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ABSTRACT. In this article we prove a general theorem which establishes the existence of limiting
distributions for a wide class of error terms from prime number theory. As a corollary to our main
theorem, we deduce previous results of Wintner (1935), Rubinstein and Sarnak (1994), and of Ng
(2004). In addition, we establish limiting distribution results for the error term in the prime number
theorem for an automorphic L-function, weighted sums of the Möbius function, weighted sums of
the Liouville function, the sum of the Möbius function in an arithmetic progression, and the error
term in Chebotarev’s density theorem.

1. INTRODUCTION

In recent years, limiting distributions have played a prominent role in many problems in analytic
number theory. Indeed it is convenient to study number theoretic questions from a probabilistic
point of view. Limiting distributions have been a useful tool in problems concerning summa-
tory functions [18], [35], prime number races [37], [9], [26], and the distribution of values of
L-functions [19], [16], [25]. In this article, we shall investigate the limiting distributions associ-
ated to some of the classical error terms that occur in prime number theory. In 1935, Wintner [41]
proved, assuming the Riemann hypothesis (RH), that the function

e−y/2
(
ψ(ey)− ey

)
(1.1)

possesses a limiting distribution, where ψ(x) =
∑

pm≤x log p. By his method, one may show that
on RH

ye−y/2
(
π(ey)− Li(ey)

)
(1.2)

possesses a limiting distribution, where π(x) = ]{p ≤ x | p is a prime} and Li(x) =
∫ x

2
dt

log t
. Over

the years, other researchers have investigated similar questions for related error terms. Let q > 2
and a1, . . . , ar be reduced residues modulo q. Define π(x; q, a) to be the number of primes less
than or equal to x which are congruent to amodulo q. In 1994, Rubinstein and Sarnak [37] proved,
assuming the generalized Riemann hypothesis for Dirichlet L-functions, that the vector-valued
function

ye−y/2
(
ϕ(q)π(ey; q, a1)− π(ey), . . . , ϕ(q)π(ey; q, ar)− π(ey)

)
(1.3)

possesses a limiting distribution. These distributions were employed to give a conditional solution
to an old problem known as the Shanks-Rényi prime number race game. In 2004, Ng [35] studied
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the sum of the Möbius function. This arithmetic function is defined by

µ(n) =

 1 if n = 1,
0 if n is not squarefree,
(−1)k if n is squarefree and n = p1 . . . pk,

and its summatory function is M(x) =
∑

n≤x µ(n). He showed that

e−y/2M(ey) (1.4)

possesses a limiting distribution assuming the Riemann hypothesis and the conjectural bound∑
0<|=(ρ)|≤T

|ζ ′(ρ)|−2 � T, (1.5)

where ζ(s) is the Riemann zeta function and ρ ranges through its non-trivial zeros ρ = 1
2

+ iγ.
The common element in the proofs of the existence of a limiting distribution of (1.1), (1.2), (1.3),
and (1.4) is an “explicit formula” for each of these functions. For instance, the truncated explicit
formula for ψ(x) is

ψ(x) = x−
∑
ζ(ρ)=0
|=(ρ)|≤X

xρ

ρ
+O

(
x log2(xX)

X
+ log x

)
,

valid for x ≥ 2 and X > 1 (see [7, Chapter 17]). On the Riemann hypothesis, it follows that

e−y/2
(
ψ(ey)− ey

)
= <

( ∑
ρ= 1

2
+iγ

0<γ≤X

−2eiyγ

ρ

)
+O

(
e
y
2 log2(eyX)

X
+ ye−

y
2

)
. (1.6)

Based on this formula Wintner deduced that (1.1) possesses a limiting distribution. In this article,
we shall prove a general limiting distribution theorem for functions φ(y), possessing an explicit for-
mula of a particular shape which is modelled on (1.6). Our theorem will include the above results
as special cases and we will provide some new examples of functions with limiting distributions.

We now recall the definition of a limiting distribution for a vector-valued function ~φ : [0,∞)→
R`, where ` ∈ N.

Definition 1.1. We say that a function ~φ : [0,∞) → R` has a limiting distribution µ on R` if µ is
a probability measure on R` and

lim
Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy =

∫
R`
fdµ

for all bounded continuous real functions f on R`.

We next describe the functions considered in this article. Let φ : [0,∞)→ R and let y0 be a non-
negative constant such that φ is square-integrable on [0, y0]. We shall assume there exists (λn)n∈N, a
non-decreasing sequence of positive numbers which tends to infinity, (rn)n∈N, a complex sequence,
and c a real constant such that for y ≥ y0

φ(y) = c+ <
( ∑
λn≤X

rne
iλny
)

+ E(y,X), (1.7)
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for any X ≥ X0 > 0 where E(y,X) satisfies

lim
Y→∞

1

Y

∫ Y

y0

|E(y, eY )|2dy = 0. (1.8)

There shall be various conditions imposed on the coefficients rn and the exponents λn.
Our approach in proving the limiting distribution of φ(y) is to show that φ(y) is a B2-almost

periodic function. We say that the real function φ(y) is a B2-almost periodic function if for any
ε > 0 there exists a real-valued trigonometric polynomial

PN(ε)(y) =

N(ε)∑
n=1

rn(ε)eiλn(ε)y

such that

lim sup
Y→∞

1

Y

∫ Y

0

|φ(y)− PN(ε)(y)|2dy < ε2.

Our main result is the following.

Theorem 1.2. Let φ : [0,∞)→ R satisfy (1.7) and (1.8). Let α, β > 0, and γ ≥ 0. Assume either
of the following conditions:
(a) β > 1/2 and ∑

T<λn≤T+1

|rn| �
(log T )γ

T β
(1.9)

for T > 0.
(b) β ≤ min{1, α}, α2 + α/2 < β2 + β, and∑

S<λn≤T

|rn| �
(T − S)α(log T )γ

Sβ
(1.10)

for T > S > 0.
Then φ(y) is a B2-almost periodic function and therefore possesses a limiting distribution.

In Theorem 1.2, we prove that the conditions on φ imply that it is a B2-almost periodic function.
However, as it is known that B2-almost periodic functions possess limiting distributions (see [42,
Theorem 8.3] and Theorem 2.9 in this article), we also obtain that φ possesses a limiting distribu-
tion. It would be interesting to determine the weakest conditions on the coefficients (rn)n∈N and
the exponents (λn)n∈N which imply that φ is B2-almost periodic.

Note that in part (b), the conditions β ≤ α and α2 + α/2 < β2 + β are equivalent to

β ≤ α <

√
β2 + β +

1

16
− 1

4
. (1.11)

The next corollary provides simpler criteria for which φ possesses a limiting distribution.

Corollary 1.3. Let φ : [0,∞) → R satisfy (1.7) and (1.8). Assume either of the following condi-
tions:
(a) rn � λ−βn for β > 1

2
, and ∑

T<λn≤T+1

1� log T. (1.12)
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(b) 0 ≤ θ < 3−
√

3, (1.12), and ∑
λn≤T

λ2
n|rn|2 � T θ. (1.13)

Then φ(y) is a B2-almost periodic function and therefore possesses a limiting distribution.

Part (a) of this corollary is useful to apply when the rn’s satisfy the nice bound rn � λ−βn
where β > 1/2. On the other hand, if the rn’s oscillate significantly, then by part (b) of the above
corollary it suffices to have a modest bound for the second moment of λn|rn|. Indeed, there exist
sequences which satisfy the conditions of (b), but not (a). For instance, let rn = λ

−1/2
n , where

(λn)n∈N satisfies (1.12) and
∑

λn≤T 1� T θ−1 for 1 < θ < 3−
√

3.
The existence of limiting distributions for (1.1) and (1.3) may be deduced from part (a). If we

assume RH and the bound
|ζ ′(ρ)|−1 � |ρ|

1
2
−ε, (1.14)

then part (a) implies that (1.4) possesses a limiting distribution. It has been conjectured by Gonek
[15] that |ζ ′(ρ)|−1 � |ρ| 13−ε. However, there currently is not a lot of evidence in support of this
bound. On the other hand, if we assume RH and the bound (1.5), then part (b) implies that (1.4)
possesses a limiting distribution. Currently, there is significantly more evidence supporting the
truth of (1.5), including the work of [14], [19], [21], and [29].

More generally, we prove a version of Theorem 1.2 for vector-valued functions whose compo-
nents are of the type φ(y). For instance, let ~φ : [0,∞)→ R` be given by

~φ(y) =
(
φ1(y), . . . , φ`(y)

)
, (1.15)

where each φk(y) is of the shape (1.7). Then we have the following.

Theorem 1.4. Suppose that the conditions of Theorem 1.2 or Corollary 1.3 hold for each φk(y)

for 1 ≤ k ≤ `. Then ~φ(y) possesses a limiting distribution.

This theorem contains as special cases the results of Wintner, Rubinstein and Sarnak, and Ng. That
is, the functions in equations (1.1), (1.2), (1.3), and (1.4) possess limiting distributions.

We also provide several new examples of functions which have limiting distributions. These
functions are now described.

Let π be an irreducible unitary cuspidal automorphic representation of GLd(AQ), and let L(s, π)
be the automorphic L-function attached to π. We have

L(s, π) =
∏
p<∞

Lp(s, πp),

where

Lp(s, πp) =
d∏
j=1

(
1− απ(p, j)

ps

)−1

,

for <(s) > 1. The completed L-function Φ(s, π) is defined by

Φ(s, π) = L∞(s, π∞)L(s, π),

where the Archimedean local factor is

L∞(s, π∞) =
d∏
j=1

ΓR(s+ µπ(j))
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and ΓR(s) = π−s/2Γ(s/2) where Γ is the classical gamma function. For 1 ≤ j ≤ d, the complex
numbers απ(p, j) and µπ(j) are called the local parameters. It is known that Φ(s, π) is entire
(except in the case L(s, π) = ζ(s − iτ0) for τ0 ∈ R, which in this case Φ(s, π) has two simple
poles) and satisfies the functional equation

Φ(s, π) = ε(s, π)Φ(1− s, π̃),

with
ε(s, π) = επQ

1/2−s
π ,

where Qπ ≥ 1 is an integer called the conductor of π, επ is the root number satisfying |επ| = 1,
and π̃ is the representation contragredient to π. It is expected that all non-trivial zeros of L(s, π)
are located on the line <(s) = 1/2 and this is known as the generalized Riemann hypothesis for
L(s, π).

