the notation �, O(.), and ∼ with their usual meaning
in analytic number theory. All constants implied by the � notation may depend
on k and the function g. However, the constants are independent of the variables
σ and T . By abuse of notation and for simplicity we denote the k-th moment of
an L-function L(f, s) by Ik(f, T ) instead of Ik(L(f, .), T ).

2. Applications of Theorem 1.5

We first identify some classes of Dirichlet series for which the technical condi-
tion (1.4) holds. To do this we employ a classical theorem on the average values
of multiplicative functions and derive the following proposition.

Proposition 2.1. Let h(n) be a non-negative multiplicative function. Suppose
that for some fixed real α > 0 we have∑

p≤x

h(p) ∼ α
x

log x

as x→∞, and ∑
p≤x

h(p)
p

= α log log x+ O(1).

Suppose also that

h(pr) � (2p)rθ for some 0 ≤ θ < 1/2 and for all r ≥ 2.

Let T ≥ 2 and let 0 < c ≤ 1
2 log 2 be fixed. Then we have

1
(σ − 1/2)α �

T∑
n=1

h(n)
n2σ

� (log T )α

uniformly in the range 1
2 + c

log T ≤ σ ≤ 1.

The preceding proposition is proved in Section 3.
As a consequence of this proposition we prove a version of Theorem 1.5 for

Dirichlet series with certain Euler products.
To simplify our exposition, from now on we consider the class C of Dirichlet

series g(s) =
∑∞

n=1
ag(n)

ns that are absolutely convergent for σ > 1 and satisfy the
following:

Except for a pole of degree m at s = 1 (with m possibly equal to 0), g(s)
extends to an entire function for σ ≥ 1/2 and |g(σ+ it)| � |t|A for a fixed A > 0,
σ ≥ 1/2 and |t| ≥ 1.
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For any real k we define the multiplicative function τk(.) by

τk(pr) =
Γ(k + r)
r!Γ(k)

=
k(k + 1)(k + 2) · · · (k + r − 1)

r!
.

Note that τk(n) ≥ 0 when k ≥ 0. The following lemma summarizes some prop-
erties of τk(n).

Lemma 2.2. (i) For fixed k ≥ 0 and ε > 0 we have τk(n) � nε.
(ii) If j is a positive integer then

τkj(n) =
∑

n=n1n2···nj

τk(n1)τk(n2) · · · τk(nj).

Proof. See [4, Lemma 1] �

Theorem 2.3. Let g(s) ∈ C. Suppose g(s) has an Euler product of the form

(2.1) g(s) =
∞∑

n=1

ag(n)
ns

=
∏
p

d∏
j=1

(
1− αg(p, j)

ps

)−1

for σ > 1, where αg(p, j) ∈ C and

|αg(p, j)| ≤ (2p)γ, for a fixed 0 ≤ γ < 1/4.

Suppose we have

(2.2)
∑
p≤x

|ag(p)|2 ∼ β
x

log x

as x→∞, and

(2.3)
∑
p≤x

|ag(p)|2

p
= β log log x+ O(1)

for some fixed constant β, where ag(p) =
∑d

j=1 αg(p, j). Then for any rational
k ≥ 0 we have

Ik(g, T ) � T (log T )βk2

.

Proof. Since g(s) is represented by an absolutely convergent Euler product and
the Euler factors are nonvanishing on σ > 1, we have g(s) 6= 0 for σ > 1. Letting

bg(pr) =
d∑

j=1

αg(p, j)r,

for σ > 3/2 we define a branch of log g(s) by

log g(s) =
∑

p

∞∑
r=1

bg(pr)
rprs

,

and a branch of gk(s) by

gk(s) = exp(k log g(s))
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for any real k. For σ > 3/2 we have

gk(s) = exp

(
k
∑

p

∞∑
r=1

bg(pr)
rprs

)

=
∏
p

exp

−k d∑
j=1

log
(

1− αg(p, j)
ps

)
=
∏
p

(
1− αg(p, 1)

ps

)−k

· · ·
(

1− αg(p, d)
ps

)−k

.

Using the Taylor expansion

(1− z)−k =
∞∑

r=0

Γ(k + r)
r!Γ(k)

zr

on the region |z| < 1 we have

gk(s) =
∏
p

d∏
j=1

( ∞∑
r=0

τk(pr)
αg(p, j)r

prs

)

=
∏
p

∞∑
r=0

gk(pr)
prs

=
∞∑

n=1

gk(n)
ns

.

Here gk(n) is the multiplicative function given by

gk(pr) =
∑

pr=pj1 ···pjd

τk(pj1)αg(p, 1)j1τk(pj2)αg(p, 2)j2 · · · τk(pjd)αg(p, d)jd .

By employing |αg(p, j)| ≤ (2p)γ and Lemma 2.2 we have

(2.4) |gk(pr)| ≤ (2p)rγ
∑

pr=pj1 ···pjd

τk(pj1) · · · τk(pjd) = (2p)rγτkd(pr) � (2p)r(γ+ε),

for any ε > 0. Applying this bound we have∑
p

∞∑
r=2

|gk(pr)|
prσ

<∞,

for σ > 1. On the other hand∑
p

|gk(p)|
pσ

= k
∑

p

|ag(p)|
pσ

≤ kg(σ) <∞,

for σ > 1. Thus
∑∞

n=1
gk(n)

ns is absolutely convergent for σ > 1, which together
with (2.4) implies that (1.3) holds.

It remains to show that (1.4) holds with α = βk2. Let h(n) = |gk(n)|2, so that
h(p) = k2 |ag(p)|2. We note that (2.2), (2.3), and (2.4) show that the conditions
of Proposition 2.1 hold for α = βk2, and thus we may use Proposition 2.1 to see
that (1.4) holds.

