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Abstract

We will establish lower bounds in terms of the level for the number of holomorphic
cusp forms of weight k& > 2 whose various L-functions do not vanish at the central critical

point. This work generalizes the work of W. Duke [1] which was for the case of weight 2.

1 Introduction

In this paper we study the non-vanishing of the L-function associated to a cusp form of weight
k and level N. More precisely, let Fn be the set of all holomorphic (cuspidal) normalized
newforms of weight k& and level N. For f € Fn and a primitive Dirichlet character mod ¢
with (¢, N) = 1, the twisted L-function associated to f and x is defined by

Ly(s,x) = i W.
n=1

The twisted L-function is given by an absolutely convergent series on the half-plane Re(s) >
% and has an Euler product valid there. Also it has an analytic continuation which satisfies
a certain functional equation for which s = % is the centre of the critical strip. In this context

one may attempt the following problem:
Problem: What can we say about {f € Fn; Lf(%, Xx) # 0} if N is large?

One known result concerning this problem is given by W. Duke [1] for the case k = 2.
By comparing mean and mean square estimate for the twisted L-function L¢(s,x) attached
to a newform f of weight 2, Duke proved that there is a positive absolute constant C' and
a constant C; depending only on ¢ such that for any prime N > C, there are at least
CN(log N)~? newforms f € Fy for which L¢(1,x) #0.

The main difficulty in the generalization of the above result to the cusp forms of weight

k is the contribution coming from oldforms of weight k. In this paper, by using a special
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construction of a basis for the space of cusp forms of weight k& and level N, introduced by
A. Pizer [5], We show that the contribution of oldforms is negligible, and therefore we obtain
a generalization of Duke’s result to newforms of weight k& and level N. More precisely, we

prove the following result.

Theorem 1 Suppose that x is a fized primitive Dirichlet character mod q such that (¢, N) = 1.
Then there are positive constants Cy, (depending only on k) and Cqy (depending only on q
and k) such that for prime N > Cy i, there ezist at least C N (log N)_2 newforms f of weight
k and level N for which Lf(g,x) #0.

We also prove the following theorem about the non-vanishing of the product of two distinct
twist of a modular L-function, which is again a generalization of a result of W. Duke ( [1]
Theorem 2).

Theorem 2 Let k > 2 and x1 (mod q1) and x2 (mod q2) be fized distinct real primitive
Dirichlet characters such that x1x2(—N) = 1. Then there are positive constants Cy and Cy
depending only on qi1q2 and k such that for prime N > Cy there exist at least CoN (log N)_6
newforms f of weight k and level N for which Lf(g, Xl)Lf(%, x2) # 0.

The main technical tool in the proof of these results is the “semi-orthogonality” of the
Fourier coefficients of an orthonormal basis of Si (V) (Proposition 1) which is a consequence
of the Petersson formulae about Poincaré series. Section 2 describe this technical tool and
also introduces a certain basis of the space of cusp forms which has been studied by Pizer. In
Sections 3 and 4 we prove mean and mean square estimate for the twisted L-function attached
to an element of the basis introduced in Section 2. Using these estimates and establishing a
lower bound for the Petersson inner product in Section 5, we will be able to prove Theorem

1. Section 6 describes a proof of Theorem 2.

2 A basis for Si(N)

We review some basic facts concerning modular forms. Let Si(N) be the space of cusp forms
of weight k for T'g(N) with trivial character. The space Si(NN) is a finite dimensional complex
vector space. Moreover, one can define an inner product called Petersson inner product on

Sk(N) by v
L axray

<f.g >=/ f(2)9(2)y"—3
Po(N)\H Yy
where H denotes the upper half plane. For 0 # f € Si(IN) set
I'k—1)
A T<f, />

If f € Sp(N), we write the Fourier expansion of f at ico as

wf =

o0

f(2) =) ag(n)e(nz).

n=1



The following proposition explains the so called “semi-orthogonality” of the Fourier coeffi-

cients of an orthogonal basis of S (V).

Proposition 1 If {fi,..., fr} is an orthogonal basis for Si(N), for m and n positive integers

we have the inequality

|Z a/fl k 1 7? /fl() - 6mn| S Md(N)Néik(m’n)% (mn)kil

where M is a constant depending only on k and d(N) is the number of divisor of N.

Proof: See [1] Lemma 1. O

We are going to generalize Duke’s result to cusp forms of weight k£ and prime level N
(see [1], Theorem 1). The first difficulty that we encounter is that Fu is not a basis for
Si(IN) when k is large (more precisely if £ > 12 and k # 14). So we must find a basis for
Si(IN) with good analytic properties. A theorem of Pizer guarantees the existence of such
basis for Sk(N).