We now consider prime counting functions associated to L(s, π). Let

aπ(pk) =
d∑
j=1

απ(p, j)k, (1.16)

and define
ψ(x, π) =

∑
n≤x

Λ(n)aπ(n),

where Λ(n) is the classical von Mangoldt function. We have, for <(s) > 1,

−L
′(s, π)

L(s, π)
=
∞∑
n=1

Λ(n)aπ(n)

ns
.

The prime number theorem for L(s, π) (see [28, Theorem 2.3]) is the assertion that

ψ(x, π) = δ(x, π) +O(x exp(−c
√

log x))

for some positive constant c, where

δ(x, π) =

{
x1+iτ0

1+iτ0
if L(s, π) = ζ(s− iτ0),

0 otherwise.

From Corollary 1.3(a) we are able to deduce that a scaled version of the above error term possesses
a limiting distribution.

Corollary 1.5. Under the assumption of the generalized Riemann hypothesis for L(s, π) the func-
tion

E1(y, π) = e−y/2 (ψ(ey, π)− δ(ey, π))

has a limiting distribution.

Note that Wintner’s theorem (1.1) is a special case of the above corollary. In addition, for a
modular newform f of weight k and levelN , we conclude, under the assumption of the generalized
Riemann hypothesis, that e−y/2ψ(ey, f) has a limiting distribution.

We now introduce several other functions that possess limiting distributions. These functions are
related to certain negative moments of the derivative of an L-function evaluated at its zeros. The
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first case to consider is the Riemann zeta function. Gonek [14] and Hejhal [19] studied J−1(T ) =∑
0<γ≤T |ζ ′(ρ)|−2 and Gonek conjectured that

J−1(T ) ∼ 3

π3
T.

Assuming the Riemann hypothesis and all zeros of ζ(s) are simple, Milinovich and Ng [29] proved
that J−1(T ) ≥ ( 3

2π3 − ε)T for every ε > 0 and T sufficiently large. In our work, we make the
weaker assumption

J−1(T )� T θ with 1 ≤ θ < 3−
√

3. (1.17)

Currently, assuming the Riemann hypothesis and the simplicity of zeros of ζ(s), no upper bounds
are known for J−1(T ). However, the weak Mertens conjecture, the assumption that∫ X

1

(M(x)

x

)2

dx� logX,

implies |ζ ′(ρ)|−1 � |ρ| and thus J−1(T )� T 3+ε (see [40, p. 377, eq. (14.29.4)]).
We also require a version of (1.17) for Dirichlet L-functions L(s, χ). We assume there exists a

positive θ such that∑
χ mod q

∑
0<|=(ρχ)|≤T
L(ρχ,χ)=0

|L′(ρχ, χ)|−2 �q T
θ where 1 ≤ θ < 3−

√
3. (1.18)

It seems plausible that such a bound holds and it is natural to conjecture there is a positive constant
Cq such that ∑

χ mod q

∑
0<|=(ρχ)|≤T
L(ρχ,χ)=0

|L′(ρχ, χ)|−2 ∼ CqT.

In fact, we can prove that this sum is greater than a positive constant times T , assuming that all
zeros of the L(s, χ) are simple and lie on the critical line. Finally, observe that (1.17) implies that
all zeros of ζ(s) are simple and (1.18) implies that all nonreal zeros of the L(s, χ) are simple. We
make use of these facts in our applications.

We shall introduce several other summatory functions. For α ∈ [0, 1] and x > 0, we set

Mα(x) =
∑
n≤x

µ(n)

nα
.

Over the years, there has been significant interest in these functions. For instance, Landau showed
in his Ph.D. thesis that M1(x) converges to 0. In 1897 Mertens conjectured that M0(x) = M(x)
is bounded in absolute value by

√
x. This conjecture implies the Riemann hypothesis. Many

researchers studied the size of M0(x). Finally, in 1985, Odlyzko and te Riele [36] showed that
Mertens’ conjecture is false. On the Riemann hypothesis, it is known that M(x) � x

1
2

+ε for
any ε > 0. Hence, by partial summation, it follows that Mα(x) converges to ζ(α)−1 for α > 1

2
.

Consequently, we observe that the behaviour of Mα(x) changes at α = 1/2 and thus define

E2(y, α) =

{
ey(−1/2+α)Mα(ey) if 0 ≤ α ≤ 1/2,
ey(−1/2+α)

(
Mα(ey)− 1

ζ(α)

)
if 1/2 < α ≤ 1.

(1.19)
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We now consider weighted sums of the Liouville function. The Liouville function is given by
λ(n) = (−1)Ω(n) where Ω(n) is the total number of prime factors of n. We set

Lα(x) =
∑
n≤x

λ(n)

nα
.

Pólya and Turán studied L0(x) = L(x) and L1(x), respectively. Early numerical calculations sug-
gested that the inequalities L0(x) ≤ 0 and L1(x) > 0 hold for all x ≥ 2. In 1958, Haselgrove [17]
showed that L0(x) and L1(x) change sign infinitely often. Tanaka [39] showed that the first value
of n for which L0(n) > 0 is 906,105,257. Borwein, Ferguson, and Mossinghoff [4] determined
that the smallest value of n for which L1(n) < 0 is 72,185,376,951,205. It would be interesting to
know how often Lα(x) is positive or negative. In order to study such questions we define the error
terms

E3(y, α) =


ey(−1/2+α)Lα(ey) if 0 ≤ α < 1/2,
ey(−1/2+α)

(
Lα(ey)− y

2ζ(1/2)

)
if α = 1/2,

ey(−1/2+α)
(
Lα(ey)− ζ(2α)

ζ(α)

)
if 1/2 < α ≤ 1.

(1.20)

In [35] it was mentioned that E3(y, 0) possesses a limiting distribution under the same hypotheses
for which e−y/2M(ey) possesses a limiting distribution. Recently, Humphries [22] studied these
functions in the range α ∈ [0, 1/2) and showed that, for these α, the Riemann hypothesis and
J−1(T )� T imply that E3(y, α) possesses a limiting distribution.

Our next example concerns the Möbius function in arithmetic progressions. For q ≥ 2 and
(a, q) = 1, let

M(x; q, a) =
∑
n≤x

n≡a (mod q)

µ(n).

This is a variant of M(x) with the extra condition n ≡ a (mod q) inserted. Sums like M(x; q, a)
reflect the behaviour of primes in arithmetic progressions. In fact, many theorems which can be
established for ∑

n≤x
n≡a (mod q)

Λ(n)− x

φ(q)

have corresponding analogues for M(x; q, a). For a fixed integer q ≥ 2, we define

E4(y; q, a) = e−y/2M(ey; q, a). (1.21)

The next corollary establishes the existence of limiting distributions for E2(y, α), E3(y, α), and
E4(y; q, a).

Corollary 1.6. Let α ∈ [0, 1], q ≥ 2, and (a, q) = 1.
(i) If RH is true and (1.17) holds, then E2(y, α) possesses a limiting distribution.
(ii) If RH is true and (1.17) holds, then E3(y, α) possesses a limiting distribution.
(iii) If the generalized Riemann hypothesis is true for all Dirichlet L-functions modulo q and (1.18)
holds, then E4(y; q, a) possesses a limiting distribution.

Part (i) improves and generalizes the main result of [35]. Similarly, part (ii) improves and
generalizes the limiting distribution result of [22]. In [35] and [22] the bound J−1(T ) � T is
employed, whereas we use the weaker bound (1.17). It it possible that parts (i) and (ii) may be
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extended to hold for all α ∈ R. In addition, assuming the same conditions as in part (iii), we can
show that for q ≥ 2 and (a, q) = 1 that e−y/2L(ey; q, a) possesses a limiting distribution where

L(x; q, a) =
∑
n≤x

n≡a (mod q)

λ(n).

Our final example of error terms which possess limiting distributions is related to number fields.
Let K/k be a normal extension of number fields with Galois group G = Gal(K/k). Denote byOk
and OK the corresponding rings of integers of k and K. We define several counting functions. Let

πk(x) =
∑
Np≤x

1

where Np denotes the norm of the prime ideal p ⊂ Ok and for a conjugacy class C of G

πC(x) =
∑
Np≤x
σp=C

1

where σp is the Frobenius conjugacy class associated to p. Associated to r distinct conjugacy
classes C1, . . . , Cr in G, we define

~E5(y) = ye−y/2
(
|G|
|C1|

πC1(e
y)− πk(ey), . . . ,

|G|
|Cr|

πCr(e
y)− πk(ey)

)
.

In order to study ~E5(y), we require information regarding the zeros of Artin L-functions associated
to the extension K/k. Let ρ be a representation of G in GLn(C) with character χ = tr(ρ). The
principal character χ0 is the character attached to the trivial representation ρ0 = 1. For each
character χ of G, we associate the Artin L-function L(s, χ,K/k). It is known that L(s, χ,K/k)
is a meromorphic function on the complex plane. Moreover, there is the following fundamental
conjecture.

Conjecture 1.7 (Artin’s Holomorphy Conjecture). If χ is non-trivial then L(s, χ,K/k) is entire.

Also it is conjectured that an analogue of the Riemann hypothesis holds for Artin L-functions.
For further information regarding Artin L-functions see [5, pp. 218–225] .

In his Ph.D. thesis [34], the second author showed that ~E5(y) possesses a limiting distribution.
This can be deduced as a corollary of Theorem 1.4.

Corollary 1.8. Under the assumptions of the generalized Riemann hypothesis and Artin’s holo-
morphy conjecture for L(s, χ,K/k), where χ ranges through the irreducible characters of G,
~E5(y) possesses a limiting distribution.

This result contains as special cases the fact that (1.2) and (1.3) possess limiting distributions.
The above corollaries are just a few applications of Theorems 1.2 and 1.4 and there are other

interesting examples. For instance, Fiorilli [10] applies our theorems in his work on highly biased
prime number races and also in his work [11] on prime number races associated to elliptic curves.

Our next theorem states that under an additional assumption on the exponent set (λn)n∈N the
Fourier transform of the limiting distribution of Theorem 1.4 can be explicitly calculated. In order
to explain our result we require some notation.
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For 1 ≤ k ≤ `, let the component function φk(x) of (1.15) be defined by

φk(x) = ck + <
( ∑
λk,n≤X

rk,ne
iλk,ny

)
+ Ek(y,X),

where ck ∈ R, (λk,n)n∈N ⊂ R+ is an increasing sequence, (rk,n)n∈N ⊂ C, and Ek(y,X) satisfies
(1.8). Note that the collection of (λk,n)n∈N for 1 ≤ k ≤ ` is a multiset. We now consider the set
∪`k=1∪∞n=1 {λk,n} and reorder its elements to construct the increasing sequence (λm)m∈N. Also, we
define

rk(λm) =

{
rk,n if λm = λk,n for some n ∈ N,
0 otherwise.