Therefore for rational k Theorem 1.5 holds with α = βk2, which completes the
proof of the theorem. �

Next we describe several applications of Theorem 2.3 in the cases of automor-
phic L-functions, Artin L-functions, and Dedekind zeta functions.
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Principal Automorphic L-functions
Let π be an irreducible unitary cuspidal representation of GLd(QA). The global

L-function at finite places attached to π is given by the Euler product of local
factors for σ > 1:

(2.5) L(π, s) =
∞∑

n=1

aπ(n)
ns

=
∏
p

Lp(πp, s),

where

Lp(πp, s) =
d∏

j=1

(
1− απ(p, j)

ps

)−1

,

and απ(p, j) ∈ C (1 ≤ j ≤ d) are the local parameters at prime p. It is known
that ([16, Formula (2.3)])

(2.6) |αp(p, j)| ≤ p
1
2
− 1

d2+1 .

It is conjectured that for all primes except finitely many |αp(p, j)| = 1.
To each π there is a finite set of primes associated that are called the ramified

primes. The local parameters for primes outside the set of ramified primes (i.e.
unramified primes) can be give as eigenvalues of a matrix in GLd(C).

We say that an irreducible unitary cuspidal representation π of GLd(QA) satis-
fies the Generalized Ramanujan Conjecture (GRC) if for local parameters απ(p, j)
(1 ≤ j ≤ d) at unramified primes p we have |απ(p, j)| = 1.

Our aim is to apply Theorem 2.3 to L(π, s). We call such an L-function a
principal automorphic L-function. It is known that L(π, s) ∈ C, and we clearly
have an Euler product of the form (2.1). We next investigate sufficient conditions
under which formulas analogous to (2.2) and (2.3) hold. To do this, for primes p
and integers r ≥ 1, we define

bπ(pr) =

{∑d
j=1 απ(p, j)r p unramified,

0 p ramified.

Note that for an unramified prime p,

bπ(p) = aπ(p).

We define bπ(n) = 0 if n is not a prime power. We consider the following hypoth-
esis on the size of the coefficients bπ(pr) for r ≥ 2.

Hypothesis H0 There is ε > 0 such that for any fixed r ≥ 2,∑
pr≤x

(log p)|bπ(pr)|2 � x1−ε.

H0 is a mild hypothesis and expected to be true for all π in general. It is true
under the assumption of GRC. More generally if the local parameters satisfy

|απ(p, j)| ≤ pγ , for a fixed 0 ≤ γ < 1/4

then H0 holds. Employing (2.6) we have∑
r≥α

∑
pr≤x

(log p)|bπ(pr)|2 � x1−ε,

where 0 < ε < 2/(d2 + 1) and α(2/(d2 + 1)− ε) > 1. Hence, assuming H0, there
is ε > 0 such that

(2.7)
∑
r≥2

∑
pr≤x

(log p)|bπ(pr)|2 � x1−ε.
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Finally observe that H0 implies the hypothesis H of Rudnick and Sarnak [16,
Page 281]. That is, under the assumption of H0 we have

(2.8)
∑
r≥2

∑
pr≤x

(log p)2|bπ(pr)|2

pr
<∞.

In the proof of the following lemma we use some properties of the Rankin-Selberg
L-function L(π × π̃, s). See [16, Section 2.4] for a review of these properties.

Lemma 2.4. Under the assumption of H0 we have
(i) ∑

p≤x

|bπ(p)|2 ∼ x

log x

as x→∞, and
(ii) ∑

p≤x

|bπ(p)|2

p
= log log x+ O(1).

Proof. (i) Let S be the product of all ramified primes for π and LS(π × π̃, s) =∏
p-S Lp(πp × π̃p, s) be the partial Rankin-Selberg L-function. Then it is known

that for σ > 1,

f(s) = −
L′S
LS

(π × π̃, s) =
∞∑

n=1

Λ(n)|bπ(n)|2

ns

where Λ(n) = log p if n = pr and zero otherwise (see [16, Page 281, formula
(2.22)]). From the properties of the Rankin-Selberg L-functions we deduce that
f(s) has a meromorphic continuation to σ ≥ 1 with a simple pole of residue 1 at
s = 1. By the Wiener-Ikehara Tauberian theorem we have

(2.9)
∑
n≤x

Λ(n)|bπ(n)|2 ∼ x.

For simplicity in our exposition and in a similar fashion to the classical number
theoretical functions we define

Ψ(x) =
∑
n≤x

Λ(n)|bπ(n)|2, Θ(x) =
∑
p≤x

(log p)|bπ(p)|2, and Π(x) =
∑
p≤x

|bπ(p)|2.

We have

(2.10) Θ(x) ≤ Ψ(x) ≤ (log x)Π(x) + Cεx
1−ε,

where Cε is a fixed constant (here we have used (2.7)). On the other hand, from
(2.9), for large x we have

Π(x) ≤ Ψ(x) ≤ (1 + ε)x.

Employing this upper bound for Π(x), for 0 < α < 1 we have

Θ(x) ≥
∑

xα≤p≤x

(log p)|bπ(p)|2 ≥ (Π(x)−Π(xα)) log xα(2.11)

≥ α (Π(x)− (1 + ε)xα) log x.

Since we can choose α arbitrary close to 1, from (2.10), (2.11), and (2.9) we have

lim
x→∞

Π(x)
x/ log x

= lim
x→∞

Θ(x)
x

= lim
x→∞

Ψ(x)
x

= 1.
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(ii) Under the assumption of (2.8) Rudnick and Sarnak [16, Proposition 2.3]
have shown that ∑

n≤x

|Λ(n)bπ(n)|2

n
=

(log x)2

2
+ O(log x).

