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Abstract. Let E be an elliptic curve defined over Q. Let Γ be a subgroup of rank r of the
group of rational points E(Q) of E. For any prime p of good reduction, let Γ̄ be the reduction
of Γ modulo p. Under certain standard assumptions, we prove that for almost all primes p (i.e.
for a set of primes of density one), we have

|Γ̄| ≥ p

f(p)
,

where f(x) is any function such that f(x) → ∞, at an arbitrary slow speed, as x → ∞. This
provides additional evidence in support of a conjecture of Lang and Trotter from 1977.

1. Introduction

Artin’s primitive root conjecture asserts that if a ∈ Z \ {−1} is not a perfect square, then the
set of primes p for which a (mod p) is a primitive root has positive density. In 1967, Hooley [9]
proved this conjecture under the assumption of the Generalized Riemann Hypothesis (GRH).

More generally, we may consider an algebraic group G defined over Q and Γ a finitely generated
subgroup of G(Q). For all but a finite number of primes p, there is a natural reduction map

(1.1) Γ → Ḡ(Fp),

where Ḡ denotes the reduction of G mod p, and we may ask for the distribution of primes p for
which this map is surjective. Thus, in the classical Artin primitive root conjecture, G = Gm

and Γ is the subgroup generated by a.
Lang and Trotter [12] considered the case where G is an elliptic curve E and Γ is a free

subgroup of the group of rational points E(Q), and conjectured an explicit formula for the
density of primes for which (1.1) is surjective. Significant results on this question were obtained
by Gupta and R. Murty in [5] and [6]. In particular, they showed that, assuming GRH, if the
rank r of Γ is sufficiently large (r ≥ 6 in the CM case, and r ≥ 19 in the non-CM case), then
the set of primes for which (1.1) is surjective has a density.

It is also of interest to consider lower bounds on the size of the image in (1.1). Let Γ be a
subgroup of Q∗ generated by r non-zero multiplicatively independent rationals a1, · · · , ar. For
all primes p not dividing the numerators and the denominators of a1, · · · , ar, we let Γ̄ be the
reduction of Γ mod p. Erdös and R. Murty [3], and Pappalardi [15] proved the following theorem
regarding the size of Γ̄ as p varies.

Theorem 1.1. Let f : R+ −→ R+ be a function such that f(x) → ∞ as x → ∞. For each
d ≥ 1, and for each a ∈ Q let ζd,a(s) denote the Dedekind zeta function of

Q(exp(2πi/d), a1/d).
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Suppose that there exists a ∈ Γ\{1} such that GRH holds for ζd,a(s). Then for all but o(x/ log x)
primes p ≤ x, we have

|Γ̄| ≥ p

f(p)
.

We can view this theorem as a variant of the Artin conjecture, as the surjectivity of the map
(1.1) is replaced by a sharp lower bound on the size of the image. Note that weakening the
surjectivity condition results in a stronger assertion (the density of the set of primes satisfying
this new condition equals one).

In this paper we prove an analogue for elliptic curves of Theorem 1.1. More precisely, let E
be an elliptic curve defined over Q. For any prime p of good reduction, let Ē be the elliptic
curve over Fp obtained by reducing E modulo p. By Mordell’s theorem we know that E(Q) is
finitely generated. Let Γ be a subgroup of rank r of E(Q) and let Γ̄ be the reduction of Γ mod
p. One can ask how the size of Γ̄ grows as p →∞.

Let E[m] be the group of m-torsion points of E, and P be a point of infinite order in Γ.
Then, under the assumption of some standard conjectures for the Kummerian field Km =
Q(E[m], 1

m ·P ), we show that if the rank of Γ is sufficiently large then the size of Γ̄ is very large
for almost all primes p. More precisely, we have the following.

Theorem 1.2. Let E be a non-CM elliptic curve defined over Q. Let Γ be a subgroup of rank
r of E(Q).

(a) Assume that the following conditions hold.
(i) r > 18 (in particular this means that we assume that the rank of E(Q) is greater than 18).
(ii) There is a rational point of infinite order P ∈ Γ, such that for any integer m > 1, GRH

(Generalized Riemann Hypothesis) holds for Km = Q(E[m], 1
m · P ).

Then for a full density set of primes (i.e. for all but o(x/ log x) primes p ≤ x), we have

|Γ̄| ≥ p

f(p)
,

where f : R+ −→ R+ is any function such that f(x) →∞, at an arbitrary slow speed, as x →∞.
(b) In (ii) if in addition to GRH we also assume that AHC (Artin Holomorphy Conjecture)

holds for Km for any integer m > 1, then the assertion of part (a) holds as long as r > 10 (in
particular this means that we assume that the rank of E(Q) is only greater than 10).

This result is optimal in the sense that it is not true for bounded f (see Remark 5.5).

Remarks 1.3. (a) Using the classical Hasse bound for elliptic curves, we know that 2
√

p ≥
|#Ē(Fp) − p − 1|; thus our result shows that Γ̄ has almost the same size as Ē(Fp) for
almost all primes p.

(b) The GRH is the assumption that the Dedekind zeta function of Km has no zeros in the
region <(s) > 1

2 .
(c) The AHC referred to above is the statement that all Artin L-series of the extension

Km/Q are analytic at s 6= 1.
(d) In the above theorem we can replace the assumption of GRH with a quasi-GRH assump-

tion. More precisely, in part (a) we only need to assume that the Dedekind zeta function
of Km has no zeros in the region <(s) > α, for any fixed α < 1− 10

r+2 , and in part (b) we
only need to assume that the Dedekind zeta function of Km has no zeros in the region
<(s) > α, for any fixed α < 1− 6

r+2 .
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(e) It is a “folklore” conjecture that the rank of an elliptic curve defined over Q can be
arbitrarily large. See [18, Conjecture 10.1, p. 234] for more information regarding this
conjecture. The following are 5 elliptic curves of rank at least 11 ordered increasingly in
terms of their conductors, as given in [4, Table 2]:

y2 + y = x3 − 16359067x + 26274178986,
y2 + xy = x3 − x2 − 38099014x + 115877816224,
y2 + xy = x3 − x2 − 41032399x + 106082399089,
y2 + xy = x3 − x2 − 34125664x + 69523358164,
y2 + xy = x3 − x2 − 56880994x + 168642718624.

In 2006, Elkies found an elliptic curve with rank at least 28.

In case that E has CM, we can establish a result similar to Theorem 1.2 without assuming
AHC and for a significantly larger class of finitely generated subgroups of E(Q). More precisely,
we prove the following.

Theorem 1.4. Let E be an elliptic curve defined over Q which has CM by a maximal order,
and let Γ be a subgroup of rank r of E(Q). Assume that the following conditions hold.

(i) r > 5 (in particular this means that we assume the rank of E(Q) is greater than 5).
(ii) There is a rational point of infinite order P ∈ Γ, such that for any integer m > 2, GRH

holds for Km = Q(E[m], 1
m · P ).

Then for a full density set of primes (i.e. for all but o(x/ log x) primes p ≤ x), we have

|Γ̄| ≥ p

f(p)
,

where f is a function as defined in Theorem 1.2.

Remark 1.5. In Theorem 1.4 we can replace the assumption of GRH with a quasi-GRH as-
sumption; more precisely, we only need to assume that the Dedekind zeta function of Km has
no zeros in the region <(s) > 1− 4

r+2 .

Note that in both Theorems 1.2 and 1.4 we obtain that for a set of primes p of density 1, the
reduction Γ̄ modulo p has at least p

logk p elements, where logk is the k-th iterate of the logarithm
for any positive integer k.

Here we outline the strategy of our proofs. With the notation as in Theorem 1.2, [Ē(Fp) : 〈P̄ 〉]
denotes the index of the cyclic group generated by P̄ in Ē(Fp). To prove our theorem we need
to find a suitable upper bound for

(1.2) #{p ≤ x : m | [Ē(Fp) : 〈P̄ 〉]},
where m is any fixed positive integer. Our main observation is that we can express the divisibility
of [Ē(Fp) : 〈P̄ 〉] by m as a condition in terms of the liftings of the Frobenius corresponding to
the prime p in the extension Km/Q (see Lemma 3.4). This allows us to deduce an upper bound
for (1.2) by applying the Chebotarev density theorem.