Given a two by two real matrix v = (
c

> with positive determinant, define its action
on a modular form f of weight k to be

az+b

(F)(2) = (det )% ez + )P

).

Now let {7}, (p /N), Uy (¢|N)} be the collection of the classical Hecke operators and let
Wy (g|N) be the “WW operator” of Atkin and Lehner . In 1983 A. Pizer introduced the
operators Cy on Si(NN) for ¢|N, such that the action of C; on the new part of Si(N) is the

same as the action of the classical U, operators. More precisely he defined C, as
k
Cy=U, + WU W, +q2'W, if q|N

Cy=U, +W,UW, if ¢*|N.

then he showed that T, (p fN), Cq (q|N) form a commuting family of Hermitian operators.
Using this, he proved ([5] Theorem 3.10) the following result.

Theorem There exists a basis fi(z) (1 <i < dim Sp(N)) of Sk(N) such that each f;(z) is an
eigenform for all the T,, and Cy operators with p fN and q|N. Let f(z) = Y72 ar(n)e(z) be
an element of this basis. Then a¢(1) # 0 and assuming f(z) is normalized so that ay(1) =1,
we have f|T, = a¢(p)f for allp [N, f|Cq = af(q)f for all g|N, and ar(nm) = ar(n)as(m)
whenever (n,m) = 1. Furthermore f(z) is an eigenform for all W, operators, q|N. Finally,
if g(2) € Sk(N) is an eigenform for all the T, and C, operators with p /N and q|N, then
9(2) = cfi(z) for some ¢ € C* and some unique i, 1 < i < dim Si(N).



Now let Py be the basis of S(N) given by the above theorem. The elements of Py form
an orthogonal basis for Si(/N) and their L-functions have analytic continuation and satisfy
certain functional equations. We can show that the action of C; on Si(NN)"" is the same as
the action of U, (see [5] Remark 2.9). This shows that Fnx C Px.

In the sequel we need an estimation for the Fourier coefficient of an oldform in Py.

Lemma 1 Suppose N is a prime and f € Px. Then

[Ny

lag(n)| < con
where cg is an absolute constant independent of f.

Proof: If f € Fy we know that |as(n)| < d(n)n% (Deligne’s bound) and therefore the
result is clear.
If f € Py — Fn Propositions 3.6 and 3.4 of [5] imply that

f(2) = h(z) £ N3h(N>2)
where h is the normalized newform of weight k£ and level 1 associated to f. Now if (n, N) =1

then ay(n) = cx(n) where ¢, (N) is the N-th Fourier coefficient of h, and therefore the Deligne
bound implies the result, and if (n, N) # 1 then n = mN and we can write
ar(Nm) = cp(Nm) + Acp(m).
By using the Deligne bound for the Fourier coefficients of h we get
k=1 k=1

laf(Nm)| < d(Nm)(Nm) z + Nzd(m)m' =

= <d(Nm1) + d(”f)> (Nm)2.
(Nm)2 m2

The result follows from the fact that d(n) = O(n%) with an absolute constant. O

[NE

3 First moments

In this section we will find an asymptotic formula for > scp,. waf(g, X). Let f € Py, then
since it is an eigenform for the Atkin-Lehner involution, the twisted L-function L(s,x) is
known to be entire and to satisfy the functional equation

s k—s
(%) F(S)Lf(S,X) = €y (@) F(k — S)Lf(k — s, X)

where €, = EfX(N)T(X)Zq_l with €y = +1 (the root number of f) which depends only on f
and 7(x) is the Gauss sum (see [6] p. 93).
We start with giving a representation of L f(g, X) as a sum of two convergent series for

f € Pn using the functional equation.



Lemma 2 For any x >0, let

:ZX(n)a n)n Z{Z 1 27m -

n>1

Where f € Py and x is a fized primitive Dirichlet character mod q with (q, N) = 1. Then

we have L
Ly(5:x) = A(®) + e A(N¢* /)

where €, is the root number of L¢(s,x) and A is the conjugate of A.

Proof: Define the function £(x) by

1 1.9 k. ds
—_ _ F R
£(2) 211 (%)( x) (s + 2) s
then
1

e = (X () )e

I'(s) x o i
Now by definition of £(z), it is clear that

A(z) = L Lf(8+ﬁ,x)(;r)s%
2

2mi J(3) 2
Moving the line of integration from % to —% , and using the functional equation for L¢(s, x)

—1ds.

yields

ok
A(z) = Ly( ,x+ / 2” F(,;:z)

X)s tds

k
L
f( 84-2

Now changing variables s — —s gives the result. O

Proposition 2 Let x be a fized primitive character modulo q. Then we have
k _
> wrLp(5x) = 1+ O(N "2 (log N)* )
fEPN

for N prime. The implied constant depends on q and k.

