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Abstract

We will establish lower bounds in terms of the level for the number of holomorphic
cusp forms of weight k > 2 whose various L-functions do not vanish at the central critical
point. This work generalizes the work of W. Duke [1] which was for the case of weight 2.

1 Introduction

In this paper we study the non-vanishing of the L-function associated to a cusp form of weight
k and level N . More precisely, let FN be the set of all holomorphic (cuspidal) normalized
newforms of weight k and level N . For f ∈ FN and a primitive Dirichlet character mod q

with (q,N) = 1, the twisted L-function associated to f and χ is defined by

Lf (s, χ) =
∞∑
n=1

χ(n)af (n)
ns

.

The twisted L-function is given by an absolutely convergent series on the half-plane Re(s) >
k+1

2 and has an Euler product valid there. Also it has an analytic continuation which satisfies
a certain functional equation for which s = k

2 is the centre of the critical strip. In this context
one may attempt the following problem:

Problem: What can we say about ]{f ∈ FN ; Lf (k2 , χ) 6= 0} if N is large?

One known result concerning this problem is given by W. Duke [1] for the case k = 2.
By comparing mean and mean square estimate for the twisted L-function Lf (s, χ) attached
to a newform f of weight 2, Duke proved that there is a positive absolute constant C and
a constant Cq depending only on q such that for any prime N > Cq there are at least
CN(logN)−2 newforms f ∈ FN for which Lf (1, χ) 6= 0.

The main difficulty in the generalization of the above result to the cusp forms of weight
k is the contribution coming from oldforms of weight k. In this paper, by using a special
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construction of a basis for the space of cusp forms of weight k and level N , introduced by
A. Pizer [5], We show that the contribution of oldforms is negligible, and therefore we obtain
a generalization of Duke’s result to newforms of weight k and level N . More precisely, we
prove the following result.

Theorem 1 Suppose that χ is a fixed primitive Dirichlet character mod q such that (q,N) = 1.
Then there are positive constants Ck (depending only on k) and Cq,k (depending only on q

and k) such that for prime N > Cq,k there exist at least CkN(logN)−2 newforms f of weight
k and level N for which Lf (k2 , χ) 6= 0.

We also prove the following theorem about the non-vanishing of the product of two distinct
twist of a modular L-function, which is again a generalization of a result of W. Duke ( [1]
Theorem 2).

Theorem 2 Let k > 2 and χ1 (mod q1) and χ2 (mod q2) be fixed distinct real primitive
Dirichlet characters such that χ1χ2(−N) = 1. Then there are positive constants C1 and C2

depending only on q1q2 and k such that for prime N > C1 there exist at least C2N(logN)−6

newforms f of weight k and level N for which Lf (k2 , χ1)Lf (k2 , χ2) 6= 0.

The main technical tool in the proof of these results is the “semi-orthogonality” of the
Fourier coefficients of an orthonormal basis of Sk(N) (Proposition 1) which is a consequence
of the Petersson formulae about Poincaré series. Section 2 describe this technical tool and
also introduces a certain basis of the space of cusp forms which has been studied by Pizer. In
Sections 3 and 4 we prove mean and mean square estimate for the twisted L-function attached
to an element of the basis introduced in Section 2. Using these estimates and establishing a
lower bound for the Petersson inner product in Section 5, we will be able to prove Theorem
1. Section 6 describes a proof of Theorem 2.

2 A basis for Sk(N)

We review some basic facts concerning modular forms. Let Sk(N) be the space of cusp forms
of weight k for Γ0(N) with trivial character. The space Sk(N) is a finite dimensional complex
vector space. Moreover, one can define an inner product called Petersson inner product on
Sk(N) by

< f, g >=
∫

Γ0(N)\H
f(z)g(z)yk

dxdy

y2

where H denotes the upper half plane. For 0 6= f ∈ Sk(N) set

ωf =
Γ(k − 1)

(4π)k−1 < f, f >
.

If f ∈ Sk(N), we write the Fourier expansion of f at i∞ as

f(z) =
∞∑
n=1

af (n)e(nz).
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The following proposition explains the so called “semi-orthogonality” of the Fourier coeffi-
cients of an orthogonal basis of Sk(N).

