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ABSTRACT. For a prime p and a positive integer a relatively prime to p, we denote ia(p) as the index of the
subgroup generated by a in the multiplicative group (Z/pZ)×. Under certain conditions on the arithmetic
function f(n), we prove that the average value of f(ia(p)), as a and p vary, is

∞∑
d=1

g(d)

dϕ(d)
,

where g(n) =
∑
d|n µ(d)f(n/d) is the Möbius inverse of f and ϕ(n) is the Euler function.

In honor of V. Kumar Murty on his sixtieth birthday

1. INTRODUCTION

For a prime p and a positive integer a relatively prime to p, we define the residual index of a mod p
as the index of the subgroup 〈a〉 in the multiplicative group (Z/pZ)×. We denote the residual index of
a mod p by ia(p). There is vast literature on the distribution of the residual indices largely motivated
by efforts on resolving the celebrated Artin’s primitive root conjecture which deals with the distribution
of primes p for which ia(p) = 1 (see [12] for an extensive survey of results and generalizations related
to this conjecture). More precisely, denoting the characteristic function of the set {1} by χ{1}, Artin’s
conjecture predicts the average value of the function χ{1}(ia(p)), for fixed a, as p varies. In [11], by
heuristic reasoning, Laxton conjectured that, for a fixed integer a > 1, the density of the prime divisors of
the recurrence wn+2 = (a+ 1)wn+1 − awn is the same as the average value of 1/ia(p) as p varies over
primes (see [12, Section 9.4] for the latest developments on this conjecture).

In this note, we are partly inspired by a conjecture on the average value of log ia(p) which is formulated
in studying a concrete number-theoretic problem. An integer n is called an x-pseudopower of the base 2 if
n is not a power of 2, but for all primes p ≤ x there is an integer ep ≥ 0 such that n ≡ 2ep mod p. In [1],
Bach, Lukes, Shallit, and Williams studied the function P2(x), the smallest x-pseudopower of the base 2.
The following conjecture is formulated in [1, p. 1740] following some probabilistic arguments.

Conjecture 1.1 (Bach-Lukes-Shallit-Williams). We have

logP2(x) ∼ c2
x

log x
,

as x→∞, where c2 is the constant in the asymptotic∑
p≤x

log i2(p) ∼ c2
x

log x
,

as x→∞.

A similar conjecture and related results for a general base are stated in [1]. Conjecture 1.1 is a
culmination of two conjectures (one regarding P2(x) and the other one related to log i2(p)). Fomenko [6]
stated the second conjecture more explicitly. We state a version of the conjecture with an explicit constant.
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Conjecture 1.2. For a > 1, as x→∞,∑
p≤x

log ia(p) ∼ cali(x), where ca :=

∞∑
d=1

Λ(d)

[Q(ζd, a1/d) : Q]
. (1.1)

Here, Λ(d) is the von Mangoldt function, ζd is a primitive d-th root of unity, a1/d is the positive d-th root
of a, and li(x) =

∫ x
2 dt/ log t.

The exact values of [Q(ζd, a
1/d) : Q] are known (see Lemma 4.1). By employing these values we

can show that ca > 0. The best conditional upper bound and unconditional lower bounds on the above
conjecture are due to Pappalardi [13, p. 386, Example 4]. Fomenko [6, Theorem 6(a)] gives a conditional
resolution of this conjecture under the assumptions of the Generalized Riemann Hypothesis (GRH) and
Conjecture A of Hooley. Another related result is [4, Theorem 1.5] that establishes, under the assumption
of GRH, for α ∈ (0, 1) the asymptotic∑

p≤x
(log ia(p))

α = ca,αli(x) +Oa

(
x

(log x)2−ε−α

)
,

where ca,α is a constant.
The conjectures discussed above can be considered as instances of a more general problem. In [13, p.

377] the following problem is proposed.

Generalized Artin Problem 1.3. For certain integers a and arithmetic functions f(n), establish the
asymptotic formula ∑

p≤x
f(ia(p)) ∼ cf,ali(x),

as x→∞, where

cf,a :=

∞∑
d=1

g(d)

[Q(ζd, a1/d) : Q]
.