With this notation in hand, we now provide a formula for the Fourier transform of the limiting
distribution of ~φ(y).

Theorem 1.9. Assume that µ is the limiting distribution associated to ~φ(y) as given in Theorem
1.4. Suppose that the set {λm}m∈N is linearly independent over Q. Then the Fourier transform

µ̂(~ξ) =

∫
R`
e−i

P`
j=1 ξjtjdµ(t1, . . . , t`)

of µ at ~ξ = (ξ1, . . . , ξ`) ∈ R` exists and is equal to

µ̂(~ξ) = exp
(
− i
∑`

k=1ckξk
)
×
∞∏
m=1

J0

(∣∣∑`
k=1rk(λm)ξk

∣∣),
where J0(z) is the Bessel function

J0(z) =

∫ 1

0

e−iz cos(2πt)dt.

The above theorem is a useful tool in studying arithmetic applications of our limiting distribution
theorems. We now discuss an application. For q ≥ 2 and a1, . . . , ar, r distinct reduced residue
classes mod q, consider the set

Sq;a1,...,ar = {x > 0 |M(x; q, a1) > M(x; q, a2) > · · · > M(x; q, ar)}.

In analogy to the Shanks-Rényi prime number race, we ask whether this set contains infinitely
many natural numbers and if it possesses a density. In this situation it is convenient to consider
logarithmic density.

Definition 1.10. For P ⊆ [0,∞), set

δ(P ) = lim sup
X→∞

1

logX

∫
t∈P∩[2,X]

dt

t

and

δ(P ) = lim inf
X→∞

1

logX

∫
t∈P∩[2,X]

dt

t
.

If δ(P ) = δ(P ) = δ(P ), we say that the logarithmic density of P is δ(P ).
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In order to study Sq;a1,...,ar , we consider

~E6(y) = e−y/2
(
M(ey; q, a1), . . . ,M(ey; q, ar)

)
.

Theorem 1.4 implies ~E6(y) has a limiting distribution µq;a1,...,ar assuming the generalized Riemann
hypothesis for Dirichlet L-functions modulo q and (1.18). If it were known that µq;a1,...,ar is an
absolutely continuous measure, then it would follow that

δ(Sq;a1,...,ar) = µ({x ∈ Rr | x1 > x2 > · · · > xr}). (1.22)

In order to show that µq;a1,...,ar is absolutely continuous, we require further information on the
imaginary parts of zeros of Dirichlet L-functions. We now recall a folklore conjecture concerning
the diophantine nature of the imaginary parts.

Conjecture 1.11 (Linear Independence Conjecture). The multiset of the nonnegative imaginary
parts of the nontrivial zeros of Dirichlet L-functions corresponding to primitive characters is lin-
early independent over the rationals.

With this conjecture in hand, it follows from Formula (4.23) and Theorem 1.9 that

µ̂q;a1,...,ar(ξ1, . . . , ξr) =
∏

χ mod q

∏
γχ>0

J0

(
2
∣∣∑r

j=1 χ(aj)ξj
∣∣

ϕ(q)
∣∣ρχL′(ρχ, χ)

∣∣
)
. (1.23)

Following the arguments in [8, Lemma 2.1] and [22, Lemma 6.4] we can deduce from (1.23)
that µq;a1,...,ar possesses a density function and is absolutely continuous. Thus on the generalized
Riemann hypothesis, Conjecture 1.11, and (1.18) it follows from (1.22) that δ(Sq;a1,...,ar) exists.
We can also employ (1.23) to investigate symmetries of the density function of µq;a1,...,ar . The
proof of Proposition 3.1 of [37] yields the following.

Proposition 1.12. Assume the generalized Riemann hypothesis, (1.18), and the linear indepen-
dence conjecture. Then the density function of µq;a1,...,ar is symmetric in (t1, . . . , t`) if and only if
either r = 2 or r = 3 and there is ρ 6= 1 such that ρ3 ≡ 1, a2 ≡ a1ρ, and a3 ≡ a1ρ

2 (modulo q).

As a consequence of the symmetry of the density function of µq;a1,...,ar we obtain the next corol-
lary.

Corollary 1.13. Assume the conditions of Proposition 1.12. If either r = 2 or r = 3 and there is
ρ 6= 1 such that ρ3 ≡ 1, a2 ≡ a1ρ, and a3 ≡ a1ρ

2 (modulo q), then

δ
(
{x > 0 |M(x; q, a1) > M(x; q, a2) > · · · > M(x; q, ar)}

)
=

1

r!
.

In particular, if a1 and a2 are distinct residues modulo q,

δ
(
{x > 0 |M(x; q, a1) > M(x; q, a2)}

)
= δ
(
{x > 0 |M(x; q, a2) > M(x; q, a1)}

)
=

1

2
.

This shows that the race between the summatory functions of the Möbius function on two arith-
metic progressions is unbiased.

Our general limiting distribution theorems can be used in proposing and studying many new
arithmetic problems. For example, let

~E7(y) =
(
ye−y/2(π(ey)− Li(ey)), e−y/2M(ey)

)
.

10



Then Corollaries 1.8 and 1.6(i) imply that if the Riemann hypothesis and (1.17) hold, then ~E7(y)
possesses a limiting distribution. If in addition, the linear independence conjecture for the zeros of
ζ(s) is true, then {

x > 0

∣∣∣∣ log x√
x

(
π(x)− Li(x)

)
>
M(x)√

x

}
possesses a logarithmic density. It would be interesting to determine the value of this logarithmic
density. However, this requires further analysis of the constructed distribution.

As mentioned before, our strategy in the proof of our general limiting distribution theorem will
be to prove that φ(y) is a B2-almost periodic function. Since Besicovitch [1, Section 2] proved
that B2-almost periodic functions satisfy a Parseval type identity, we deduce the following result.

Theorem 1.14. Suppose that the function φ(y) of (1.7) satisfies the conditions of Theorem 1.2 or
Corollary 1.3. Then we have

lim
Y→∞

1

Y

∫ Y

0

φ(y)2dy = c2 + 1
2

∞∑
n=1

|rn|2. (1.24)

In fact, it is possible to show following an argument of Fiorilli [10, Lemmas 2.4, 2.5] that

lim
Y→∞

1

Y

∫ Y

0

φ(y)2dy =

∫
R
t2dµ(t)

where µ is the limiting distribution associated to φ. A similar argument would also establish that

lim
Y→∞

1

Y

∫ Y

0

φ(y)dy =

∫
R
tdµ(t) = c. (1.25)

Observe that (1.24) provides a formula for c2 + Var(µ), where Var(µ) is the variance of µ, and
(1.25) shows that the expected value of µ is IE(µ) = c.

As a corollary, we deduce Cramer’s result [6] and its analogues for the error term of an auto-
morphic L-function, e−y/2M(ey), and e−y/2L(ey).

Corollary 1.15. (i) Let L(s, π) be an automorphic L-function. If the generalized Riemann hypoth-
esis is true for L(s, π), then

lim
Y→∞

1

Y

∫ Y

0

(
ψ(ey, π)− δ(ey, π)

ey/2

)2

dy = 4 (ords=1/2L(s, π))2 +
∑
γ>0

L(1/2+iγ,π)=0

2m2
γ

1
4

+ γ2
,

where mγ denotes the multiplicity of the zero 1/2 + iγ.
(ii) If the Riemann hypothesis is true and (1.17) holds, then

lim
Y→∞

1

Y

∫ Y

0

(
M(ey)

ey/2

)2

dy =
∑
γ>0

ζ( 1
2

+iγ)=0

2

|ρζ ′(ρ)|2
.

(iii) If the Riemann hypothesis is true and (1.17) holds, then

lim
Y→∞

1

Y

∫ Y

0

(
L(ey)

ey/2

)2

dy =
1

ζ(1
2
)2

+
∑
γ>0

ζ( 1
2

+iγ)=0

2

∣∣∣∣ ζ(2ρ)

ρζ ′(ρ)

∣∣∣∣2.
11



Note that Theorem 1.15 (ii) improves Theorem 3 of [35] where the stronger condition J−1(T )�
T is assumed.

The rest of this article is organized as follows. In Section 2 we review background material on
Bp-almost periodic functions and show that almost periodic functions possess limiting distribu-
tions. In Section 3, we prove Theorem 1.2 and Corollary 1.3. In Section 4, we deduce Corollaries
1.5, 1.6, and 1.8. In Section 5, we prove Theorem 1.9. Finally, we mention some notation used
throughout this article. We write f(x) = O(g(x)) or f(x) � g(x) to mean there exists M > 0
such that |f(x)| ≤M |g(x)| for all sufficiently large x.

2. Bp-ALMOST PERIODIC FUNCTIONS AND LIMITING DISTRIBUTIONS

The main goal in this section is to provide the necessary background onBp-almost periodic func-
tions needed in the proof of Theorem 1.4. It has been known since the 1930’s that any Bp-almost
periodic function φ1 possess limiting distributions. Such a result is mentioned in [24, Theorems
25 and 27] and proven in [42, Theorem 8.3]. However, the authors were unable to find a refereed
publication from the 1930’s which proves this result. The earliest journal publication we are aware
of is [3], though it only proves the result for ` = 1. In order to keep our article self-contained, we
provide a proof in the general case of a vector-valued function.

We review some facts from the theory of almost periodic functions. Let Lploc([0,∞)) be the set
of locally p-integrable functions on [0,∞). For p ≥ 1 and φ ∈ Lploc([0,∞)), define

‖φ‖Bp =
(

lim sup
Y→∞

1

Y

∫ Y

0

|φ(y)|pdy
)1/p

.

Denote by T the class of all real-valued trigonometric polynomials

PN(y) =
N∑
n=1

rne
iλny (y ∈ R),

where rn ∈ C and λn ∈ R. The Bp-closure of S , denotedHBp(S ), is the set of functions φ ∈ R
that satisfy the following property:
For any ε > 0 there is a function fε(y) ∈ S such that

‖φ(y)− fε(y)‖Bp < ε.

Definition 2.1. Any φ ∈ ∪p≥1HBp(T ) is called an almost periodic function. If φ ∈ HBp(T ) we
say that φ is a Bp-almost periodic function.