Employing (2.8) and partial summation in the above formula yields the desired
result. �

Proposition 2.5. Let L(π, s) be a principal automorphic L-function. Suppose
that for the local parameters at unramified primes we have

(2.12) |απ(p, j)| ≤ pγ, for a fixed 0 ≤ γ < 1/4.

Then
Ik(π, T ) � T (log T )k2

for rational k ≥ 0.

Proof. Let S be the product of all ramified primes and g(s) = LS(π, s) =∏
p-S Lp(s, πp) be the partial L-function. It is clear that if gcd(n, S) 6= 1 then the

n-th coefficient of LS(π, s) is zero; otherwise aπ(n) is the n-th Dirichlet coefficient
of LS(π, s). We have LS(π, s) ∈ C (see [2, Section 5.12] for details). Moreover
(2.12) implies that H0 in Lemma 2.4 is satisfied, and so (2.2) and (2.3) hold for
β = 1. Thus the conditions of Theorem 2.3 hold and therefore we deduce the
desired lower bound for the fractional k-th moment of LS(π, s). Since LS(π, s)
and L(π, s) differ only by finitely many factors (bounded from below on s = 1/2),
the same lower bound holds for Ik(π, T ). �

Corollary 2.6. The conclusion of Proposition 2.5 remains true if GRC holds
for π.

Since Dirichlet L-functions associated to primitive characters, modular L-
functions associated to newforms, and twisted modular L-functions associated
to newforms and primitive Dirichlet characters are all examples of principal au-
tomorphic L-functions that satisfy GRC (see [2, Sections 5.11 and 5.12] for de-
tails), as an immediate corollary of the above proposition we have the following
extensions of the lower bound results of [6], [10], and [20].

Corollary 2.7. For the Dirichlet L-function L(χ, s) attached to a primitive
Dirichlet character and for any non-negative rational k we have

Ik(χ, T ) � T (log T )k2
.

Corollary 2.8. Let L(f, s) be the L-function associated to a newform of weight
`, level N , and nebentypus ψ. Then for any non-negative rational k we have

Ik(f, T ) � T (log T )k2
.

Corollary 2.9. Let L(f, χ, s) be the L-function associated to a newform of weight
`, level N , nebentypus ψ, and a primitive Dirichlet character χ mod q where
(q,N) = 1. Then for any non-negative rational k we have

Ik(f, χ, T ) � T (log T )k2
,

where Ik(f, χ, T ) denotes the k-th (power) moment of L(f, χ, s).

The following is also a direct corollary of Proposition 2.5.
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Corollary 2.10. Let L(f, s) be a Maass cusp newform of weight zero and level
N with nebentypus ψ. Then for any rational k ≥ 0 we have

Ik(f, T ) � T (log T )k2

.

Proof. Let αf (p, 1) and αf (p, 2) be the local parameters of f at an unramified
prime p. From a result of Kim and Sarnak [7, Proposition 2] we know that

|αf (p, 1)| ≤ p7/64 and |αf (p, 2)| ≤ p7/64.

The result follows from Proposition 2.5 as 7/64 < 1/4. �

Artin L-functions
Let K/Q be a Galois extension with the Galois group Gal(K/Q) and

ρ : Gal(K/Q) → GLd(C)

be a representation of Gal(K/Q). Let L(K/Q, ρ, s) be the Artin L-function as-
sociated to ρ, which is defined as an Euler product

∏
p Lp(K/Q, ρ, s) of the local

factors Lp(K/Q, ρ, s) for σ > 1.
For unramified primes p the local factor of the Artin L-function is defind by

Lp(K/Q, ρ, s) = (det(Id − p−sρ(σp)))−1,

where Id denotes the identity matrix, σp is the Frobenius conjugacy class, and
ρ(σp) is the value of ρ at any element belonging to σp. Letting αρ(p, j) (1 ≤ j ≤ d)
be the eigenvalues of the unitary matrix ρ(σp), we have

Lp(K/Q, ρ, s) =
d∏

j=1

(
1− αρ(p, j)

ps

)−1

,

where |αρ(p, j)| = 1.
As a consequence of the Brauer induction theorem it is known that any Artin L-

function has a meromorphic continuation to the whole complex plane. Moreover
Artin’s conjecture asserts that L(K/Q, ρ, s) has an analytic continuation for all s
except possibly for a pole at s = 1 of order equal to the multiplicity of the trivial
representation in ρ.

Proposition 2.11. Assume Artin’s conjecture for the Artin L-function L(K/Q, ρ, s).
Then for any non-negative rational k, we have

Ik(K/Q, ρ, T ) � T (log T )〈ϕ,ϕ〉k2
,

where Ik(K/Q, ρ, T ) denotes the k-th moment of L(K/Q, ρ, s). Here ϕ is the
character associated to ρ and

〈ϕ,ϕ〉 =
1
|G|

∑
g∈G

|ϕ(g)|2

where G = Gal(K/Q).

Proof. Set

Lur(K/Q, ρ, s) =
∏

unramified p

Lp(K/Q, ρ, s) =
∞∑

n=1

aρ(n)
ns

.