Here g(n) =
∑

d|n µ(d)f(n/d) is the Möbius inverse of f(n).

Note that ca given in (1.1) is the same as clog,a as defined in Problem 1.3. The results on Problem 1.3
can be found in [13] and [4]. Most notably, under the assumption of GRH, Theorem 1.7 of [4] shows∑

p≤x
f(ia(p)) = cf,ali(x) +Oa

(
x

(log x)2−ε−α

)
(1.2)

for arithmetic functions f and g satisfying

g(n)� τk(n)r(log n)α, (1.3)

with k, r ∈ N and 0 ≤ α < 1 all fixed. Here, τk(n) denotes the number of representations of n as product
of k positive integers. Note that in the above asymptotic formula cf,a can be zero for certain a and f .

Our first result states that (1.2) is true when averaging over a for a larger class of functions f than those
satisfying (1.3).

Theorem 1.4. Let A > 1 and β < 1/2. Suppose f and g are arithmetic functions such that, for all n ∈ N,

f(n) =
∑
d|n

g(d) and g(n)� exp
(

(log n)β
)
. (1.4)

Then there exists a constant c1 > 0 such that if N > exp(c1(log x)1/2), we have

1

N

∑
a≤N

∑
p≤x

f(ia(p)) = cf li(x) +O

(
x

(log x)A

)
,
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where

cf :=
∞∑
d=1

g(d)

dϕ(d)
. (1.5)

Note that (1.4) implies that g(n)� nε for all ε > 0. Hence, the lower bound d/ log log d for ϕ(d) (see
[9, p. 267, Theorem 328]) yields∑

d>y

g(d)

dϕ(d)
�
∑
d>y

|g(d)| log log d

d2
�
∑
d>y

1

d2−ε
� 1

y1−ε
.

Thus, (1.5) is well-defined. Observe that cf is well-defined as long as g(n)� n1−ε for some ε > 0.
For f(n) = χ{1}(n) and f(n) = 1/n, Theorem 1.4 reproduces the results of Stephens [14] on the

average Artin’s conjecture and the average value of the counting function of prime divisors of a second-
order linear recurrence. For f(n) = logn we have that g(n) = Λ(n), the von Mangoldt function. Thus,
we have the following direct corollary of Theorem 1.4.

Corollary 1.5. LetA > 1 be fixed. Then there exists a constant c1 > 0 such that ifN > exp(c1(log x)1/2),
we have

1

N

∑
a≤N

∑
p≤x

log ia(p) =

( ∞∑
d=1

Λ(d)

dϕ(d)

)
li(x) +O

(
x

(log x)A

)
.

The above corollary establishes that Conjecture 1.2 is true when averaging over a. It also provides a
strengthening of [5, Theorem 3], which is an upper bound with the larger constant

∞∑
d=1

log d

dϕ(d)

instead of an asymptotic formula as in Corollary 1.5. We point out that the strategy of the proof of Theorem
3 of [5], and also our proof of Theorem 1.4, closely follow Stephens’ proof of the average Artin conjecture
in [14]. However a direct application of Stephens’ method, as done in the proof of Theorem 3 of [5], will
result in a complicated sum in the main term. The proof within [14] builds on the character sum cr(χ)
defined in (3.2). The novelty of our proof is use of a different character sum Cd(χ) defined in (3.1), which
leads to an easier evaluation of the main term in Theorem 1.4.

We next note that
∞∑
d=1

Λ(d)

dϕ(d)
=
∑
q≥2
prime

q log q

(q − 1)2(q + 1)
.