Proposition 1 If {f1, ..., fr} is an orthogonal basis for Sk(N), for m and n positive integers
we have the inequality

|
∑
i

ωfi
afi(m)√
mk−1

afi(n)√
nk−1

− δmn| ≤Md(N)N
1
2
−k(m,n)

1
2

√
(mn)k−1

where M is a constant depending only on k and d(N) is the number of divisor of N .

Proof: See [1] Lemma 1. 2

We are going to generalize Duke’s result to cusp forms of weight k and prime level N
(see [1], Theorem 1). The first difficulty that we encounter is that FN is not a basis for
Sk(N) when k is large (more precisely if k > 12 and k 6= 14). So we must find a basis for
Sk(N) with good analytic properties. A theorem of Pizer guarantees the existence of such
basis for Sk(N).

Given a two by two real matrix γ =

(
a b

c d

)
with positive determinant, define its action

on a modular form f of weight k to be

(f |γ)(z) = (det γ)
k
2 (cz + d)−kf(

az + b

cz + d
).

Now let {Tp (p 6 |N), Uq (q|N)} be the collection of the classical Hecke operators and let
Wq (q|N) be the “W operator” of Atkin and Lehner . In 1983 A. Pizer introduced the
operators Cq on Sk(N) for q|N , such that the action of Cq on the new part of Sk(N) is the
same as the action of the classical Uq operators. More precisely he defined Cq as

Cq = Uq +WqUqWq + q
k
2
−1Wq if q‖N

Cq = Uq +WqUqWq if q2|N.

then he showed that Tp (p 6 |N), Cq (q|N) form a commuting family of Hermitian operators.
Using this, he proved ([5] Theorem 3.10) the following result.

Theorem There exists a basis fi(z) (1 ≤ i ≤ dim Sk(N)) of Sk(N) such that each fi(z) is an
eigenform for all the Tp and Cq operators with p 6 |N and q|N . Let f(z) =

∑∞
n=1 af (n)e(z) be

an element of this basis. Then af (1) 6= 0 and assuming f(z) is normalized so that af (1) = 1,
we have f |Tp = af (p)f for all p 6 |N , f |Cq = af (q)f for all q|N , and af (nm) = af (n)af (m)
whenever (n,m) = 1. Furthermore f(z) is an eigenform for all Wq operators, q|N . Finally,
if g(z) ∈ Sk(N) is an eigenform for all the Tp and Cq operators with p 6 |N and q|N , then
g(z) = cfi(z) for some c ∈ C∗ and some unique i, 1 ≤ i ≤ dim Sk(N).
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Now let PN be the basis of Sk(N) given by the above theorem. The elements of PN form
an orthogonal basis for Sk(N) and their L-functions have analytic continuation and satisfy
certain functional equations. We can show that the action of Cq on Sk(N)new is the same as
the action of Uq (see [5] Remark 2.9). This shows that FN ⊂ PN .

In the sequel we need an estimation for the Fourier coefficient of an oldform in PN .

Lemma 1 Suppose N is a prime and f ∈ PN . Then

|af (n)| ≤ c0n
k
2

where c0 is an absolute constant independent of f .

Proof: If f ∈ FN we know that |af (n)| ≤ d(n)n
k−1

2 (Deligne’s bound) and therefore the
result is clear.

If f ∈ PN −FN Propositions 3.6 and 3.4 of [5] imply that

f(z) = h(z)±N
k
2 h(Nz)

where h is the normalized newform of weight k and level 1 associated to f . Now if (n,N) = 1
then af (n) = ch(n) where ch(N) is the N -th Fourier coefficient of h, and therefore the Deligne
bound implies the result, and if (n,N) 6= 1 then n = mN and we can write

af (Nm) = ch(Nm) +Ach(m).

By using the Deligne bound for the Fourier coefficients of h we get

|af (Nm)| ≤ d(Nm)(Nm)
k−1

2 +N
k
2 d(m)m

k−1
2

=

(
d(Nm)

(Nm)
1
2

+
d(m)

m
1
2

)
(Nm)

k
2 .