This strategy is in line with the conditional proof of Artin’s conjecture given by Hooley
[9] (see also the work by Gupta and Murty [5, 6] on finding primitive points for reduction of
elliptic curves, and also the work of Hall and Voloch [7] for finding primitive points for elliptic
curves defined over function fields), however our proof exhibits several new features. A serious
new difficulty in considering our problem arises from the fact that (unlike the classical Artin
conjecture) we need to deal with the divisibility of the index [Ē(Fp) : 〈P̄ 〉] by an arbitrary
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prime power. Our index divisibility criterion (Lemma 3.4) successfully relates the divisibility
of the index with a suitable conjugacy class Cm in Gal(Km/Q). Unlike the classical Artin’s
conjecture where the size of the conjugacy class is 1, in our case the size of the conjugacy class
is large. Propositions 5.1 and 6.7 establish the upper bounds of correct order of magnitude for
Cm in both non-CM and CM cases. Our results provide a clear and complete picture for the
distribution of primes p such that the index [Ē(Fp) : 〈P̄ 〉] has any given divisibility property;
therefore, we believe our methods can be used for various related applications of the classical
Artin’s conjecture in the context of elliptic curves, and possibly for abelian varieties.

The structure of the paper is as follows. To prove our index divisibility criterion we need some
information regarding subgroups of Z/`nZ× Z/`nZ, where ` is a prime. In Section 2 we study
the subgroups of Z/`nZ×Z/`nZ. In Section 3 we prove our index divisibility criterion (Lemma
3.4). In Section 4 we state an effective version of the Chebotarev density theorem that will be
used, together with our criterion, in establishing an upper bound for (1.2) (see Propositions 5.3
and 6.10). In Section 5 we prove Theorem 1.2, while in Section 6 we prove Theorem 1.4.

Notation. For any positive integers m and n, and any prime number `, the notation `n || m
means that `n is the largest power of ` dividing m. In general, we reserve the letters p and ` to
denote prime numbers, and unless otherwise specified, ` 6= p.

We use the notation f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0; similarly f(x) = O(g(x)) (or,
equivalently f(x) � g(x)) if the function |f(x)/g(x)| is bounded as x →∞.

We define Li(x) as
∫∞
2 dt/ log t = x/ log x + o(x/ log x).

For any abelian group G, and any prime number `, we let G[`∞] be the `-primary part of
G, i.e. the subgroup of all elements in G which have order a power of `. We denote by R∗ the
group of units of a commutative ring R.

ϕ(m), ω(m), and d(n) denote, respectively, Euler’s function, the number of distinct prime
divisors of m, and the number of divisors of m.

For any finite set S, we denote by |S| (or equivalently #S) the cardinality of S.

Acknowledgments. The authors thank the referee for many helpful suggestions which
improved the exposition of our results.

2. Subgroups of Z/`nZ× Z/`nZ

The results of this short Section are fairly simple; we provide their proofs for the sake of
completeness.

Let n be a positive integer, let ` be a prime number, and let π1, π2 be the projections of
Z/`nZ× Z/`nZ onto each coordinate.

Lemma 2.1. Let H ⊂ Z/`nZ × Z/`nZ be a subgroup of order `2n−c for some 0 ≤ c ≤ 2n.
Assume π2(H) ⊂ π1(H). Then there exist unique 0 ≤ i ≤ j ≤ n, and d ∈ {0, . . . , `j−i − 1} such
that i + j = c and H is generated by (`i, `id) and (0, `j). Furthermore, H is cyclic if and only
if j = n.

Proof. Let i ∈ {0, . . . , n} be such that π1(H) = `i · Z/`nZ. Let (`i, b) ∈ H, for some b ∈ Z/`nZ.
Then for every (x, y) ∈ H, there exists z ∈ Z/`nZ such that `i · z = x. Therefore, (0, y − zb) =
(x, y)− z · (`i, b) ∈ H. Moreover,

H0 := {w ∈ Z/`nZ : (0, w) ∈ H}



REDUCTIONS OF POINTS ON ELLIPTIC CURVES 5

is a subgroup of Z/`nZ; thus there exists j ∈ {0, . . . , n} such that H0 = `j ·Z/`nZ. Because H0 ⊂
π2(H) ⊂ π1(H), we conclude that i ≤ j. So, H is generated by (`i, b) and (0, `j). Furthermore,
at the expense of subtracting a multiple of `j from b, we may assume b ∈ {0, . . . , `j−1}. On the
other hand, b ∈ π2(H) ⊂ π1(H); so, `i | b. We conclude that there exists d ∈ {0, . . . , `j−i − 1}
such that (`i, `id) and (0, `j) generate H.

It is immediate to see that each element of H can be written uniquely as x · (`i, `id)+y · (0, `j)
for some x ∈ {0, . . . , `n−i−1} and y ∈ {0, . . . , `n−j−1}; this shows that |H| = `2n−(i+j). Finally,
H is cyclic if and only if it is generated by (`i, `id), i.e. if and only if j = n. �

For each 0 ≤ i ≤ j ≤ n, and for each d ∈ {0, . . . , `j−i − 1}, we let Hi,j,d be the subgroup
of Z/`nZ × Z/`nZ generated by (`i, `id) and (0, `j). Similarly, we let H̃i,j,d be the subgroup of
Z/`nZ×Z/`nZ generated by (`id, `i) and (`j , 0). Note that Hi,i,0 = H̃i,i,0 for each i ∈ {0, . . . , n}.
Also, for each i, j ∈ {0, . . . , n} with i < j and for each d ∈ {1, . . . , `j−i − 1} coprime with `,
there exists a unique d̃ ∈ {1, . . . , `j−i − 1} (also coprime with `) such that Hi,j,d = H̃i,j,d̃.

Let M(2, Z/`nZ) denote the set of 2 × 2 matrices with entries in Z/`nZ, and null(α) denote
the null space of a 2-by-2 matrix α ∈ M(2, Z/`nZ). Then we have the following.

Lemma 2.2. There are exactly `2(i+j) matrices α ∈ M(2, Z/`nZ) such that Hi,j,d ⊂ null(α).

Proof. Let

α =
(

x y
z t

)
such that Hi,j,d ⊂ null(α). Then {

`i(x + dy) = 0
`i(z + dt) = 0

and {
`jy = 0
`jt = 0 .

This means that there are `j possibilities for each of y and t, while for each fixed (y, t) ∈
(`n−j · Z/`nZ) × (`n−j · Z/`nZ), there are `i · `i choices of (x, z). This finishes the proof of
Lemma 2.2. �

3. Index Divisibility Criterion

Let E be an elliptic curve defined over Q, and let P ∈ E(Q) be a non-torsion point. Let p be
a prime of good reduction for E, and let Ē and P̄ be the reduction of E and P modulo p. Let
` be a prime number. From now on we assume that p - `∆, where ∆ is the discriminant of E.

Let K`n := Q
(
E[`n], 1

`n · P
)
. We identify E[`n] with Z/`nZ × Z/`nZ; also from now on we

denote Z/`nZ × Z/`nZ by (Z/`nZ)2. Let Q0 ∈ E(K`n) be a fixed `n-th root of P . Then each
σ ∈ Gal(K`n/Q) can be uniquely represented as (γ, τ) in the semidirect product GL(2, Z/`nZ)n
(Z/`nZ)2, where for each torsion point T ∈ E[`n] (seen as a point in (Z/`nZ)2), we have

σ(T ) := γ(T ),

while for each `n-th root Q of P , we have

(3.1) σ(Q) := γ(Q−Q0) + Q0 + τ.
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In (3.1), we used the fact that Q − Q0 ∈ E[`n] can also be seen as an element of (Z/`nZ)2.
Finally, note that the composition rule on Gal(K`n/Q) is the following

(3.2) (γ1, τ1) ◦ (γ2, τ2) = (γ1γ2, τ1 + γ1 · τ2).

Due to a similar argument as in [18, Theorem 7.1, Chapter 7], we obtain that p is unram-
ified in K`n . Let σv = (γv, τv) be a lifting of the Frobenius corresponding to p, where v is a
nonarchimedean place of K`n lying above p. By definition for each algebraic integer x ∈ K`n ,
we have

σv(x) ≡ xp (mod v).
Our goal is to obtain a criterion for the divisibility by `n (for any positive integer n) of the

index of the cyclic subgroup generated by P̄ in Ē(Fp). Lang and Trotter [12] proved the following
criterion for the divisibility of the index [Ē(Fp) : 〈P̄ 〉] by a prime ` (hence, n = 1 with the above
notation).

Lemma 3.1. Let Id be the identity matrix in GL2(Z/`Z), and let C` consist of elements σ =
(γ, τ) ∈ GL2(Z/`Z) n (Z/`Z)2 of Gal(K`/Q) such that either

(i) γ = Id (i.e., null(γ − Id) = (Z/`nZ)2),
or
(ii) null(γ − Id) is a non-trivial cyclic group and τ ∈ (γ − Id)((Z/`Z)2).
Then for p - `∆, we have ` | [Ē(Fp) : 〈P̄ 〉] if and only if σv ∈ C` for each lifting σv of the

Frobenius corresponding to p.

Our Lemma 3.4 is a generalization of the above result to the case that [Ē(Fp) : 〈P̄ 〉] is
divisible by a prime power `n (for an arbitrary positive integer n). Because `n is an arbitrary
prime power, our criterion is more general than the classical Lang-Trotter criterion. First we
translate the divisibility of the above index into a geometric condition satisfied by P̄ (our result
is a generalization of [5, Lemma 1]).