The sum on the right-hand side is the predicted expected value of log ia(p) on [1, p. 1741], which is
obtained following a probabilistic argument. A close examination of the heuristics in [1] reveals an explicit
expression for the expected value of f(ia(p)) for any additive arithmetic function f(n) of suitable size.
More precisely, if f is an additive function, we expect

cf =
∑
q≥2
prime

∑
e≥1

f(qe)

q2e
+
q − 1

qe+1

e−1∑
j=1

f(qj)

qj

 . (1.6)

In fact we show that this is the case. If f is an additive function such that (1.6) converges absolutely, then

∞∑
d=1

g(d)

dϕ(d)
=
∑
q≥2
prime

∑
e≥1

f(qe)

q2e
+
q − 1

qe+1

e−1∑
j=1

f(qj)

qj

 , (1.7)
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where

g(n) =

{
f(qk)− f(qk−1) if n = qk,

0 otherwise.

Here q denotes a prime and g(n) is the Möbius inverse of the additive function f(n). The proof of (1.7) is
a straightforward computation of the coefficients of f(qi) on both sides of (1.7).

Recall that, for fixed a and certain functions f , the Generalized Artin Problem 1.3 predicts cf,a is the
average value of f(ia(p)), as p varies over primes. On the other hand Theorem 1.4 gives cf as the average
value of f(ia(p)), as p varies over primes and a varies over positive integers. It is natural to ask whether
or not the average value of cf,a, as a varies, is cf . For the Lang-Trotter conjecture for elliptic curves such
questions have been asked by David and Pappalardi in [3]. In [10] Jones obtained results on such questions
for several conjectures related to elliptic curves. We prove that under certain conditions the average of
cf,a, for 2 ≤ a ≤ N , approaches cf , as N →∞.

Theorem 1.6. Let f and g be arithmetic functions such that

f(n) =
∑
d|n

g(d) and g(n)� n1−ε (1.8)

for a fixed ε > 0. Moreover, assume that g(n) is supported on prime powers (i.e., g(n) = 0 for n not a
prime power). We have

lim
N→∞

1

N

∑
2≤a≤N

cf,a = cf .

Corollary 1.7. We have

lim
N→∞

1

N

∑
2≤a≤N

∞∑
d=1

Λ(d)

[Q(ζd, a1/d) : Q]
=
∞∑
d=1

Λ(d)

dϕ(d)
.

The proof of Theorem 1.6 uses an explicit formula for the values [Q(ζd, a
1/d) : Q] obtained by Wagstaff

(see Lemma 4.1).

Remarks 1.8. (i) One can formulate results similar to Theorems 1.4 and 1.6 for the case a < 0.
(ii) Examining the proofs of Theorems 1.4 and 1.6 show that the assertions of these theorems remain

true for functions g(n) that are slightly larger than the written bounds in the theorems. For
example the bound exp

(
(log n)β

)
in Theorem 1.4 can be replaced by exp(h(n)) where h(n) =

o
(
(log n)1/2/ log logn

)
, as n→∞.

(iii) Note that the assertion of Theorem 1.6 is true for any additive function f(n) with g(n)� n1−ε

for ε > 0.
(iv) In Theorem 1.6, the condition that g(n) is supported on prime powers is introduced in order to

conveniently handle one of the error terms. We except that similar results to hold for arithmetic
functions which have support outside the prime powers.

(v) It may be possible to prove results analogous to [14, Theorems 3 and 4] under suitable bounds on
f(n) and for all sufficiently large N . That is,∑

p≤x
f(ia(p)) ∼ cf li(x),

as x→∞, holds for almost all positive integers a ≤ N .

The structure of the paper is as follows. In Section 2 we provide a heuristic argument that predicts
the expression (1.6) for the average value cf , where f is an additive arithmetic function. Section 3 is
dedicated to a proof of Theorem 1.4. Finally in Section 4 we prove Theorem 1.6.
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2. THE CASE OF ADDITIVE ARITHMETIC FUNCTIONS

Let f be an additive arithmetic function. Thus, f(mn) = f(m) + f(n) for all coprime pairs (m,n).
Note that for such function f(1) = 0. We follow closely the probabilistic argument given on [1, p. 1741]
for the expected value of log ia(p) to derive a formula for the expected value of f(ia(p)) as p and a vary.
We assume that f satisfies suitable growth conditions such that infinite sums occurring in the following
argument are absolutely convergent. We denote the probability of an event A by Pr(A) and the expected
value of a random variable X by E(X).