The result follows from the fact that d(n) = O(n
1
2 ) with an absolute constant. 2

3 First moments

In this section we will find an asymptotic formula for
∑
f∈PN ωfLf (k2 , χ). Let f ∈ PN , then

since it is an eigenform for the Atkin-Lehner involution, the twisted L-function Lf (s, χ) is
known to be entire and to satisfy the functional equation(

q
√
N

2π

)s
Γ(s)Lf (s, χ) = εχ

(
q
√
N

2π

)k−s
Γ(k − s)Lf (k − s, χ̄)

where εχ = εfχ(N)τ(χ)2q−1 with εf = ±1 (the root number of f) which depends only on f

and τ(χ) is the Gauss sum (see [6] p. 93).
We start with giving a representation of Lf (k2 , χ) as a sum of two convergent series for

f ∈ PN using the functional equation.
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Lemma 2 For any x > 0, let

A(x) =
∑
n≥1

χ(n)af (n)n−
k
2 {

k
2
−1∑
j=0

1
j!

(
2πn
x

)
j

}e−
2πn
x .

Where f ∈ PN and χ is a fixed primitive Dirichlet character mod q with (q,N) = 1. Then
we have

Lf (
k

2
, χ) = A(x) + εχĀ(Nq2/x)

where εχ is the root number of Lf (s, χ) and Ā is the conjugate of A.

Proof: Define the function E(x) by

E(x) =
1

2πi

∫
( 3

4
)
(−1
x

)
s

Γ(s+
k

2
)
ds

s

then

1
Γ(k2 )

E(−1
x

) = (

k
2
−1∑
j=0

1
j!

(
1
x

)
j

)e−
1
x .

Now by definition of E(x), it is clear that

A(x) =
1

2πi

∫
( 3

4
)
Lf (s+

k

2
, χ)(

x

2π
)
sΓ(s+ k

2 )
Γ(k2 )

s−1ds.

Moving the line of integration from 3
4 to −3

4 , and using the functional equation for Lf (s, χ)
yields

A(x) = Lf (
k

2
, χ) + εχ

∫
(− 3

4
)
(

2πx
q2N

)
sΓ(−s+ k

2 )
Γ(k2 )

Lf (−s+
k

2
, χ̄)s−1ds

Now changing variables s 7→ −s gives the result. 2

Proposition 2 Let χ be a fixed primitive character modulo q. Then we have∑
f∈PN

ωfLf (
k

2
, χ) = 1 +O(N−

1
2 (logN)k−1)

for N prime. The implied constant depends on q and k.

Proof: Choosing x = q2N logN in Lemma 2 gives

Ā(
Nq2

x
) =

∑
n≥1

χ(n)af (n)n−
k
2


k
2
−1∑
j=0

1
j!

(2πn logN)j

 (N−2π)n.

Using Lemma 1, we get

|Ā(
Nq2

x
)| ≤ c0

k

2
(2π)

k
2
−1(logN)

k
2
−1O(N−2π).
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Therefore from Lemma 2, we have

∑
f∈PN

ωfLf (
k

2
, χ)−1 =

∑
n≥1

χ(n)

 ∑
f∈PN

ωf
af (n)√
nk−1

− δ1n




k
2
−1∑
j=0

1
j!

(
2πn

q2N logN
)
j

 1√
n
e
− 2πn
q2N logN

+(

k
2
−1∑
j=0

1
j!

(
2π

q2N logN
)
j

)e−
2π

q2N logN − 1 + (
∑
f∈PN

ωf )O(N−6(logN)
k
2
−1).

Proposition 1, with m = n = 1 implies∑
f∈PN

ωf = 1 +O(N
1
2
−k).

Now by applying m = 1 in Proposition 1 and using the above identity, we have

|
∑
f∈PN

ωfLf (
k

2
, χ)− 1| ≤M1N

1
2
−k∑

n≥1

nk−2e
− 2πn
q2N logN +

 ∞∑
j= k

2

1
j!

(
2π

q2N logN
)
j

 e− 2π
q2N logN

+M2N
−6(logN)

k
2
−1 ≤M3N

− 1
2 (logN)k−1 +M4(N logN)−

k
2 +M2N

−6(logN)
k
2
−1

where M1,M2,M3,M4 are constants. This completes the proof. 2

4 Second moments

In this section we are going to find an asymptotic relation for the average values of |Lf (k2 , χ)|2

where f varies over PN . To start let Pf (s) = Lf (s, χ1)Lf (s, χ2) where χ1 and χ2 are fixed
primitive Dirichlet characters mod q1 and q2. Then we have Pf (s) =

∑
l≥1 bf (l)l−s, where

bf (l) =
∑
mn=l

χ1(m)χ2(n)af (m)af (n).