Under the assumption of the Artin conjecture we know that Lur(K/Q, ρ, s) ∈ C
(see [2, Section 5.13] for details), and for σ > 1, Lur(K/Q, ρ, s) has an Euler
product satisfying the conditions given in Theorem 2.3. Note that for unramified
p we have aρ(p) = ϕ(p). To apply Theorem 2.3 we need to study the asymptotic
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behavior of
∑

p≤x |aρ(p)|2. By decomposing this sum according to the conjugacy
class C of G that contains σp, we have∑

p≤x

|aρ(p)|2 =
∑

unramified p≤x

|ϕ(p)|2(2.13)

=
∑
C

|ϕ(gC)|2 (#{unramified p ≤ x; σp ⊆ C}) ,

where gC is any element of C. From the version of the Chebotarev density
theorem with the remainder [8, Theorem 1.3] we get

#{unramified p ≤ x; σp ⊆ C} =
|C|
|G|

Li(x) +O
(
x exp (−c0

√
log x/n)

)
,

where Li(x) =
∫∞
2 dt/ log t ∼ x/ log x, c0 is an absolute constant and n is the

degree of K over Q. Applying this in (2.13), we get∑
p≤x

|aρ(p)|2 = 〈ϕ,ϕ〉Li(x) +O

((∑
C

|ϕ(gC)|2
)
x exp (−c0

√
log x/n)

)
.

It is clear that this formula implies (2.2) for β = 〈ϕ,ϕ〉. Moreover we can derive
(2.3) from this formula by partial summation. Thus the conditions of Theo-
rem 2.3 are satisfied and we get the desired lower bound for the k-th moment
of Lur(K/Q, ρ, s). Since Lur(K/Q, ρ, s) and L(K/Q, ρ, s) differ only by finitely
many factors (bounded from below on s = 1/2), the same lower bound holds for
Ik(K/Q, ρ, T ). �

As a direct corollary of Proposition 2.11 we have the following unconditional
improvement of Ramachandra’s Theorem 1.7 for non-negative rational values of
k.

Corollary 2.12. Let K be a degree n Galois extension of Q, and let ζK(s) be
the Dedekind zeta function of K. Then for non-negative rational k we have

Ik(ζK , T ) � T (log T )nk2
.

Proof. Let ρ be the regular representation of Gal(K/Q). In this case we have
L(K/Q, ρ, s) = ζK(s) and Artin’s conjecture holds. Thus the result follows since
〈ϕ,ϕ〉 = n, where ϕ is the character of the regular representation of Gal(K/Q).

�

Remark 2.13. R. Murty [13, Theorem 3.1] has shown that the Selberg orthog-
onality conjecture implies the Artin conjecture. Thus in Proposition 2.11 we can
replace the Artin conjecture with the Selberg orthogonality conjecture.

3. Proof of Proposition 2.1

We start by recalling a classical theorem on the average values of multiplicative
functions.

Lemma 3.1 (Levin and Fainleib). Let h(n) be a complex multiplicative func-
tion for which ∑

p≤x

h(p) ∼ α
x

log x
as x→∞, ∑

p≤x

|h(p)| = O

(
x

log x

)
,
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and
h(pr) � (2p)rθ, for some 0 ≤ θ < 1/2, and for all r ≥ 2.

Then, as x→∞, ∑
n≤x

h(n) ∼ e−γ0α

Γ(α)
x

log x
Πh(x),

where α is a fixed number, γ0 = 0.5772 . . . is Euler’s constant and

Πh(x) =
∏
p≤x

(
1 +

∞∑
r=1

h(pr)
pr

)
.

Proof. See [9, Theorem 3]. �

We are ready to prove Proposition 2.1.

Proof. (Proof of Proposition 2.1) With the notation of Lemma 3.1 we have

Πh(x) =
∏
p≤x

(
1 +

h(p)
p

)∏
p≤x

1 +
1

1 + h(p)
p

∞∑
r=2

h(pr)
pr

 .

Since h(n) is non-negative and ∑
p≤x

h(p) ∼ α
x

log x

as x→∞, we have
h(p)
p

≤ 1
2

for large enough p. This together with the bound given on h(pr) for r ≥ 2 imply
that ∏

p≤x

(
1 +

h(p)
p

)
� Πh(x) �

∏
p≤x

(
1 +

h(p)
p

)
.

Moreover, by employing the bound h(p)
p ≤ 1

2 (for large p) we can deduce that

exp

∑
p≤x

h(p)
p

+ O(1)

� Πh(x) � exp

∑
p≤x

h(p)
p

+ O(1)

 .

Combining ∑
p≤x

h(p)
p

= α log log x+ O(1)

with the previous inequality results in

(log x)α � Πh(x) � (log x)α.

Thus by applying these bounds in Lemma 3.1, we have

(3.1) x(log x)α−1 �
∑
n≤x

h(n) � x(log x)α−1.

Next note that by partial summation we have

(3.2)
T∑

n=1

h(n)
n2σ

=
1
T 2σ

∑
n≤T

h(n) + 2σ
∫ T

1

∑
n≤u

h(n)

 du

u2σ+1
.



LOWER BOUNDS FOR POWER MOMENTS OF L-FUNCTIONS 15

By application of the upper bound of (3.1) in (3.2) and considering that
1
2 + c

log T ≤ σ ≤ 1 we deduce that

T∑
n=1

h(n)
n2σ

� e−2c (log T )α−1 +
∫ T

1
(log u)α−1 du

u2σ

� (log T )α−1 + (2σ − 1)−α

∫ (2σ−1) log T

0
e−ttα−1dt

� (log T )α−1 + (σ − 1/2)−α

� (log T )α .

Similarly by employing the lower bound of (3.1) in (3.2), and considering that
1
2 + c

log T ≤ σ ≤ 1 we have

T∑
n=1

h(n)
n2σ

� (2σ − 1)−α

∫ (2σ−1) log T

0
e−ttα−1dt

� (2σ − 1)−α

∫ 2c

0
e−ttα−1dt

� (σ − 1/2)−α .