Writing p− 1 = qe11 . . . qerr for a prime p yields

(Z/pZ)× = C1 × . . .× Cr,

where Ci is the qi-Sylow subgroup of (Z/pZ)×. Note that each Ci is a cyclic subgroup of order qeii . Let
(a, p) = 1. Then a has the unique representation a = a1a2 . . . ar, where ai ∈ Ci. Thus we have

ia(p) =

r∏
i=1

[Ci : 〈ai〉],

where [Ci : 〈ai〉] is the index of the subgroup 〈ai〉 in the cyclic group Ci. Since f is additive, for fixed p,
we have

f(ia(p)) = f

(
r∏
i=1

[Ci : 〈ai〉]

)
=

r∑
i=1

f

(
qeii
|〈ai〉|

)
.

Observe that for fixed qeii , we have, for 0 ≤ α ≤ ei,

Pr(|〈ai〉| = qαi ) =
ϕ(qαi )

qeii
.

Therefore for a fixed qeii ‖(p− 1) and varying ai, we have

E

(
f

(
qeii
|〈ai〉|

))
=

1

qeii
f(qeii ) +

qi − 1

qeii
f(qei−1i ) + . . .+

qi − 1

qi
f(1). (2.1)

Let q be a fixed prime and e be a fixed non-negative integer. Heuristically,f(qe)

qe
+
q − 1

q

e−1∑
j=1

f(qj)

qj

 1

qe
(2.2)

is the expected value of f
(

qe

|〈ap,q〉|

)
, where ap,q is the image of a in q-Sylow subgroup of (Z/pZ)×, as

a varies over integers and p varies over all primes with qe‖(p− 1). Note that (2.2) is the product of the
expectation (2.1) and the density of primes p such that qe‖(p− 1) (i.e., ϕ(q)/ϕ(qe+1) = 1/qe).

Now since f is additive, a natural candidate for the expected value of f(ia(p)) is

∑
q≥2
prime

∑
e≥1

f(qe)

q2e
+
q − 1

qe+1

e−1∑
j=1

f(qj)

qj

 . (2.3)

If f(n) is completely additive (i.e. f(mn) = f(m) + f(n) for all m,n), then (2.3) can be simplified to

∑
q≥2
prime

∑
e≥1

f(q)

 e

q2e
+
q − 1

qe+1

e−1∑
j=1

j

qj

 =
∑
q≥2
prime

qf(q)

(q − 1)2(q + 1)
. (2.4)
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Note that both (2.3) and (2.4) can be given as a unified formula
∞∑
d=1

g(d)

dϕ(d)
,

where g(d) =
∑

δ|d µ(δ)f(d/δ). In the next section we rigorously prove that this value is the average
value of f(ia(p) for a large class of arithmetic functions f (not necessarily additive) that satisfy a suitable
growth condition.

3. THE CASE OF GENERAL ARITHMETIC FUNCTIONS

For d | p− 1 and a Dirichlet character mod p, we set

Cd(χ) =
1

p− 1

∑′

b mod p

χ̄(b), (3.1)

where the sum is taken over integers 1 ≤ b ≤ p with the property that ordb(p) | (p− 1)/d. Here, ordb(p)
denotes the multiplicative order of b mod p. Letting

cr(χ) =
1

p− 1

∑′′

b mod p

χ̄(b), (3.2)

where the sum is taken over integers 1 ≤ b ≤ p with the property that ordb(p) = r, we conclude that

Cd(χ) =
∑
r| p−1

d

cr(χ). (3.3)

Let χ0 denote the principal character mod p. From [14, Lemma 1] we know that if χ 6= χ0, then

|cr(χ)| ≤ ((p− 1)/r, k)

k(p− 1)/r
,

where k is the order of χ, and if χ = χ0, then |cr(χ0)| = ϕ(r)/(p− 1). By employing these values in
(3.3) we deduce that if χ 6= χ0, then

|Cd(χ)| ≤ 1

k

∑
r| p−1

d

((p− 1)/r, k)

(p− 1)/r
,

where k is the order of χ. Note that this upper bound implies that

|Cd(χ)| ≤
τ(p−1d )

k
, (3.4)

where τ(n) is the divisor function. Also, Cd(χ0) = 1/d.
By the orthogonality of characters, we observe that∑

χ(mod p)

χ(a)Cd(χ) =

{
1 if d|ia(p),
0 otherwise.

