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ON INVARIANTS OF ELLIPTIC CURVES ON AVERAGE

AMIR AKBARY AND ADAM TYLER FELIX

Abstract. We prove several results regarding some invariants of elliptic curves on average over the family of
all elliptic curves inside a box of sidesA andB. As an example, letE be an elliptic curve defined overQ andp
be a prime of good reduction forE. Let eE(p) be the exponent of the group of rational points of the reduction
modulop of E over the finite fieldFp. LetC be the family of elliptic curves

Ea,b : y2 = x3 + ax+ b,

where|a| ≤ A and|b| ≤ B. We prove that, for anyc > 1 andk ∈ N,

1
|C|

∑

E∈C

∑

p≤x

ek
E(p) = Ckli( xk+1) +O

(

xk+1

(log x)c

)

,

asx→ ∞, as long asA, B > exp
(

c1(log x)1/2
)

andAB> x(log x)4+2c, wherec1 is a suitable positive constant.

HereCk is an explicit constant given in the paper which depends onlyon k, and li(x) =
∫ x

2
dt/ log t. We prove

several similar results as corollaries to a general theorem. The method of the proof is capable of improving
some of the known results withA, B > xǫ andAB> x(log x)δ to A, B > exp

(

c1(log x)1/2
)

andAB> x(log x)δ.

1. INTRODUCTION AND RESULTS

Let E be an elliptic curve defined overQ of conductorN. For a primep of good reduction (i.e.p ∤ N),
let Ep be the reduction modp of E. It is known thatEp(Fp), the group of rational points ofE over the finite
field Fp, is the product of at most two cyclic groups, namely

Ep(Fp) ≃ (Z/iE(p)Z) × (Z/eE(p)Z),

where iE(p) divides eE(p). Thus, eE(p) is the exponent ofEp(Fp) and iE(p) is the index of the largest
cyclic subgroup ofEp(Fp). In recent years there has been a lot of interest in studyingthe distribution of the
invariantsiE(p) andeE(p).

Borosh, Moreno, and Porta [8] were the first to study computationallyiE(p) and conjectured that, for
some elliptic curves,iE(p) = 1 occurs often. We note thatiE(p) = 1 if and only if Ep(Fp) is cyclic. Let

NE(x) = #{p ≤ x; p ∤ N andEp(Fp) is cyclic}. (1.1)

Then Serre [26], under the assumption of the generalized Riemann hypothesis (GRH) for division fields
Q(E[k]), proved thatNE(x) ∼ cEli( x) as x → ∞, wherecE > 0 if and only ifQ(E[2]) , Q. Here li(x) =
∫ x

2 dt/log t. For the curves with complex multiplication (CM), Murty [25] removed the assumption of the
GRH. Also, he showed that under GRH one can obtain the estimateO(x log logx/(log x)2) for the error term
in the asymptotic formula forNE(x) for any elliptic curveE. The value of the error term is improved to
O(x5/6(log x)2/3) in [10]. In [3], following the method of [25] in the CM case, the error termO(x/(log x)A)
for anyA > 1 is established.

Another problem closely related to cyclicity is finding the average value of the number of divisors ofiE(p)
asp varies over primes. Letτ(n) denote the number of divisors ofn. In [1], Akbary and Ghioca proved that

∑

p≤x

τ(iE(p)) = cEli( x) +O
(

x5/6(log x)2/3
)

if GRH holds, and
∑

p≤x

τ(iE(p)) = cEli( x) +O

(

x
(log x)A

)

,
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for A > 1, if E has CM. In the above asymptotic formulascE is a positive constant which depends only on
E.

A more challenging problem is studying the average value ofiE(p). In [23], Kowalski proposed this
problem and proved unconditionally that the lower bound loglog x holds for

1
x/ log x

∑

p≤x

iE(p)

if E has CM. He also showed that for a non-CM curve the above quantity is bounded from the below.
A more approachable problem is finding the average value ofeE(p). Freiberg and Kurlberg [16] were the

first to consider this problem and established conditional (unconditional in CM case) asymptotic formulas
for

∑

p≤x eE(p). The best result to date is due to Felix and Murty [14] who proved more generally that fork
a fixed positive integer the following asymptotic formula holds:

∑

p≤x

ek
E(p) = cE,kli( xk+1) +O

(

xkE(x)
)

,

where

E(x) =















x/(log x)A if E has CM

x5/6(log x)2 if GRH holds

andcE,k is a positive constant depending onE andk. Felix and Murty derived their result as a consequence
of a more general theorem on asymptotic distribution ofiE(p)’s. Their general theorem also imply the best
known results on the cyclicity, the Titchmarsh divisor problem, and several other similar problems. To state
their result, letg(n) be an arithmetic function such that

∑

n≤x

|g(n)| ≪ x1+β(log x)γ, (1.2)

whereβ andγ are arbitrary, and let

f (n) =
∑

d|n
g(d). (1.3)

Then the following is proved in [14, Theorem 1.1(c)].

Theorem 1.1 (Felix and Murty). Under the assumption of GRH and bound(1.2) for β < 1/2 and arbitrary
γ, we have

∑

p≤x

f (iE(p)) = cE( f )li( x) +O
(

x
5+2β

6 (log x)
(2−β)(1+γ)

3

)

,

where cE( f ) is a constant depending only on E and f .

They also proved an unconditional version of the above theorem for CM elliptic curves (see [14, Theorem
1.1(a)]).

Our goal in this paper is to prove that Theorem1.1 holds unconditionally on average over the family of
all elliptic curves in a box. More precisely, we consider thefamily C of elliptic curves

Ea,b : y2 = x3 + ax+ b,

where|a| ≤ A and|b| ≤ B. It is not that difficult to prove a version of Theorem1.1 on average over a large
box. However it is a challenging problem to establish the same over a thin box. By athin box we mean, as
a function ofx, eitherA or B can be as small asxǫ for anyǫ > 0. Here we prove a stronger result in which
one ofA andB can be as small as exp(c1(log x)1/2) for a suitably chosen constantc1 > 0. Before stating
our main theorem, we note that, at the expense of replacingβ andγ by larger non-negative values, we can
assume thatβ andγ are non-negative.

Theorem 1.2. Let c > 1 be a positive constant and let f be the summatory function(1.3) of a function g
that satisfies(1.2) for certain non-negative values ofβ andγ. Assume that AB> x(log x)4+2c if 0 ≤ β < 1/2
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and AB> x1/2+β(log x)2γ+6+2c(log logx)2 if 1/2 ≤ β < 1. Then there is a positive constant c1 > 0 such that
if A, B > exp

(

c1(log x)1/2
)

, we have

1
|C|

∑

Ea,b∈C

∑

p≤x

f (iEa,b(p)) = c0( f )li( x) +O

(

x
(log x)c

)

,

where

c0( f ) :=
∑

d≥1

g(d)

dψ(d)ϕ(d)2
. (1.4)

The implied constant depends on g,β, γ, and c. Hereϕ(n) = n
∏

d|n(1− 1/p) andψ(n) =
∏

d|n(1+ 1/p).

This theorem is comparable to Stephens’s average result on Artin’s primitive root conjecture. Leta be a
non-zero integer other than−1 or a perfect square and letAa(x) be the number of primes not exceedingx,
for which a is a primitive root. The following result has been proved in [28] and [29].

Theorem 1.3 (Stephens). There exist a constant c1 > 0 such that, if N> exp
(

c1(log x)1/2
)

, then

1
N

∑

a≤N

Aa(x) = A li( x) +O

(

x
(log x)c

)

,

where A=
∏

ℓ prime
(1− 1/ℓ(ℓ − 1)) and c is an arbitrary constant greater than1.

The line of research on Artin primitive root conjecture on average started with the work of Goldfeld
[19] that used multiplicative character sums and the large sieve inequality to establish a weaker version of
Theorem1.3. The extension of the method of character sums to the averagequestions on a two parameters
family, in the case of elliptic curves inside a box, was pioneered by Fouvry and Murty in [15] on the average
Lang-Trotter conjecture for supersingular primes. Their work was extended to the general Lang-Trotter
conjecture by David and Pappalardi [13]. The best result on the size of the box (|a| ≤ A and|b| ≤ B) is due
to Baier [4] who established the Lang-Trotter conjecture on average under the condition

A, B > x1/2+ǫ andAB> x3/2+ǫ , (1.5)

whereǫ > 0. The supersingular case of this result is due to Fouvry and Murty [15, Theorem 6]. Baier [5]
has also established an average result for the Lang-Trotterconjecture on the range

A, B > (log x)60+ǫ andx3/2(log x)10+ǫ < AB< ex1/8−ǫ
, (1.6)

whereǫ > 0. Note that (1.6) is superior to (1.5) if A andB are not very large.
There are also average results for other distribution problems for elliptic curves. Banks and Shparlinski

[7] considered such average problems in a very general settingby employing multiplicative characters and
consequently proved average results for the cyclicity problem, the Sato-Tate conjecture, and the divisibility
problem on a box|a| ≤ A, |b| ≤ B satisfying the conditions

A, B ≤ x1−ǫ andAB≥ x1+ǫ , (1.7)

whereǫ > 0. Another notable result is related to Koblitz conjecture.Let

πtwin
E (x) := #{p ≤ x; #Ep(Fp) is prime}.

A conjecture of Koblitz predicts that

πtwin
E (x) ∼ cE

x

(log x)2
,

asx→ ∞, wherecE is a constant depending onE. Balog, Cojocaru, and David proved the following result
on Koblitz conjecture on the average over the familyC.

Theorem 1.4 (Balog, Cojocaru, and David). Let A, B > xǫ and AB> x(log x)10. Then, as x→ ∞,

1
|C|

∑

E∈C
πtwin

E (x) =
∏

prime ℓ

(

1− ℓ2 − ℓ − 1
(ℓ − 1)3(ℓ + 1)

)

x

(log x)2
+O

(

x

(log x)3

)

.
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(See [6, Theorem 1].)
The error term in the above theorem is estimated by a careful analysis of some multiplicative character

sums. We prove our Theorem1.2by a generalization of a modified version of [6, Lemma 6] (see our Lemma
3.1). We have used some results of Stephens [29] to sharpen the estimates given in [6, Lemma 6], and thus
we could establish our results, forβ < 1/2, on a box of size

A, B > exp(c1(log x)1/2) andAB> x(log x)δ, (1.8)

for appropriate positive constantsc1 andδ. As far as we know this is the thinnest box used for an elliptic
curve average problem. Our Theorem1.2has many applications. Here we mention some direct consequence
of it to the cyclicity problem, the Titchmarsh divisor problem, and computation of thek-th power moment
of the exponenteE(p).