For φ ∈ HBp(T ) and given ε > 0 there exists

PN(ε)(y) =

N(ε)∑
n=1

rn(ε)eiλn(ε)y (2.1)

in T such that
‖φ(y)− PN(ε)(y)‖Bp < ε.

It is an important fact of the theory of almost periodic functions that in (2.1), λn(ε) can be taken
only from a set Λ(φ) = {λn | n ∈ N} and the corresponding values for rn are given by

rn = lim
Y→∞

1

Y

∫ Y

0

φ(y)e−iλnydy

1In this section φ denotes a Lebesgue integrable function.
12



(see [3]).

Definition 2.2. A vector-valued function ~φ : [0,∞) → R`, ~φ = (φ1, . . . , φ`), is called almost
periodic, if there is a p ≥ 1 such that each component function φk (1 ≤ k ≤ `) belongs to
HBp(T ). Moreover ~φ is called Bp-almost periodic if each φk (1 ≤ k ≤ `) is Bp-almost periodic.

It is known that HBp(T ) ⊆ HBq(T ) if 1 ≤ q ≤ p (see [3, p. 476]). So a vector-valued function
is almost periodic if and only if each of its component functions is almost periodic.

The following lemma states a version of the Kronecker-Weyl equidistribution theorem.

Lemma 2.3. Let t1, . . . , tN be arbitrary real numbers. Suppose thatA is the topological closure of
{y(t1, . . . , tN) | y ∈ R} /ZN in the torus TN . Let g : RN → R be a continuous function of period
1 in each of its variables. Then we have

lim
Y→∞

1

Y

∫ Y

0

g(yt1, . . . , ytN)dy =

∫
A

g(a)dω

where ω is the normalized Haar measure on A.

Proof. This may be deduced from the Kronecker-Weyl theorem (see [20, pp. 1–16]), and is also a
special case of Ratner’s theorem on unipotent flows (see [33]). �

Next we prove that every vector-valued function whose components are real-valued trigonometric
polynomials has a limiting distribution.

Proposition 2.4. For 1 ≤ k ≤ `, let (λk,n)Nkn=1 be a real sequence and (rk,n)Nkn=1 be a complex
sequence. Set

Pk(y) =

Nk∑
n=1

rk,ne
iλk,ny (y ∈ R).

If Pk(y) ∈ R for all y ∈ R, then
~P (y) =

(
P1(y), . . . , P`(y)

)
has a limiting distribution.

Proof. We consider the set ∪`k=1 ∪
Nk
n=1 {λk,n} and write its elements in increasing order as the

sequence (λm)Nm=1. For 1 ≤ k ≤ `, we set

rk(λm) =
∑

1≤n≤Nk
λk,n=λm

rk,n.

Let f : R` → R be a bounded continuous function. Suppose that X : TN → R` and g : TN → R
are defined by

X(θ1, . . . , θN) =

( N∑
m=1

r1(λm)e2πiθm , . . . ,

N∑
m=1

r`(λm)e2πiθm

)
and g(θ1, . . . , θN) = f

(
X(θ1, . . . , θN)

)
. By applying Lemma 2.3 with t1 = λ1

2π
, . . . , tN = λN

2π
, we

have

lim
Y→∞

1

Y

∫ Y

0

g
(
yλ1

2π
, . . . , yλN

2π

)
dy =

∫
A

g(a)dω,

13



where A is the closure of
{
y
(
λ1

2π
, . . . , λN

2π

)
| y ∈ R

}
/ZN in TN and ω is the normalized Haar

measure on A. Define a probability measure µN on R` by µN(B) = ω
(
X−1(B) ∩ A

)
, where B is

any Borel set in R`. By the change of variable formula [2, Theorem 16.12],∫
A

g(a)dω =

∫
R`
fdµN (2.2)

and thus

lim
Y→∞

1

Y

∫ Y

0

f
(
~P (y)

)
dy =

∫
R`
fdµN ,

for all bounded continuous real-valued functions f on R`. Therefore, ~P (y) has a limiting distribu-
tion. �

Our next goal is to show that every almost periodic function possesses a limiting distribution.
This requires several concepts from probability.

Definition 2.5. Let (µn)n∈N be a sequence of finite measures on a measurable space X . We say
that µn converges weakly to µ if for every bounded real-valued continuous function f we have∫

X

fdµn →
∫
X

fdµ (2.3)

as n→∞.

In fact, it is well known that (2.3) only needs to be verified for Lipschitz functions.

Lemma 2.6 (Portmanteau). µn converges weakly to µ if and only if∫
X

fdµn →
∫
X

fdµ

for any bounded Lipschitz function f on X .

Proof. See [30, Theorem 3.5]. �

Next we define the tightness of a sequence of probability measures.

Definition 2.7. A sequence (µn)n∈N of probability measures on R` is tight if for any ε > 0 there
is Aε > 0 such that

∫
|x|≥Aε dµn < ε, for all n ∈ N.

The following lemma illustrates the importance of a tight sequence of measures.

Lemma 2.8 (Helly’s Selection Theorem). Let (µn)n∈N be a sequence of probability measures on
R`. Then (µn)n∈N is tight if and only if for every subsequence (µnj)j∈N there is a further subse-
quence (µnjk )k∈N and a probability measure µ such that µnjk converges weakly to µ.

Proof. See [2, Theorems 25.8 and 25.10]. �

We are ready to prove the main result of this section.

Theorem 2.9. Every almost periodic function possesses a limiting distribution.

Proof. Consider an almost periodic function ~φ : [0,∞)→ R`. For Y ≥ 1, let

νY (B) =
1

Y
meas

(
[0, Y ] ∩ (~φ)−1(B)

)
for any Borel set B in R`, where meas(·) is the Lebesgue measure on R.

14



Note that, by Definition 2.5, ~φ(y) has a limiting distribution if and only if there exists a prob-
ability measure µ such that the sequence (νY )Y ∈N converges weakly to µ. By Lemma 2.6 this is
equivalent to ∫

R`
fdνY →

∫
R`
fdµ,

as Y →∞, for any bounded Lipschitz function f : R` → R.
Now let ~φ(y) =

(
φ1(y), . . . φ`(y)

)
such that φk(y) belongs to HB1(T ) for 1 ≤ k ≤ `. (Recall

that HBp(T ) ⊆ HB1(T ) for any p ≥ 1.) Then for each component φk(y) and for M ∈ N, there
exists Nk(M) ∈ N and sequences (rk,n)Nkn=1 and (λk,n)Nkn=1 such that

lim sup
Y→∞

1

Y

∫ Y

0

∣∣∣φk(y)−
Nk(M)∑
n=1

rk,ne
iyλk,n

∣∣∣dy < 1

M
. (2.4)

By Proposition 2.4,

~PM(y) =

(N1(M)∑
n=1

r1,ne
iyλ1,n , . . . ,

N`(M)∑
n=1

r`,ne
iyλ`,n

)
(2.5)

has a limiting distribution µM , i.e.

lim
Y→∞

1

Y

∫ Y

0

f
(
~PM(y)

)
dy =

∫
R`
f(x)dµM(x) := µM(f),

for all bounded continuous functions f : R` → R. From now on for a probability measure ν on R`

and a function g, we shall make use of the notation

ν(g) =

∫
R`
g(x)dν(x).

Let f : R` → R be a bounded Lipschitz function which satisfies

|f(x)− f(y)| ≤ cf |x− y|
for all x, y ∈ R` where cf is the Lipschitz constant. Then we have

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ 1

Y

∫ Y

0

f
(
~PM(y)

)
dy +

cf
Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy (2.6)

and
1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≥ 1

Y

∫ Y

0

f
(
~PM(y)

)
dy − cf

Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy (2.7)

for any Y > 0 and M ∈ N. Moreover,

1

Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy ≤ ∑̀

k=1

1

Y

∫ Y

0

∣∣∣φk(y)−
Nk(M)∑
n=1

rk,ne
iyλk,n

∣∣∣dy.
If we apply the latter inequality in (2.6) and (2.7) and take lim sup and lim inf as Y →∞, respec-
tively, by employing (2.4) we obtain

µM(f)− `cf/M ≤ lim inf
Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ lim sup

Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ µM(f) + `cf/M.

(2.8)
15



These inequalities imply that L(f) := limY→∞
1
Y

∫ Y
0
f
(
~φ(y)

)
dy exists. Moreover, (2.8) implies

that
lim
Y→∞

νY (f) = lim
M→∞

µM(f) = L(f) (2.9)

exists for every bounded Lipschitz function f : R` → R.
We next show that (νY )Y ∈N is tight, i.e. for any ε > 0, there is Aε > 0 such that∫

|x|≥Aε
dνY < ε

for all Y ∈ N. Let ε > 0 be given. We choose a natural number M such that `/M < ε. By (2.4)
and (2.5), there exists a vector function ~PM(y) with trigonometric polynomials as its components
such that

|~φ(y)− ~PM(y)| < `/M < ε, (2.10)
where |.| denote the Euclidean norm in R`. Let

Aε = sup
y∈[0,∞]

|~PM(y)|+ 1.

Now by employing (2.10) we have∫
|x|≥Aε

dνY =
1

Y
meas

{
0 ≤ y ≤ Y, |~φ(y)| > Aε

}
≤ 1

Y

∫ Y

0

|~φ(y)− ~PM(y)|dy < ε.

Hence (νY )Y ∈N is tight, as we stated. Thus, by Lemma 2.8, there is a subsequence (νYj)j∈N of
(νY )Y ∈N and a probability measure µ on R` such that

L(f) = lim
j→∞

νYj(f) = µ(f).

This together with (2.9) shows that

lim
Y→∞

νY (f) = lim
M→∞

µM(f) = µ(f), (2.11)

for every bounded Lipschitz function f : R` → R and the proof is complete. �

3. PROOF OF THE MAIN THEOREM

The goal in this section is to prove Theorem 1.4. By Theorem 2.9, we know that ~φ(y) has a
limiting distribution if ~φ(y) is a B2-almost periodic function. Since ~φ(y) is a B2-almost periodic
function if and only if each of its component functions φk(y) is B2-almost periodic, Theorem 1.4
will follow as a consequence of Theorem 1.2.

The proof of Theorem 1.2 under the conditions given in (a) is based on an idea of Gallagher’s
[13], using the following lemma. The proof under the assumptions given in (b) follows an argument
first employed by Cramér [6] and later used by Ng [35].

For a proof of the following lemma see [12, Lemma 1].