The proof of the proposition is now completed. �

4. Proof of Theorem 1.5

In this section, we aim to prove Theorem 1.5. The proof closely follows the
method devised by Heath-Brown in [4]. We assume that (1.2) holds for g, and
moreover (1.3) and (1.4) hold for rational k ≥ 0. Note that from (1.4) follows
that

(4.1) (log T )α �
T∑

n=1

|gk(n)|2

n
� (log T )α.

For T ≥ 2 and −∞ < t <∞, let

w(t, T ) =
∫ 2T

T
exp

(
−(t− τ)2

)
dτ .

The next lemma summarizes some properties of w(t, T ) that will be used later.

Lemma 4.1. Let T ≥ 2 and −∞ < t <∞. We have

w(t, T ) � 1

for all t and T ,

w(t, T ) � exp
(
− 1

36
(
t2 + T 2

))
for t ≤ 0 and t ≥ 3T , and

w(t, T ) � 1

for all 4T
3 ≤ t ≤ 5T

3 .

Proof. See [4]. �
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Define

Jk(g, σ, T ) =
∫ ∞

−∞
|g(σ + it)|2kw(t, T )dt.

The next lemma shows that when finding a lower bound for Ik(g, T ) it is enough
to find a lower bound for Jk(g, 1/2, T ).

Lemma 4.2. We have

Ik(g, 3T ) + e−T 2/37 � Jk(g, 1/2, T ).

Proof. By employing (1.2) and Lemma 4.1 we have

Jk (g, 1/2, T ) =
∫ ∞

−∞
|g (1/2 + it)|2k w(t, T )dt

�
∫ 3T

0
|g (1/2 + it)|2k dt

+
(∫ 0

−∞
+
∫ ∞

3T

)(
(1 + |t|)2kA exp

(
− 1

36
(
t2 + T 2

)))
dt

�
∫ 3T

1
|g (1/2 + it)|2k dt+ e−T 2/37.

�

Let 0 < λ <
√

3/24π be fixed. We now define

(4.2) sk(g, s, T ) =
λT∑
n=1

gk(n)
ns

,

and let

Sk(g, σ, T ) =
∫ ∞

−∞
|sk(g, σ + it, T )|2w(t, T )dt.

Observe that, by (1.3), for σ ≥ 1/2 we have

(4.3) |sk(g, s, T )| ≤
λT∑
n=1

|gk(n)|
n1/2

�
λT∑
n=1

nη−1/2 � T η+1/2 � T.

We find upper and lower bounds for Sk(g, σ, T ).

Lemma 4.3. Let 1
2 ≤ σ ≤ 3

4 and 0 < λ <
√

3/24π. Then

T

λT∑
n=1

|gk(n)|2

n2σ
� Sk(g, σ, T ) � T

λT∑
n=1

|gk(n)|2

n2σ
.

Proof. Recall the following mean-value theorem for Dirichlet polynomials. We
have ∫ T

0

∣∣∣∣∣
N∑

n=1

ann
−it

∣∣∣∣∣
2

dt =
(
T + ξ

4π√
3
N

) N∑
n=1

|an|2,

where −1 ≤ ξ ≤ 1 (see [11, Page 50]).
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We use Lemma 4.1, (4.3), and the above mean value theorem for N = λT to
deduce that

Sk(g, σ, T ) =
∫ 3T

0
|sk(g, σ + it, T )|2w(t, T )dt+ O(1)

�
∫ 3T

0

∣∣∣∣∣
λT∑
n=1

gk(n)
nσ+it

∣∣∣∣∣
2

dt+ 1

= (3T + O(T ))
λT∑
n=1

|gk(n)|2

n2σ

� T

λT∑
n=1

|gk(n)|2

n2σ
.

We again use Lemma 4.1 and the above mean value theorem for N = λT to
deduce that

Sk(g, σ, T ) �
∫ 5T

3

4T
3

∣∣∣∣∣
λT∑
n=1

gk(n)
nσ+it

∣∣∣∣∣
2

dt

=
(
T

3
+ λξ′

4π√
3
T

) λT∑
n=1

|gk(n)|2

n2σ

� T

λT∑
n=1

|gk(n)|2

n2σ
.

Note that in the above formula −2 ≤ ξ′ ≤ 2. This completes the proof of the
lemma. �

Next we obtain an upper bound on Jk(g, σ, T ).

Lemma 4.4. Let 1
2 ≤ σ ≤ 3

4 and T ≥ 2. Then

Jk(g, σ, T ) � T σ− 1
2Jk (g, 1/2, T )

3
2
−σ + e−T 2/7.

The proof of this lemma is given in Section 5.

Write k = u
v where u and v are positive coprime integers. We define

dk(g, s, T ) = gu (s)− sv
k(g, s, T )

and
Dk(g, σ, T ) =

∫ ∞

−∞
|dk(g, σ + it, T )|

2
v w(t, T )dt.

We find an upper bound for Dk(g, σ, T ).

Lemma 4.5. Let 1
2 ≤ σ ≤ 3

4 , k = u
v , and T ≥ 2. Then

Dk(g, σ, T ) � Dk (g, 1/2, T )
5+2η−4σ

3+2η

(
T 1−(1+ε)/v

) 4σ−2
3+2η

+Dk (g, 1/2, T )
7+2η−8σ

3+2η e
− 2σ−1

9+6η
T 2

,

where 0 ≤ η < 1/2 is given in (1.3) and 0 < ε < 1/2− η.

The proof of this lemma is given in Section 5.

We now use the bounds found in Lemmas 4.4, 4.5 and 4.3 to find a lower bound
for Jk (g, 1/2, T ).
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Proposition 4.6. We have

Jk (g, 1/2, T ) � T (log T )α.

