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Abstract

A prime p is called a Wieferich prime in base a > 1, if (a, p) = 1 and ap−1 ≡ 1

(mod p2). An integer m > 1 is called a Wieferich number in base a > 1, if (a,m) = 1

and aϕ(m) ≡ 1 (mod m2), where ϕ is the Euler function. In 2007, Banks, Luca,

and Shparlinski proved that if the set of Wieferich primes in base 2 is finite, then

the set of Wieferich numbers in base 2 is also finite. Moreover, they found an upper

bound for the largest element of this set. Here we present a procedure in which the

largest element can be constructed in any base.

A prime p is called a Wieferich prime in base a > 1, if (a, p) = 1 and ap−1 ≡ 1

(mod p2). For a = 2, these primes were first considered by Arthur Wieferich in 1909

in relation with Fermat’s last theorem. In [5] Wieferich proved that if for a prime

exponent p the first case of Fermat’s last theorem is false, then p must satisfy the

congruence 2p−1 ≡ 1 (mod p2). According to [4], the only Wieferich primes in base

2 below 6× 1017 are 1903 and 3511. Information on the search for Wieferich primes

in various bases can be found in [4].

Let m, a > 1 be integers with (a,m) = 1. Then m is called a Wieferich number in

base a, if aϕ(m) ≡ 1 (mod m2), where ϕ is the Euler function. In [1], Agoh, Dilcher,

and Skula studied Wieferich numbers and developed a criterion that determines

Wieferich numbers (see Theorem 3). Also in [1, page 47], given the two known

Wieferich primes in base 2, all the known Wieferich numbers are constructed. There

are a total of 104 known Wieferich numbers in base 2.

1Research of the authors is partially supported by NSERC.



INTEGERS: 17 (2017) 2

It is expected that the set of Wieferich primes (and thus Wieferich numbers) in

any base to be infinite, although such primes (numbers) appear to be rare. In [2], by

employing the criterion for Wieferich numbers, Banks, Luca, and Shparlinski found

an upper bound for the number of Wieferich numbers in base 2, given that there

are finitely many Wieferich primes. More precisely, let W2 be the set of Wieferich

primes in base 2 and N2 be the set of Wieferich numbers in base 2. The following

is given in Theorem 9 of [2].

Theorem 1 (Banks-Luca-Shparlinski ). If W2 is a finite set, then N2 is also

finite. Moreover, let

M =
∏
p≤w0

(p− 1),

where w0 is the largest Wieferich prime in base 2. Then

maxN2 ≤ 2w0|W2|M,

where maxN2 := max{x; x ∈ N2}.

We note that by [3, p. 167, Theorem 5], we have M ≤ 4w0 . Thus,

maxN2 ≤ 2w0(|W2|+2).

Theorem 1 can be generalized to any base a.

In this note, given the set of known Wieferich primes in base a, we find an exact

expression for the maximum of the set of known Wieferich numbers in base a. In

order to describe our main result, we consider the following notation.

From now on p and ` denote primes. We denote the set of Wieferich primes and

Wieferich numbers in base a by Wa and Na, respectively. For a prime p and positive

integer n, we denote the largest power of p in n by νp(n). Let

q(a, p) =
ap−1 − 1

p

be the Fermat quotient. We set

q(a, p) =

{
q(a, p) if p 6= 2, or p = 2 and a ≡ 1 (mod 4),
(a+ 1)/2 if p = 2 and a ≡ 3 (mod 4).

For n ≥ 0 we define the sequence S
(n)
a by the following procedure. Let

S(0)
a =

{
Wa ∪ {2} if ν2(q(a, 2)) ≥ 1,
Wa otherwise.

For n ≥ 1 let

S(n)
a = {p; p - a and p|`− 1 for ` ∈ S(n−1)

a }.
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Lastly, we form

Sa =

∞⋃
n=0

S(n)
a .

For example

S2 = {3, 5, 7, 13, 1093, 3511}

and

S3 = {2, 5, 7, 11, 41, 83, 499, 55889, 1006003}.

Our main result is the following.

Theorem 2. If Wa is a finite set, then Na is also finite. Moreover, let

M̃ =
∏
p∈Sa

(p− 1).

Then

maxNa =
∏
`∈Sa

`α` ,

where

α` = ν`(M̃) + ν`(q(a, `)).