Lemma 3.2. The index of the group generated by P̄ inside Ē(Fp) is divisible by `n if and only
if Ē(Fp)[`∞] ∩ Ē[`n] is a group of order `2n−c, where 0 ≤ c ≤ n, and there exist R ∈ Ē(Fp) and
T ∈ Ē[`n] such that P̄ = `cR + `cT .

Proof of Lemma 3.2. For any k ≥ 1 we choose generators T
(k)
1 and T

(k)
2 of Ē[`k] such that

Ē[`k] = 〈T (k)
1 〉 ⊕ 〈T (k)

2 〉 and `(T (k+1)
1 , T

(k+1)
2 ) = (T (k)

1 , T
(k)
2 ).

Suppose that Ē(Fp)[`∞] ⊂ Ē[`n+m] for some m ≥ 0. Then by Lemma 2.1 and without loss of
generality we can assume that

Ē(Fp)[`∞] = 〈`i′T
(n+m)
1 + `i′d′T

(n+m)
2 〉 ⊕ 〈`j′T

(n+m)
2 〉,

and
Ē(Fp)[`∞] ∩ Ē[`n] = 〈`iT

(n)
1 + `idT

(n)
2 〉 ⊕ 〈`jT

(n)
2 〉,

where i′ ≤ j′ and i ≤ j. Note that with these notations we have c = i + j.
We have three cases:
Case 1. i = 0 and j ≥ 1. Hence, in this case c = j ≤ n.
First of all, note that i′ ≤ m since i = 0.
Secondly, since j ≥ 1, we have Ē[`n−j ] ⊆ Ē(Fp)[`∞] and Ē[`n−j+1] 6⊆ Ē(Fp)[`∞]. So n− j =

m + n− j′. Thus j′ = j + m and
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Ē(Fp)[`∞] = 〈`i′T
(n+m)
1 + `i′d′T

(n+m)
2 〉 ⊕ 〈`jT

(n)
2 〉.

Next we find a positive integer a coprime with ` such that aP̄ ∈ Ē(Fp)[`∞], and so

(3.3) aP̄ = x(`i′T
(n+m)
1 + `i′d′T

(n+m)
2 ) + y(`jT

(n)
2 ),

for some integers x and y.
Now suppose that `n divides the index of P̄ in Ē(Fp). Because (a, `) = 1 this is equivalent

with the fact that `n divides the index of aP̄ in Ē(Fp)[`∞]. Since #Ē(Fp)[`∞] = `n+m−i′+n−j

and the index of aP̄ in Ē(Fp)[`∞] is divisible by `n we obtain that the order of aP̄ divides
`n+m−i′−j . So `n+m−i′−j(aP̄ ) = Ō, where Ō is the point at infinity of Ē. Because i′ ≤ m, we
get that

`n+m−i′−j · y(`jT
(n)
2 ) = y`n+m−i′T

(n)
2 = Ō.

Thus, using (3.3), we conclude that

x`n+m−j
(
T

(n+m)
1 + d′T

(n+m)
2

)
= Ō;

so x = `jx1 for some integer x1. Hence, if the index of the cyclic group generated by aP̄ inside
Ē(Fp)[`∞] is divisible by `n then

aP̄ = `j(x1(`i′T
(n+m)
1 + `i′d′T

(n+m)
2 )) + `j(yT

(n)
2 )

= `jR0 + `jT0,

where R0 ∈ Ē(Fp)[`∞] and T0 ∈ Ē[`n]. Multiplying the above identity by an integer b such that
ab ≡ 1 (mod `j) we have P̄ = (1−ab)P̄ +`jbR0+`jbT0, and we can take R = ((1−ab)/`j)P̄ +bR0

and T = bT0 to derive that P̄ = `jR + `jT , as in the conclusion of Lemma 3.2.
Conversely suppose that P̄ = `jR + `jT where R ∈ Ē(Fp) and T ∈ Ē[`n]. Choose a relatively

prime to ` such that aR ∈ Ē(Fp)[`∞]. We have

`n+m−i′−j(aP̄ ) = `n+m−i′−j(`jaR + `jaT ) = Ō,

since `nT = Ō (also note that i′ ≤ m) and `n+m−i′ · (aR) = Ō (note that `n+m−i′ · Ē(Fp)[`∞] =
{Ō}). So, the order of aP̄ in Ē(Fp) divides `m+n−i′−j and thus

`n =
#Ē(Fp)[`∞]
`m+n−i′−j

| #Ē(Fp)[`∞]
ord(aP̄ )

| #Ē(Fp)
ord(aP̄ )

.

Since (a, `) = 1 this implies that `n divides the index of 〈P̄ 〉 in Ē(Fp).
Case 2. i ≥ 1. Hence, in this case c = i + j.
Since i ≥ 1 then an argument similar to Case 1 shows that i′ = i + m and j′ = j + m;

furthermore, d′ = d and Ē(Fp)[`∞] ⊂ Ē[`n]. Thus (3.3) can be written as

aP̄ = x(`iT
(n)
1 + `idT

(n)
2 ) + y(`jT

(n)
2 ).

Now, if `n divides the index of 〈P̄ 〉 in Ē(Fp), then `n divides the index of 〈aP̄ 〉 in Ē(Fp)[`∞],
and so `n−i−j(aP̄ ) = Ō which implies that `j | x and `i | y. Hence there exist integers x1 and
y1 such that

aP̄ = `i+j(x1(T
(n)
1 + dT

(n)
2 ) + y1T

(n)
2 )) = `i+jT0,
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where T0 ∈ Ē[`n]. Multiplying the above identity by an integer b such that ab ≡ 1 (mod `i+j)
we have P̄ = (1− ab)P̄ + `i+jbT0, and we can take R = ((1− ab)/`i+j)P̄ and T = bT0 to obtain
that P̄ = `i+jR + `i+jT , as in the conclusion of Lemma 3.2. Note that if `n | [Ē(Fp) : 〈P̄ 〉], then
#Ē(Fp)[`∞] ≥ `n, and so c ≤ n.

Conversely suppose that P̄ = `i+jR + `i+jT where R ∈ Ē(Fp) and T ∈ Ē[`n]. Choose
a relatively prime to ` such that aR ∈ Ē(Fp)[`∞]. An argument similar to Case 1 shows
that `n divides the index of 〈P̄ 〉 in Ē(Fp) (note that in this case aP̄ = `i+jaR + `i+jaT and
aR ∈ Ē(Fp)[`∞] ⊂ Ē[`n]).

Case 3. i = 0 and j = 0. So c = 0.
In this case Ē(Fp)[`∞] has order 2n + 2m− i′ − j′ (and i′ ≤ j′ ≤ m); thus Ē(Fp)[`∞] ∩ Ē[`n]

has order `2n, and the order of P̄ can be at most n + m − i′. So `n divides the index of 〈P̄ 〉
always. The second condition in the conclusion of lemma holds trivially (simply, let R = P̄ and
T = Ō). �

With the above notation, and also using Lemma 3.2, we can prove the following criterion.

Lemma 3.3. Let σv = (γv, τv) be a lifting of the Frobenius corresponding to p. Then the index
of 〈P̄ 〉 in Ē(Fp) is divisible by `n if and only if the group Ē(Fp) ∩ Ē[`n] has order `2n−c, where
0 ≤ c ≤ n, and for each place v of K`n lying above p, we have `n−cτv ∈ (γv − Id) ((Z/`nZ)2).

Proof. Let v be a fixed nonarchimedean place of K`n lying above the prime p, and for any point
U ∈ E(K`n), we let Ũ be the reduction of U modulo v; note that if U ∈ E(Q), then Ũ is the usual
reduction of U modulo p ( i.e. P̃ = P̄ ). As shown in [18, Proposition 3.1(b)], since (`, p) = 1 then
E[`n] has trivial intersection with the kernel of reduction modulo v. Therefore Ẽ[`n] = Ē[`n]
and we may identify Ē[`n] with {S̃ : S ∈ E[`n]}, and thus extend the identification between
E[`n] and (Z/`nZ)2 to an identification between Ē[`n] and (Z/`nZ)2.

If Ē(Fp)[`∞] ∩ Ē[`n] is a group of order `2n−c (for some c ≤ n), and `n | [Ē(Fp) : 〈P̄ 〉] then
Lemma 3.2 yields that there exist R ∈ Ē(Fp) and T ∈ Ē[`n] such that P̄ = `cR + `cT . Since
P̄ = P̃ and T = S̃ for some S ∈ E[`n], we have

(3.4) P̃ = `cR + S̃.