(3.5)

In the proof we need the following version of the large sieve inequality for multiplicative characters
given in [8, p. 16].

Lemma 3.1 (Gallagher). Let M and N be positive integers and (an)M+N
n=M+1 be a sequence of complex

numbers. Then ∑
q≤Q

q

ϕ(q)

∑∗

χ(q)

∣∣∣∣∣
M+N∑
n=M+1

anχ(n)

∣∣∣∣∣
2

� (N +Q2)

M+N∑
n=M+1

|an|2,
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where Q is any positive real number and
∑∗

χ(q) denotes a sum over all primitive Dirichlet characters χ
modulo q.

We next introduce notation and results from [14]. Let

τk,N (n) := #
{

(a1, a2, . . . , ak) ∈ [1, N ]k ∩ Nk; n = a1a2 · · · ak
}
.

We also set

ψ(X,Y ) :=
∑
n≤X
p(n)≤Y

1,

where p(n) is the largest prime factor of n. Note that we define p(1) = ∞. Parts (i) and (ii) of the
following lemma are [14, Lemma 10] and [14, Lemma 8], respectively.

Lemma 3.2 (Stephens). (i) For k ∈ N, if Nk ≤ x8, then∑
n≤Nk

τk,N (n)2 < Nk (ψ(N, 9 log x))k .

(ii) For a sufficiently large constant c1 > 0 there exists c2 > 0 such that, if

exp
(
c1(log x)1/2

)
< N ≤ x2,

then

x−1/2k (ψ(N, 9 log x))1/2 � exp
(
−c2(log x)1/2/ log log x

)
,

where

k = [2 log x/ logN ] + 1.

We are now ready to prove our first result.

Proof of Theorem 1.4. By (3.5), we have

1

N

∑
a≤N

∑
p≤x

f(ia(p)) =
1

N

∑
a≤N

∑
p≤x

∑
d|ia(p)

g(d)

=
1

N

∑
a≤N

∑
p≤x

∑
d|p−1

g(d)
∑

χ(mod p)

χ(a)Cd(χ). (3.6)

Interchanging the sums in (3.6), isolating the sum corresponding to the trivial character χ0, and applying
Cd(χ0) = 1/d yield

1

N

∑
a≤N

∑
p≤x

f(ia(p)) =
1

N

∑
p≤x

∑
d|p−1

g(d)
∑

χ mod p

Cd(χ)
∑
a≤N

χ(a)

=
1

N

∑
p≤x

∑
d|p−1

g(d)

d

(
[N ]−

[
N

p

])

+O

 1

N

∑
p≤x

∑
d|p−1

|g(d)|
∑
χ 6=χ0

|Cd(χ)|

∣∣∣∣∣∣
∑
a≤N

χ(a)

∣∣∣∣∣∣
 . (3.7)
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3.1. Evaluation of the main term of (3.7). We have

1

N

∑
p≤x

∑
d|p−1

g(d)

d

(
[N ]−

[
N

p

])
=
∑
p≤x

∑
d|p−1

g(d)

d
−
∑
p≤x

1

p

∑
d|p−1

g(d)

d
+O

 1

N

∑
p≤x

∑
d|p−1

g(d)

d


= Σ1 − Σ2 +O(Σ3). (3.8)

Observe that ∑
p≤x

∑
d|p−1

g(d)

d
=
∑
d≤x

g(d)

d
π(x; d, 1),

where

π(x; d, 1) = #{p ≤ x; p ≡ 1 (mod d)}.