Lemma 3.1 (Gallagher). Let (νn)n∈N be an arbitrary sequence of real numbers and (cn)n∈N ⊂ C.
Assume that f(x) =

∑∞
n=1 cne

2πiνnx is absolutely convergent. Let 0 < θ < 1. Then, for U > 0,∫ U

−U
|f(x)|2dx�θ U

2

∫ ∞
−∞

∣∣∣ ∑
t<νn≤t+θ/U

cn

∣∣∣2dt.
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Proof of Theorem 1.2. Let X > T > 1 and V ≥ 0. Assume either of the conditions of Theorem
1.2. We shall begin by showing that there exist δ ≥ 0 and η > 0 such that∫ V+1

V

∣∣∣ ∑
T<λn≤X

rne
iyλn
∣∣∣2dy � (log T )δ

T η
. (3.1)

First assume that Condition (a) in Theorem 1.2 holds. Then, by the change of variable y = V +2πt,
we have ∫ V+1

V

∣∣∣ ∑
T<λn≤X

rne
iyλn
∣∣∣2dy = 2π

∫ 1/2π

0

∣∣∣ ∑
T<λn≤X

rne
iλnV e2πiλnt

∣∣∣2dt
≤ 2π

∫ 1

−1

∣∣∣ ∑
T<λn≤X

rne
iλnV e2πiλnt

∣∣∣2dt.
Lemma 3.1 implies∫ 1

−1

∣∣∣ ∑
T<λn≤X

rne
iλnV e2πiλnt

∣∣∣2dy � ∫ ∞
−∞

∣∣∣ ∑
T<λn≤X
t<λn≤t+ 1

2

rne
iλnV e2πiλnt

∣∣∣2dt
�
∫ ∞
−∞

( ∑
T<λn≤X
t<λn≤t+1

|rn|
)2

dt.

In the last integral, t satisfies T − 1 ≤ t ≤ X . From (1.9) and β > 1/2, we have∫ ∞
−∞

( ∑
T<λn≤X
t<λn≤t+1

|rn|
)2

dt ≤
∫ X

T−1

( ∑
t<λn≤t+1

|rn|
)2

dt�
∫ X

T−1

(log t)2γ

t2β
dt� (log T )2γ

T 2β−1
.

So (3.1) holds for δ = 2γ and η = 2β − 1.
Next assume that (b) holds. Note that, by dyadic summations, (1.10) and α ≥ β imply∑

λn≤T

|rn| � Tα−β(log T )γ+1.

Thus, by partial summation, we conclude that if κ > α− β and ν > 0, then∑
λn>T

|rn|(log λn)ν

λκn
� (log T )γ+ν+1

T κ−α+β
. (3.2)

Since |z|2 = zz̄, we have∫ V+1

V

∣∣∣ ∑
T<λn≤X

rne
iyλn
∣∣∣2dy =

∑
T<λn≤X

∑
T<λm≤X

rnrm

∫ V+1

V

eiy(λn−λm)dy

�
∑

T<λn≤X

∑
T<λm≤X

|rnrm|min

(
1,

1

|λn − λm|

)
= Σ1 + Σ2,
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where Σ1 is the sum of those terms for which we have |λn−λm| < 1, and Σ2 is the sum of the rest
of the terms. For Σ1, by employing (1.10) and (3.2) we have

Σ1 ≤
∑

T<λn≤X

|rn|
∑

λn−1<λm<λn+1

|rm| �
∑
λn>T

|rn|(log λn)γ

λβn
� (log T )2γ+1

T 2β−α . (3.3)

Note that the last inequality is justified since (1.11) implies that β > α−β. To study Σ2, we define
for any T ≥ 1

ST (U) =
∑
λm>T
|U−λm|≥1

|rm|
|U − λm|

,

where U ≥ T . Then we can write

Σ2 =
∑

T<λn≤X

|rn|
∑

T<λm≤X
|λn−λm|≥1

|rm|
|λn − λm|

≤
∑

T<λn≤X

|rn|ST (λn).

We determine an upper bound for ST (U) as follows. Let 0 < c < 1 and T ≥ 1 be fixed. For any
number U ≥ T consider the set of numbers U c, U − U c, and U − 1. Either of the following cases
occurs

T ≤ U c, U c < T ≤ U − U c, U − U c < T ≤ U − 1, or U − 1 < T ≤ U.

Suppose that the first case happens, i.e. T ≤ U c. Then

ST (U) =

( ∑
T<λm≤Uc

+
∑

Uc<λm≤U−Uc
+

∑
U−Uc<λm≤U−1

+
∑

U+1≤λm≤U+Uc

+
∑

U+Uc<λm≤2U

+
∑

λm>2U

)
|rm|

|U − λm|
.

Denote these six sums by σ1, . . . , σ6. Then, by applying (1.10), we deduce

σ1 ≤
1

U − U c

∑
T<λm≤Uc

|rm| �
(U c − T )α(logU)γ

(U − U c)T β
� (logU)γ

U1−cα ,

σ2 ≤
1

U c

∑
Uc<λm≤U−Uc

|rm| �
1

U c

(U − 2U c)α(log(U − U c))γ

(U c)β
� (logU)γ

U c+cβ−α ,

σ3 ≤
∑

U−Uc<λm≤U−1

|rm| �
(U c)α(logU)γ

(U − U c)β
� (logU)γ

Uβ−cα ,

σ4 ≤
∑

U+1≤λm≤U+Uc

|rm| �
(U c)α(logU)γ

Uβ
� (logU)γ

Uβ−cα ,

and

σ5 ≤
1

U c

∑
U+Uc<λm≤2U

|rm| �
1

U c

Uα(logU)γ

Uβ
� (logU)γ

U c+β−α .

For σ6, we divide the interval of summation into subintervals (2kU, 2k+1U ] to get

σ6 ≤
∞∑
k=1

1

(2k − 1)U

∑
2kU<λm≤2k+1U

|rm| �

(
∞∑
k=1

kγ

2k(β+1−α)

)
(logU)γ

Uβ+1−α �
(logU)γ

Uβ+1−α ,
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which is justified since α < β + 1 by (1.11). We observe that σ6 � σ5 � σ2, σ4 � σ3, and
σ1 � σ3 since β ≤ 1. Thus we have

ST (U)� σ2 + σ3 �
(logU)γ

U c+cβ−α +
(logU)γ

Uβ−cα .

In the last inequality we choose c = α+β
α+β+1

and hence if T ≤ U c, then

ST (U)� (logU)γ

U ξ
,

where

ξ =
β2 − α2 + β

α + β + 1
.

By similar arguments, we find the same bound for ST (U) in the three other cases of (3). Condition
α2 + α/2 < β2 + β yields ξ > α− β. Hence (3.2) implies

Σ2 �
∑
λn>T

|rn|ST (λn)� (log T )2γ+1

T ξ−α+β
, (3.4)

where

ξ − α + β =
2(β2 − α2) + (2β − α)

α + β + 1
.

By (3.3) and (3.4), we have

Σ1 + Σ2 �
(log T )2γ+1

T ξ−α+β
,

since α, β > 0 implies that ξ−α+β < 2β−α. Thus (3.1) holds for δ = 2γ+1 and η = ξ−α+β.
Now we show that (3.1) together with (1.8) imply that φ(y) is a B2-almost periodic function. It

follows from (1.7) that for eY > T ≥ X0 and y ≥ y0,

φ(y)− c−<
( ∑
λn≤T

rne
iλny
)

= <
( ∑
T<λn≤eY

rne
iλny
)

+ E(y, eY ).

Then, by employing (3.1) and (1.8), we obtain

lim sup
Y→∞

1

Y

∫ Y

y0

∣∣∣φ(y)− c−<
( ∑
λn≤T

rne
iλny
)∣∣∣2dy

� lim sup
Y→∞

1

Y

∫ Y

y0

∣∣∣ ∑
T<λn≤eY

rne
iyλn
∣∣∣2dy + lim

Y→∞

1

Y

∫ Y

y0

|E(y, eY )|2dy

� lim sup
Y→∞

1

Y

bY−y0c∑
j=0

∫ y0+j+1

y0+j

∣∣∣ ∑
T<λn≤eY

rne
iyλn
∣∣∣2dy � (log T )δ

T η
.

This inequality together with

lim
Y→∞

1

Y

∫ y0

0

∣∣∣φ(y)− c−<
( ∑
λn≤T

rne
iλny
)∣∣∣2dy = 0

imply that φ(y) is B2-almost periodic. Hence, the theorem follows from Theorem 2.9. �

We next prove Corollary 1.3.
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Proof of Corollary 1.3. (a) Since rn � λ−βn then (1.12) implies that∑
T<λn≤T+1

|rn| �
log T

T β
.

Now Theorem 1.2(a) implies the result.
(b) By partial summation, using (1.13) and θ < 2, we have∑

λn≥S

|rn|2 = 2

∫ ∞
S

(∑
λn≤t

λ2
n|rn|2

)
dt

t3
+ lim

X→∞
X−2

( ∑
λn≤X

λ2
n|rn|2

)
− S−2

( ∑
λn≤S

λ2
n|rn|2

)
�
∫ ∞
S

tθ−3dt+ Sθ−2 � Sθ−2.

By employing this bound, (1.12), and Cauchy’s inequality, we have∑
S<λn≤T

|rn| �
(T − S)

1
2 (log T )

1
2

S1− θ
2

.

Now we choose α = 1/2, β = 1−θ/2, and γ = 1/2, and employ Theorem 1.2. If 1 ≤ θ < 3−
√

3
the conditions given in (b) in Theorem 1.2 are satisfied. Note that this also implies the result for
0 ≤ θ < 1 since in this case

∑
λn≤T λ

2
n|rn|2 � T θ ≤ T . �

4. APPLICATIONS OF THE MAIN THEOREM

In this section, by applying Theorem 1.4, we prove Corollaries 1.5, 1.6, and 1.8.

3.1. Proof of Corollary 1.5.

Error term of the prime number theorem for automorphic L-functions. Let π be an irreducible
unitary cuspidal automorphic representation of GLd(AQ) and let L(s, π) be the automorphic L-
function attached to π. We follow the notation in the introduction. For δ > 0 let

C(δ) = C \ {z ∈ C | |z + µπ(j) + 2k| ≤ δ, 1 ≤ j ≤ d, k ≥ 0}.
We need the following lemma.

Lemma 4.1. (i) Let σ ≤ −1/2. Then for all s = σ + it ∈ C(δ),

L′(s, π)

L(s, π)
� log |s|.