Then, using P̃ = `c · `n−cQ̃0 in (3.4) we obtain that there exists S̃1 ∈ Ē[`c] ⊂ Ē[`n] such that

(3.5) `n−cQ̃0 = R + S̃ + S̃1.

We let S̃2 := S̃ + S̃1 ∈ Ē[`n], and then apply the Frobenius to (3.5). Noting that the reduction
modulo v of σv equals the Frobenius corresponding to the prime p, and that R ∈ Ē(Fp) is fixed
by the Frobenius, and that σv(Q0) = Q0 + τv we obtain

(3.6) `n−cQ̃0 + `n−cτv = R + γv(S̃2).

We subtract (3.5) from (3.6) and conclude that

(3.7) `n−cτv ∈ (γv − Id)((Z/`nZ)2).

Conversely suppose that (3.7) holds. Then there exists S̃ ∈ Ē[`n] such that

`n−cτv = γv(S̃)− S̃.
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Adding `n−cQ̃0 to both sides of the above equation yields

(3.8) `n−cQ̃0 + `n−cτv = `n−cQ̃0 + γv(S̃)− S̃.

Using (3.1), we can rewrite (3.8) as

`n−cσ̃v(Q0)− σ̃v(S) = `n−cQ̃0 − S̃.

Hence R := `n−cQ̃0 − S̃ is fixed by the Frobenius (note that σv is the corresponding lifting of
the Frobenius), which yields that R ∈ Ē(Fp). Thus

P̃ = `cR + `cS̃,

where P̃ = P̄ , R ∈ Ē(Fp) and S̃ ∈ Ē[`n]. Lemma 3.2 yields the conclusion of Lemma 3.3. �

For any fixed prime p, all liftings σv of the Frobenius are conjugate. We denote by σp the
collection of all σv’s for all places v lying above p.

Using Lemma 3.3, we obtain the following generalization of the Lang-Trotter criterion (note
that T ∈ Ē[`n] is fixed by γv and thus it is fixed by σv if and only if T ∈ Ē(Fp)). We denote by
Id the identity matrix in GL2(Z/`nZ).

Lemma 3.4. Let C`n consist of elements σ = (γ, τ) of Gal(K`n/Q) such that null(γ − Id) is
a subgroup of (Z/`nZ)2 of order `2n−c (for some 0 ≤ c ≤ n), and `n−cτ ∈ (γ − Id)((Z/`nZ)2).
Then for p - `∆, the index [Ē(Fp) : 〈P̄ 〉] is divisible by `n if and only if σp ⊆ C`n.

Using (3.2) one can show that C`n is closed under conjugation.
For any integer m ≥ 1, let Km := Q(E[m], 1

m ·P ), and let Gm := Gal(Km/Q). Let Cm be the
set of elements of Gm with the property that for each `n ‖ m, the restriction of Cm to K`n lies
in C`n (which is defined as in Lemma 3.4). Clearly, Cm is closed under conjugation (because
each C`n is closed under conjugation). By Lemma 3.4, for (p, m∆) = 1, we have

m | [Ē(Fp) : 〈P̄ 〉] ⇐⇒ σp ⊆ Cm.

4. Chebotarev density theorem

The following is an effective version of the Chebotarev theorem (see [10, Theorem 1.1] and
[17, Theorem 4] for a proof of the first assertion, and [14, Corollary 3.7] for a proof of the second
assertion).

Proposition 4.1. (Effective Chebotarev) Let K/Q be a finite Galois extension with Galois
group G. Let C ⊂ G be closed under conjugation, and assume the GRH for K/Q. Define

ΠC(x,K/Q) := #{p ≤ x : p a prime of Q unramified in K such that σp ⊆ C}

where σp is the Frobenius conjugacy class corresponding to p in Gal(K/Q). Then

ΠC(x,K/Q) =
|C|
|G|

Li x + O

|C|x1/2 log

|G|
 ∏

p∈P (K/Q)

p

x

 ,

where P (K/Q) is the set of rational primes which ramify in K, and the constant appearing in
the O-notation is absolute.
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Moreover if we assume that both GRH and AHC hold for K/Q, then we have the following
version of the above asymptotic with the improved error term.

ΠC(x,K/Q) =
|C|
|G|

Li x + O

|C|1/2x1/2 log

|G|
 ∏

p∈P (K/Q)

p

x

 ,

where P (K/Q) is defined above, and the constant appearing in the O-notation is absolute.

5. The non-CM Case

Throughout this section we assume that E is a non-CM elliptic curve defined over Q. We know
that Km = Q(E[m], 1

m ·P ) is a Galois extension of Q, and that only primes of bad reduction for
E and those dividing m can ramify in Km (this follows from a similar argument as the one in [18,
Theorem 7.1, pages 184-185]). Let G(m) be the semi-direct product GL(2, Z/`nZ) n (Z/`nZ)2

of GL(2, Z/mZ) and (Z/mZ)2. Then

(5.1) |G(m)| = m6
∏
`|m

(
1− 1

`

)2(
1 +

1
`

)
,

and the Galois group Gm of Km over Q is a subgroup of G(m).

Proposition 5.1. Let E be a non-CM elliptic curve defined over Q, and let m > 1 be an integer.
Let Cm be the subset of Gm defined after Lemma 3.4. Then

|Cm| < m4 ·
∏
`|m

(
1 +

1
`

+
8
`2

)
.

Proof. By definition, |Cm| ≤
∏

`n||m |C`n | (since Km is the compositum of all fields K`n for
`n || m). So, it is enough to show that for each prime `, we have

(5.2) |C`n | < `4n ·
(

1 +
1
`

+
8
`2

)
.

For an element σ = (γ, τ) ∈ C`n we know that null(γ− Id) is a subgroup of (Z/`nZ)2 of order
`2n−c (for some 0 ≤ c ≤ n), and `n−cτ ∈ (γ− Id)((Z/`nZ)2). Then either null(γ− Id) = Hi,j,d, or
null(γ− Id) = H̃i,j,d for some 0 ≤ i ≤ j ≤ n, and d ∈ {0, . . . , `j−i− 1}; thus c = i + j. Therefore
we have two possibilities, either null(γ − Id) is a cyclic subgroup of (Z/`nZ)2 of order `n and
τ ∈ (γ − Id)(Z/`nZ)2 (in this case j = n and i = 0) or null(γ − Id) is a non-cyclic subgroup of
(Z/`nZ)2 of order `2n−c, and `n−cτ ∈ (γ − Id)(Z/`nZ)2 (in this case j ≤ n− 1).

There are `n + `n−1 different cyclic subgroups of (Z/`nZ)2 of order `n (they are generated by
either (1, d) for any d ∈ Z/`nZ, or by (d′, 1) for any d′ ∈ Z/`nZ divisible by `). As shown in
Lemma 2.2, for each such cyclic subgroup H, there are at most `2n matrices γ ∈ GL2(Z/`nZ)
such that H ⊂ null(γ − Id).

On the other hand, for each fixed γ such that null(γ − Id) is cyclic of order `n, we have

|(γ − Id)(Z/`nZ)2| = `n.

Thus there are `n possibilities for τ ∈ (Z/`nZ)2 such that (γ, τ) ∈ C`n . Therefore, we conclude
that the number of pairs (γ, τ) ∈ C`n for which null(γ − Id) is cyclic is bounded from above by

(`n + `n−1) · `2n · `n = `4n · (1 + 1/`).
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Assume now that null(γ−Id) is not cyclic (hence j ≤ n−1); without loss of generality, we may
assume null(γ − Id) = Hi,j,d. By Lemma 2.2, there are at most `2i+2j matrices γ ∈ GL2(Z/`nZ)
such that null(γ − Id) = Hi,j,d. Furthermore, for each such γ, we have

|(γ − Id)((Z/`nZ)2)| = `i+j ,

which means that there are `2n−(i+j) possibilities for τ such that (γ, τ) ∈ C`n . Therefore the
number of pairs (γ, τ) ∈ C`n for which null(γ − Id) is non-cyclic is bounded from above by

2
∑

0≤i≤j≤n−1, i+j≤n
0≤d≤`j−i−1

`2(i+j) · `2n−(i+j) = 2
∑

0≤i≤j≤n−1
i+j≤n

`2n+2j

= 2`2n
(
2`2n−2 + 3`2n−4 + · · ·

)
< 2`4n−2

∞∑
k=0

(k + 2)/`2k

= 2`4n−2

(
−1 + 3

∞∑
k=0

1/`2k +
∞∑

k=1

k/(`2)k+1

)
= 2`4n−2

(
−1 + (3`2/(`2 − 1)) + (1/(`2 − 1))2

)
≤ 2`4n−2

(
−1 + 4 + (1/(22 − 1))2

)
< 8`4n−2.