Thus, for α > 1, the sum Σ1 in (3.8) is

Σ1 =
∑

d≤(log x)α

g(d)

d
π(x; d, 1) +

∑
(log x)α<d≤x

g(d)

d
π(x; d, 1)

= Σ1,1 + Σ1,2. (3.9)

The Siegel-Walfisz theorem (see [2, p. 125]) implies

Σ1,1 = li(x)
∑

d≤(log x)α

g(d)

dϕ(d)
+O

 x

(log x)B

∑
d≤(log x)α

g(d)

d


for any B > 1. Thus, by (1.4) for g(n), standard estimates yield

Σ1,1 = li(x)
∑
d≥1

g(d)

dϕ(d)
+O

li(x)
∑

d>(log x)α

g(d)

dϕ(d)

+O

(
x

(log x)B−1

)

= cf li(x) +O

(
x

(log x)1+α(1−ε)

)
+O

(
x

(log x)B−1

)
= cf li(x) +O

(
x

(log x)min{B−1,1+α(1−ε)}

)
(3.10)

for arbitrary ε > 0.
Using the trivial bound for π(x; d, 1), we obtain

Σ1,2 � x
∑

d>(log x)α

g(d)

d2
� x

(log x)α(1−ε)
. (3.11)

Hence, applying (3.10) and (3.11) to (3.9) yields

Σ1 = cf li(x) +O

(
x

(log x)min{B−1,α(1−ε)}

)
.

Note that, since B and α are arbitrary constants greater than 1, we have

Σ1 = cf li(x) +O

(
x

(log x)A

)
(3.12)
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for any A > 1.
For Σ2, we have

Σ2 =
∑
p≤x

1

p

∑
d|p−1

g(d)

d
=
∑
d≤x

g(d)

d

∑
p≤x

p≡1 mod d

1

p
.

Thus, [2, p. 131, Exercise 9], [9, p. 267, Theorem 328], and (1.4) imply

Σ2 �
∑
d≤x

g(d)(log log x+ log d)

dϕ(d)

� exp
(

(log x)β
)

(log x+ log log x). (3.13)

For Σ3, note that

Σ3 =
1

N
Σ1 �

li(x)

N
. (3.14)

Now, (3.12), (3.13), and (3.14) applied to (3.8), imply the main term is equal to

cf li(x) +O

(
x

(log x)A

)
+O

(
li(x)

N

)
(3.15)

for any A > 1.

3.2. Evaluation of the Error Term of (3.7). We start by applying (1.4) and (3.4) to the error term in
(3.7) to obtain

1

N

∑
p≤x

∑
d|p−1

|g(d)|
∑
χ 6=χ0

|Cd(χ)|

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣� exp
(
(log x)β

)
N

∑
p≤x

∑
χ 6=χ0

1

ordχ

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣
∑
d|p−1

τ

(
p− 1

d

)

=
exp

(
(log x)β

)
N

∑
p≤x

τ3(p− 1)
∑
χ 6=χ0

1

ordχ

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣ ,
(3.16)

where τ3(p− 1) =
∑

d|p−1 τ(d) and ordχ denotes the order of character χ. By Hölder’s inequality, for
any k ∈ N, we have

∑
p≤x

τ3(p− 1)
∑
χ 6=χ0

1

ordχ

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣ ≤
∑
p≤x

∑
χ 6=χ0

(
τ3(p− 1)

ordχ

) 2k
2k−1

1− 1
2k

∑
p≤x

∑
χ 6=χ0

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣
2k


1
2k

= (Σ4)
1− 1

2k (Σ5)
1
2k . (3.17)

For Σ4, we have

Σ4 =
∑
p≤x

τ3(p− 1)
2k

2k−1

∑
χ 6=χ0

1

(ordχ)
2k

2k−1

�
∑
p≤x

τ3(p− 1)2
∑
χ 6=χ0

1

ordχ
.

Note that ∑
χ 6=χ0

1

ordχ
=
∑
d|p−1

1

d

∑
χ 6=χ0

ordχ=d

1 ≤ τ(p− 1)
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implies

Σ4 �
∑
p≤x

τ3(p− 1)3.