(ii) For any integer m ≥ 2, there is Tm with m ≤ Tm ≤ m+ 1 such that

L′(σ ± iTm, π)

L(σ ± iTm, π)
� log2 Tm

uniformly for −2 ≤ σ ≤ 2.
(iii) For T ≥ 2, the numberN(T, π) of the zeros of L(s, π) in the region 0 ≤ <(s) ≤ 1, |=(s)| ≤ T
satisfies

N(T + 1, π)−N(T, π)� log T

and
N(T, π)� T log T.
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(iv) There is a constant 0 ≤ θ < 1/2 such that for all 1 ≤ j ≤ d,

|απ(p, j)| ≤ pθ and |<(µπ(j))| ≤ θ. (4.1)

Proof. For (i) see [32, p. 177] for GL2 automorphic L-functions. The general case is similar. See
[27, Lemma 4.3(a)(d)] for (ii) and (iii). For (iv) see [38, p. 275]. Note that in (ii), and (iii) the
implied constants depend on π, and in (i) the implied constant depends on δ and π. �

We now establish an explicit formula for ψ(x, π).

Proposition 4.2. Let θ be the constant given in (4.1). For all x > 1 and T ≥ 2 we have

ψ(x, π)− δ(x, π) = Rπ −
∑

|=(ρ)|≤T

xρ

ρ
+O

(xθ+1 log2 x

T
+ xθ log x+

x log2 T

T log x
+
x log T

T

)
, (4.2)

where ρ runs over the nontrivial zeros of L(s, π) with |=(ρ)| ≤ T , and

Rπ =


−L

′(0, π)

L(0, π)
if L(0, π) 6= 0,

− log x− L′′(0, π)

2L′(0, π)
if L(0, π) = 0.

The implied constant in (4.2) depends on δ in Lemma 4.1 and π.

Proof. Recall that for <(s) > 1, we have

−L
′(s, π)

L(s, π)
=
∞∑
n=1

Λ(n)aπ(n)

ns
.

From (1.16) and Lemma 4.1(iv) we conclude that |aπ(n)| ≤ dnθ. Let c = 1 + 1/ log x, and Tm be
as in Lemma 4.1(ii). By Perron’s formula [40, p. 70, Lemma 3.19] we obtain

ψ(x, π) =
1

2πi

∫ c+iTm

c−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds+O

(xθ+1 log2 x

T
+ xθ log x

)
. (4.3)

Let U < −1/2 and δ > 0 be such that U ± it ∈ C(δ) for t ∈ [−Tm, Tm]. Consider the contour
which consists of the rectangle C with vertices c+ iTm, c− iTm, U + iTm, U − iTm. By the residue
theorem, we have

1

2πi

∫ c+iTm

c−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds = δ(x, π) +Rπ −

∑
U≤<(µ)≤θ
|=(µ)|≤T

xµ

µ
−

∑
0≤<(ρ)≤1
|=(ρ)|≤T

xρ

ρ

+
1

2πi

(∫ U−iTm

c−iTm
+

∫ U+iTm

U−iTm
+

∫ c+iTm

U+iTm

)(
− L′(s, π)

L(s, π)

) xs
s
ds, (4.4)

where the first and the second sums run over the trivial and the non-trivial zeros of L(s, π) inside
the rectangle C, respectively. If we follow the argument in [32, pp. 174–178] and employ Lemma
4.1(i) and (ii), we get the following estimates for the integrals on the right-hand side of (4.4). We
have

1

2πi

(∫ U−iTm

c−iTm
+

∫ c+iTm

U+iTm

)(
− L′(s, π)

L(s, π)

) xs
s
ds� x log2 Tm

Tm log x
,
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and

1

2πi

∫ U+iTm

U−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds� Tmx

U log |U + iTm|
|U |

.

Now we let U → −∞ through admissible values and note that (Tmx
U log |U + iTm|)/|U | → 0.

Moreover, Lemma 4.1(iv) implies

∑
−∞≤<(µ)≤θ
|=(µ)|≤T

xµ

µ
� xθ

1 +
∑

1≤j≤d
k>0

x−2k

|<(µπ(j))− 2k|

� xθ.

Inserting the above estimates in (4.4) together with (4.3) establishes (4.2) in the case T = Tm.
Now note that if we change Tm by an arbitrary T ∈ [m,m+ 1], then we have the same estimate as
in (4.2), since by Lemma 4.1(iii), we have∑

0≤<(ρ)≤1
Tm≤|=(ρ)|≤T

xρ

ρ
+

∑
0≤<(ρ)≤1

T≤|=(ρ)|≤Tm

xρ

ρ
� x log T

T
.

This completes the proof. �

We now show that, under the assumption of the generalized Riemann hypothesis,

E1(y, π) =
ψ(ey, π)− δ(ey, π)

ey/2

has a limiting distribution. By pairing the conjugate zeros ρ = 1/2 + iγ and ρ̄ = 1/2− iγ in (4.2),
for y > 0 and X ≥ 2, we get

E1(y, π) = −2ords=1/2L(s, π) + <
( ∑

0<γ≤X

−2eiγy

ρ

)
+ Eπ(y,X),

where ords=1/2L(s, π) is equal to the multiplicity of the zero of L(s, π) at s = 1/2 if L(1/2, π) = 0
and ords=1/2L(s, π) = 0 otherwise, and Eπ(y,X) satisfies

Eπ(y,X) = O

(
y2ey(1/2+θ)

X
+ yey(θ−1/2) +

ey/2 log2X

yX
+
ey/2 logX

X

)
.

Note that Condition (1.8) for y0 > 0 is satisfied for Eπ(ey, eY ). Setting rn = −2/ρn and λn =
=(ρn) where the non-trivial zeros of L(s, π) are labelled (ρn)n∈N, we obtain from Lemma 4.1(iii)∑

λn≤T

λ2
n|rn|2 =

∑
0<γ≤T

4γ2

|ρ|2
�

∑
0<γ≤T

1� T log T.

Hence, assuming the generalized Riemann hypothesis for L(s, π), Corollary 1.3(b) implies that
E1(y, π) has a limiting distribution.
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3.2. Proof of Corollary 1.6.

Before proceeding we require the following two lemmas. The first lemma derives an explicit
formula for sums of the shape

∑
n≤x ann

−α.

Lemma 4.3. Let (an)n∈N be a bounded sequence. Assume there exist complex functions F (w)

and G(w) such that
∑∞

n=1 ann
−w = F (w)

G(w)
for <(w) > 1. Let x > 1, α ∈ [0, 1], β ∈ R, c =

1− α + 1/ log x, b 6= α, and b < c+ α.
Assume the following three conditions hold:
(i) For any t > 0, within and on the box Bt with vertices c + α + it, b + it, b − it, c + α − it,
F (s) is either holomorphic or it has a simple pole of residue d0 at s0 ∈ (b, c + α), and G(s) is
holomorphic with simple zeros at ρ1, . . . , ρJ inside Bt and each different from s0. In the case F (s)
has a simple pole at s = s0, let d1 be the value of F (s)− d0/(s− s0) at s = s0.
(ii) There exists δ = δ(b) ∈ R− {0} such that

F (b+ it)

G(b+ it)
= O((|t|+ 1)δ).

(iii) There exists an increasing sequence of positive numbers (Tm)m∈N tending to infinity such that

F (σ ± iTm)

G(σ ± iTm)
= O(T βm),

uniformly on b ≤ σ ≤ c+ α.
Then for α ∈ [0, 1] and x > 1,∑
n≤x

an
nα

= Rα,s0(x) +
J∑
j=1
ρj∈Bt

F (ρj)x
ρj−α

(ρj − α)G′(ρj)
+O

(x1−α log x

Tm
+
xcT β−1

m

log x
+ xb−α(T δm + 1) + x−α

)
,

where

Rα,s0(x) =



0 if α, s0 6∈ (b, c+ α),
F (α)

G(α)
if α ∈ (b, c+ α), s0 6∈ (b, c+ α),

d0x
s0−α

(s0 − α)G(s0)
if α 6∈ (b, c+ α), s0 ∈ (b, c+ α),

d0x
s0−α

(s0 − α)G(s0)
+
F (α)

G(α)
if α, s0 ∈ (b, c+ α), α 6= s0,

d0 log x

G(s0)
+

d1

G(s0)
− d0G

′(s0)

G2(s0)
if α, s0 ∈ (b, c+ α), α = s0.

(4.5)

Proof. Applying Perron’s formula [40, p. 70, Lemma 3.19] with c = 1− α + 1/ log x gives∑
n≤x

an
nα

=
1

2πi

∫ c+iTm

c−iTm

F (s+ α)

G(s+ α)

xs

s
ds+O

(x1−α log x

Tm
+ x−α

)
. (4.6)

If we replace s by s− α in the integral, we obtain

1

2πi

∫ c+iTm

c−iTm

F (s+ α)

G(s+ α)

xs

s
ds =

1

2πi

∫ c+α+iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds.
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Cauchy’s residue theorem and (i) imply

1

2πi

∫ c+α+iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds = Rα,s0(x) +

J∑
j=1

ρj∈BTm

F (ρj)x
ρj−α

(ρj − α)G′(ρj)

+
1

2πi

(∫ b−iTm

c+α−iTm
+

∫ b+iTm

b−iTm
+

∫ c+α+iTm

b+iTm

)
F (s)

G(s)

xs−α

s− α
ds, (4.7)

where Rα,s0(x) equals the sum of the residues at s = s0 and s = α, and the sum appears from the
residues at the zeros of G(s). Taking into account the various cases for α and s0, a simple residue
calculation yields (4.5). From assumptions (ii) and (iii) we obtain

1

2πi

∫ b+iTm

b−iTm

F (s)

G(s)

xs−α

s− α
ds� xb−α(T δm + 1), (4.8)

1

2πi

∫ c+α+iTm

b+iTm

F (s)

G(s)

xs−α

s− α
ds� xcT β−1

m

log x
, (4.9)

and similarly

1

2πi

∫ b−iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds� xcT β−1

m

log x
. (4.10)

The result follows by combining (4.6), (4.7), (4.8), (4.9), and (4.10). �

In the previous lemma, a convenient sequence (Tm)m∈N of reals is chosen so that F (s)/G(s) is
not too large on the contour =(s) = Tm. Consequently, in the explicit formula for

∑
n≤x ann

−α,
the sum over ρj is constrained by the condition |=(ρj)| ≤ Tm. The next lemma allows us to replace
this condition by |=(ρj)| ≤ T for any T ≥ 1.