Corollary 1.5. Let c> 1 and AB> x(log x)4+2c. There is c1 > 0 such that if A, B > exp
(

c1(log x)1/2
)

then,
as x→ ∞, the following statements hold.

(i)

1
|C|

∑

E∈C
NE(x) =

















∑

d≥1

µ(d)

dψ(d)ϕ(d)2

















li( x) +O

(

x
(log x)c

)

,

where NE(x) is the cyclicity counting function andµ(d) is the Möbius function.
(ii)

1
|C|

∑

E∈C

∑

p≤x

τ(iE(p)) =

















∑

d≥1

1

dψ(d)ϕ(d)2

















li( x) +O

(

x
(log x)c

)

.

(iii) For k ∈ N we have

1
|C|

∑

E∈C

∑

p≤x

ek
E(p) =

















∑

d≥1

∑

δ|d µ(δ)δk

dk+1ψ(d)ϕ(d)2

















li( xk+1) +O

(

xk+1

(log x)c

)

.

Part (i) of the above corollary gives a strengthening of a result of Bank and Shparlinski [7, Theorem
18] where asymptotic formula in (i) was proved in the weaker range (1.7). Parts (ii) and (iii) establish
unconditional average versions of some results given in [1] and [14].

Remarks 1.6. (i) As corollaries of Theorem1.2 we can also establish unconditional average results for
f (iE(p)), where f (n) is one of the functions (logn)α, ω(n)k, Ω(n)k, 2kω(n), or τk(n)r . Hereα is an arbitrary
positive real number andk and r are fixed non-negative integers. See [14, p. 276] for conditional results
related to these functions in the case of a single elliptic curve.

(ii) Under the conditions of Theorem1.2 one can also obtain average results forf (n) = nβ and f (n) =
σβ(n) =

∑

m|n mβ as long asβ < 1. More precisely, forA andB satisfying the conditions of Theorem1.2we
have, forc > 1,

1
|C|

∑

E∈C

∑

p≤x

iβE(p) =

















∑

d≥1

g(d)

dψ(d)ϕ(d)2

















li( x) +O

(

x
(log x)c

)

,

whereg is the unique arithmetical function satisfying

nβ =
∑

m|n
g(m).

This stops short of providing an answer on average to a problem proposed by Kowalski [23, Problem 3.1]
that asks about asymptotic behavior of

∑

p≤x iE(p).
(iii) Following the proof of Theorem1.2, one can improve the conditionA, B > xǫ in Theorem1.4 to

A, B > exp
(

c1(log x)1/2
)

, for some suitably chosen constantc1.
(iv) Lemma3.1 is the difficult part of the proof of Theorem1.2. The proof of Lemma3.1 follows the

method used in the proof of Lemma 6 of [6] (which itself is based on [7]) and combines it with some devices
from [29]. A new ingredient in the proof of Lemma3.1is an asymptotic estimate due to Howe (see Lemma
2.1) for the number of elliptic curves overFp which haved-torsion subgroup overFp isomorphic to two
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copies ofZ/dZ. Another new feature is a successful application of Burgess’s bound (see Lemma2.6) in
handling terms obtained from the error term of Howe’s estimate.

(v) One other novel feature of the proof of Theorem1.2is sharp estimates of the error terms arising from
the curves ofj-invariant 0 or 1728, which are estimated using some resultsfrom the theory of CM curves
(see Lemma2.3). A trivial estimate of these terms will result in unsatisfactory upper bounds on admissible
values ofA andB in Theorem1.2.

Following the ideas of the proof of Theorem1.2 and by a careful analysis of some character sums one
can show thatc0( f )li( x) closely approximates

∑

p≤x f (iE(p)) for almost all curvesE ∈ C. Here we prove the
following more general theorem.

Theorem 1.7. Let0 ≤ β < 1/2 andγ ≥ 0. Let f(n) be an arithmetic function satisfying

f (n) ≪ nβ(logn)γ. (1.9)

Suppose AB> x2(log x)6 if 0 ≤ β < 1/4 and AB> x
3
2+2β(log x)4γ+14(log logx)4 if 1/4 ≤ β < 1/2. Then

there is a positive constant c1 > 0 such that, if A, B > exp
(

c1(log x)1/2
)

, we have

1
|C|

∑

E∈C

















∑

p≤x

f (iE(p)) − c0( f )li( x)

















2

= O

(

x2

(log x)2

)

,

where c0( f ) is defined by(1.4).

The following is a direct consequence of Theorem1.7.

Corollary 1.8. Let h(x) be a positive real function such thatlim
x→∞

h(x) = 0. Under the assumptions of

Theorem1.7, for any x> 1 we have
∣

∣

∣

∣

∣

∣

∣

∑

p≤x

f (iE(p)) − c0( f )li( x)

∣

∣

∣

∣

∣

∣

∣

≤ x
h(x) log x

, (1.10)

for almost all E∈ C. More precisely(1.10) holds except possibly for O
(

h(x)2|C|
)

of curves inC.

We note that one can takef to be any of the functions mentioned in Corollary1.5 (i), (ii) and Remarks
1.6 (i) and (ii). For Corollary1.5(i), the corresponding function tof (n) is the characteristic function of the
singleton set{1}.
Remarks 1.9. It is possible to establish a version of Theorem1.7using the bound

∑

n≤x

|g(n)|2 ≪ x1+2β(log x)2γ

instead of (1.9). However we find that (1.9) will make the presentation of the proof more convenient. Note
that if

f (n) =
∑

d|n
g(d) ≪ nβ(logn)γ

then, by the Möbius inversion formula, we have
∑

n≤x

|g(n)|2 ≪ x1+2β(log x)2γ+1.

The structure of the paper is as follows. In Section 2 we summarize results that will be used in the proof
of our two theorems. Section 3 is dedicated to a detailed proof of Theorem1.2and Corollary1.5. In Section
4 we briefly summarize the proof of a technical lemma which is atwo-dimensional version of Lemma3.1.
The proof is tedious and divides to several subcases. We treat some cases and briefly comment on the
remaining ones. Finally in Section 5 we prove Theorem1.7.

Notation 1.10. Throughout the paperp andq denote primes (for simplicity in most cases we assume that
p, q , 2, 3), ϕ(n) is the Euler function,ω(n) is the number of distinct prime divisors ofn, Ω(n) is the total
number of prime divisors ofn, τ(n) is the total number of divisors ofn, p(n) is the largest prime factor ofn,
τk(n) is the number of representations ofn as a product ofk natural numbers,µ(n) is the Möbius function,
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ψ(n) = n
∏

d|n(1+1/d), andπ(x; d, a) is the number of primes not exceedingx that are congruent toa modulo
d. Moreover,K is a quadratic imaginary number field of class number 1,N(a) is the norm of an ideala of
K, N(α) is the norm of an elementα in K, p always denotes a degree 1 prime ideal ofK with N(p) = p, and
dsp is the largest divisor ofd composed of primes that split completely inK. We denote the finite field ofp
elements byFp and its multiplicative group byF×p. For two functionsf (x) andg(x) , 0, we use the notation
f (x) = O(g(x)), or alternativelyf (x) ≪ g(x), if | f (x)/g(x)| is bounded asx→ ∞.

2. LEMMAS

Let Es,t denote an elliptic curve overFp given by the equation

y2 = x3 + sx+ t; s, t ∈ Fp,

where at least one ofs or t is non-zero. LetEs,t[d](Fp) denote the set ofd-torsion points ofEs,t with
coordinates inFp. The following lemma essentially is due to Howe (see [21, p. 245]).

Lemma 2.1. (i) For d ∈ N and a fixed prime p, let

Sd(p) :=
{

(s, t) ∈ Fp × Fp; Es,t[d](Fp) ≃ Z/dZ × Z/dZ
}

.

For d | p− 1, we have

#Sd(p) =
p(p− 1)

dψ(d)ϕ(d)
+O(p3/2).

Moreover, if d∤ p− 1 or d >
√

p+ 1, then#Sd(p) = 0.
(ii) The assertions in (i) hold if we replaceSd(p) with S̃d(p), where

S̃d(p) :=
{

(s, t) ∈ F×p × F×p; Es,t[d](Fp) ≃ Z/dZ × Z/dZ
}

.

Proof. (i) We know that elliptic curves isomorphic (overFp) to Es,t are of the formEsu4,tu6, whereu ∈ F×p.
Let AutFp(Es,t) be the group of automorphisms (overFp) of the elliptic curveEs,t. So the number of
elliptic curves isomorphic toEs,t (overFp) is (p − 1)/|AutFp(Es,t)|. Let [Es,t] denote the class of all
elliptic curves overFp that are isomorphic overFp to Es,t. We have

#Sd(p) =
∑

[Es,t ]⊂Sd(p)

p− 1
∣

∣

∣AutFp(Es,t)
∣

∣

∣

.

Now the result follows since by [21, p. 245], we have, ford | p− 1,
∑

[Es,t ]⊂Sd(p)

1
∣

∣

∣AutFp(Es,t)
∣

∣

∣

=
p

dψ(d)ϕ(d)
+O(p1/2). (2.1)

Moreover, by [27, Corollary III.8.1.1], if d ∤ p − 1 then (Z/dZ)2 � Es,t(Fp)[d], and so #Sd(p) = 0.
Also if d >

√
p+ 1 and (Z/dZ)2

� Es,t(Fp)[d] ⊆ Es,t(Fp), thenp+ 2
√

p+ 1 < d2 ≤ #Es,t(Fp). On the
other hand #Es,t(Fp) ≤ p+ 2

√
p+ 1, by Hasse’s theorem. This is a clear contradiction.