Proof. Notice that by the definition of dk(g, s, T ) we have

|sk(g, s, T )|2 = |sv
k(g, s, T )|

2
v = |gu(s)− dk(g, s, T )|

2
v

� |g(s)|2k + |dk(g, s, T )|
2
v .

Thus

(4.4) Sk(g, σ, T ) � Jk(g, σ, T ) +Dk(g, σ, T ).

We also have

|dk(g, s, T )|
2
v = |g(s)u − sv

k(g, s, T )|
2
v

� |g(s)|2k + |sk(g, s, T )|2 .

Thus

(4.5) Dk (g, 1/2, T ) � Jk (g, 1/2, T ) + Sk (g, 1/2, T ) .

We now consider two cases, and show that the lemma follows from either case.
We first consider the case Dk (g, 1/2, T ) ≤ T . In this case, Lemma 4.3, (4.4)

with σ = 1/2, and (4.1) imply

T (log T )α � T

λT∑
n=1

|gk(n)|2

n
� Jk (g, 1/2, T ) + T ,

from which the lemma follows.
We next consider the case Dk (g, 1/2, T ) > T . Then Lemma 4.5 yields

Dk(g, σ, T ) � Dk (g, 1/2, T )
(
T

(1+ε)(2−4σ)
v(3+2η) + e

− 2σ−1
9+6η

T 2
)

(4.6)

� Dk (g, 1/2, T )T
1−2σ

2v ,

the last line following because η < 1/2 by (1.3) and 1−2σ ≤ 0. We see that (4.4)
followed by (4.6) and (4.5) implies

Sk(g, σ, T ) � Jk(g, σ, T ) + (Jk (g, 1/2, T ) + Sk (g, 1/2, T ))T
1−2σ

2v .

So there exists a constant c(k) > 0 such that for any given σ and T we have
either

(4.7) Sk(g, σ, T ) ≤ c(k)
(
Sk (g, 1/2, T )T

1−2σ
2v

)
or

(4.8) Sk(g, σ, T ) ≤ c(k)
(
Jk(g, σ, T ) + Jk (g, 1/2, T )T

1−2σ
2v

)
.

We claim that (4.7) cannot hold for all σ and T . The reason is that (4.7)
together with Lemma 4.3 and (1.4) yield

(σ − 1/2)−α

(log T )α
�

λT∑
n=1

|gk(n)|2

n2σ

λT∑
n=1

|gk(n)|2

n

� Sk(g, σ, T )
Sk(g, 1/2, T )

� T
1−2σ

2v
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uniformly for 1
2 + c

log λT ≤ σ ≤ 3
4 , λT ≥ 2. Letting σ = 1

2 + δ
log T in the above

inequality yields

δ−α � e−
δ
v

which cannot be true for large values of δ. Thus (4.7) is false for a value δ0, and
so (4.8) must hold for σ0 = 1

2 + δ0
log T and T large enough. Using these values of

σ and T in (4.8) and applying Lemma 4.4 yields

(4.9) Sk(g, σ0, T ) � T σ0−1/2Jk (g, 1/2, T )
3
2
−σ0 + T

1−2σ0
2v Jk (g, 1/2, T ) + e−T 2/7.

Then by the lower bound for Sk(g, σ0, T ) given in Lemma 4.3, (4.9), and (4.1),
we deduce that

T (log T )α � T

λT∑
n=1

|gk(n)|2

n
� Sk(g, σ0, T ) � Jk (g, 1/2, T ) .

This is the desired result. �

We are ready to prove our main result.

Proof. (Proof of Theorem 1.5) We assume that (1.3) and (1.4) hold for rational
k ≥ 0. Lemma 4.2 and Proposition 4.6 yield

Ik(g, T ) + e−(T/3)2/37 � Jk(g, 1/2, T/3) � T

λT/3∑
n=1

|gk(n)|2

n
� T (log T )α.

Next assume that (1.3) and (1.4) hold for real k ≥ 0 and g(s) does not have
any zero in the half plane σ > 1/2. Then it is clear that Lemmas 4.2, 4.3, and 4.4
extend to real k ≥ 0. Moreover since g(s) has no zero in the half plane σ > 1/2,
(g(s))k is analytic on the half plane σ > 1/2 (except possibly at s = 1) and so
Lemma 4.5 holds for u = k and v = 1. Thus the theorem follows similar to the
case for rational k. �

5. Proofs of Lemmas 4.4 and 4.5

We state a result which we will utilize in the proofs of this section.

Lemma 5.1 (Gabriel). Let f(s) be analytic in the infinite strip α < σ < β,
and continuous for α ≤ σ ≤ β. Suppose f(s) → 0 as | Im (s)| → ∞ uniformly for
α ≤ σ ≤ β. Then for α ≤ γ ≤ β and any q > 0 we have∫ ∞

−∞
|f(γ + it)|qdt ≤

(∫ ∞

−∞
|f(α+ it)|qdt

) β−γ
β−α

(∫ ∞

−∞
|f(β + it)|qdt

) γ−α
β−α

.

Proof. See [3, Theorem 2]. �

Lemma 4.4 Let 1
2 ≤ σ ≤ 3

4 and T ≥ 2. Then

Jk(g, σ, T ) � T σ− 1
2Jk

(
g,

1
2
, T

) 3
2
−σ

+ e−T 2/7.
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Proof. Let f(s) = (s − 1)mg(s) exp
(

1
2k (s− iτ)2

)
, γ = σ, α = 1/2, β = 3/2,

q = 2k and 1/2 ≤ σ ≤ 3/4.
We use Lemma 5.1 to see that∫ ∞

−∞
|f (σ + it)|2k dt ≤

(∫ ∞

−∞
|f (1/2 + it)|2k dt

) 3
2
−σ

(5.1)

·
(∫ ∞

−∞
|f (3/2 + it)|2k dt

)σ− 1
2

.