Lemma 4.4. Let (zn)n∈N ⊂ C and (λn)n∈N ⊂ R+ be sequences and let x, c1, and c2 be positive
reals. Let T, T ′ ∈ [1,∞) such that |T − T ′| ≤ 1. Assume that for t ≥ 1 we have∑

λn≤t

|zn|2 � tc1 (4.11)

and ∑
t<λn≤t+1

1� (log t)c2 . (4.12)

Then ∑
λn≤T ′

znx
1
2

+iλn

1
2

+ iλn
=
∑
λn≤T

znx
1
2

+iλn

1
2

+ iλn
+O

(
x

1
2T (c1−2)/2(log T )c2/2

)
.

Proof. We begin by assuming T − 1 ≤ T ′ ≤ T . By the Cauchy-Schwarz inequality∣∣∣∣ ∑
T ′<λn≤T

znx
1
2

+iλn

1
2

+ iλn

∣∣∣∣ ≤ x
1
2

( ∑
T ′<λn≤T

∣∣∣∣ zn
1
2

+ iλn

∣∣∣∣2)1/2( ∑
T ′<λn≤T

1

)1/2

� x
1
2T

c1−2
2 (log T )c2/2

(4.13)
by (4.11) and (4.12). In the case T < T ′ ≤ T + 1, we obtain the same bound as (4.13). �
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We now prove Corollary 1.6. In each part of this corollary, we shall apply Corollary 1.3(b) to
establish the existence of the limiting distribution.

(i) Weighted Sums of the Möbius Function. In this proof we assume the Riemann hypothesis and
assumption (1.17). We shall show thatE2(y, α), defined in (1.19), possesses a limiting distribution.
We start by establishing an explicit formula for

Mα(x) =
∑
n≤x

µ(n)

nα
.

We first consider the case α 6= 0. Let 0 < b < min(1/2, α) and 0 < ε < 1/2 − b. Under the
assumption of the Riemann hypothesis, there exists a sequence (Tm)m∈N, where Tm ∈ [m− 1,m],
such that

|ζ(σ + iTm)|−1 � T εm (4.14)

uniformly for −1 ≤ σ ≤ 2 (see [40, pp. 357–358]). Moreover, for any ε > 0, we have

|ζ(b+ it)|−1 � |t|−1/2+b+ε

for |t| ≥ 1 (see [31, Corollary 10.5 and Theorems 13.18 and 13.23]). By taking F (s) = 1,
G(s) = ζ(s), an = µ(n), β = ε, and δ = −1/2 + b+ ε in Lemma 4.3 we derive

Mα(x) =
1

ζ(α)
+
∑
|γ|≤Tm

xρ−α

(ρ− α)ζ ′(ρ)
+O

(
x1−α log x

Tm
+

x1−α

T 1−ε
m log x

+ xb−α
)
, (4.15)

where ρ ranges over the non-trivial zeros of ζ(s). Let T ≥ 1 and m ≥ 1 be the natural number
such that T ∈ [m − 1,m]. Label the non-trivial zeros of ζ(s) with positive imaginary part in
non-decreasing order by (ρn)n∈N. An application of Lemma 4.4 with λn = =(ρn), zn = ζ ′(ρn)−1,
c1 = θ, c2 = 1, β = 1/2, T , and T ′ = Tm implies that∑

|γ|≤Tm

xρ−α

(ρ− α)ζ ′(ρ)
=
∑
|γ|≤T

xρ−α

(ρ− α)ζ ′(ρ)
+O

(
x1/2−αT (θ−2)/2(log T )1/2

)
. (4.16)

Substituting (4.16) in (4.15), for α 6= 0, we have

Mα(x) =
1

ζ(α)
+
∑
|γ|≤T

xρ−α

(ρ− α)ζ ′(ρ)

+O

(
x1−α log x

T
+

x1−α

T 1−ε log x
+ x1/2−α (T θ−2 log T

)1/2
+ xb−α

)
, (4.17)

valid for x > 1 and T ≥ 1. If α = 0, we let 0 < b < 1/2. Then similarly we have

M0(x) =
∑
|γ|≤T

xρ

ρζ ′(ρ)
+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2

(
T θ−2 log T

)1/2
+ xb

)
. (4.18)

We now analyze E2(y, α) in the cases α ∈ (0, 1/2), α ∈ (1/2, 1], α = 0, and α = 1/2.
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For 0 < α < 1/2, by (4.17), for X ≥ 1 and y > 0, we have

E2(y, α) =
1

ey(1/2−α)ζ(α)
+ ey(−1/2+α)

∑
|γ|≤X

ey(ρ−α)

(ρ− α)ζ ′(ρ)

+O

(
yey/2

X
+

ey/2

yX1−ε +
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b)

)
.

Thus

E2(y, α) = <
( ∑

0<γ≤X

2eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eµ,α(y,X),

where

Eµ,α(y,X) = O

(
yey/2

X
+

ey/2

yX1−ε +
(
Xθ−2 logX

)1/2
+

1

ey(1/2−α)

)
.

Note that in this case the term ey(α−1/2) in Eµ,α(y,X) comes from the term ey(α−1/2)/ζ(α) in
E2(y, α), since we chose b < α.

For 1
2
< α ≤ 1, we recall that E2(y, α) = ey(−1/2+α)

(
Mα(ey) − 1/ζ(α)

)
. By (4.17) and by

pairing conjugate zeros, we obtain

E2(y, α) = <
( ∑

0<γ≤X

2eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eµ,α(y,X),

for X ≥ 1 and y > 0, where

Eµ,α(y,X) = O

(
yey/2

X
+

ey/2

yX1−ε +
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b)

)
. (4.19)

For α = 0, from (4.18) we have

E2(y, 0) = <
( ∑

0<γ≤X

2eiyγ

ρζ ′(ρ)

)
+ Eµ,0(y,X),

where Eµ,0(y,X) satisfies (4.19).
Finally, for α = 1/2, (4.17) implies

E2(y, 1/2) =
1

ζ(1
2
)

+ <
( ∑

0<γ≤X

2eiyγ

(ρ− 1/2)ζ ′(ρ)

)
+ Eµ,1/2(y,X),

where Eµ,1/2(y,X) is bounded as (4.19).
Note that Eµ,α(y, eY ) satisfies (1.8) for y0 > 0, for any α ∈ [0, 1]. Setting rn = 2/(ρn − α)ζ ′(ρ)

and λn = =(ρn), it follows from (1.17) that∑
λn≤T

λ2
n|rn|2 =

∑
0<γ≤T

4γ2

|(ρ− α)ζ ′(ρ)|2
� T θ.

Thus Corollary 1.3(b) implies that, under the assumptions of the Riemann hypothesis for ζ(s) and
(1.17), E2(y, α) has a limiting distribution.

(ii) Weighted Sums of the Liouville Function. In this part, we show that E3(y, α), defined by
(1.20), possesses a limiting distribution. We begin by establishing an explicit formula for Lα(x) =
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∑
n≤x λ(n)n−α. Assume the Riemann hypothesis for ζ(s) and (1.17). For α ∈ (0, 1] and x > 1,

let

Rα,s0(x) =

{
x1/2−α

(1−2α)ζ(1/2)
+ ζ(2α)

ζ(α)
if α 6= 1/2,

log x
2ζ(1/2)

+ γ0
ζ(1/2)

− ζ′(1/2)
2ζ(1/2)2

if α = 1/2,

where γ0 is Euler’s constant. Let 0 < ε < b < min(1/4, α). Then we have∣∣∣ζ(2(b+ it))

ζ(b+ it)

∣∣∣� |t|−b+ε
for all |t| ≥ 1, and ∣∣∣ζ(2(σ + iTm))

ζ(σ + iTm)

∣∣∣� T 1/2−2b+ε
m

uniformly for b ≤ σ ≤ c + α (see [31, Corollary 10.5 and Theorems 13.18 and 13.23]), where
(Tm)m∈N is the sequence introduced in (4.14). Set F (s) = ζ(2s), G(s) = ζ(s), zm = λ(m),
β = 1/2− 2b+ ε, and δ = −b+ ε. Then if α 6= 0, Lemmas 4.3 and 4.4 imply that, for x > 1 and
T ≥ 1,

Lα(x) = Rα,s0(x) +
∑
|γ|≤T

xρ−α

ρ− α
ζ(2ρ)

ζ ′(ρ)

+O

(
x1−α log x

T
+
x1−αT−1/2−2b+ε

log x
+ x1/2−α (T θ−2 log T

)1/2
+ xb−α

)
. (4.20)

If α = 0, we let 0 < ε < b < 1/4. Similarly, we have

L0(x) =
x1/2

ζ(1/2)
+
∑
|γ|≤T

xρ

ρ

ζ(2ρ)

ζ ′(ρ)
+O

(
x log x

T
+
xT−1/2−2b+ε

log x
+ x1/2

(
T θ−2 log T

)1/2
+ xb

)
.

(4.21)
For α ∈ [0, 1], let

Cα =

{
1

(1−2α)ζ(1/2)
if 0 ≤ α < 1/2 or 1/2 < α ≤ 1,

γ0
ζ(1/2)

− ζ′(1/2)
2ζ(1/2)2

if α = 1/2.

Then (4.20) and (4.21) imply that, for y > 0 and X ≥ 1,

E3(y, α) = Cα + ey(−1/2+α)
∑
|γ|≤X

ζ(2ρ)ey(ρ−α)

(ρ− α)ζ ′(ρ)
+ Eλ,α(y,X)

= Cα +
∑
|γ|≤X

ζ(2ρ)eiyγ

(ρ− α)ζ ′(ρ)
+ Eλ,α(y,X)

= Cα + <
( ∑

0<γ≤X

2ζ(2ρ)eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eλ,α(y,X),

where

Eλ,α(y,X)� yey/2

X
+
ey/2X−1/2−2b+ε

y
+
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b) .
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Observe that (1.8) for y0 > 0 holds for Eλ,α(y, eY ). Since rn = 2ζ(2ρn)/(ρn − α)ζ ′(ρ) and
λn = =(ρn), it follows from (1.17) that∑

λn≤T

λ2
n|rn|2 =

∑
0<γ≤T

4γ2|ζ(2ρ)|2

|(ρ− α)ζ ′(ρ)|2
�

∑
0<γ≤T

4γ2(log γ)3/2+ε

|(ρ− α)ζ ′(ρ)|2
� T θ(log T )3/2+ε.

Note that, in the previous inequalities we have used the fact that ζ(1 + it) = O
(
(log t)3/4+ε

)
(see

[40, Theorem 6.14]). Hence by Corollary 1.3(b), under the assumptions of the Riemann hypothesis
for ζ(s) and (1.17), E3(y, α) has a limiting distribution.