(ii) We can deduce this by following the proof of part (i) and observing that there areO(1) isomorphism
classes overFp containing a curve of the formE0,t or Es,0.

�

Remarks 2.2. (i) For any primep, we know that|AutFp(Es,t)| = O(1). In fact, for p , 2, 3, from [27,
Theorem III.10.1], we know that

|AutFp(Es,t)| =



























6 if s= 0 andp ≡ 1 (mod 6)

4 if t = 0 andp ≡ 1 (mod 4)

2 otherwise

.

(ii) We note that, using Howe’s notation [21, Page 245], we have
∑

[Es,t ]⊂Sd(p)

1
|AutFp(Es,t)|

=
p

dψ(d)ϕ(d)
+O

(

ψ(d/d)2ω(d) √p
)

,
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where the implied constant is absolute. However, the term 2ω(d) is a bound for
∑

j| gcd(d,p−1)
d

µ( j). In our

case,gcd(d,p−1)
d = 1, sinced | p− 1. Thus, the term 2ω(d) can be removed. Also,ψ(d/d) = 1, and thus

(2.1) is correct.

Let K be a quadratic imaginary number field of class number 1. Letp be a degree 1 prime ideal ofK with
N(p) = p. Let πp be the unique generator ofp. Note that ifp is unramified, thenπp is unique up to units,
and if it is ramified, thenπp is unique up to units and complex conjugate. We haveN(p) = N(πp) = p.

Lemma 2.3. Suppose that dsp is the largest divisor of d composed of primes that split completely in K.

(i) For positive integer d with d2 ≤ x/ log x we have
∑

N(p)≤x
d|(πp−1)(π̄p−1)

1≪
2ω(dsp)τ(dsp)

ϕ(d)
x

log(x/d2)
.

(ii) For positive integer d, we have
∑

N(p)≤x
d|(πp−1)(π̄p−1)

1≪
τ(dsp)x

d
.

(iii) Let Es,t : y2 = x3 + sx+ t be an elliptic curve overFp with st = 0. We have#Es,t(Fp) = p + 1 or
#Es,t(Fp) = (πp − 1)(π̄p − 1) and N(πp) = p, whereπp ∈ Z[(1 + i

√
3)/2] or Z[i].

(iv) Let g(d) be an arithmetic function satisfying(1.2) with β < 1. Then we have
∑

p≤x

1
p

∑

s,t∈Fp
st=0

∑

d|p−1
Es,t (Fp)[d]�(Z/dZ)2

|g(d)| ≪ x
log x

.

Proof. The proofs of (i) and (ii) are identical to the proofs of Propositions 2.2 and 2.3 of [2].
(iii) See [22, Chapter 18, Theorems 4 and 5].
(iv) We observe that the conditionEs,t(Fp)[d] � (Z/dZ)2 implies thatd | p− 1 andd2 | #Es,t(Fp). By part
(iii) we know the possibilities for #Es,t(Fp). Now if #Es,t(Fp) = p + 1, then we conclude thatd = 2 (since
d | p− 1 andd | p+ 1). On the other hand if #Es,t(Fp) = (πp− 1)(π̄p− 1) whereπp ∈ Z[(1+ i

√
3)/2] orZ[i],

we let 0< ǫ < 1− β. So by employing (i) and (ii), the sum in (iv) is bounded by
∑

p≤x
p≡−1 (mod 4)

1+
∑

d≤
√

x+1

|g(d)|
∑

N(p)≤x
d|(πp−1)(π̄p−1)

1≪ x
log x

+
x

log x

∑

d≤x1/5

|g(d)|
d2−ǫ + x

∑

d>x1/5

|g(d)|
d2−ǫ ≪

x
log x

.

�

We next recall a version of the large sieve inequality for multiplicative characters.

Lemma 2.4 (Gallagher). Let M and N be positive integers and(an)M+N
n=M+1 be a sequence of complex num-

bers. Then
∑

q≤Q

q
ϕ(q)

∗
∑

χ(q)

∣

∣

∣

∣

∣

∣

∣

M+N
∑

n=M+1

anχ(n)

∣

∣

∣

∣

∣

∣

∣

2

≪ (N + Q2)
M+N
∑

n=M+1

|an|2,

where Q is any positive real number, and
∑∗
χ(q) denotes a sum over all primitive Dirichlet charactersχ

modulo q.

Proof. See [18, p. 16]. �

To state the next lemma, we need to describe some notation. Let

τk,B(n) := #
{

(a1, a2, . . . , ak) ∈ [1, B]k ∩Nk; n = a1a2 · · ·ak

}

.

We also set
Ψ(X,Y) :=

∑

n≤X
p(n)≤Y

1,
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wherep(m) is the largest prime factor ofm. Note that we definep(0) = p(±1) = ∞.

Lemma 2.5 (Stephens). (i) For k ∈ N, if Bk ≤ x8 then
∑

b≤Bk

τk,B(n)2 < Bk (

Ψ(B, 9 logx)
)k
.

(ii) For a sufficiently large constant c1 > 0 there exists c2 > 0 such that ifexp
(

c1(log x)1/2
)

< B ≤ x8 then

x−1/2k (

Ψ(B, 9 logx)
)1/2 ≪ exp

(

−c2(log x)1/2/ log logx
)

,

where
k =

[

2 logx/ log B
]

+ 1.

(iii) For a sufficiently large constant c1 > 0 there exists c3 > 0 such that ifexp
(

c1(log x)1/2
)

< B ≤ x4 then

x−1/k (

Ψ(B, 9 logx)
)1/2 ≪ exp

(

−c3(log x)1/2/ log logx
)

,

where
k =

[

4 logx/ log B
]

+ 1.

Proof. See [29, Lemmas 8, 9, and 10]. �

Lemma 2.6 (Burgess). (i) For any prime p, non-principle characterχ, r ∈ N, and B≥ 1, we have
∑

b≤B

χ(b) ≪ B1− 1
r p

r+1
4r2 log p,

where the implied constant is absolute.
(ii) Let ǫ > 0, n> 1, χ be a non-principal character, r∈ N, and B≥ 1. Then, if n is cube-free or r= 2, we

have
∑

b≤B

χ(b) ≪ B1− 1
r n

r+1
4r2
+ǫ
,

where the implied constant may depend onǫ and r.

Proof. See [9, Theorems 1 and 2]. �

Lemma 2.7. (i) (Friedlander and Iwaniec) Let Q and N be positive integers. Then we have

∗
∑

χ(mod Q)

∣

∣

∣

∣

∣

∣

∣

∑

n≤N

χ(n)

∣

∣

∣

∣

∣

∣

∣

4

≪ N2Q log6 Q,

where∗ denotes a sum over all primitive Dirichlet characters modulo Q.
(ii) Suppose that Q is the product of two distinct primes. Then we have

∑

χ(mod Q)
χ,χ0

∣

∣

∣

∣

∣

∣

∣

∑

n≤N

χ(n)

∣

∣

∣

∣

∣

∣

∣

4

≪ N2Q log6 Q.

Proof. (i) This is [17, Lemma 3].
(ii) Let Q = pq with p , q. To see that the result is true if the summation is over all non-principal char-

acters, we need to consider the inequality for imprimitive characters. The only non-principal imprimitive
characters modulopqare of the formχ′χ′′0 or χ′0χ

′′, whereχ′0 andχ′′0 are the principal characters modulop
andq, respectively, andχ′ andχ′′ are primitive characters modulop andq, respectively. Then, partition the
summation over all characters into a summation over primitive characters modulopq, primitive characters
modulo p and primitive characters moduloq. Hence, the assertion can be obtained by using the triangle
inequality and the result for primitive characters in part (i). �

We summarize several elementary estimations that are used in the proofs of next sections.

Lemma 2.8. (i) (Brun-Titchmarsh inequality) Letǫ > 0. Then for1 ≤ d ≤ x1−ǫ , we have

π(x; d, a) ≪ x
ϕ(d) log x

.
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(ii) Letθ < 1 andǫ > 0. Then for1 ≤ d ≤ x1−ǫ , we have

∑

p≤x
p≡1 modd

1
pθ
≪ x1−θ

ϕ(d) log x
.

(iii) For x ≥ 3 and d≥ 1 we have
∑

p≤x
p≡1 modd

1
p
≪ log logx+ logd

ϕ(d)
.

(iv) We have
1

ϕ(d)
≪ log logd

d
.

(v) Under the assumption of bound(1.2), for any realθ we have
∑

d≤y

|g(d)|
dθ
≪ 1+ y1+β−θ(logy)γ+1.

Proof. (i) See [11, Theorem 7.3.1].
(ii) This is a consequence of partial summation and part (i).
(iii) See [11, Section 13.1, Exercise 9].
(iv) See [20, p. 267, Theorem 328].
(v) This comes by straightforward applications of partial summation and bound (1.2).

�

3. PROOFS OF THEOREM1.2AND COROLLARY 1.5

3.1. Basic set up. LetC be the family of elliptic curves

Ea,b : y2 = x3 + ax+ b,

where|a| ≤ A, |b| ≤ B, and at least one ofa or b is non-zero. Note that

|C| = 4AB+O(A+ B).

Let

f (n) =
∑

d|n
g(d)

for all n ∈ N. We have

1
|C|

∑

Ea,b∈C

∑

p≤x

f (iEa,b(p)) =
1
|C|

∑

p≤x

∑

s,t∈Fp

|AutFp(Es,t)| f (iEs,t (p))

p− 1

∑

|a|≤A, |b|≤B: ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1.