Define for x > 0

g(x) =
1

2πi

∫
( 3

4
)
(2π)−2sΓ(s+ k

2 )
2

Γ(k2 )
2 x−s

ds

s
(1)

and set B(x) =
∑
l≥1 bf (l)l−

k
2 g( lx). Then we have

Lemma 3 Let f ∈ PN and suppose that χ1 and χ2 are primitive Dirichlet characters mod
q1, q2 with (q1q2, N) = 1. For any x > 0, we have

Pf (
k

2
) = B(x) + ε̂χ1χ2B̄(

(Nq1q2)2

x
)

where ε̂χ1χ2 = χ1χ2(N)(τ(χ1)τ(χ2))2(q1q2)−1 is the root number of Pf (s) and B̄ is the con-
jugate of B.
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Proof: It is similar to the proof of Lemma 2, by writing B(x) as a line integral, moving the
line of integration to the left of zero and applying the functional equation of Pf (s), we get
the desired result. 2

We come now to the following proposition.

Proposition 3 Let χ be a primitive Dirichlet character mod q. Then

∑
f∈PN

ωf |Lf (
k

2
, χ)|

2

=
∑
f∈PN

ωfPf (
k

2
) =

∏
p|q

(1− p−1) logN + c+O(N−
1
2 logN)

for N prime with (q,N) = 1, where c and the implied constant depend on q and k.

Proof: In Lemma 3, set χ1 = χ, χ2 = χ̄, we have B = B̄ and ε̂χχ̄ = 1. In Lemma 3 let
x = Nq2, then∑

f∈PN

ωfPf (
k

2
) = 2

∑
m,n≥1

χ(m)χ̄(n)g(
mn

Nq2
)

1

(mn)
1
2

∑
f∈PN

ωf
af (m)√
mk−1

af (n)√
nk−1

.

By Proposition 1, it is clear that∑
f∈PN

ωfPf (
k

2
) = 2

∑
n≥1

|χ(n)|2g(
n2

Nq2
)n−1 +R (2)

where
R� N

1
2
−k ∑

m,n≥1

g(
mn

Nq2
)(m,n)

1
2 (mn)

k
2
−1. (3)

The first term on the right hand side of (2) is evaluated using the definition of g as

1
πi

∫
( 3

4
)
L(2s+ 1, χ0)(2π)−2sΓ(s+ k

2 )
2

Γ(k2 )
2 (Nq2)s

ds

s

where χ0 is the principal character mod q and L(s, χ0) = ζ(s)
∏
p|q(1− 1

ps ). Since the integrand
has a double pole at s = 0, by moving the line of integration from 3

4 to −1
2 , we see that the

above integral is equal to ∏
p|q

(1− p−1) logN + c+O(N−
1
2 ). (4)

Now in (3) we calculate
∑
m,n≥1 g( mn

Nq2 )(m,n)
1
2 (mn)

k
2
−1. It is

1
2πi

∫
( k+1

2
)
(2π)−2sΓ(s+ k

2 )
2

Γ(k2 )
2

 ∑
m,n≥1

(m,n)
1
2 (mn)−(s− k

2
+1)

 (Nq2)s
ds

s

because the integrand does not have any poles in the strip 3
4 < Re(s) < k+1

2 and∑
m,n≥1

(m,n)
1
2 (mn)−(s− k

2
+1)
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is absolutely convergent. Next we use the following identity

∑
m,n≥1

(m,n)
1
2 (mn)−(s− k

2
+1) =

ζ(2s− k + 3
2)ζ(s− k

2 + 1)
2

ζ(2s− k + 2)

(See [1] Lemma 4 ). By moving the line of integration from k+1
2 to k

2 − ε (ε > 0) we get

∑
m,n≥1

g(
mn

Nq2
)(m,n)

1
2 (mn)

k
2
−1 ∼ c1N

k
2 logN

and by (3), R� N
1
2
− k

2 logN . This and (4) prove the Proposition. 2

5 A lower bound for the Petersson inner product

To complete the proof of Theorem 1 we need a lower bound in terms of N for < f, f > when
f ∈ PN . Note that if N1|N2 then Sk(N1) ⊂ Sk(N2), therefore the value of the Petersson inner
product depends on N . To emphasize this dependency from now on we show the Petersson
inner product by < ., . >N .