(iii) The Summatory Function of the Möbius Function in Arithmetic Progressions. In this part
we prove the existence of a limiting distribution for E4(y; q, a) defined in (1.21). We first establish
an explicit formula for

M(x; q, a) :=
∑
n≤x

n≡a mod q

µ(n),

where q ≥ 2 and (a, q) = 1. Let 0 < b < 1/2 and 0 < ε < 1/2 − b. Assume the generalized
Riemann hypothesis for Dirichlet L-functions modulo q and (1.18). An argument analogous to
the proof of the existence of the sequence (Tm)m∈N introduced in (4.14) may be carried out for
Dirichlet L-functions. Following the proof of [31, Theorem 13.22], we are able to show that
the generalized Riemann hypothesis for Dirichlet L-functions implies that there is a sequence
(Tm,χ)m∈N, where Tm,χ ∈ [m− 1,m], such that

|L(σ + iTm,χ, χ)|−1 � T εm,χ

uniformly for −1 ≤ σ ≤ 2. Moreover, for any ε > 0, we have

|L(b+ it, χ)|−1 � |t|−1/2+b+ε

(see [31, Corollary 10.10 and p. 445, Exercises 8 and 10]). The orthogonality relation for charac-
ters asserts that

1

ϕ(q)

∑
χ mod q

χ(a)χ(n) =

{
1 if n ≡ a (mod q),
0 otherwise,

(see [31, p. 122]). Thus

M(x; q, a) =
1

ϕ(q)

∑
χ mod q

χ(a)
∑
n≤x

µ(n)χ(n). (4.22)

Let F (s) = 1, G(s) = L(s, χ), zn = µ(n)χ(n), β = ε, δ = −1/2 + b + ε, and α = 0. Then
by applying a slight variant of Lemma 4.3, which takes into the consideration the potential pole of
1/L(s, χ) at s = 1/2, and Lemma 4.4, we obtain, for x > 1 and T ≥ 1,∑

n≤x

µ(n)χ(n) = Ress= 1
2

( xs

L(s, χ)s

)
+
∑
|γχ|≤T
γχ 6=0

xρχ

ρχL′(ρχ, χ)

+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2(T θ−2 log T )1/2 + xb

)
,
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where Ress= 1
2
(.) denotes the residue at s = 1/2. Substituting this in (4.22) implies that, for x > 1

and T ≥ 1,

M(x; q, a) =
1

ϕ(q)

∑
χ mod q

L(1/2,χ)=0

χ(a)Ress= 1
2

( xs

L(s, χ)s

)
+

1

ϕ(q)

∑
χ mod q

χ(a)
∑
|γχ|≤T
γχ 6=0

xρχ

ρχL′(ρχ, χ)

+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2(T θ−2 log T )1/2 + xb

)
.

Assuming the generalized Riemann hypothesis for Dirichlet L-functions modulo q and (1.18), it
follows that, for y > 0 and X ≥ 1,

E4(y; q, a) =
1

ϕ(q)

∑
χ mod q

L(1/2,χ)=0

χ(a)Ress= 1
2

( eys

L(s, χ)s

)

+
1

ϕ(q)

∑
χ mod q

χ(a)
∑
|γχ|≤X
γχ 6=0

eiyγχ

ρχL′(ρχ, χ)
+ Eµ,q,a(y,X), (4.23)

where

Eµ,q,a(y,X)� yey/2

X
+

ey/2

yX1−ε +
(logX)1/2

X1−θ/2 +
1

ey(1/2−b) .

Let (λn)n∈N be the non-decreasing sequence that consists of all the numbers γχ > 0 satisfying
L(1/2 + iγχ, χ) = 0, for some Dirichlet character χ mod q, and let (rn)n∈N be defined as

rn =
2 χλn(a)

ϕ(q)(1/2 + iλn)L′(1/2 + iλn, χλn)
,

where χλn is the character which corresponds to λn. We can rewrite (4.23) in the form of

E4(y; q, a) =
1

ϕ(q)

∑
χ mod q

L(1/2,χ)=0

χ(a)Ress= 1
2

( eys

L(s, χ)s

)
+ <

( ∑
λn<X

rne
iyλn

)
+ Eµ,q,a(y,X).

Observe that (1.8) for y0 > 0 holds for Eµ,q,a(y, eY ) and (1.18) implies∑
λn≤T

λ2
n|rn|2 � T θ,

for 1 ≤ θ < 3 −
√

3. Hence Corollary 1.3(b) implies that, under the assumptions of the general-
ized Riemann hypothesis for Dirichlet L-functions modulo q and (1.18), E4(y; q, a) has a limiting
distribution.

3.2. Proof of Corollary 1.8.
Chebotarev’s Density Theorem. Let K/k be a normal extension of number fields with cor-
responding Galois group G. We shall consider the squaring function sq : G → G given by
sq(x) = x2. For a conjugacy class C of G, let A1, . . . , At be the conjugacy classes which satisfy
A2
i ⊆ C. We observe that

sq−1(C) =
t⋃
i=1

Ai
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and define

c(G,C) = −1 +
|sq−1(C)|
|C|

+ 2
∑
χ 6=χ0

χ(C)ords=1/2L(s, χ,K/k)

where χ ranges over the irreducible characters of G and χ0 denotes the trivial character. It was
proven in [34, pp. 71–73] that the generalized Riemann hypothesis and Artin’s holomorphy con-
jecture imply that, for x > 1, T ≥ 1 and 1 ≤ j ≤ r,

log x√
x

(
|G|
|Cj|

πCj(x)− πk(x)

)
=

− c(G,Cj)−
∑
χ 6=χ0

χ(Cj)

( ∑
0<|γχ|≤T

xiγχ

1/2 + iγχ

)
+O

(
x1/2 log2(xT )

T
+

1

log x

)
, (4.24)

where for each χ, ρχ = 1/2 + iγχ runs over the non-trivial zeros of L(s, χ,K/k). In this formula,
the term c(G,Cj) is the number field analogue of the constant term c(q, a) which appears in the
Chebyshev bias phenomenon. Let (λn)n∈N be the non-decreasing sequence that consists of all the
numbers γχ > 0 which satisfy L(1/2 + iγχ, χ,K/k) = 0 for some χ 6= χ0. Suppose that χn is the
character which corresponds to λn, and for 1 ≤ j ≤ r set rj,n = −2χn(Cj)/(1/2 + iλn). Then
(4.24) implies that

E
(j)
5 (y) :=

(
|G|
|Cj|

πCj(e
y)− πk(ey)

)
ye−y/2 = −c(G,Cj) +<

( ∑
0<λn≤X

rj,ne
iyλn

)
+ EG;Cj(y,X),

where

EG;Cj(y,X) = O

(
ey/2 log2(eyX)

X
+

1

y

)
.

Observe that Condition (1.8) for y0 > 0 holds for EG;Cj(y, e
Y ) and by [23, Theorem 5.8] we have∑

λn≤T

λ2
n|rn|2 �

∑
λn≤T

1� T log T.

Therefore, Theorem 1.4 implies that, under the assumptions of generalized Riemann hypothesis
and Artin’s holomorphy conjecture, ~E5(y) =

(
E

(1)
5 (y), . . . , E

(r)
5 (y)

)
has a limiting distribution.

5. CALCULATION OF THE FOURIER TRANSFORM µ̂

Proof of Theorem 1.9. Let ~rm =
(
r1(λm), . . . , r`(λm)

)
andN ∈ N. By Proposition 2.4, the vector-

valued function

~P (y) =

(
c1 + <

( N∑
m=1

r1(λm)eiyλm
)
, . . . , c` + <

( N∑
m=1

r`(λm)eiyλm
))

has a limiting distribution µN . Since {λ1, · · · , λN} is linearly independent then by the Kronecker-
Weyl theorem [20, Chapter 1] we have

lim
Y→∞

1

Y

∫ Y

0

g

(
yλ1

2π
, · · · , yλN

2π

)
dy =

∫
TN
g(a)dω,
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where g : RN → R is any continuous function of period 1 in each of its variables and dω(θ1, . . . , θN)
is the normalized Haar measure on TN which is equal to the Lebesgue measure dθ1 . . . dθN on TN .
Hence, by taking f(t1, . . . , t`) = exp(−iP`

k=1 ξktk) and A = TN in (2.2), we obtain∫
R`
e−i

P`
k=1 ξktkdµN(t1, . . . , t`)

=

∫
TN

exp

(
− i
∑`

k=1

[
ck + <

(∑N
m=1rk(λm)e2πiθm

)]
ξk

)
dω(θ1, . . . , θN)

= e−i
P`
k=1 ckξk

∫
TN

exp

(
− i<

(∑N
m=1

(
~rm · ~ξ

)
e2πiθm

))
dθ1 . . . dθN

= e−i
P`
k=1 ckξk ×

N∏
m=1

∫ 1

0

exp
(
−i<

((
~rm · ~ξ

)
e2πiθ

))
dθ. (5.1)

Thus, in view of (2.11) and (5.1) we deduce that

µ̂(~ξ) =

∫
R`
e−i

P`
k=1 ξktkdµ(t1, . . . , t`) = lim

N→∞

∫
R`
e−i

P`
k=1 ξktkdµN(t1, . . . , t`)

= e−i
P`
k=1 ckξk ×

∞∏
m=1

∫ 1

0

exp
(
−i<

((
~rm · ~ξ

)
e2πiθ

))
dθ.

If ~rm · ~ξ 6= 0, then∫ 1

0

exp
(
−i<

((
~rm · ~ξ

)
e2πiθ

))
dθ =

∫ 1

0

exp
(
−i<

(
|~rm · ~ξ|ei(2πθ+arg(~rm·~ξ))

))
dθ

=

∫ 1

0

exp
(
−i|~rm · ~ξ| cos

(
2πθ + arg

(
~rm · ~ξ

)))
dθ

=

∫ 1+arg(~rm·~ξ)/2π

arg(~rm·~ξ)/2π
exp

(
− i|~rm · ~ξ| cos(2πt)

)
dt

=

∫ 1

0

exp
(
− i|~rm · ~ξ| cos(2πt)

)
dt

= J0

(∣∣∑`
k=1rk(λm)ξk

∣∣). (5.2)

If ~rm · ~ξ = 0, then (5.2) holds trivially. Hence

µ̂(~ξ) = e−i
P`
k=1 ckξk ×

∞∏
m=1

J0

(∣∣∑`
k=1rk(λm)ξk

∣∣).
�
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