The main tool in the proof is a criterion for Wieferich numbers. The following is

Theorem 5 of [1].

Theorem 3 (Agoh-Dilcher-Skula). Let m = pα1
1 · · · p

αk

k and a be two relatively

prime integers, with m ≥ 3. Then m ∈ Na if and only if for every 1 ≤ i ≤ k, we

have

αi ≤ νpi(
k∏
j=1

(pj − 1)) + νpi(q(a, pi)).

Note that for m = 2, by the definition of a Wieferich number, we have that 2 is

a Wieferich number in base a > 1 if and only if a ≡ 1 (mod 4).

Before presenting the proof of Theorem 2 we need to establish the connection of

Wieferich numbers with the set Sa. Lemma 2 which is a consequence of Theorem

3 is for this purpose. We also need a lemma regarding the largest prime divisor of

a Wieferich number. The following is basically Lemma 2 of [2] which is written for

Wieferich numbers in a general base a (see also [1, Corollary 5.9]).

Lemma 1. Let m be a Wieferich number in base a. Let P (m) be the largest prime

divisor of m. Then P (m) ∈ S(0)
a .



INTEGERS: 17 (2017) 4

Proof. Let m = 2 be a Wieferich number in base a. Then P (m) = 2 is a Wieferich

prime in base a and thus P (m) ∈ S(0)
a . Now let m = pα1

1 · · · p
αk

k > 2 be a Wiefriech

number in base a. Observe that

P (m) -
k∏
j=1

(pj − 1).

Hence,

νP (m)(

k∏
i=1

(pi − 1)) = 0.

Therefore by Theorem 3 we have

νP (m)(q(a, P (m))) ≥ 1. (1)

Now if P (m) = 2 and a ≡ 1 (mod 4), or P (m) 6= 2, then (1) yields νP (m)(a
P (m)−1−

1) ≥ 2. Therefore P (m) ∈Wa = S
(0)
a . If P (m) = 2 and a ≡ 3 (mod 4), then by (1)

and the definition of S
(0)
a we have P (m) = 2 ∈ S(0)

a .

Lemma 2. Let m be a Wieferich number in base a. Then for every prime divisor

p of m we have p ∈ Sa.

Proof. First of all note that if m = 2 is a Wieferich number in base a, then it is also a

Wieferich prime. Thus 2 ∈ Sa. Now let p1 be a prime divisor of a Wieferich number

m > 2. If p1 ∈ S(0)
a , then p1 ∈ Sa. Otherwise, if p1 /∈ S(0)

a , we have νp1(q(a, p1)) = 0.

Hence, by the fact that νp1(m) > 0 and employing Theorem 3, we have

νp1(
∏
p|m

(p− 1)) > 0.

Therefore there exists a prime divisor of m like p2 such that p1 divides p2− 1. Now

we consider cases. If p2 ∈ S
(0)
a , then we have p1 ∈ S

(1)
a . Consequently we have

p1 ∈ Sa. If p2 /∈ S(0)
a , by a similar argument, there exists a prime divisor of m like

p3 such that p2|p3 − 1. If p3 ∈ S(0)
a , then p2 ∈ S(1)

a and p1 ∈ S(2)
a (Since p1|p2 − 1).

If p3 /∈ S(0)
a then we continue this process. However the process terminates with a

prime in S
(0)
a . This is true since p1 < p2 < · · · is an increasing sequence. Thus,

either at some point we hit a prime which is in S
(0)
a or we reach to the largest prime

divisor of m, which is, by Lemma 1, also in S
(0)
a . Thus, p1 ∈ S(j)

a ⊆ Sa, for some

integer j, and therefore p1 ∈ Sa.

Corollary 1. If m = pα1
1 · · · p

αk

k is a Wieferich number in base a then for every

1 ≤ i ≤ k we have

αi ≤ νpi(M̃) + νpi(q(a, pi)).



INTEGERS: 17 (2017) 5

Proof. If m = 2, then a ≡ 1 (mod 4) and ν2(q(a, 2)) ≥ 1. Thus the assertion is

true. For m ≥ 3 the result follows from Theorem 3 and Lemma 2.

We are ready to prove our main result.

Proof of Theorem 2. Let

m0 =
∏
`∈Sa

`ν`(M̃)+ν`(q(a,`)).