Lemma 4 If h is a normalized newform of level 1, then

< h, h(Nz) >N = N1−kch(N)< h, h >1

where ch(N) is the N -th Fourier coefficient of h.

Proof: Since

(
0 1
−1 0

)
WN =

(
N 0
0 1

)
, and h ∈ Sk(1), and the operator WN is Hermi-

tian, we have
< h, h(Nz) >N = N−

k
2< h|WN , h(z) >N .

Now let F be a fundamental domain of Γ0(1)\H and let the elements{
γ−1 =

(
1 0
0 1

)
, γj =

(
0 −1
1 j

)
, 0 ≤ j < N

}

be coset representatives for Γ = Γ0(N)\Γ0(1). Then since Γ0(1) =
⋃N−1
i=−1 Γ0(N)γi,

F ′ =
N−1⋃
i=−1

γiF

is a fundamental domain of Γ0(N)\H. So we have

< h, h(Nz) >N= N−
k
2

N−1∑
j=−1

∫
γjF

(h|WN )(z)h(z)yk
dxdy

y2
.
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Using the change of variable z = γjw, where w = u+ iv we find that this is

= N−
k
2

N−1∑
j=−1

∫
F

((h|WN )|γj)(w)(h|γj)(w)vk
dudv

v2
.

Now let Tr(h|WN ) =
∑N−1
j=−1(h|WN )|γj , then since h|γj = h (h ∈ Sk(1)), we have

< h, h(Nz) >N = N−
k
2 < Tr(h|WN ), h >1 .

But we know that
Tr(h|WN ) = N1− k

2 ch(N)h

where ch(N) is the N -th Fourier coefficient of h (see [4] P. 175, Problem 8). This completes
the proof. 2

Now we use the above Lemma to get a lower bound for < f, f >N .

Lemma 5 If f ∈ PN −FN and N is a prime then

< f, f >N ≥ (N − 4N
1
2 + 1) < h, h >1

where h is the normalized newform of weight k and level 1 associated to f .

Proof: Proposition 3.6 and 3.4 of [5] imply that f(z) = h(z)±N
k
2 h(Nz). Now by applying

Lemma 4 we have

< f, f >N = < h±N
k
2 h(Nz), h±N

k
2 h(Nz) >N ≥

(
N + 1± 2N

k
2N1−kch(N)

)
< h, h >1.

Now applying the Deligne bound (|ch(n)| ≤ d(n)n
k−1

2 ) for ch(N) yields the result. 2

The following proposition is the direct consequence of Lemma 5.

Proposition 4 If f ∈ PN −FN , for N prime large enough

ωf�k
1
N

with implied constant depending on k.

We are in the situation that we can prove the main theorem of this paper.

Proof of Theorem 1:
We know that ωf�k

logN
N if f ∈ FN (see [3] p. 178, remark and paragraph following the

Main Theorem), now by Proposition 4 and the Cauchy-Schwarz inequality, we have

|
∑
f∈PN

ωfLf (
k

2
, χ)|

2

≤

 ∑
f∈FN ;Lf ( k

2
,χ) 6=0

ωf +
∑

f∈PN−FN ;Lf ( k
2
,χ) 6=0

ωf

 ∑
f∈PN

ωf |Lf (
k

2
, χ)|

2

�
(
]{f ∈ FN ; Lf (

k

2
, χ) 6= 0} logN

N
+ 2dimSk(1)

1
N

) ∑
f∈PN

ωf |Lf (
k

2
, χ)|

2

.

Now theorem follows from Propositions 2 and 3. 2
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6 Non-vanishing of product of twisted modular L-functions

We may try to use the above method to find a lower bound for the number of newforms f
for which Pf (s) = Lf (s, χ1)Lf (s, χ2) is non-zero at the centre of the critical strip. Here we
assume that χ1 and χ2 are real and distinct such that χ1χ2(−N) = 1. To do this we need to
derive asymptotic formulae for

∑
f∈PN ωfPf (k2 ) and

∑
f∈PN ωf |Pf (k2 )|2.