For the last summation, we can use truncated divisors from [7, Proposition 22.10] to get

τ3(p− 1)3 ≤
∑
d|p−1
d≤√p

(2τ(d))12.

Thus,

Σ4 �
∑
p≤x

∑
d|p−1
d≤√p

(2τ(d))12

�
∑
d≤
√
x

τ(d)12π(x; d, 1).

Now by applying the Brun-Titchmarsh inequality ([2, Theorem 7.3.1]), [9, p. 267, Theorem 328], and
[2, Lemma 10.2.7] we conclude that

Σ4 �
x

log x

∑
d≤
√
x

τ(d)12

ϕ(d)

� x(log x)4095 log log x. (3.18)

By Lemma 3.1, we have

Σ5 =
∑
p≤x

∑
χ 6=χ0

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣
2k

≤
∑
p≤x

∑
χ 6=χ0

∣∣∣∣∣∣
∑
n≤Nk

τk,N (n)χ(n)

∣∣∣∣∣∣
2

� (x2 +Nk)
∑
n≤Nk

τk,N (n)2.

Let k = [2 log x/ logN ] + 1. Now if N > x2, then k = 1, and thus

Σ5 � N2. (3.19)

On the other hand if exp(c1(log x)1/2) < N ≤ x2, where c1 > 0 is the constant given in Lemma 3.2 (ii),
we have that k > 1 and Nk ≤ x4. Therefore, by Lemma 3.2 (i), we have

Σ5 � (x2 +Nk)Nk (ψ(N, 9 log x))k . (3.20)

Now applying (3.18), (3.19), (3.20) to (3.17) and using Lemma 3.2 (ii) yield

∑
p≤x

τ3(p− 1)
∑
χ 6=χ0

1

ordχ

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣ ≤ Nx exp

(
−c2

(log x)1/2

log log x

)
(log x)4095(log log x).

Finally by inserting the above bound to (3.16) and combining the error term with expression for the
main term in (3.15), we have

1

N

∑
p≤x

∑
a≤N

f(ia(p)) =

( ∞∑
d=1

g(d)

dϕ(d)

)
li(x) +O

(
x

(log x)A

)
for N > exp(c1(log x)1/2) and all A > 1. �
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4. AVERAGE OF LOCAL AVERAGE VALUES

We need the following lemma which is Proposition 4.1 of [15] written for integers a > 1.

Lemma 4.1 (Wagstaff). For an integer a > 1, write a = aha0 , where a0 is positive and not an exact power
of an integer. Let D(a) denote the discriminant of the field Q(

√
a0). Let na = lcm(2ν2(ha)+1, D(a)),

where ν2(ha) denotes the multiplicity of 2 in ha. Then,

[Q(ζd, a
1/d) : Q] =

dϕ(d)

εa(d) gcd(d, ha)
,

where

εa(d) =

{
2 if na | d,
1 if na - d.

Proof of Theorem 1.6. In this proof a denotes an integer greater than 1. By Lemma 4.1 we have

∑
a≤N

cf,a =
∑
a≤N

∞∑
d=1

g(d)

[Q(ζd, a1/d) : Q]

=
∞∑
d=1

g(d)

dϕ(d)

∑
a≤N

εa(d) gcd(d, ha).

Thus, our desired sum is

∑
a≤N

cf,a =
∞∑
d=1

g(d)

dϕ(d)

∑
a≤N

gcd(d, ha) +
∑
a≤N
na|d

gcd(d, ha)

 .

Now by considering a parameter x we can write the above sum as

∑
a≤N

cf,a =
∑
d≤x

g(d)

dϕ(d)

∑
a≤N

gcd(d, ha) +
∑
a≤N
na|d

gcd(d, ha)

+
∑
d>x

g(d)

dϕ(d)

∑
a≤N

gcd(d, ha) +
∑
a≤N
na|d

gcd(d, ha)


= Σ6 + Σ7. (4.1)

We start by evaluating Σ6. We have

Σ6 =
∑
d≤x

g(d)

dϕ(d)

∑
a≤N

gcd(d, ha) +
∑
d≤x

g(d)

dϕ(d)

∑
a≤N
na|d

gcd(d, ha)

= Σ6,1 + Σ6,2.