Next by applying Remark2.2(i) in the above identity (recall thatp , 2, 3), we have

1
|C|

∑

Ea,b∈C

∑

p≤x

f (iEa,b(p)) =
2
|C|

∑

p≤x

∑

s,t∈F×p

f (iEs,t (p))

p− 1

∑

|a|≤A, |b|≤B, ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1+ Error Term 1,

where

Error Term 1=
1
|C|

∑

p≤x

∑

s,t∈Fp
st=0

|AutFp(Es,t)| f (iEs,t (p))

p− 1

∑

|a|≤A,|b|≤B
ab≡0 modp

1. (3.1)
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Now by considering

∑

|a|≤A, |b|≤B, ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1 =
2AB

p
+

















































∑

|a|≤A, |b|≤B, ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB
p

















































and applying it in the previous identity we arrive at

1
|C|

∑

Ea,b∈C

∑

p≤x

f (iEa,b(p)) = The Main Term+ Error Term 1+ Error Term 2,

where

The Main Term=
4AB
|C|

∑

p≤x

∑

s,t∈F×p

f (iEs,t (p))

p(p− 1)

and

Error Term 2 =
2
|C|

∑

p≤x

∑

s,t∈F×p

f (iEs,t (p))

p− 1

















































∑

|a|≤A, |b|≤B, ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB
p

















































.

3.2. The Main Term. We have

The Main Term=
4AB
|C|

∑

p≤x

∑

s,t∈F×p

f (iEs,t (p))

p(p− 1)
=

4AB
|C|

∑

p≤x

1
p(p− 1)

∑

s,t∈F×p

∑

d|iEs,t (p)

g(d)

=
4AB
|C|

∑

p≤x

1
p(p− 1)

∑

d|p−1

g(d)#S̃d(p).

Let

G1(p) =
∑

d|p−1
d≤√p+1

g(d)
dψ(d)ϕ(d)

and G2(p) =
∑

d|p−1
d≤√p+1

|g(d)|.

By using these notations and employing Lemma2.1we have

The Main Term=
4AB
|C|

















∑

p≤x

G1(p) +O

















∑

p≤x

G2(p)
√

p

































=
4AB
|C|

(

S1 +O(S2)
)

.

3.2.1. Estimation ofS1. Let α ∈ R>0 be fixed. The Siegel-Walfisz Theorem implies

π(x; d, 1) =
li( x)
ϕ(d)

+O

(

x

(log x)C

)

for anyd ≤ (log x)α and anyC > 0. Then, by the Brun-Titchmarsh inequality (Lemma2.8(i)), the fact that
ψ(d) ≥ d, and (1.2), we have

S1 =
∑

d≤(log x)α

g(d)π(x; d, 1)
dψ(d)ϕ(d)

+
∑

(log x)α<d≤
√

x+1

g(d)π(x; d, 1)
dψ(d)ϕ(d)

= li( x)
∑

d≥1

g(d)
dψ(d)ϕ(d)2

+O

















x

(log x)C

∑

d≥1

|g(d)|
dψ(d)ϕ(d)

















+O



















x
log x

∑

d>(log x)α

|g(d)|
dψ(d)ϕ(d)2



















.
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Note that, for anyε > 0, we have
∑

d>y

|g(d)|
dψ(d)ϕ(d)

≪
∑

d>y

|g(d)|
d3− ε2

≪ 1

y2−β−ε .

Thus, forβ < 2,

c0( f ) :=
∑

d≥1

g(d)
dψ(d)ϕ(d)2

is a constant and

S1 = c0( f )li( x) +O

(

x

(log x)C′

)

,

whereC′ := C′(C, α, β, ε) is an appropriate positive constant. Sinceα is arbitrary, we can chooseα so that
C′ is any constant bigger than 1. So

S1 = c0( f )li( x) +O

(

x
(log x)c

)

, (3.2)

wherec can be chosen as any number bigger than 1.

3.2.2. Estimation ofS2. We first employ the Brun-Titchmarsh inequality (Lemma2.8 (i)) and (1.2) to
deduce

∑

p≤x

G2(p) =
∑

d≤
√

x+1

|g(d)|π(x; d, 1)≪














x1+ β2 (log x)γ−1 log logx if β , 0

x1+ β2 (log x)γ log logx if β = 0
(3.3)

By partial summation and (3.3), we have

S2 =
∑

p≤x

G2(p)
√

p
≪ x

1+β
2 (log x)γ log logx. (3.4)

In conclusion, sinceβ < 1

The Main Term=
4AB
|C|

(

c0( f )li( x) +O

(

x
(log x)c

))

, (3.5)

wherec can be taken as any number bigger than 1.

3.3. Error Term 1. Recall the expression (3.1) for Error Term 1. We have

Error Term 1≪ 1
|C|

∑

p≤x

∑

s,t∈Fp
st=0

| f (iEs,t (p))|
p

(

AB
p
+ A+ B

)

≪
∑

p≤x

1

p2

∑

s,t∈Fp
st=0

∑

d|p−1
Es,t (Fp)[d]�(Z/dZ)2

|g(d)| +
(

1
A
+

1
B

)

∑

p≤x

1
p

∑

s,t∈Fp
st=0

∑

d|p−1
Es,t (Fp)[d]�(Z/dZ)2

|g(d)|.

An application of part (iv) of Lemma2.3 in the latter sum yields

Error Term 1≪
∑

p≤x

1
p

∑

d|p−1
d≤√p+1

|g(d)| +
(

1
A
+

1
B

)

x
log x

. (3.6)

By employing Lemma2.8 (iii) and (iv) and usual estimates, the first of these summations is bounded as
follows.

∑

p≤x

1
p

∑

d|p−1
d≤√p+1

|g(d)| =
∑

d≤
√

x+1

|g(d)|
∑

p≤x
p≡1 modd

1
p
≪ (log logx)(log x)

∑

d≤
√

x+1

|g(d)|
d

. (3.7)

From applying part (v) of Lemma2.8in (3.7) we have

Error Term 1≪ x
β
2 (log x)γ+2(log logx) +

(

1
A
+

1
B

)

x
log x

. (3.8)
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3.4. Error Term 2. We summarize the main result of this section in the followinglemma, which can be
considered as a generalization and an improvement of Lemma 6of [6].

Lemma 3.1. Let r ∈ N, 0 ≤ β < 3/2, γ ∈ R≥0, and g: N→ C be a function such that
∑

d≤x

|g(d)| ≪ x1+β(log x)γ.

Then there are positive constants c1 and c2 such that if A, B > exp(c1(log x)1/2) we have

2
|C|

∑

p≤x

∑

d|p−1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
p− 1





























































∑

|a|≤A,|b|≤B:
∃1≤u<p

a≡su4 mod p
b≡tu6 mod p

1− 2AB
p





























































≪ x
β−1

2 (log x)γ+1 log logx+ (log x)γ log logx+

(

1
A
+

1
B

) (

x
log x

+ x
1+β

2 (log x)γ log logx

)

+ xexp

(

−c2
(log x)1/2

log logx

)

+

(

1

A1/r
+

1

B1/r

)

x
1+β

2 +
r+1
4r2 (log x)γ+1 log logx

+
1
√

AB

(

x
3
2 (log x)2 + x1+ β2 (log x)γ+3(log logx)

5
4 + x

5+2β
4 (log x)γ+3 log logx

)

.

Proof. Throughout,χ, with or without subscript, will denote a character modulop. As usual,χ0 will be the
principal character modulop. Let p be a fixed prime, and lets, t ∈ F×p be fixed. By [6, Equation (12)], we
have

∑

|a|≤A,|b|≤B:
∃1≤u<p

a≡su4 mod p
b≡tu6 mod p

1 =
1

2(p− 1)

∑

χ1,χ2

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2),

where

A(χ) :=
∑

|a|≤A

χ(a) and B(χ) :=
∑

|b|≤B

χ(b).

We use the identity

1
2(p− 1)

∑

χ1,χ2

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

=
1

2(p− 1)
χ0(s)χ0(t)A(χ0)B(χ0) +

1
2(p− 1)

∑

χ0,χ2

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

+
1

2(p− 1)

∑

χ1,χ0

χ4
1=χ0

χ1(s)χ0(t)A(χ1)B(χ0) +
1

2(p− 1)

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

and note that

1
2(p− 1)

χ0(s)χ0(t)A(χ0)B(χ0) =
1

2(p− 1)

∑

|a|≤A

χ0(a)
∑

|b|≤B

χ0(b) =
2AB

p
+O

(

AB

p2
+

A+ B
p

)

.
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Therefore,

2
|C|

∑

p≤x

∑

d|p−1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
p− 1





























































∑

|a|≤A,|b|≤B:
∃1≤u<p

a≡su4 mod p
b≡tu6 mod p

1− 2AB
p





























































=
2
|C|

∑

p≤x

∑

d|p−1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
p− 1

(

O

(

AB

p2
+

A+ B
p

)

+
1

2(p− 1)

∑

χ2,χ0

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

+
1

2(p− 1)

∑

χ1,χ0

χ4
1=χ0

χ1(s)χ0(t)A(χ1)B(χ0) +
1

2(p− 1)

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

)

=: Σ1 + Σ2 + Σ3 + Σ4.

We will evaluate each summation separately.

3.4.1. Estimation ofΣ1. We have

Σ1 :=
2
|C|

∑

p≤x

∑

d|p−1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
p− 1

O

(

AB

p2
+

A+ B
p

)

≪ 1
|C|

∑

p≤x

(

AB

p3
+

A+ B

p2

)

∑

d|p−1

|g(d)|
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1

≪ AB
|C|

∑

p≤x

1
p3

∑

d|p−1
d≤√p+1

|g(d)|
(

p(p− 1)
dψ(d)ϕ(d)

+O(p3/2)

)

+

(

A+ B
|C|

)

∑

p≤x

1
p2

∑

d|p−1
d≤√p+1

|g(d)|
(

p(p− 1)
dψ(d)ϕ(d)

+O(p3/2)

)

.