Proof: Choosing z = ¢?Nlog N in Lemma 2 gives

k
k_1

1 :
Z x(n > — (2mnlog N)Y 3 (N2,
n>1 =07

MIw

Using Lemma 1, we get

JAC

H‘E
)



Therefore from Lemma 2, we have

k_

k_1 )

i1 2mn Il 1 _—_2m

— (5 — — JEE— qQNIOgN
1") jgoj!(qQNlogN) \/ﬁe

> Wfo(gaX)—l =2 X ( > ws

fEPN n>1 fEPN

=

71 1 21 J f% 1 O N_6 loe N g_l
HE A ayiog ) ) 77 — 14 (X wp)O(N(log N)= ™),
=0 fePn

Proposition 1, with m = n = 1 implies

3 wp=140(Nz7F),

fE€PN

Now by applying m = 1 in Proposition 1 and using the above identity, we have

’ Z waf _ 1| < M1N2 —k an 267 q2N10gN + i l(QL)j €_q2N217;gN
fePN 1 Pt j1¢?Nlog N
=2

FMyN"S(log N)2 ™! < MsN~3 (log N) ™ + My(Nlog N)™% + My N ~5(log N)2 !

where My, My, M3, M, are constants. This completes the proof. O

4 Second moments

In this section we are going to find an asymptotic relation for the average values of |L f(g, X) |2

where f varies over Py. To start let Pr(s) = Ly¢(s, x1)Lf(s,x2) where x1 and x2 are fixed
primitive Dirichlet characters mod ¢ and g2. Then we have Py(s) = 32,51 by(1)I™*, where

= > xa(m)xa(n)ag(m)ag(n).
mn=l
Define for x > 0 2
1 F(S + 5) 78d8
o) =5 [, Cm) e 1)
2mi /(%) F(%f s

and set B(z) = >/>; bf(l)l_gg(%). Then we have

Lemma 3 Let f € Py and suppose that x1 and x2 are primitive Dirichlet characters mod

q1, g2 with (q1q2, N) = 1. For any = > 0, we have

where €y, = X1X2(N)(T(x1)7(x2))*(q1g2) " is the root number of Ps(s) and B is the con-
jugate of B.



Proof: It is similar to the proof of Lemma 2, by writing B(z) as a line integral, moving the
line of integration to the left of zero and applying the functional equation of Py(s), we get
the desired result. O

We come now to the following proposition.

Proposition 3 Let x be a primitive Dirichlet character mod q. Then

ko2 k _ 1
Z wf\Lf(E,Xﬂ = Z waf(g) = H(l —p HlogN +c+ O(N"2log N)
fEPN fePn plg

for N prime with (q, N) = 1, where ¢ and the implied constant depend on q and k.

Proof: In Lemma 3, set x1 = X, X2 = X, we have B = B and €xy = 1. In Lemma 3 let
x = N¢?, then

mn 1 ar(m) ar(n
> WfPf )=2 > x(m Nq N2 T 2 Wf\/];ik—_)l\/%'

fEPN mn>1 (mn)2 repy

By Proposition 1, it is clear that

wapf )=2) [x(n) 2) T4 R (2)

fePN n>1

where
mn
R<<N2 —k Z g NQ)(mvn)

m,n>1

(mn)z 1, (3)

|

The first term on the right hand side of (2) is evaluated using the definition of g as

2
1 o D(s+ 5 o s ds
— L(2s+1,x0)(27) s 27 (Ngq ) —
i J(3) T(k)? s

where X is the principal character mod g and L(s, xo) = ((s) Hp|q(1— I%) Since the integrand

1

—5, we see that the

has a double pole at s = 0, by moving the line of integration from % to

above integral is equal to

[[(1—p Hlog N +c+O(N"2), (4)
pla

Now in (3) we calculate >, ,,~; g(]’\?—;)(m,n)%(mn) 1Itis

211

- : : : x sds
L\/(ﬁ) (2W)_25u ( Z (m’ n)g(mn)—(s—§+1)) (NqQ) %

because the integrand does not have any poles in the strip % < Re(s) < k—;l and

> (mon)2(mn)~ 75D

m,n>1



is absolutely convergent. Next we use the following identity

C2s —k+3)¢(s— 54+ 1)°

C(2s —k+2)