Combining the counting of pairs (γ, τ) ∈ C`n in both cases: null(γ − Id) cyclic, or not cyclic
finishes the proof of Proposition 5.1. �

The following result is proved in [2] or [11, Theorem 5.2, pages 122-127] (see also [16] for a
comprehensive discussion which generalizes to semiabelian varieties).

Proposition 5.2. (Bachmakov) If E does not have complex multiplication, then the index of
Gm = Gal(Km/Q) in G(m) is bounded by a constant i(E) depending only on E.

Now we are ready to provide a good upper bound for the density of the set of primes p for
which the index [Ē(Fp) : 〈P̄ 〉] is divisible by some arbitrary integer m.

Proposition 5.3. Let E be a non-CM elliptic curve over Q with discriminant ∆, let P be a
point of infinite order in E(Q), and let m > 1 be an integer. We have the following.

(a) Suppose that GRH holds for Km = Q(E[m], 1
m · P ). Then

#{p ≤ x : p - m∆ and m | [Ē(Fp) : 〈P̄ 〉]} ≤ C(E)
Li x

ϕ(m)2
+ O(m4(log log m)x1/2 log mx),

where C(E) is a constant depending only on the elliptic curve E, and the constant in the above
O-notation also depends only on E.

(b) Suppose that GRH and AHC hold for Km = Q(E[m], 1
m · P ). Then

#{p ≤ x : p - m∆ and m | [Ē(Fp) : 〈P̄ 〉]} ≤ C(E)
Li x

ϕ(m)2
+ O(m2(log log m)1/2x1/2 log mx),

where C(E) is a constant depending only on the elliptic curve E, and the constant in the above
O-notation also depends only on E.
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Proof. (a) By Lemma 3.4, Proposition 4.1 (under GRH) and Proposition 5.2, we have

#{p ≤ x : p - m∆ and m | [Ē(Fp) : 〈P̄ 〉]} ≤ #{p ≤ x, p unramified in Km, σp ⊂ Cm}

≤ i(E)
|Cm|
|G(m)|

Li x

+O

|Cm|x1/2 log

|G(m)|

 ∏
p∈P (Km/Q)

p

x

 .

Because the only primes which can ramify in Km/Q are the ones which divide m∆, we obtain∏
p∈P (Km/Q)

p ≤ m∆.

The conclusion of Proposition 5.3 follows by applications of (5.1) and Proposition 5.1 in the
above inequality. Indeed, for each prime number `, we have

1 + 1
` + 8

`2

1 + 1
`

= 1 +
8

`2 + `
,

and so,
∏

` prime

(
1 + 8

`2+`

)
is convergent. On the other hand,

∏
`|m
(
1 + 1

`

)
� log log m (see [8,

Theorem 328]). Hence

|Cm|
|G(m)|

� 1
ϕ(m)2

, and |Cm| � m4log log m,

and the conclusion of Proposition 5.3 follows.
(b) The proof is exactly similar to part (a). Under the assumptions of GRH and AHC, we

apply the version of the Chebotarev theorem given in Proposition 4.1 which improves our error
term. �

We are now ready to prove our Theorem 1.2. Our strategy is to compute densities of the sets
of primes p for which the index of the reduction Γ̄ of Γ modulo p is divisible by some fixed integer
m. When m is large, we will use the following result, which follows from an application of the
pigeonhole principle, coupled with the use of basic properties of canonical heights associated
to elliptic curves. A proof of this result is given in the proof of [1, Proposition 1.2]. For the
completeness of our arguments we sketch its proof here.

Proposition 5.4. Let E be any elliptic curve defined over Q. Let Γ be a subgroup of E(Q) of
rank r. Then for each positive real number z, we have

#{p prime : | Γ̄ |< z} = O

(
z1+ 2

r

log z

)
,

where Γ̄ denotes the reduction of Γ modulo p.

Proof. Clearly, it suffices to prove our result for free subgroups; so, let {Q1, Q2, · · · , Qr} be a
basis of Γ. We consider the set

S = {n1Q1 + n2Q2 + · · ·+ nrQr; 0 ≤ ni ≤ z
1
r }.
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Since Q1, Q2, · · · , Qr are linearly independent, then the number of elements of S exceeds

([z
1
r ] + 1)r > z.

Now if p is a prime such that |Γ̄| < z, then there are two distinct elements of S, say P and Q

such that P̄ = Q̄ in Ē(Fp). In other words there are integers |mi| ≤ z
1
r such that

m1Q1 + · · ·+ mrQr 6= O in E(Q),

however
m1Q̄1 + · · ·+ mrQ̄r = Ō in Ē(Fp),

where O denotes the identity element. Let R = m1Q1 + · · · + mrQr in E(Q). Then R is a
rational point in E(Q), and so has a representation in the form

R =
(m

e2
,

n

e3

)
,

where m, n, and e are integers with e > 0 and (m, e) = (n, e) = 1 (see [20, page 68]). Since
under reduction mod p, R maps to Ō, we conclude that p | e. So for fixed {mi}1≤i≤r as above
the number of primes satisfying |Γ̄| < z is bounded by

ω(e) � log e

log log e
� hx(R)

log hx(R)
,

where ω(e) is the number of distinct prime divisors of e and

hx(R) = hx

((m

e2
,

n

e3

))
= log max{|m|, |e2|},

is the x-height of R. Recall that the canonical height

ĥ(R) = lim
n→∞

hx(2nR)
22n

is a quadratic form on E, and it gives a bilinear pairing 〈 , 〉 with ĥ(R) = 〈R,R〉 (see [18], page
229, Theorem 9.3). Moreover we know that ĥ = hx + O(1), where O(1) depends on E only. So
we have

ω(e) � log e

log log e
� hx(R)

log hx(R)
=

ĥ(R) + O(1)

log
(
ĥ(R) + O(1)

) � 〈R,R〉
log 〈R,R〉

.

So for fixed |mi| ≤ z
1
r , we have ω(e) � z

2
r / log z.

The number of possible values for e is bounded by the number of possible R. Noting the range
of the mi (i.e. |mi| ≤ z

1
r ) , we conclude that the number in question is O

(
z1+ 2

r /log z
)

. �

The main difficulty in the proof of our Theorem 1.2 comes from the case when m is not very
large, and it is not square-free; in that case we will use our Proposition 5.3 to derive our main
result for non-CM elliptic curves. In fact, our paper is the first one in the literature which deals
with the case when the index of Γ̄ in Ē(Fp) is divisible by an arbitrary integer m.

Proof of Part (a) of Theorem 1.2. For any prime number p, let ip = [Ē(Fp) : Γ̄], let jp =
[Ē(Fp) : 〈P̄ 〉], let Np = #Ē(Fp) and let g(x) := 1

3 inf{f(y) : x
log x ≤ y ≤ x}. Note that
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ip | jp and g(x) →∞ as x →∞. Using the classical Hasse bound for estimating Np, we obtain
3p ≥ Np ≥ p

3 , and so

#{p ≤ x : p - ∆ and |Γ̄| < p/f(p)} = #{p ≤ x : p - ∆, ip >
Np

p
f(p)}

≤ #{p ≤ x : p - ∆, ip >
1
3
f(p)}

≤ #{p ≤ x : p - ∆, ip > g(x)}+ π(x/ log x)

≤ #{p ≤ x : p - ∆, ip > g(x)}+ o

(
x

log x

)
≤ |B1|+ |B2|+ o

(
x

log x

)
,

where

B1 = {p ≤ x : p - ∆, ip ∈ (x
2

r+2 log x, 3x]}; and

B2 = {p ≤ x : p - m∆, m | ip, for some m ∈ (g(x), x
2

r+2 log x]}.

Observe that in the definition of B1 we used the fact that ip ≤ Np ≤ 3p ≤ 3x. Also, observe
that in B2 we can impose the condition p - m since the number of primes p ≤ x such that p | ip
is O(1) (because Np ≤ 3p, and there are at most finitely many primes p such that one of the
points P , 2P or 3P reduces to Ō modulo p). Finally, note that in the definition of B2 we may
replace the condition m | ip with the weaker condition m | jp, and find an upper bound for B2

in that case. Proposition 5.4 applied for z := xr/(r+2)

log x yields

#B1 = O

(
x

(log x)(r+2)/r · (r/(r + 2) · log x− log log x)

)
= o

(
x

log x

)
.

Let α be any sufficiently small real number in the interval (0, 1) (see inequality (5.3)). For
#B2, by Part (a) of Proposition 5.3, and employing the fact that m/ϕ(m) � log log m � mα/2

(see [8, Theorem 328]), and using that log m � mα, we have the following estimate:

#B2 �
∑

g(x)<m≤x2/(r+2) log x

(
(log log m)2

m2

x

log x
+ O(m4(log log m)x1/2 log mx)

)

� x

log x
·

 ∑
g(x)≤m<+∞

1
m2−α

+ O

x1/2+α ·
∑

1≤m≤x2/(r+2)+α

m4+α/2


� x

log x · g(x)1−α
+ O

(
x

1
2
+α+(5+α

2 )·( 2
r+2

+α)
)

= o

(
x

log x

)
.