We denote the first summation byΣ1,1 and the second byΣ1,2. By partial summation and (3.3), we have

Σ1,1 ≪ x
β−1

2 (log x)γ+1 log logx+ (log x)γ log logx (3.9)

asβ < 3/2.
By Equations (3.2) and (3.4), we have

Σ1,2 ≪
(

1
A
+

1
B

)

































∑

p≤x

∑

d|p−1
d≤√p+1

|g(d)|
dψ(d)ϕ(d)

+
∑

p≤x

1

p1/2

∑

d|p−1
d≤√p+1

|g(d)|

































≪
(

1
A
+

1
B

) (

x
log x

+ x
1+β

2 (log x)γ log logx

)

. (3.10)

Therefore,Σ1 is bounded by the error terms in the lemma.
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3.4.2. Estimations ofΣ2 andΣ3. ForΣ2, we have

Σ2 :=
1
|C|

∑

p≤x

∑

d|p−1
d≤√p+1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1

(p− 1)2

∑

χ2,χ0

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

≪ 1
|C|

∑

p≤x

∑

d|p−1
d≤√p+1

|g(d)|
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
p2

∑

χ2,χ0

χ6
2=χ0

|B(χ2)|
∑

−A≤a≤A
p∤a

1

≪ A
|C|

∑

p≤x

1
p2

∑

d|p−1
d≤√p+1

|g(d)|
∑

χ2,χ0

χ6
2=χ0

|B(χ2)|
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1.

By Lemma2.1, we have

Σ2 ≪
1
B

∑

p≤x

1
p2

∑

d|p−1
d≤√p+1

|g(d)|
∑

χ2,χ0

χ6
2=χ0

|B(χ2)|
(

p(p− 1)
dψ(d)ϕ(d)

+O
(

p3/2
)

)

≪ 1
B

∑

p≤x

∑

d|p−1
d≤√p+1

|g(d)|
dψ(d)ϕ(d)

∑

χ2,χ0

χ6
2=χ0

|B(χ2)| + 1
B

∑

p≤x

1

p1/2

∑

d|p−1
d≤√p+1

|g(d)|
∑

χ2,χ0

χ6
2=χ0

|B(χ2)|

=: Σ2,1 + Σ2.2.

Now,

Σ2,1 =
1
B

∑

d≤
√

x+1

|g(d)|
dψ(d)ϕ(d)

∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

|B(χ2)|. (3.11)

Let k = [2 log x/ log B] + 1. By Hölder’s inequality, we have

∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

|B(χ2)| ≤

































∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

1

































1− 1
2k

































∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

∣

∣

∣

∣

∣

∣

∣

∑

b≤B

χ2(b)

∣

∣

∣

∣

∣

∣

∣

2k

































1
2k

≪ (π(x; d, 1))1−
1
2k





















∑

p≤x

∑

χ2,χ0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τk,B(b)χ2(b)

∣

∣

∣

∣

∣

∣

∣

∣

2


















1
2k

, (3.12)

whereτk,B(n) := #
{

(a1, a2, . . . , ak) ∈ [1, B]k ∩ Nk : n = a1a2 · · · ak

}

. By Lemma2.4, we have

∑

p≤x

∑

χ,χ0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τk,B(b)χ(b)

∣

∣

∣

∣

∣

∣

∣

∣

2

≪ (x2 + Bk)
∑

b≤Bk

τk,B(b)2. (3.13)

Supposek = 1. That is,B > x2. Then, we obtain

∑

p≤x

∑

χ2,χ0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τB
1 (b)χ2(b)

∣

∣

∣

∣

∣

∣

∣

∣

2

≪ B2.

Therefore from (3.12) we have

∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

|B(χ2)| ≪ B
x1/2

ϕ(d)1/2(log x)1/2
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after using Lemma2.8(i). Substituting this into (3.11), we obtain

Σ2,1 ≪
x1/2

(log x)1/2

∑

d≤x

|g(d)|
dψ(d)ϕ(d)3/2

≪ x1/2

(log x)1/2
,

asβ < 3/2 and the summation above was previously determined to be a constant.
Now supposek = [2 log x/ log B] + 1 > 1. ThenB ≤ x2 andx2 < Bk ≤ Bx2 ≤ x4. Then, by Lemma2.5

(i) and (ii), (3.12), (3.13), and the trivial bound forπ(x; d, 1), we have

∑

p≤x
p≡1 modd

∑

χ2,χ0

χ6
2=χ0

|B(χ2)| ≪
( x
d

)1− 1
2k

(

(x2 + Bk)Bk
(

Ψ(B, 9 logx)
)k
)

1
2k

≪ B
x

d3/4
x−

1
2k

(

Ψ(B, 9 logx)
)1/2

≪ B
x

d3/4
exp

(

−c2
(log x)1/2

log logx

)

, (3.14)

wherec2 > 0 if c1 is sufficiently large. Substituting (3.14) into (3.11), we obtain

Σ2,1 ≪ xexp

(

−c2
(log x)1/2

log logx

)

∑

d≤x

|g(d)|
d7/4ψ(d)ϕ(d)

≪ xexp

(

−c2
(log x)1/2

log logx

)

,

asβ < 3/2.
ForΣ2,2, by Lemma2.6(i), (1.2), and Lemma2.8(i), (ii), and (v), we have

Σ2,2 =
1
B

∑

p≤x

1

p1/2

∑

d|p−1
d≤√p+1

|g(d)|
∑

χ2,χ0

χ6
2=χ0

|B(χ2)(b)| ≪ 1
B

∑

d≤
√

x+1

|g(d)|
∑

p≤x
p≡1 modd

1

p1/2

∑

χ2,χ0

χ6
2=χ0

∣

∣

∣

∣

∣

∣

∣

∑

b≤B

χ2(b)

∣

∣

∣

∣

∣

∣

∣

≪ 1

B
1
r

∑

d≤
√

x+1

|g(d)|
∑

p≤x
p≡1 modd

p
−2r2+r+1

4r2 log p
∑

χ2,χ0

χ6
2=χ0

1≪ x
1
2+

r+1
4r2 log logx

B
1
r

∑

d≤
√

x+1

|g(d)|
d

≪ x
1+β

2 +
r+1
4r2 (log x)γ+1 log logx

B
1
r

.

The proof of the bound forΣ2 gives us the same bound forΣ3, mutatis mutandis.

3.4.3. Estimation ofΣ4. ForΣ4, we have

Σ4 =
2
|C|

∑

p≤x

∑

d|p−1
d≤√p+1

g(d)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1
2(p− 1)2

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

=
1
|C|

∑

d≤
√

x+1

g(d)
∑

p≤x
p≡1 modd

1

(p− 1)2

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

χ1(s)χ2(t)

=
1
|C|

∑

d≤
√

x+1

g(d)
∑

p≤x
p≡1 modd

1

(p− 1)2

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2),

where
Wp,d(χ1, χ2) :=

∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

χ1(s)χ2(t).
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Applying the Cauchy-Schwarz inequality twice, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4

≤













































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

∣

∣

∣Wp,d(χ1, χ2)
∣

∣

∣

2













































2 











































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|A(χ1)|4

























































































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|B(χ2)|4













































.

By Lemma2.7, we have
∑

χ1,χ0

∣

∣

∣

∣

∣

∣

∣

∑

a≤A

χ1(a)

∣

∣

∣

∣

∣

∣

∣

4

≪ A2p(log p)6.

Hence,

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|A(χ1)|4 =
∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

∣

∣

∣

∣

∣

∣

∣

∣

∑

|a|≤A

χ1(a)

∣

∣

∣

∣

∣

∣

∣

∣

4

≤ 16
∑

χ1,χ0

∣

∣

∣

∣

∣

∣

∣

∑

a≤A

χ1(a)

∣

∣

∣

∣

∣

∣

∣

4
∑

χ2,χ0

χ4
1χ

6
2=χ0

1

≪
∑

χ1,χ0

∣

∣

∣

∣

∣

∣

∣

∑

a≤A

χ1(a)

∣

∣

∣

∣

∣

∣

∣

4

≪ A2p(log p)6.

Similarly,
∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|B(χ2)|4 ≪ B2p(log p)6.

Also,
∑

χ1,χ2

∣

∣

∣Wp,d(χ1, χ2)
∣

∣

∣

2
=

∑

χ1,χ2

∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

χ1(s)χ2(t)
∑

1≤s′,t′<p
Es′ ,t′ (Fp)[d]�(Z/dZ)2

χ1(s′)χ2(t′)

=
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

∑

1≤s′,t′<p
Es′ ,t′ (Fp)[d]�(Z/dZ)2

∑

χ1

χ1(s)χ1(s′)
∑

χ2

χ2(t)χ2(t′)

= (p− 1)2
∑

1≤s,t<p
Es,t (Fp)[d]�(Z/dZ)2

1

≪ p4

dψ(d)ϕ(d)
+ p7/2 (3.15)

by Lemma2.1. Putting all this information together, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4

≪ (AB)2p10(log p)12

d2ψ(d)2ϕ(d)2
+

(AB)2p19/2(log p)12

dψ(d)ϕ(d)
+ (AB)2p9(log p)12.

Hence,

Σ4 ≪
1
|C|

∑

d≤
√

x+1

|g(d)|
∑

p≤x
p≡1 modd

√
AB(log p)3

(

p1/2

d1/2ψ(d)1/2ϕ(d)1/2
+

p3/8

d1/4ψ(d)1/4ϕ(d)1/4
+ p1/4

)

≪ 1
√

AB

(

x
3
2 (log x)2 + x1+ β2 (log x)γ+3(log logx)

5
4 + x

5+2β
4 (log x)γ+3 log logx

)

,
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asβ < 3/2. This completes the proof. �

3.5. Proof of Theorem 1.2.

Proof. By combining (3.5), (3.8), and Lemma3.1, we have

1
|C|

∑

Ea,b∈C

∑

p≤x

f (iEa,b(p)) =

















∑

d≥1

g(d)

dψ(d)ϕ(d)2

















li( x) + E,

where

E ≪ x
(log x)c +

(

1
A
+

1
B

) (

x
log x

+ x
1+β

2 (log x)γ+2
)

+

(

1

A1/r
+

1

B1/r

)

x
1+β

2 +
r+1
4r2 (log x)γ+1 log logx

+
1
√

AB

(

x
3
2 (log x)2 + x1+ β2 (log x)γ+3(log logx)5/4 + x

5+2β
4 (log x)γ+3 log logx

)

,

for givenc > 1 andA, B > exp
(

c1(log x)1/2
)

. Now we chooser large enough such that1+β
2 +

r+1
4r2 < 1. (Note

that we can do this ifβ < 1.) So we arrive at the following upper bound forE. We have

E≪ x
(log x)c

+ xexp
(

−c1

r
(log x)1/2

)

+
1
√

AB

(

x
3
2 (log x)2 + x

5+2β
4 (log x)γ+3 log logx

)

.