Z (m, n)% (mn)~ 672t =

m,n>1

k+1

(See [1] Lemma 4 ). By moving the line of integration from to 5 —€ (e>0) we get

> g(ig)(m )2 (mn)2 " ~ NS log N
q

m,n>1

and by (3), R < N3~3 log N. This and (4) prove the Proposition. O

5 A lower bound for the Petersson inner product

To complete the proof of Theorem 1 we need a lower bound in terms of IV for < f, f > when
f € Pn. Note that if N1|Na then Sg(N7) C Sk(NV2), therefore the value of the Petersson inner
product depends on N. To emphasize this dependency from now on we show the Petersson

inner product by < .,. >n.
Lemma 4 If h is a normalized newform of level 1, then
< h,h(Nz) >y = N'"Fc,(N)< h,h >,

where ¢y (N) is the N-th Fourier coefficient of h.

0 1 N 0
Proof: Since ( L0 ) Wy = ( 0 1 ), and h € Si(1), and the operator Wy is Hermi-

tian, we have

< hh(Nz) >y =N"3< h|Wy,h(z) >n.

Now let F' be a fundamental domain of T'g(1)\H and let the elements

10 0 —1
= v = 0<j<N
{71 (0 1>% <1 J) ’ }

be coset representatives for T' = T'o(N)\T'g(1). Then since To(1) = UN"4 To(N)yi,

N-1
= U il

i=—1

is a fundamental domain of T'y(INV)\H. So we have

i dwdy

< hh(Nz) Sy= N5 Z/ (hWx)(2)R(Z)y
j=—1



Using the change of variable z = ~;w, where w = u 4+ 7v we find that this is

e N L dudv
=NE Y [ (W) ) ) R ) =g
j=—1
Now let Tr(h|Wy) = ;y:ill(h|WN)|fyj, then since hly; = h (h € Sk(1)), we have
<h,h(Nz) >y = N"2 < Tr(h|Wy),h >1 .
But we know that
Tr(h|Wy) = N5 ¢, (N)h

where ¢, (V) is the N-th Fourier coefficient of h (see [4] P. 175, Problem 8). This completes
the proof. O

Now we use the above Lemma to get a lower bound for < f, f >n.
Lemma 5 If f € Py — Fn and N is a prime then
<f,f>~ > (N—4N%+1) < h,h >
where h is the normalized newform of weight k and level 1 associated to f.
Proof: Proposition 3.6 and 3.4 of [5] imply that f(z) = h(z) = Ngh(Nz). Now by applying
Lemma 4 we have

<[ f>n = <hENEh(N2),h£ NTh(N2) >y > (N+1£2N2N ey (N)) < hyh>1.

Now applying the Deligne bound (|cj(n)| < d(n)n%) for ¢ (N) yields the result. O

The following proposition is the direct consequence of Lemma 5.

Proposition 4 If f € Py — Fn, for N prime large enough

1
wf<<k;ﬁ

with implied constant depending on k.

We are in the situation that we can prove the main theorem of this paper.

Proof of Theorem 1:
We know that w f<<k% if f € Fn (see [3] p. 178, remark and paragraph following the

Main Theorem), now by Proposition 4 and the Cauchy-Schwarz inequality, we have

ko2 ko2
[ > wrLy (50l < > w + > wr | 22 wrlLe(5:x))
fePn FEFNLs(E x)#0 feEPN—FniLs(Ex)#0 fePN
k log N _ 1 ko2
< (ﬁ{f € Fn; Ly(5,x) # 0} +2d1m5k(1)—> > wilLs(z,x)| -
2 N N) &, 2

Now theorem follows from Propositions 2 and 3. O



6 Non-vanishing of product of twisted modular L-functions

We may try to use the above method to find a lower bound for the number of newforms f
for which Pr(s) = Ly (s, x1)Lf(s,x2) is non-zero at the centre of the critical strip. Here we
assume that y; and y2 are real and distinct such that x1x2(—N) = 1. To do this we need to
derive asymptotic formulae for 3-cp waf(g) and 3 repy wf\Pf(%)\z.

Proposition 5 Let x1 (mod ¢1) and x2 (mod q2) be distinct real primitive Dirichlet charac-
ters such that x1x2(—N) =1, then for N prime we have

k _1
> wiPp(5) = 2L(1, xax2) + O(N "2 log N)
f€PN

where the implied constant depends on q1qs and k.