In the last estimate we used the fact that g(x) → +∞ as x → +∞, and that r > 18, which
means that there exists α > 0 such that

(5.3)
1
2

+ α +
(
5 +

α

2

)
·
(

2
r + 2

+ α

)
< 1.
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Finally, by putting together the estimates for #B1 and #B2, we conclude the proof of Theo-
rem 1.2 (a). �

Proof of Part (b) of Theorem 1.2. The proof is almost identical to Part (a). The only difference
is that in this case by employing Part (b) of Proposition 5.3, we have

#B2 �
x

log x · g(x)1−α
+ O

(
x

1
2
+α+(3+α

4 )·( 2
r+2

+α)
)

.

The right-hand-side of this inequality is o(x/ log x), since g(x) → ∞ as x → ∞, and since for
r > 10 and for α sufficiently small and positive, we have

1
2

+ α +
(
3 +

α

4

)
·
(

2
r + 2

+ α

)
< 1.

�

Remarks 5.5. From [5, Page 35] we know that for any sufficiently large prime `, we have

#{p ≤ x : p - `∆, ` | [Ē(Fp) : Γ̄]} ∼ 1
`r+1(1− 1/`)2(1 + 1/`)

x

log x
,

as x →∞. This shows that for such fixed ` we have ip = [Ē(Fp) : Γ̄] ≥ ` for a positive proportion
of p. This justifies our claim that Theorem 1.2 is optimal in the sense that it is false for any
bounded function f . A similar claim is also true for Theorem 1.4.

6. The CM case

Let E be a CM elliptic curve defined over Q, and let K be the quadratic extension of Q, over
which the ring End(E) of all endomorphisms of E is defined. We assume that there exists a
ring isomorphism between End(E) and the ring of algebraic integers OK in K. For simplicity
we denote OK by O. In particular, there exists an analytic group isomorphism between C/O
and E(C). For each α ∈ O, we let [α] ∈ End(E) be the endomorphism which corresponds to
the multiplication-by-α-map on C/O.

By [13, Lemma 6], we know that K ⊂ Q(E[`n]) ⊂ K`n = Q(E[`n], 1
`n · P ) (where P ∈ E(Q))

whenever `n > 2. As in Section 3, let p be a prime number such that (p, `∆) = 1; hence p is a
prime of good reduction for E.

In this section we assume that `n > 2. We have the usual injection of G`n := Gal(K`n/Q)
into GL2(Z/`nZ) n (Z/`nZ)2. Moreover, for the subgroup G̃`n := Gal(K`n/K) of G`n , we have
an embedding into (O/`nO)∗ n O/`nO (see [19, proof of Theorem 2.3, page 109]). By abuse of
notation, we identify G`n with its isomorphic image inside GL2(Z/`nZ) n (Z/`nZ)2; similarly,
we identify G̃`n with its isomorphic image inside (O/`nO)∗ n O/`nO. In particular, this means
that we fix an embedding of (O/`nO)∗ into GL2(Z/`nZ).

Let Na = #(O/aO) denote the norm of any nonzero ideal a of O; then Na is completely
multiplicative. Let G̃(m) = (O/mO)∗ n O/mO. Then

(6.1) |G̃(m)| = m2Φ(m) = m4
∏

p|(m)
p∈Spec(O)

(
1− 1

Np

)
,

where Φ(m) is the number field analogue of the Euler function.
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We use the criterion given in Lemma 3.3 for the divisibility by `n of the index [Ē(Fp) : 〈P̄ 〉]
(where Ē is the reduction of E modulo p, and P ∈ E(Q)). If `n | [Ē(Fp) : 〈P̄ 〉], then for each
nonarchimedean place v of K`n lying above p, the corresponding lift (γv, τv) of the Frobenius
belongs to the set C`n ⊂ G`n which contains all (γ, τ) ∈ GL2(Z/`nZ) n (Z/`nZ)2 satisfying the
following conditions:

(1) there exists an integer c ∈ {0, . . . , n} such that #null(γ − 1) = `2n−c; and
(2) `n−cτ ∈ (γ − 1) · E[`n].

Notation 6.1. For any commutative ring R, and for each element α ∈ R, we denote by null(α)
the set of all β ∈ R such that αβ = 0.

Let C̃`n ⊂ G̃`n be the set of all elements (γ, τ) ∈ (O/`nO)∗ n O/`nO such that
(1) there exists an integer c ∈ {0, . . . , n} such that #null(γ − 1) = `2n−c; and
(2) `n−cτ ∈ (γ − 1) · E[`n].

Using (3.2), it is immediate to check that both C`n and C̃`n are closed under conjugation.
Our first goal here is to bound the size of C̃`n . We note that O is a principal ideal domain

(PID), because it is the endomorphism ring of a CM elliptic curve defined over Q (see [18,
Appendix C, Example 11.3.1]).

Proposition 6.2. With the above notation, #C̃`n ≤ 3n2`2n.

Proof. Let (γ, τ) ∈ C̃`n , and assume #null(γ − 1) = `2n−c. We have three cases depending if `
splits, is inert, or it is ramified in O.

Case 1. ` splits in O.
Using that O is a PID, we obtain

(6.2) O/`nO
∼→ (O/λn

1O)× (O/λn
2O) ,

where ` = λ1 · λ2, and each λi is a prime element in O; also, #(O/λiO) = ` for each i. Finally,
we represent ` under the isomorphism (6.2) as (λ1u1, λ2u2), where ui ∈ (O/λn

i O)∗ for each i.
Under the isomorphism from (6.2), we may also write

(6.3) γ − 1 =
(
λn−d1

1 · γ1, λ
n−d2
2 · γ2

)
,

where γi ∈ (O/λn
i O)∗ for i = 1, 2, and 0 ≤ d1, d2 ≤ n. Thus

#null(γ − 1) =
2∏

i=1

#
(
O/λn−di

i O
)

=
2∏

i=1

`n−di = `2n−d1−d2 .

Hence c = d1 + d2. Furthermore, for each fixed d1 and d2 as above, there are at most
2∏

i=1

#
(
O/λdi

i O
)

= `d1+d2

elements γ ∈ O/`nO satisfying (6.3). Moreover,

# ((γ − 1) ·O/`nO) =
2∏

i=1

#
(
λn−di

i ·O/λn
i O
)

= `d1+d2 .
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For each β ∈ (γ−1)·O/`nO =
(
λn−d1

1 ·O/λn
1O, λn−d2

2 ·O/λn
2O
)
, there are `2n−2d1−2d2 solutions

τ of the equation

`n−cτ =
(
λn−d1−d2

1 un−d1−d2
1 , λn−d1−d2

2 un−d1−d2
2

)
· τ = β.

So, the number of pairs (γ, τ) ∈ C̃`n is bounded from above by

(6.4)
∑

0≤d1+d2≤n

`d1+d2 · `d1+d2 · `2n−2d1−2d2 ≤
(

n + 2
2

)
· `2n.

Case 2. ` is inert in O.
First we note that #(O/`O) = `2. Secondly, we can write γ − 1 = `n−d · γ1 for a unique

d ∈ {0, . . . , n} and some γ1 ∈ (O/`nO)∗. Then

#null(γ − 1) = #null(`n−d) = #
(
`d ·O/`nO

)
= #

(
O/`n−dO

)
= `2(n−d).

Because #null(γ − 1) = `2n−c, we conclude that c = 2d, and so, d ≤ n
2 . In addition, for each

0 ≤ d ≤ n/2, the number of γ = 1 + `n−dγ1 (regardless if γ1 ∈ (O/`nO)∗ or not) is

#
(
O/`dO

)
= `2d.

We also obtain that

# ((γ − 1) ·O/`nO) = #
(
`n−d ·O/`nO

)
= #

(
O/`dO

)
= `2d.

For each β ∈ (γ − 1) · O/`nO = `n−d · O/`nO, there exist precisely `2(n−c) = `2n−4d elements
τ ∈ O/`nO such that

`n−cτ = `n−2dτ = β.

So, the number of pairs (γ, τ) ∈ C̃`n is bounded above by

(6.5)
∑

0≤d≤n/2

`2d · `2n−4d · `2d ≤ (n/2 + 1) · `2n.

Case 3. ` is ramified in O.
In this case, we let `O = (λ)2 for some prime element λ ∈ O. We obtain

O/`nO
∼→ O/λ2nO.

Moreover, there exists u ∈
(
O/λ2nO

)∗ such that ` = λ2u; also, note that # (O/λO) = `.
Under the above isomorphism for O/`nO, let γ − 1 = λ2n−dγ1, where γ1 ∈ (O/λ2nO)∗ and

0 ≤ d ≤ 2n. Then
#null(γ − 1) = #null(λ2n−d) = `2n−d,

which means that d = c ≤ n. Furthermore, there are at most `d elements γ of the above form.
We also compute easily that

# ((γ − 1) ·O/`nO) = #
(
λ2n−dO/λ2nO

)
= `d.