Now the result follows by choosingAB≥ x(log x)4+2c if β < 1/2 andAB≥ x1/2+β(log x)2γ+6+2c(log logx)2

if 1/2 ≤ β < 1. �

3.6. Proof of Corollary 1.5.

Proof. Parts (i) and (ii) hold, since the characteristic function of {1} can be written as
∑

d|n
µ(d)

and the divisor function can be written as
τ(n) =

∑

d|n
1.

Thus,g(d) = µ(d) andg(d) = 1 both satisfy (1.2) with β = 0 andγ = 1.
For (iii), let f (n) = 1/nk, wherek ∈ N. Then, writing

f (n) =
∑

d|n
g(d),

gives us that

|g(n)| =
∑

d|n

∣

∣

∣

∣

∣

µ

(n
d

)

f (d)
∣

∣

∣

∣

∣

≤
∑

d|n
1≪ τ(n).

Therefore, by Theorem1.2, we have

1
|C|

∑

E∈C

∑

p≤x

1

iE(p)k
= Ckli( x) +O

(

x
(log x)c

)

. (3.16)

whereCk is defined in the corollary. Letap(E) be defined by #Ep(Fp) = p + 1 − ap(E). Hasse’s Theorem
says that|ap(E)| ≤ 2

√
p. Note that

∑

E∈C

∑

p≤x

eE(p)k =
∑

E∈C

∑

p≤x

(

p+ 1− aE(p)
iE(p)

)k

=
∑

E∈C

∑

p≤x



















pk

iE(p)k
+

k
∑

j=1

(

k
j

)

pk− j(1− ap(E)) j

iE(p)k



















=
∑

E∈C

∑

p≤x

pk

iE(p)k
+Ok

















xk− 1
2

∑

E∈C

∑

p≤x

1

ip(E)k

















=
∑

E∈C

∑

p≤x

pk

iE(p)k
+Ok















|C|xk+ 1
2

log x















.
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For the first part in the above, by (3.16), we have

1
|C|

∑

E∈C

∑

p≤x

pk

iE(p)k
= Ckxkli( x) +O

(

xk+1

(log x)c

)

−Ckk
∫ x

2
tk−1li( t) dt +Ok

(∫ x

2

tk

(log t)c dt

)

= Ckxkli( x) −Ckk
∫ x

2
tk−1li( t) dt +O

(

xk+1

(log x)c

)

.

Then, the result holds since that there exists a constantC such that

li( xk+1) +C = xkli( x) − k
∫ x

2
tk−1li( t) dt.

�

4. A TECHNICAL LEMMA

Lemma 4.1. Let r ∈ N andε > 0 be fixed. Let g: N→ C be a function such that
∑

d≤x

|g(d)| ≪ x1+β(log x)γ,

where 0 ≤ β < 3/4 and γ ∈ R≥0. Then there are positive constants c1 and c3 such that if A, B >

exp(c1(log x)1/2) we have

4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)































































∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1− AB
pq































































≪ x(log x)γ−1(log logx) +

(

1
A
+

1
B

)

x2

(log x)2
+ x2 exp

(

−c3
(log x)1/2

log logx

)

+

(

1

A1/r
+

1

B1/r

)

x
3+β

2 +
r+1
2r2
+2ε(log x)γ log logx+

1
√

AB

(

x3(log x) + x
11+2β

4 (log x)2γ+3(log logx)2
)

,

where c3 is a positive constant.

Proof. Throughout, a prime′ superscript will denote that underlying object is related to the primeq. Note
that, for p, q prime,s, t ∈ F×p ands′, t′ ∈ F×q fixed, by orthogonality relations, we have

∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1 =
1
4

∑

1≤u<p

∑

1≤u′<q

∑

|a|≤A

∑

|b|≤B



















1
p− 1

∑

χ1 mod p

χ1(su4)χ1(a)





































1
p− 1

∑

χ2 mod p

χ2(tu6)χ2(b)



















×





















1
q− 1

∑

χ′1 modq

χ′1
(

s′(u′)4
)

χ′1(a)









































1
q− 1

∑

χ′2 modq

χ′2
(

t′(u′)6
)

χ2(b)





















=
1

4(p− 1)(q− 1)

∑

χ1,χ2 mod p
χ4

1χ
6
2=χ0

∑

χ′1,χ
′
2 modq

(χ′1)4(χ′2)6=χ′0

χ1(s)χ2(t)χ′1(s′)χ′2(t′)A(χ1χ
′
1)B(χ2χ

′
2),

where

A(χ) :=
∑

|a|≤A

χ(a) and B(χ) :=
∑

|b|≤B

χ(b).
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Thus,

∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1 =
16
∑

j=1

S j(p, q, s, t, s
′, t′),

whereS j corresponds to one of the cases arising from choices of each of the following conditions:



























χ1 = χ0, χ2 = χ0

χ1 = χ0, χ2 , χ0 : χ6
2 = χ0

χ1 , χ0, χ2 = χ0 : χ4
1 = χ0

χ1 , χ0, χ2 , χ0 : χ4
1χ

6
2 = χ0



























×











































χ′1 = χ
′
0, χ
′
2 = χ

′
0

χ′1 = χ
′
0, χ
′
2 , χ

′
0 :

(

χ′2
)6
= χ′0

χ′1 , χ
′
0, χ
′
2 = χ

′
0 :

(

χ′1
)4
= χ′0

χ′1 , χ
′
0, χ
′
2 , χ

′
0 :

(

χ′1
)4 (

χ′2
)6
= χ′0











































From these 16 cases, there are essentially five different cases to handle.
Case 1: all four of χ1, χ2, χ

′
1, χ
′
2 are principal.

Let this correspond toj = 1. Then, forp , q, we have

S1(p, q, s, t, s′, t′) =
AB
pq
+O

(

AB

p2q

)

+O

(

AB

pq2

)

+O

(

A+ B
pq

)

.

Thus, we have

4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)































































∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1− AB
pq































































=
4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)



















16
∑

j=2

S(p, q, s, t, s′, t′) +O

(

AB

p2q
+

AB

pq2
+

A+ B
pq

)



















.

The sums corresponding toj = 2, 3, . . . , 16 are dealt with in Cases 2, 3, 4, and 5. Here, we will bound the
sums corresponding to the error terms above. We have

4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
AB

p2q

≪





















∑

p≤x

1

p3

∑

s,t∈F×p

∑

d|iEs,t (p)

|g(d)|











































∑

q≤x

1

q2

∑

s′,t′∈F×q

∑

d|iEs′ ,t′ (q)

|g(d′)|























.

The first summation can be bounded as we boundΣ1,1 in Subsection3.4.1, and the second summation can
be bounded as we boundΣ1,2 in Subsection3.4.1. That is, by (3.9), (3.10), andβ < 3/4, we have

4
|C|

∑

p,q≤x

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′|iEs′ ,t′ (q)

g(d)g(d′)
AB

p2q
≪ x(log x)γ−1 log logx.
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The same bound holds for the term coming fromO(AB/pq2). For the last error term, by (3.10), we have

4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
A+ B

pq

≪
(

1
A
+

1
B

)





















∑

p≤x

1

p2

∑

s,t∈F×p

∑

d|iEs,t (p)

|g(d)|











































∑

q≤x

1

q2

∑

s′,t′∈F×q

∑

d|iEs′ ,t′ (q)

|g(d′)|























≪
(

1
A
+

1
B

)

x2

(log x)2
.

Case 2: Exactly two ofχ1, χ2, χ′1, χ′2 are principal. We have two subcases to consider.
Subcase 1: Exactly one ofχ1 or χ2 is principal and exactly one ofχ′1 or χ′2 is principal. We will bound

the summation whenχ1 = χ0 andχ′1 = χ
′
0. The bound for whenχ1 = χ0 andχ′2 = χ

′
0 is similar.

The estimation is analogous to estimations ofΣ2 andΣ3 in Subsection3.4.2. We note thatχ0χ
′
0 is the

principal character modulopqsincep , q. Hence,|A(χ0χ
′
0)| ≪ A. Thus,

4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
1

4(p− 1)(q− 1)

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

χ2(t)χ′2(t′)A(χ0χ
′
0)B(χ2χ

′
2)

≪ 1
B

∑

p,q≤x
p,q

1

p2q2

∑

d|p−1
d≤√p+1
d′|q−1

d≤√q+1

|g(d)| · |g(d′)|
∑

s,t∈F×p
Es,t (Fp)[d]�(Z/dZ)2

s′,t′∈F×p
Es′ ,t′ (Fq)[d′]�(Z/d′Z)2

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)|

≪ 1
B

∑

d≤
√

x+1

|g(d)|
∑

d′≤
√

x+1

|g(d′)|
∑

p≤x
p≡1 modd

1

p2

∑

q≤x
q≡1 modd′

1

q2

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)|

×
(

p(p− 1)
dψ(d)ϕ(d)

+O(p3/2)

) (

q(q− 1)
d′ψ(d′)ϕ(d′)

+O(q3/2)

)

(4.1)

= σ1 + σ2 + σ3 + σ4,

whereσ1 is the sum corresponding to the product of the main terms in (4.1), σ4 corresponds to the product
of error terms in (4.1), andσ2 andσ3 correspond to the mixed terms. We will evaluate each of these
summations separately. For the first summation we have

σ1 =
1
B

∑

d≤
√

x+1

|g(d)|
dψ(d)ϕ(d)

∑

d′≤
√

x+1

|g(d′)|
d′ψ(d′)ϕ(d′)

∑

p,q≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)|. (4.2)

Let k = [4 log x/ log B] + 1. By Hölder’s inequality, we have

∑

p,q≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)| ≤











































∑

p,q≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

1











































1− 1
2k











































∑

p,q≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

∣

∣

∣

∣

∣

∣

∣

∑

b≤B

χ2χ
′
2(b)

∣

∣

∣

∣

∣

∣

∣

2k











































1
2k

≪ (π(x; d, 1)π(x; d′ , 1))1−
1
2k





















∑

p,q≤x

∑

χ2,χ0,χ
′
2,χ

′
0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τk,B(b)χ2χ
′
2(b)

∣

∣

∣

∣

∣

∣

∣

∣

2


















1
2k

,

(4.3)
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whereτk,B(n) := #
{

(a1, a2, . . . , ak) ∈ [1, B]k ∩ Nk : n = a1a2 · · · ak

}

. By Lemma2.4, we have

∑

p,q≤x

∗
∑

χ,χ0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τk,B(b)χ(b)

∣

∣

∣

∣

∣

∣

∣

∣

2

≪ (x4 + Bk)
∑

b≤Bk

τk,B(b)2. (4.4)

Supposek = 1. That is,B > x4. Then, we obtain

∑

p,q≤x

∑

χ2,χ0
χ′2,χ

′
0

∣

∣

∣

∣

∣

∣

∣

∣

∑

b≤Bk

τ1,B(b)χ2χ
′
2(b)

∣

∣

∣

∣

∣

∣

∣

∣

2

≪ B2.