Next we consider

(5.2)
∫ ∞

−∞
|f (1/2 + it)|2k dt

=
∫ ∞

−∞
|−1/2 + it|2mk |g (1/2 + it)|2k

∣∣∣e(1/2+it−iτ)2
∣∣∣ dt.

Since ∣∣∣e(1/2+it−iτ)2
∣∣∣ ≤ e

1
4 e−(t−τ)2 ,

by employing (1.2) we have(∫ τ
2

−∞
+
∫ ∞

3τ
2

)(
|f (1/2 + it)|2k

)
dt� e−τ2/5.

Using this with (5.2) yields

(5.3)
∫ ∞

−∞
|f (1/2 + it)|2k dt� τ2mk

∫ 3τ
2

τ
2

|g (1/2 + it)|2k e−(t−τ)2dt+ e−τ2/5.

In a similar fashion as above, we may show that

(5.4)
∫ ∞

−∞
|f (3/2 + it)|2k dt� τ2mk.

Using (5.3) and (5.4) with (5.1) yields

(5.5)
∫ ∞

−∞
|f (σ + it)|2k dt

� τ2mk

(∫ ∞

−∞
|g (1/2 + it)|2k e−(t−τ)2dt

) 3
2
−σ

+ e−τ2/6.

Moreover, since e−(t−τ)2 ≤
∣∣∣e(σ+it−iτ)2

∣∣∣, we have∫ ∞

−∞
|g (σ + it)|2k e−(t−τ)2dt�

∫ 3τ
2

τ
2

|g (σ + it)|2k e−(t−τ)2dt+ e−τ2/5(5.6)

� τ−2mk

∫ ∞

−∞
|f (σ + it)|2k dt+ e−τ2/5.

(5.5) and (5.6) together imply∫ ∞

−∞
|g (σ + it)|2k e−(t−τ)2dt�

(∫ ∞

−∞
|g (1/2 + it)|2k e−(t−τ)2dt

) 3
2
−σ

+ e−τ2/6.

Integrating over T ≤ τ ≤ 2T and using Holder’s inequality completes the proof
of the lemma. �
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In the subsequent proof, we will require the use of another theorem due to
Gabriel.

Lemma 5.2 (Gabriel). Let R be a rectangle with vertices s0, s0, −s0 and −s0.
Let F (s) be continuous on R and analytic on the interior of R. Then∫

L
|F (s)|q |ds| ≤

(∫
P1

|F (s)|q |ds|
)1/2(∫

P2

|F (s)|q |ds|
)1/2

for any q ≥ 0, where L is the line segment from 1
2 (s0 − s0) to 1

2 (s0 − s0), P1

consists of the three line segments connecting 1
2 (s0 − s0), s0, s0 and 1

2 (s0 − s0),
and P2 is the mirror image of P1 in L.

Proof. See [3, Theorem 1]. �

We also need the following mean-value theorem for Dirichlet series.

Lemma 5.3 (Montgomery-Vaughn). If
∑∞

n=1 n|an|2 <∞, then∫ T

0

∣∣∣∣∣
∞∑

n=1

ann
−it

∣∣∣∣∣
2

dt =
∞∑

n=1

|an|2(T + O(n)),

the implied constant being absolute.

Proof. See [12, Corollary 3]. �

We are ready to prove Lemma 4.5.

Lemma 4.5 Let 1
2 ≤ σ ≤ 3

4 , k = u
v , and T ≥ 2. Then

Dk(g, σ, T ) � Dk (g, 1/2, T )
5+2η−4σ

3+2η

(
T 1−(1+ε)/v

) 4σ−2
3+2η

+Dk (g, 1/2, T )
7+2η−8σ

3+2η e
− 2σ−1

9+6η
T 2

,

where 0 ≤ η < 1/2 is given in (1.3) and 0 < ε < 1/2− η.

Proof. Using Lemma 5.1 with

f(s) = dk(g, s, T ) exp
(v

2
(s− iτ)2

)
,

γ = σ, α = 1/2, 3/4 < β < 1, and q = 2/v, we get∫ ∞

−∞
|f (σ + it)|

2
v dt ≤

(∫ ∞

−∞
|f (1/2 + it)|

2
v dt

) β−σ
β−1/2

(5.7)

·
(∫ ∞

−∞
|f (β + it)|

2
v dt

)σ−1/2
β−1/2

.

By (1.2) and (4.3), we have

(5.8) dk(g, s, T ) � T v + |t|Au �
(
T + |t|A

)u+v
.

Thus (5.8) yields

(5.9)
∫ ∞

−∞
|f (β + it)|

2
v dt =

∫ 3τ
2

τ
2

|f (β + it)|
2
v dt

+O

(
T (2+2k)

(∫ τ
2

−∞
+
∫ ∞

3τ
2

)((
1 +

|t|A

T

)2+2k

e−(t−τ)2

)
dt

)
.
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We observe that

(5.10)

(∫ τ
2

−∞
+
∫ ∞

3τ
2

)((
1 +

|t|A

T

)2+2k

e−(t−τ)2

)
dt� e−

τ2

5 .

Putting (5.9) and (5.10) together, we have

(5.11)
∫ ∞

−∞
|f (β + it)|

2
v dt =

∫ 3τ
2

τ
2

|f (β + it)|
2
v dt+O

(
T (2+2k)e−

τ2

5

)
.

We will now use Lemma 5.2 with F (s) = f (s+ β + iτ), s0 = β − 1/2 + (1/2)iτ
and q = 2

v . This allows us to avoid the possible pole of g(s). On one hand, we
have

(5.12)
∫

L
|F (s)|q |ds| =

∫ 3τ
2

τ
2

|f (β + it)|
2
v dt.