Proof: In Lemma 3 we have é,,,, = 1. This is because (7(x;))* = xi(—1)g for i = 1, 2 (see
[6] p. 91). So we may repeat the proof of Proposition 3 line by line. The result follows with

the observation that

1 o D(s+E& d
— |, L(2s+1,x1x2)(2m) QS(T%(N%(D)S*
i J(3) (k) s
is equal to

2L(1, x1x2) + O(N_%). ]

We recall from (1) the definition of g(z) as

_ L - 7251_‘(5
900) = 527 ) 2

+
[SIES

For x > 0 and a non-negative integer v, let
1 o0 x 1 1
Ky(x) = 5/ e~ 2 (Wt )y =+ gy,
0

be the K,-Bessel function.

In the next lemma we give a representation of g(x) as a sum of the K-Bessel functions.

k_q ks
Lemma 6 g(z) = %g) 2, %(27r\/5)2+JK§7j(47r\/5)

Proof: From the definition of g(x) and I' function we have

—Sﬁ

S

2 1 [ee] (e%e]
I=T() gla)=5— | ( by L () gt ) ()
2 21 (%) 0 0

10



By interchanging the order of integration we get

— o E—l —t1 o —t2 E_l
I = t12” e ( 2 e to2 dtg)dtl.
0 mTeT

t1

Now the result follows by applying integration by parts in I and the fact that

k
1

oo k - 47r2:1: J

/ t2 1 e T gt = 2(4n?x) 2K@7]-(47T\/E)
0 2

(see [7] p. 235, Formula 9.42). O

for <1

1
L 7
emma g(x) < { x%,%e_zm\/i for x>1

Proof: By moving the line of integration from % to —%, we have

3
g9(x) =1+ O(x7)
which proves the Lemma if x < 1.

If z > 1, we know
1

™ _
Ko(w) = (1) e [1+0(3)]
(see [8] p. 202). Now applying this identity to Lemma 6 yields the result. O

Lemma 8 Under the assumptions of Proposition 5, for f € Py and X = Nqig2(log N)2, we

Z crap(l 11)

<X

have

where ¢; K d(,f) log N and the implied constants depend on q1q2 and k.
13

Proof: In Lemma 3 set x = Nqiq2, then we have

— —Qbe l 2

l
N(th

).

k
2

Now by using Lemma 7 and the fact that bs(l)<co?d(l)I2 (see Lemma 1), we have

) +O(NTH). (5)

In (5) the sum can be written as

S 2ig

<x Nq Q2

) D xa(m)xa(n)ag(m)ag(n) = () + (1) (6)

mn=l

where (%) is the sum over the terms with (m, N) = 1, and (}) is the sum over the terms with
N|m.

11



We know that if (m, N) = 1 then for f € Py

af Z d14 @
d|(m,n)

(see [4], p. 163, Proposition 39). Using this identity in (5) yields

=Y 24y ) > xamxen) Yo dTlap(5).

<X N D92 (m,N)=1 d|(mmn)

By setting j = dl—2 and rearranging the above sum, we have

2 . .
=21 X = N ) D xamxa(n) |ap() =Y ajar() ()
<X X J2d 7192 mn=jd2 <X
<./ 5 d|(mn)

where a; < dL,f) log N by using Lemma 7.
j2
Now suppose that N|m. Since m < X = Ngqiq2(log N)Z, for N large enough we can
assume that m = moN where (mg, N) = 1. Using the multiplicative property of ar(n)’s, we

have

)Y almxe ) > dla ﬁ).

mn=l,m=moN d| (mo,n)

=3 23

<x NQ1QQ

Now set d2 = j. Rearranging () yields

k
2N~ 2a;(N) |, jd?
=21 X .,i 9Ga) 2 almxem) fa@) =3 byl
. 2 .
AS A</ 75 ! mn:]«gf(dgom? mor JSx

(8)
dgy)

where 3; < =3 log N. Here again we are using Lemma 7 and the fact that |ay(NN)| < coN
| 2

(Lemma 1).
The result follows from (6), (7) and (8). O

We now employ the following mean value result.

Lemma 9 For N prime and complex numbers c, we have

Z wf\chaf =(1+O0O(N 1X10gX))Zl|cl|2

fePn <X <X

with an absolute implied constant.

Proof: See [2] Theorem 1. O
Now by applying Lemma 9 to Lemma 8, we get

12



Proposition 6 Under the assumption of Proposition 5 we have

2

k
> wilPr(5)l < (log N)®
fE€PN

for k > 2. The implied constant depends on qi1qo and k.

We can now state the proof of Theorem 2.

Proof of Theorem 2:
It is enough to replace Lf(g,x) with Pf(g,x) in the proof of Theorem 1 and apply
propositions 5 and 6. O

Note: In the case k = 2 we get the lower bound CoN (log N)_lo for the number of non-
vanishing Pf(g) (see [1] Theorem 2).
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