Therefore by employing Lemma2.8(i) in (4.3), we have

∑

p,q≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)| ≪ B

x

ϕ(d)1/2ϕ(d′)1/2(log x)
.

Substituting this into Equation (4.2), we obtain

σ1 ≪
x

log x

∑

d≤x

|g(d)|
dψ(d)ϕ(d)3/2

∑

d′≤x

|g(d′)|
d′ψ(d′)ϕ(d′)3/2

≪ x
log x

,

asβ < 3/4. The latter summations were previously determined to be constants.
Now supposek = [4 log x/ log B] + 1 > 1. ThenB ≤ x4 andx4 < Bk ≤ Bx4 ≤ x8. Then, by Lemma2.5

(i) and (iii), (4.3), (4.4), and the trivial bounds forπ(x; d, 1) andπ(x; d′, 1), we have

∑

p≤x
p≡1 modd
q≡1 modd′

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ
′
2)| ≪

(

x2

dd′

)1− 1
2k

(

(x4 + Bk)Bk(Ψ(B, 9 logx))k
)

1
2k

≪ B
x2

(dd′)3/4
x−

1
k (Ψ(B, 9 logx))1/2

≪ B
x2

(dd′)3/4
exp

(

−c3
(log x)1/2

log logx

)

, (4.5)

wherec3 > 0 if c1 is a suitable large constant. Substituting (4.5) into (4.2), we obtain

σ1 ≪ x2 exp

(

−c3
(log x)1/2

log logx

)

∑

d≤x

|g(d)|
d7/4ψ(d)ϕ(d)

∑

d′≤x

|g(d′)|
(d′)7/4ψ(d′)ϕ(d′)

≪ x2 exp

(

−c3
(log x)1/2

log logx

)

,

asβ < 3/4.
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By Lemma2.6(ii), for any r ∈ N andε > 0, we have that our second summationσ2 is bounded by

≪ 1
B

∑

d≤
√

x+1

|g(d)|
dψ(d)ϕ(d)

∑

d′≤
√

x+1

|g(d′)|
∑

p≤x
p≡1 modd

∑

q≤x
q≡1 modd′

1

q1/2

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

∣

∣

∣

∣

∣

∣

∣

∑

b≤B

χ2χ
′
2(b)

∣

∣

∣

∣

∣

∣

∣

≪r,ε
1
B

∑

d≤
√

x+1

|g(d)|
dψ(d)ϕ(d)

∑

d′≤
√

x+1

|g(d′)|
∑

p≤x
p≡1 modd

∑

q≤x
q≡1 modd′

1

q1/2

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

B1− 1
r (pq)

r+1
4r2
+ε

≪ x1+ r+1
4r2
+ε

B1/r log x

∑

d≤
√

x+1

|g(d)|
dψ(d)ϕ(d)2

∑

d′≤
√

x+1

|g(d′)|
∑

q≤x
q≡1 modd′

q
−2r2+r+1

4r2
+ε

≪ x
3
2+

r+1
2r2
+2ε(log logx)

B1/r(log x)2

∑

d′≤
√

x+1

|g(d′)|
d′

≪ 1

B1/r
x

3+β
2 +

r+1
2r2
+2ε(log x)γ−1 log logx.

In the above estimations we employed Lemma2.8(v) and the fact thatβ < 3/4.
We obtain a similar bound forσ3.
Finally, by Lemma2.6 (ii) and Lemma2.8 (v), for any r ∈ N and ε > 0, we have that our fourth

summationσ4 is bounded by

≪ 1
B

∑

d≤
√

x+1

|g(d)|
∑

d′≤
√

x+1

|g(d′)|
∑

p≤x
p≡1 modd

1

p1/2

∑

q≤x
q≡1 modd′

1

q1/2

∑

χ2,χ0, χ
′
2,χ

′
0

χ6
2=χ0, (χ′2)6=χ′0

∣

∣

∣

∣

∣

∣

∣

∑

b≤B

χ2χ
′
0(b)

∣

∣

∣

∣

∣

∣

∣

≪ 1

B1/r

∑

d≤
√

x+1

|g(d)|
∑

d′≤
√

x+1

|g(d′)|
∑

p≤x
p≡1 modd

∑

q≤x
q≡1 modd′

(pq)
−2r2+r+1

4r2
+ε

≪ x1+ r+1
2r2
+2ε(log logx)2

B1/r(log x)2

∑

d≤
√

x+1

|g(d)|
d

∑

d′≤
√

x+1

|g(d′)|
d′

≪ 1

B1/r
x1+β+ r+1

2r2
+2ε(log x)2γ(log logx)2.

Adding the above bounds forσ1, σ2, σ3, andσ4 concludes Subcase 1 of Case 2.
Subcase 2: Either bothχ1 andχ2 are principal or bothχ′1 andχ′2 are principal. Without loss of generality

we assume thatχ′1 = χ
′
0 andχ′2 = χ

′
0.

We have
4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
1

4(p− 1)(q− 1)

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1χ
′
0)B(χ2χ

′
0)

=
1
|C|

∑

d≤
√

x+1

g(d)
∑

d′≤
√

x+1

g(d′)
∑

p,q≤x
p,q

p≡1 modd
q≡1 modd′

1

(p− 1)2(q− 1)2

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1χ
′
0)B(χ2χ

′
0)Wp,q(χ1, χ2),

(4.6)

where
Wp,q(χ1, χ2) :=

∑

s,t∈F×p
Es,t (Fp)[d]�(Z/dZ)2

∑

s′,t′∈F×q
Es′ ,t′ (Fq)[d′]�(Z/d′Z)2

χ1(s)χ2(t).
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By applying the Cauchy-Schwarz inequality twice, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1χ
′
0)B(χ2χ

′
0)Wp,q(χ1, χ2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4

≤













































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|Wp,q(χ1, χ2)|2













































2 











































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|A(χ1χ
′
0)|4

























































































∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|B(χ2χ
′
0)|4













































.

From Lemma2.7we have
∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|A(χ1χ
′
0)|4 ≪ A2pq(log pq)6

and
∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|B(χ2χ
′
0)|4 ≪ B2pq(log pq)6.

We have
∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

|Wp,q(χ1, χ2)|2 ≤
∑

χ1,χ2

Wp,q(χ1, χ2)Wp,q(χ1, χ2)

=
∑

χ1,χ2

∑

s,t∈F×p
s′,t′∈F×q

Es,t (Fp)[d]�(Z/dZ)2

Es′ ,t′ (Fq)[d′]�(Z/d′Z)2

χ1(s)χ2(t)
∑

u,v∈F×p
u′,v′∈F×q

Eu,v(Fp)[d]�(Z/dZ)2

Eu′ ,v′ (Fq)[d′]�(Z/d′Z)2

χ1(u) χ2(v)

=
∑

s,t∈F×p
s′,t′∈F×q

Es,t (Fp)[d]�(Z/dZ)2

Es′ ,t′ (Fq)[d′]�(Z/d′Z)2

∑

u,v∈F×p
u′,v′∈F×q

Eu,v(Fp)[d]�(Z/dZ)2

Eu′ ,v′ (Fq)[d′]�(Z/d′Z)2

∑

χ1

χ1(s)χ1(u)
∑

χ2

χ2(t)χ2(v)

=
∑

s,t∈F×p
s′,t′,u′,v′∈F×q

Es,t (Fp)[d]�(Z/dZ)2

Es′ ,t′ (Fq)[d′]�(Z/d′Z)2

Eu′ ,v′ (Fq)[d′]�(Z/d′Z)2

(p− 1)(q− 1)≪ pq

(

p2

dψ(d)ϕ(d)
+ p3/2

) (

q4

(d′ψ(d′)ϕ(d′))2
+ q3

)

≪ p3q5

d(d′)2ψ(d)ψ(d′)2ϕ(d)ϕ(d′)2
+

p3q4

dψ(d)ϕ(d)
+

p5/2q5

(d′ψ(d′)ϕ(d′))2
+ p5/2q4,

which implies
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

χ1,χ0
χ2,χ0

χ4
1χ

6
2=χ0

A(χ1χ
′
0)B(χ2χ

′
0)Wp,q(χ1, χ2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪
√

AB(log pq)3
(

p2q3

(dψ(d)ϕ(d))1/2d′ψ(d′)ϕ(d′)
+

p2q5/2

(dψ(d)ϕ(d))1/2
+

p7/4q3

d′ψ(d′)ϕ(d′)
+ p7/4q5/2

)

.