Now, for each β ∈ (γ − 1) · O/`nO = λ2n−d · O/λ2nO, there are `2n−2d solutions τ for the
equation

`n−cτ = λ2n−2dun−d · τ = β.
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Thus, the number of pairs (γ, τ) ∈ C̃`n is bounded from above by

(6.6)
∑

0≤d≤n

`d · `d · `2n−2d ≤ (n + 1) · `2n.

Summarizing (6.4), (6.5), and (6.6), we obtain #C̃`n ≤ 3n2`2n, as desired. �

Next we show that a similar bound as in Proposition 6.2 holds for the conjugacy class C`n .

Proposition 6.3. There exists an absolute, effective constant a > 1 such that #C`n ≤ an2`2n.

For example, we could take a = 100 in Proposition 6.3. Before proceeding to the proof of
Proposition 6.3 we prove the following technical result which will be used later in our proof.

Lemma 6.4. Let d be a nonzero integer, let ` be a prime number, and let n be a positive integer.
Then the number of pairs (A,B) ∈ (Z/`nZ)2 satisfying A2 + dB2 ≡ 1 (mod `n) is bounded from
above by 8`n.

Proof. Let S = {(A,B) ∈ (Z/`nZ)2 : A2 + dB2 ≡ 1 (mod `n)}. Clearly, S ⊂ (S1 ∪ S2), where
S1 contains the pairs (A,B) ∈ S for which A ∈ (Z/`nZ)∗, while S2 contains the pairs (A,B) ∈ S
for which B ∈ (Z/`nZ)∗. The conclusion of Lemma 6.4 follows from the next two Claims.

Claim 6.5. If ` is odd, then |S1| ≤ 2`n; if ` = 2, then |S1| ≤ 2n+2.

Proof of Claim 6.5. For each fixed B ∈ Z/`nZ, we have (A,B) ∈ S1 if and only if A ∈ (Z/`nZ)∗

and A2 ≡ 1− dB2 (mod `n). Because A is a unit, and there are exactly 2 elements in (Z/`nZ)∗

of order dividing 2 (if ` > 2), and there are exactly 4 elements in (Z/2nZ)∗ of order dividing 2
(if n ≥ 3), we conclude the proof of Claim 6.5. �

Now, if ` | d, then actually S = S1; thus, from Claim 6.5 we conclude that |S| ≤ 4`n, as
desired.

So, from now on, assume that (`, d) = 1.

Claim 6.6. If (`, d) = 1, then |S2| ≤ 4`n.

Proof of Claim 6.6. This follows from a similar argument as in the proof of Claim 6.5, only that
this time we fix A ∈ Z/`nZ, and then count the number of possible solutions B ∈ (Z/`nZ)∗ such
that dB2 ≡ 1−A2 (mod `n). Because (d, `) = 1, we obtain the desired conclusion. �

Therefore, if (`, d) = 1, then |S| ≤ |S1|+ |S2| ≤ 8`n. �

Now we are ready to prove Proposition 6.3.

Proof of Proposition 6.3. Using Proposition 6.2, we only need to bound the cardinality of C`n \
C̃`n . We will prove that

(6.7) #(C`n \ C̃`n) = O
(
`2n
)
,

where the O-constant is absolute and effective.
Let H`n := Gal(Q(E[`n])/Q) and H̃`n := Gal(Q(E[`n])/K), and let σ = (γ, τ) ∈ C`n \ C̃`n

such that null(γ − 1) = `2n−c, for some c ∈ {0, . . . , n}. Because (γ, τ) /∈ G̃`n we get that
γ ∈ H`n \ H̃`n . We fix an embedding of K`n into C. Let θ be the usual complex conjugation
map on C; by abuse of notation, we denote also by θ its restriction to a nontrivial automorphism
of K`n (note that K ⊂ K`n is a quadratic imaginary field). Each element in H`n \ H̃`n can be
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uniquely represented as γ̃θ. Because γ̃ ∈ H̃`n , and H̃`n embeds into (O/`nO)∗, then there exists
mγ̃ ∈ O (coprime with `) such that the restriction of γ̃ on E[`n] is the same as the action of
the endomorphism [mγ̃ ] of E given by multiplication by mγ̃ on C/O (more precisely, mγ̃ ≡ γ̃
(mod `nO)).

Let ℘ be the usual Weierstrass function associated to the lattice O ⊂ C; then for every z ∈ C
we have

℘′(z)2 = 4℘(z)3 − g2(O)℘(z)− g3(O),
where

g2(O) :=
∑

ω∈O\{0}

1
ω4

and g3(O) :=
∑

ω∈O\{0}

1
ω6

.

Because O is invariant under taking complex conjugates, we obtain that g2(O), g3(O) ∈ R. Let
E0 be the elliptic curve given by the equation over R:

y2 = 4x3 − g2(O)x− g3(O).

Because E is an elliptic curve defined over Q, then there exist a, b ∈ Q such that the Weier-
strass equation of E over Q is

(6.8) y2 = x3 + ax + b.

We know that E has complex multiplication by O; hence there exists β ∈ C∗ such that E is
isomorphic to E0 over C through the morphism f : E0 −→ E given by

f(x, y) := (4β2x, 4β3y).

Thus

(6.9) −4β4g2(O) = a and − 16β6g3(O) = b.

Case 1. b = 0.
Then (6.9) yields g3(O) = 0, and

β4 =
−a

4g2(O)
,

which means that either β ∈ R, or β ∈
(

1+i√
2

)
·R (note that we may choose any β which satisfies

(6.9)). So, either
θ(β) = β; or

(6.10) θ(β2) = −β2 and θ(β3) = i · β3.

Also in this case, (6.8) yields that the equation of E is given by y2 = x3 + ax, and so, E has
the following endomorphism:

(6.11) (x, y) 7→ (−x, iy),

whose square is the automorphism [−1] on E. Thus O = Z[i], and under a suitable identification
of End(E) with Z[i], the endomorphism from (6.11) corresponds to i ∈ Z[i].

We will prove (6.7) in this case, i.e. if O = Z[i]. Assume (6.10) holds; a similar argument
would work if β were fixed by θ. Now, if (6.10) holds, then for any T ∈ E[`n], we have

(6.12) γ̃θ(T ) =
(
4β2℘(imγ̃α), 4β3℘′(imγ̃α)

)
,
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where α ∈ 1
`n ·O satisfies

T =
(
4β2℘(α), 4β3℘′(α)

)
.

Indeed, because E is defined over Q, then also θ(T ) ∈ E[`n]. Furthermore, because (℘(z), ℘′(z)) =
(℘(z), ℘′(z)) we get

θ(T ) =
(
4β2℘(α), 4β3℘′(α)

)
=

(
−4β2℘(α), 4β3i℘′(α)

)
=

(
4β2℘(iα), 4β3℘′(iα)

)
,

where in the above equalities we used (6.10) and (6.11). Then (6.12) holds because the action
of γ̃ on the torsion points is induced by multiplication by mγ̃ on C/O.

Because #null(γ̃θ − 1) = `2n−c then there are `2n−c distinct α = x+yi
`n with 0 ≤ x, y ≤ `n − 1

such that imγ̃α− α ∈ O. So, letting mγ̃ := A + Bi, we obtain

(6.13) Ay ≡ (1 + B)x (mod `n); and

(6.14) Ax ≡ (1−B)y (mod `n).

Assume ` > 2. Then at least one of (1 + B) and (1 − B) is coprime with ` (note that `
is a prime number). Without loss of generality, we assume (1 + B, `) = 1. Then given any
y ∈ Z/`nZ there exists a unique x ∈ Z/`nZ satisfying (6.13). So, null(γ̃θ − 1) has at most `n

elements, i.e. c = n in Lemma 3.4. Furthermore, in order for (6.13) and (6.14) have `n solutions
simultaneously, we need

(6.15) A2 + B2 ≡ 1 (mod `n).

Using Lemma 6.4, there are at most 8`n solutions (A,B) ∈ (Z/`nZ)2 to (6.15). Hence each
γ ∈ C`n \ C̃`n satisfies #null(γ− 1) = `n, and there are at most 8`n such γ’s. Moreover, for each
such γ there are `n elements τ ∈ O/`nO such that τ ∈ (γ−1)·O/`nO (because #null(γ−1) = `n,
while #O/`nO = `2n). So,

#(C`n \ C̃`n) ≤ 8`2n.

Assume ` = 2. Then at least one of (1+B) and (1−B) is not divisible by 4. If B is even, then,
arguing as above, we obtain that there are at most 22n+3 corresponding pairs (γ, τ) ∈ C`n \ C̃`n .