We also have∫
P1

|F (s)|q |ds| =
∫ 3τ

2

τ
2

|f (2β − 1/2 + it)|
2
v dt(5.13)

+
∫ 2β−1/2

β

(∣∣∣∣f (µ+
1
2
iτ

)∣∣∣∣ 2v +
∣∣∣∣f (µ+

3
2
iτ

)∣∣∣∣ 2v
)
dµ

and ∫
P2

|F (s)|q |ds| =
∫ 3τ

2

τ
2

|f (1/2 + it)|
2
v dt(5.14)

+
∫ β

1
2

(∣∣∣∣f (µ+
1
2
iτ

)∣∣∣∣ 2v +
∣∣∣∣f (µ+

3
2
iτ

)∣∣∣∣ 2v
)
dµ.

However, (5.8) yields

f

(
µ+

1
2
iτ

)
= dk

(
g, µ+

1
2
iτ, T

)
exp

(
v

2

(
µ− 1

2
iτ

)2
)

(5.15)

�
(
T + τA

)u+v
e−vτ2/8

and similarly

(5.16) f

(
µ+

3
2
iτ

)
�
(
T + τA

)u+v
e−vτ2/8.

Thus (5.15) and (5.16) show that the second integrals in (5.13) and (5.14) are
� T (2+2k)e−τ2/5. Using this, along with Lemma 5.2, (5.12), (5.13) and (5.14),
we have

∫ 3τ
2

τ
2

|f (β + it)|
2
v dt�

(∫ ∞

−∞
|f (1/2 + it)|

2
v dt

)1/2

(5.17)

·

(∫ 3τ
2

τ
2

|f (2β − 1/2 + it)|
2
v dt

)1/2

+ T (2+2k)e−τ2/11.

From (5.11) and (5.17) together with (5.7) and the definition of f(s) we have
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(5.18)
∫ ∞

−∞
|dk (g, σ + it, T )|

2
v e−(t−τ)2dt

�
(∫ ∞

−∞
|dk (g, 1/2 + it, T )|

2
v e−(t−τ)2dt

)β−σ/2−1/4
β−1/2

·

(∫ 3τ
2

τ
2

|dk (g, 2β − 1/2 + it, T )|
2
v e−(t−τ)2dt

)σ/2−1/4
β−1/2

+
(∫ ∞

−∞
|dk (g, 1/2 + it, T )|

2
v e−(t−τ)2dt

) β−σ
β−1/2

·
(
T (2+2k)e−τ2/11

)σ−1/2
β−1/2 .

Integrating (5.18) for T ≤ τ ≤ 2T and applying Hölder’s inequality yields

(5.19) Dk(g, σ, T ) � Dk (g, 1/2, T )
β−σ/2−1/4

β−1/2

·

(∫ 2T

T

∫ 3τ
2

τ
2

|dk (g, 2β − 1/2 + it, T )|
2
v e−(t−τ)2dtdτ

)σ/2−1/4
β−1/2

+Dk (g, 1/2, T )
β−σ

β−1/2 e
− 2σ−1

12(2β−1)
T 2

.

Since w(t, T ) � 1, we have

∫ 2T

T

∫ 3τ
2

τ
2

|dk (g, 2β − 1/2 + it, T )|
2
v e−(t−τ)2dtdτ

�
∫ 3T

T
2

|dk (g, 2β − 1/2 + it, T )|
2
v dt.

Now choose β > 3/4 so that 2β−1/2 > 1. By this choice of β, dk (g, 2β − 1/2 + it, T )
is represented by an absolutely convergent Dirichlet series. Also note that

gu(n) = gkv(n) =
∑

n=n1···nv

gk(n1) · · · gk(nv).

Thus, for σ > 1, we have

dk(g, s, T ) = gu(s)− sv
k(g, s, T )(5.20)

=
∞∑

n=1

gu(n)
ns

−

(
λT∑
n=1

gk(n)
ns

)v

=
∞∑
λT

a(n)
ns
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where

|a(n)| =

∣∣∣∣∣∣∣gu(n)−
∑

n=n1···nv
nj≤λT for j=1,...,v

gk(n1) · · · gk(nv)

∣∣∣∣∣∣∣(5.21)

=

∣∣∣∣∣∣∣
∑

n=n1···nv
∃j such that nj>λT

gk(n1) · · · gk(nv)

∣∣∣∣∣∣∣
≤

∑
n=n1···nv

|gk(n1)| · · · |gk(nv)|

≤ nητv(n)

� nη+ε0 .

In the last inequality ε0 is a positive constant that will be chosen appropriately
later. Thus, (5.20) and (5.21) allow us to use Lemma 5.3 to get

(5.22)
∫ 3T

T
2

|dk (g, 2β − 1/2 + it, T )|2 dt =
∞∑
λT

|a(n)|2

n4β−1

(
5
2
T + O(n)

)
� T

∫ ∞

λT
t2η+2ε0−4β+1dt+

∫ ∞

λT
t2η+2ε0−4β+2dt

� T 2(η+ε0)−4β+3.

The last inequality holds if β > (η+ ε0)/2+3/4. We now use Holder’s inequality
and (5.22) to see that∫ 3T

T
2

|dk (g, 2β − 1/2 + it, T )|
2
v dt ≤

(
5
2
T

)1− 1
v (
T 2(η+ε0)−4β+3

) 1
v(5.23)

� T 1+(2(η+ε0)−4β+2)/v.

Applying the bound (5.23) in (5.19) and choosing ε0 = (1/2)(1/2− η)− ε/2 and
β = (7/8) + (1/4)η completes the proof of the lemma. �
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