(4.7)

In the above inequalities, we have used the facts that (a+b+c+d)2 ≪ a2+b2+c2+d2 and (a+b+c+d)1/4 ≪
a1/4 + b1/4 + c1/4 + d1/4, where the implied constants are absolute.
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Substituting the first term in (4.7) into the original summation in (4.6), we obtain

1
√

AB

∑

d≤
√

x+1

|g(d)|
d1/2ψ(d)1/2ϕ(d)1/2

∑

d′≤
√

x+1

|g(d′)|
d′ψ(d′)ϕ(d′)

∑

p,q≤x
p≡1 modd
q≡1 modd′

q(log pq)3

≪ 1
√

AB
x3(log x)

∑

d≤
√

x+1

|g(d)|
d1/2ψ(d)1/2ϕ(d)3/2

∑

d′≤
√

x+1

|g(d′)|
(d′)ψ(d′)ϕ(d′)2

≪ 1
√

AB
x3(log x), (4.8)

asβ < 3/4.
Similarly by substituting the second, third, and fourth terms in (4.7) into the original summation in (4.6),

we obtain

1
√

AB

(

x(5+β)/2(log x)γ+2(log logx) + x(11+2β)/4(log x)γ+2(log logx) + x(9+4β)/4(log x)2γ+3(log logx)2
)

.

(4.9)
Adding (4.8) to (4.9) concludes Subcase 2 of Case 2.

Case 3: Exactly three ofχ1, χ2, χ′1, andχ′2 are principal. In this case by following the method of Subcase
1 of Case 2 we can conclude that the sum in question is bounded by the same bound in Subcase 1 of Case 2.

Case 4: Exactly one ofχ1, χ2, χ
′
1, χ
′
2 is principal. In this case by following the method of Subcase2 of

Case 2 we can conclude that the sum in question is bounded by the same bound in Subcase 2 of Case 2.
Case 5: All four of χ1, χ2, χ

′
1, χ
′
2 are non-principal. In this case by following the method of Subcase 2 of

Case 2 we can conclude that the sum in question is bounded by the same bound in Subcase 2 of Case 2.
�

5. PROOF OF THEOREM1.7

Proof. We will evaluate the following summation:

1
|C|

∑

E∈C

















∑

p≤x

f (iE(p)) − c0( f )li( x)

















2

=
1
|C|

∑

E∈C





























∑

p,q≤x
p,q

f (iE(p)) f (iE(q)) +
∑

p≤x

f (iE(p))2 − 2c0( f )li( x)
∑

p≤x

f (iE(p)) + c0( f )2li( x)2





























.

(5.1)
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For the first summation in (5.1) we have

1
|C|

∑

E∈C

∑

p,q≤x
p,q

f (iE(p)) f (iE(q))

=
4
|C|

∑

p,q≤x
p,q

1
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

∑

d|iEs,t (p)
d′|iEs′ ,t′ (q)

g(d)g(d′)
∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1

+
1
|C|

∑

p,q≤x
p,q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q− 1)

∑

s,t∈Fp
st=0

s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1

+
1
|C|

∑

p,q≤x
p,q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q− 1)

∑

s,t∈F×p
s′,t′∈Fq

s′t′=0

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1

+
1
|C|

∑

p,q≤x
p,q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q− 1)

∑

s,t∈Fp
st=0

s′,t′∈Fq

s′t′=0

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

g(d)g(d′)
∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1

= S1 + S2 + S3 + S4. (5.2)

Let S be the corresponding bound in Lemma4.1to a functiong(n) satisfying
∑

n≤x

|g(n)| ≪ x1+β(log x)γ+1.

We have

S1 = O(S) +
4AB
|C|

∑

p,q≤x
p,q

1
p(p− 1)q(q− 1)

∑

s,t∈F×p
s′,t′∈F×q

f (iEs,t (p)) f (iEs′ ,t′ (q))

= O(S) +
4AB
|C|











































∑

p≤x

1
p(p− 1)

∑

s,t∈F×p

f (iEs,t (p))





















2

−
∑

p≤x

1
p2(p− 1)2





















∑

s,t∈F×p

f (iEs,t (p))





















2




















. (5.3)

From the calculation of the main term in Section3.2we have
∑

p≤x

1
p(p− 1)

∑

s,t∈F×p

f (iEs,t (p)) = c0( f )li( x) +O

(

x

(log x)c′

)

(5.4)

for anyc′ > 1. SinceiEs,t (p) ≤ √p+ 1 and f (n) ≪ nβ(logn)γ, we have

∑

p≤x

1

p2(p− 1)2





















∑

s,t∈F×p

f (iEs,t (p))





















2

≪ x1+β(log x)2γ−1. (5.5)

As β < 3/4, applying (5.3) and (5.4) in (5.5) yields

S1 = c0( f )2li( x)2 +O(S) +O

(

x2

(log x)2c′

)

(5.6)

for anyc′ > 1.
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We will next boundS2 (a similar argument will boundS3). We have

S2 ≪
1
|C|

∑

p,q≤x
p,q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q− 1)

∑

s,t∈Fp
st=0

s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

|g(d)| |g(d′)|
∑

|a|≤A,|b|≤B:
∃1≤u<p,1≤u′<q

a≡su4 mod p,a≡s′(u′)4 modq
b≡tu6 mod p,b≡t′(u′)6 modq

1

≪ 1
|C|

∑

p,q≤x
p,q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q− 1)

∑

s,t∈Fp
st=0

s′,t′∈F×q

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

|g(d)| |g(d′)|
∑

|a|≤A,|b|≤B:
∃1≤u′<q

a≡s′(u′)4 modq
b≡t′(u′)6 modq

1

≪





























∑

p≤x

1
p

∑

s,t∈Fp
st=0

∑

d|iEs,t (p)

|g(d)|



























































































1
|C|

∑

q≤x

∑

s′,t′∈F×q

|AutFq(Es′,t′)|
q− 1

∑

d′|iEs′ ,t′ (q)

|g(d′)|
∑

|a|≤A,|b|≤B:
∃1≤u′<q

a≡s′(u′)4 modq
b≡t′(u′)6 modq

1































































. (5.7)

By Lemma2.3(iv), the first term in the above product is bounded byx/ log x. The second term in the above
product can be bounded by

≪ 1
|C|































































∑

q≤x

1
q

∑

s′,t′∈F×q

∑

d′|iEs′ ,t′ (q)

|g(d′)|































































∑

|a|≤A,|b|≤B:
∃1≤u′<q

a≡s′(u′)4 mod ′q
b≡t′(u′)6 mod ′q

1− 2AB
q































































+
∑

q≤x

1
q

∑

s′,t′∈F×q

∑

d′|iEs′ ,t′ (q)

|g(d′)|2AB
q































































.

Following the computations in Section3.2we can conclude that

∑

q≤x

1
q

∑

s′,t′∈F×q

∑

d′|iEs′ ,t′ (q)

|g(d′)|2AB
q
≪ AB

x
log x

.

This together with Lemma3.1 imply that, under the assumptions of Theorem1.7, the second term of the
product in (5.7) is also bounded byx/ log x. Thus, we have

S2 ≪
x2

(log x)2
. (5.8)

For S4, we have

S4 ≪
1
|C|

∑

p,q≤x
p,q

1
pq

∑

s,t∈Fp
st=0

s′,t′∈Fq

s′t′=0

∑

d|iEs,t (p)
d′|iEs′ ,t′ (q)

|g(d)| · |g(d′)|
∑

|a|≤A,|b|≤B
ab≡0 modp
ab≡0 modq

1.

Note that

∑

|a|≤A,|b|≤B
ab≡0 modpq

1≪ AB
pq
+O

(

A+ B+
B
q
+

B
p
+

B
pq

)

≪ AB
pq
+O(A+ B).
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Thus,

S4 ≪
1
|C|

∑

p,q≤x
p,q

1
pq

∑

s,t∈Fp
st=0

s′,t′∈Fq

s′t′=0

∑

d|iEs,t (p)
d′ |iEs′ ,t′ (q)

|g(d)| · |g(d′)|
(

AB
pq
+ A+ B

)

. (5.9)

The summation in (5.9) corresponding toAB/pqcan be bounded by




























∑

d≤
√

x+1

|g(d)|
∑

p≤x
p≡1 modd

1
p





























2

≪ (log logx)2(log x)2





















∑

d≤
√

x+1

|g(d)|
d





















2

≪ xβ(log logx)2(log x)2γ+4.

By employing Lemma2.3(iv), the summation in (5.9) corresponding toA+ B can be bounded by

≪
(

1
A
+

1
B

)





























∑

p≤x

1
p

∑

s,t∈Fp
st=0

∑

d|iEs,t (p)

|g(d)|





























2

≪
(

1
A
+

1
B

)

x2

(log x)2
.

In conclusion we have

S4 ≪ xβ(log logx)2(log x)2γ+4 +

(

1
A
+

1
B

)

x2

(log x)2
. (5.10)

Thus, under the assumptions of Theorem1.7, by applying (5.6), (5.8), and (5.10) in (5.2), we have

1
|C|

∑

E∈C

∑

p,q≤x
p,q

f (iE(p)) f (iE(q)) = c0( f )2li( x)2 +O(S) +O

(

x2

(log x)2

)

. (5.11)

Next we bound
∑

p≤x f (iE(p))2. Let G : N→ C be defined by

f (n)2 =
∑

d|n
G(d).

Then, we have
∑

n≤x

|G(n)| ≤
∑

d≤x

| f (d)|2
∑

n≤x
d|n

1 ≤ x
∑

d≤x

| f (d)|2
d
≪ x1+2β(log x)2γ+1.

Thus, applying the proof of Theorem1.2 for G and f 2 yields

1
|C|

∑

E∈C

∑

p≤x

f (iE(p))2 ≪ x
log x

+

(

1
A
+

1
B

) (

x
log x

+ x
1+2β

2 (log x)2γ+3
)

+

(

1

A1/r
+

1

B1/r

)

x
1+2β

2 +
r+1
4r2 (log x)2γ+2 log logx

+
1
√

AB

(

x
3
2 (log x)2 + x1+β(log x)2γ+4(log logx)5/4 + x

5+4β
4 (log x)2γ+4 log logx

)

.

Therefore
1
|C|

∑

E∈C

∑

p≤x

f (iE(p))2 = O(S). (5.12)

Now by applying (5.11) and (5.12) to (5.1) we conclude that, under the assumptions of Theorem1.7, we
have

1
|C|

∑

E∈C

















∑

p≤x

f (iE(p)) − c0( f )li( x)

















2

= O(S) +O

(

x2

(log x)2

)

.

SinceS = O(x2/(log x)2) the result follows. �
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