Let m =
∏
` `
α be a Wieferich number. Then by Lemma 2 we have ` ∈ Sa. Thus

by Corollary 1 we have m ≤ m0. Now let m0 =
∏
`∈Sa

`α` , where

α` = ν`(M̃) + ν`(q(a, `)) = ν`(
∏
`|m0

(`− 1)) + ν`(q(a, `)).

Thus from Theorem 3 we conclude that m0 is a Wieferich number. Since m0 is

greater than any other Wieferich numbers, then m0 is the largest Wieferich number.

By employing Theorem 2, we calculated the largest known Wieferich numbers

in different bases, using the known Wieferich primes given in [4]. We collected our

results for maxNa for bases a from 2 to 25 in Table 1.
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a Known Wieferich primes Largest known Wieferich numbers

2,
4,16

1093, 3511 36 × 5× 7× 132 × 1093× 3511

3 11, 1006003 215×52×7×11×41×83×499×55889×1006003

5 2, 20771, 40487, 53471161,
1645333507, 6692367337,
188748146801

255 × 324 × 76 × 113 × 13× 173 × 19× 232 ×
312 × 47 × 67 × 113 × 163 × 239 × 283 ×
653 × 761 × 1429 × 1523 × 4951 × 20771 ×
40487×91127×123397×148531×1974353×
15491591×30469139×53471161×278848639×
1645333507× 6692367337× 188748146801

6 66161, 534851, 3152573 56×73×11×17×19×23×29×41×47×59×
281×409×563×827×66161×534851×3152573

7 5, 491531 211 × 35 × 53 × 11× 13× 19× 199× 491531

8 3, 1093, 3511 37 × 5× 7× 132 × 1093× 3511

9 2, 11, 1006003 216×52×7×11×41×83×499×55889×1006003

10 3, 487, 56598313 312×7×11×13×23×31×127×487×599×
56598313

11 71 26 × 3× 5× 7× 71

12 2693, 123653 5× 7× 19× 271× 673× 1627× 2693× 123653

13 2, 863, 1747591 216 × 33 × 53 × 72 × 43× 431× 863× 4481×
1747591

14 29, 353, 7596952219 36 × 54 × 112 × 292 × 59× 353× 401× 991×
17839× 7596952219

15 29131, 119327070011 229×72×11×13×17×23×29×47×97×113×
137× 823× 971× 2246791× 119327070011

17 2, 3, 46021, 48947, 478225523351 230 × 39 × 58 × 73 × 11× 132 × 19× 232 × 29×
31× 59× 79× 101× 1381× 24473× 48947×
494699× 9564510467× 478225523351

18 5, 7, 37, 331, 33923, 1284043 54 × 74 × 11× 13× 17× 37× 43× 137× 331×
823×24232×8231×214007×33923×1284043

19 3, 7, 13, 43, 137, 63061489 226×38×74×132×17×43×53×73×107×
137× 857× 63061489

20 281, 46457, 9377747, 122959073 39 × 73 × 11 × 132 × 17 × 292 × 281 × 433 ×
1171× 1451× 2903× 5807× 25763× 46457×
132499× 669839× 122959073

21 2 2

22 13, 673, 1595813, 492366587,
9809862296159

321 × 53 × 73 × 133 × 19 × 23 × 29 ×
47 × 73 × 109 × 181 × 293 × 541 × 6732 ×
2539 × 2693 × 13757 × 198043 × 1188259 ×
1595813×61545823×246183293×492366587×
44999368331× 9809862296159

23 13, 2481757, 13703077, 15546404183,
2549536629329,

260 × 315 × 54 × 72 × 11 × 133 × 173 × 372 ×
432 × 612 × 113 × 137 × 149 × 173 × 347 ×
1097×1621×2753×5507×38149×206813×
380641×2481757×13703077×15546404183×
2549536629329

24 5, 25633 52 × 11× 89× 25633

25 2, 20771, 40487, 53471161,
1645333507, 6692367337,
188748146801

256 × 324 × 76 × 113 × 13× 173 × 19× 232 ×
312 × 47 × 67 × 113 × 163 × 239 × 283 ×
653 × 761 × 1429 × 1523 × 4951 × 20771 ×
40487×91127×123397×148531×1974353×
15491591×30469139×53471161×278848639×
1645333507× 6692367337× 188748146801

Table 1: The largest known Wieferich numbers in bases 2 ≤ a ≤ 25.