If B is odd, without loss of generality, we assume (1−B, 2n) = 2. Then given any x ∈ Z/2nZ,
there are at most 2 solutions y ∈ Z/2nZ satisfying (6.14). So, there are at most 2n+1 solutions
(x, y) solving simultaneously (6.13) and (6.14); thus c ≥ n−1 with the notation as in Lemma 3.4.
Furthermore, in order to have at least 2n solutions (x, y) to the system formed by (6.13) and
(6.14) we need

(6.16) A2 + B2 ≡ 1 (mod 2n−1).

There are at most 2n+4 solutions (A,B) ∈ (Z/2nZ)2 satisfying (6.16) (after applying Lemma 6.4
to (6.16), and then noting that each solution (A,B) modulo 2n−1 has at most 4 liftings to
solutions modulo 2n).

For each one of these at most 2n+4 elements γ ∈ H2n \ H̃2n such that #null(γ − 1) ≥ 2n, we
have at most 2n elements in (γ− 1) ·E[2n]. Therefore, for a fixed such γ there are at most 4 · 2n
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elements τ ∈ E[2n] such that 2τ ∈ (γ − 1) · E[2n] (note that c ≥ n − 1 in the criterion from
Lemma 3.4 in this case). Hence

#(C2n \ C̃2n) ≤ 22n+3 + 2n+4 · 2n+2 = 72 · 22n.

Case 2. b 6= 0.
Then (6.9) yields that also g3(O) 6= 0, and so,

β2 = 3
√
−b/(16g3(O)) ∈ R.

Thus β ∈ R or β ∈ i · R; either way, we have

(6.17) θ(β) = ±β.

We will prove (6.7) if O = Z[i
√

d] for some square-free positive integer d > 1 (a similar
argument works for all other cases). Actually, because O is a PID, then d = 2 is the only
possibility in this case. However, for any of the remaining quadratic number fields, we have
O = Z[(1 + i

√
d)/2], and so, any integral element is of the form

A + Bi
√

d

2
, where A ≡ B (mod 2),

which allows us to reduce our computations to the case Z[i
√

d].
So, in Case 2., we claim that for any T ∈ E[`n], we have

(6.18) γ̃θ(T ) =
(
4β2℘(±mγ̃α), 4β3℘′(±mγ̃α)

)
,

where α ∈ 1
`n ·O satisfies

T =
(
4β2℘(α), 4β3℘′(α)

)
.

Indeed, because ℘ is even and ℘′ is odd, we get

θ(T ) =
(
4β2℘(α), 4β3℘′(α)

)
=

(
4β2℘(α),±4β3℘′(α)

)
=

(
4β2℘(±α), 4β3℘′(±α)

)
,

where in the above equalities we used (6.17). Then (6.18) holds because the action of γ̃ on the
torsion points is induced by multiplication by mγ̃ on C/O.

Because #null(γ̃θ−1) = `2n−c then there are `2n−c distinct α = x+yi
√

d
`n with 0 ≤ x, y ≤ `n−1

such that ±mγ̃α− α ∈ O. Without loss of generality, assume that we have a minus sign in the
last relation. So, letting mγ̃ := A + Bi

√
d, we obtain

(6.19) Bdy ≡ −(A + 1)x (mod `n); and

(6.20) Bx ≡ (A− 1)y (mod `n).

By employing a similar argument as in Case 1., we finish the proof of Proposition 6.3. �

Using that #Cm ≤
∏

`n||m #C`n , we obtain the following result (note that #C2 ≤ [K2 : Q] ≤
12, as the case `n = 2 is the only one not explicitly covered by Propositions 6.2 and 6.3).

Proposition 6.7. Let Cm be the conjugacy class of Gm defined as before, and let E have CM.
Then there exists an effective absolute constant a such that |Cm| ≤ aω(m)d2(m)m2.
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The following result is proved in [11, Theorem 5.2, pages 122-127] (see also [2] and [16]); note
that for m ≥ 3, we have K ⊂ Km, and moreover, any endomorphism of E is defined over K.

Proposition 6.8. Let m ≥ 3. If E has complex multiplication, then the index of G̃m =
Gal(Km/K) in G̃(m) is bounded by a constant i(E) depending only on E.

The following result is proved in [6, Proposition 1].

Proposition 6.9. Let m ≥ 3. If E has CM, then AHC holds for the extension Km/Q.

Now we can prove the counterpart in the CM case of Proposition 5.3.

Proposition 6.10. Let m ≥ 3, let E be a CM elliptic curve over Q with discriminant ∆,
and let P be a point of infinite order in E(Q). Moreover suppose that GRH holds for Km =
Q(E[m], 1

m · P ). Then

#{p ≤ x : p - m∆ and m | [Ē(Fp) : 〈P̄ 〉]} ≤ C(E)
aω(m)d2(m)

Φ(m)
Li x+O(maω(m)/2d(m)x1/2 log mx),

where C(E) is a constant depending only on the elliptic curve E, and the constant in the O-
notation also depends only on E.

Proof. By Lemma 3.4, Proposition 4.1, Proposition 6.8, and Proposition 6.9, we have

#{p ≤ x : p - m∆ and m | [Ē(Fp) : 〈P̄ 〉]} ≤ #{p ≤ x, p unramified in Km, σp ⊆ Cm}

≤ i(E)
2

|Cm|
|G̃(m)|

Li x

+O

|Cm|1/2x1/2 log

|G̃(m)|

 ∏
p∈P (Km/Q)

p

x

 .

The assertion of the proposition follows by applications of (6.1) and Proposition 6.7 in the above
inequality. �

The following result, which is a consequence of applying the normal order method and the
large sieve in an imaginary quadratic field, is proved in [1, Theorem 4.1].

Proposition 6.11. Let E be a CM elliptic curve. Let 0 < δ < 1 and let ε1(x) and ε2(x) be such
that

lim
x→∞

ε1(x) = lim
x→∞

ε2(x) = 0.

Let

H
(
x, xδ−ε1(x), xδ+ε2(x)

)
= #{p ≤ x : ∃u such that u | #Ē(Fp) and xδ−ε1(x) < u < xδ+ε2(x)}.

Then we have

H(x, xδ−ε1(x), xδ+ε2(x)) = o

(
x

log x

)
as x →∞.

Now we are ready to prove our main result in the case of CM elliptic curves.
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Proof of Theorem 1.4. Let a be the constant occurring in Proposition 6.7. An elementary ana-
lytic estimation yields the following

(6.21)
∑
m≤x

aω(m)/2d(m) ≤
∑
m≤x

d(m)(log2 a)/2+1 � x(log x)β,

for a positive integer β > 2. Also,

(6.22)
m2

Φ(m)
· aω(m)d(m)2 � mα for any α > 0.

Following the notation for the function g(x), and for the index ip of Γ̄ in Ē(Fp) as introduced
in the proof of Theorem 1.2, we have

#{p ≤ x : p - ∆ and |Γ̄| < p/f(p)} ≤ |B′1|+ H

(
x,

x
2

r+2

(log x)β
, x

2
r+2 log x

)
+ |B′2|+ o

(
x

log x

)
,

where B′1 = {p ≤ x : p - ∆, ip ∈ [x
2

r+2 log x, 3x]}, and B′2 = {p ≤ x : p - m∆, m | ip, for some m ∈

(g(x), x
2

r+2

(log x)β ]}.
From the proof of Theorem 1.2 (note that Proposition 5.4 holds for all elliptic curves) and

Proposition 6.11 we have

|B′1| = o

(
x

log x

)
, and H

(
x,

x
2

r+2

(log x)β
, x

2
r+2 log x

)
= o

(
x

log x

)
and so,

#{p ≤ x : p - ∆ and |Γ̄| < p/f(p)} = |B′2|+ o

(
x

log x

)
.

As in proof of Theorem 1.2, we note that in the definition of B′2 we may replace the condition
m | ip with the weaker condition m | jp, and find an upper bound for B′2 in that case (where
jp = [Ē(Fp) : 〈P̄ 〉]).

Let α be any real number between 0 and 1. For #B′2, by Proposition 6.10, and using inequal-
ities (6.21) and (6.22), we have

#B′2 �
∑

g(x)<m≤x2/(r+2)/(log x)β

(
1

m2−α

x

log x
+ O(maω(m)/2d(m)x1/2 log mx)

)

� x

log x
·

 ∑
g(x)≤m<+∞

1
m2−α

+ O

x1/2 log x ·
∑

1≤m≤x2/(r+2)/(log x)β

maω(m)/2d(m)


� x

log x · g(x)1−α
+ O

(
x

1
2
+ 4

r+2

(log x)β−1

)

= o

(
x

log x

)
,

as long as r ≥ 6 (note that β > 2 by our choice). �
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