The inner summation in Σ6,1 can be evaluated as follows.∑
a≤N

gcd(d, ha) =
∑
a≤N

∑
δ|d
δ|ha

ϕ(δ) =
∑
δ|d

ϕ(δ)
∑
a≤N
δ|ha

1.
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Note that, by the definition of ha and since a is an integer greater than one, we have δ | ha if and only if
a1/δ ∈ N \ {1}. Hence, the inner summation in the above sum becomes∑

a≤N
gcd(d, ha) =

∑
δ|d

ϕ(δ)
∑
a≤N

a1/δ∈N\{1}

1 =
∑
δ|d

ϕ(δ)
(
N1/δ +O(1)

)

= N +O
(
dN1/2

)
.

Therefore,

Σ6,1 =
∑
d≤x

g(d)

dϕ(d)

(
N +O

(
dN1/2

))

= N
∞∑
d=1

g(d)

dϕ(d)
+O

(
N
∑
d>x

g(d)

dϕ(d)

)
+O

N1/2
∑
d≤x

g(d)

ϕ(d)

 .

We note that summation in the main term is cf . The sum in the first error term is the tail of a convergent
summation and can be bounded as follows. By (1.8) and the lower bound given in [9, p. 267, Theorem
328] for ϕ(d), we have ∑

d>x

g(d)

dϕ(d)
�
∑
d>x

log log d

d1+ε
� 1

xε/2

for ε > 0. Also, the sum in the second error term can be bounded by x1−ε log x. Thus,

Σ6,1 = cfN +O

(
N

xε/2

)
+O

(
N1/2x1−ε log x

)
. (4.2)

For Σ6,2, we recall that na = lcm(2ν2(ha)+1, D(a)). Hence,

Σ6,2 =
∑
d≤x

g(d)

dϕ(d)

∑
a≤N
na|d

gcd(d, ha)

=
∑
a≤N

∑
d≤x

2ν2(ha)+1|d
D(a)|d

g(d) gcd(d, ha)

dϕ(d)
.

Now observe that d is a power of 2 since g(n) is supported on prime powers and 2ν2(ha)+1 | d. On the
other hand since D(a) | d, then D(a) is a power of 2. Writing a1/ha = a0 = a21a2, for integer a1 and
square free integer a2, we conclude that D(a) = 4a2 or a2. Since D(a) is a power of 2, we have a2 = 2

(in fact D(a) = 8). Thus, a1/ha is twice a perfect square. Writing a = (2�)ha , we have

Σ6,2 ≤
∑
a≤N

a=(2�)ha

∑
m≤log x/ log 2

g(2m)

2m−1
� N1/2. (4.3)

Here we used the facts that gcd(2m, ha) ≤ 2m and
∑∞

m=1 g(2m)/2m <∞ (by (1.8)). Hence, from (4.2)
and (4.3) we deduce that

Σ6 = cfN +O

(
N

xε/2

)
+O

(
N1/2x1−ε log x

)
. (4.4)
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For Σ7, by the aforementioned lower bound for ϕ(d), we have

Σ7 =
∑
d>x

g(d)

dϕ(d)

∑
a≤N

gcd(d, ha) +
∑
a≤N
na|d

gcd(d, ha)


�
∑
d>x

g(d) log log d

d2

∑
a≤N

ha.

Observing that ha ≤ logN/ log 2 and g(n)� n1−ε, the above inequality yields

Σ7 �
N logN

xε/2
. (4.5)

Now by applying (4.4) and (4.5) to (4.1) we have

1

N

∑
a≤N

cf,a = cf +O

(
x1−ε log x

N1/2

)
+O

(
logN

xε/2

)
.

We choose x = N1/2 to obtain
1

N

∑
a≤N

ca,f = cf +O

(
logN

N ε/4

)
.

�
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