Proposition 5 Let χ1 (mod q1) and χ2 (mod q2) be distinct real primitive Dirichlet charac-
ters such that χ1χ2(−N) = 1, then for N prime we have

∑
f∈PN

ωfPf (
k

2
) = 2L(1, χ1χ2) +O(N−

1
2 logN)

where the implied constant depends on q1q2 and k.

Proof: In Lemma 3 we have ε̂χ1χ2 = 1. This is because (τ(χi))
2 = χi(−1)qi for i = 1, 2 (see

[6] p. 91). So we may repeat the proof of Proposition 3 line by line. The result follows with
the observation that

1
πi

∫
( 3

4
)
L(2s+ 1, χ1χ2)(2π)−2sΓ(s+ k

2 )
2

Γ(k2 )
2 (Nq1q2)s

ds

s

is equal to
2L(1, χ1χ2) +O(N−

1
2 ). 2

We recall from (1) the definition of g(x) as

g(x) =
1

2πi

∫
( 3

4
)
(2π)−2sΓ(s+ k

2 )
2

Γ(k2 )
2 x−s

ds

s
.

For x > 0 and a non-negative integer v, let

Kv(x) =
1
2

∫ ∞
0

e−
x
2

(u+ 1
u

)u−(v+1)du

be the Kv-Bessel function.
In the next lemma we give a representation of g(x) as a sum of the K-Bessel functions.

Lemma 6 g(x) = 2
Γ( k

2
)

∑ k
2
−1

j=0
1
j!(2π

√
x)

k
2

+j
K k

2
−j(4π

√
x)

Proof: From the definition of g(x) and Γ function we have

I = Γ(
k

2
)
2

g(x) =
1

2πi

∫
( 3

4
)
(
∫ ∞

0

∫ ∞
0

t1
s+ k

2
−1t2

s+ k
2
−1e−(t1+t2)dt1dt2)(4π2x)−s

ds

s
.
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By interchanging the order of integration we get

I =
∫ ∞

0
t1

k
2
−1e−t1(

∫ ∞
4π2x
t1

e−t2t2
k
2
−1dt2)dt1.

Now the result follows by applying integration by parts in I and the fact that∫ ∞
0

t
k
2
−1−je−(t+ 4π2x

t
)dt = 2(4π2x)

k
4
− j

2K k
2
−j(4π

√
x)

(see [7] p. 235, Formula 9.42). 2

Lemma 7 g(x)�
{

1 for x ≤ 1
x
k
2
− 3

4 e−4π
√
x for x > 1

.

Proof: By moving the line of integration from 3
4 to −3

4 , we have

g(x) = 1 +O(x
3
4 )

which proves the Lemma if x ≤ 1.
If x > 1, we know

Kv(x) = (
π

2x
)

1
2
e−x[1 +O(

1
x

)]

(see [8] p. 202). Now applying this identity to Lemma 6 yields the result. 2

Lemma 8 Under the assumptions of Proposition 5, for f ∈ PN and X = Nq1q2(logN)2, we
have

Pf (
k

2
) =

∑
l≤X

claf (l) +O(N−11)

where cl � d(j)

l
k
2

logN and the implied constants depend on q1q2 and k.

Proof: In Lemma 3 set x = Nq1q2, then we have

Pf (
k

2
) = 2

∞∑
l=1

bf (l)l−
k
2 g(

l

Nq1q2
).

Now by using Lemma 7 and the fact that bf (l)≤c0
2d(l)l

k
2 (see Lemma 1), we have

Pf (
k

2
) = 2

∑
l≤X

bf (l)l−
k
2 g(

l

Nq1q2
) +O(N−11). (5)

In (5) the sum can be written as

∑
l≤X

2l−
k
2 g(

l

Nq1q2
)
∑
mn=l

χ1(m)χ2(n)af (m)af (n) = (∗) + (†) (6)

where (∗) is the sum over the terms with (m,N) = 1, and (†) is the sum over the terms with
N |m.

11



We know that if (m,N) = 1 then for f ∈ PN

af (m)af (n) =
∑

d|(m,n)

dk−1af (
mn

d2
)

(see [4], p. 163, Proposition 39). Using this identity in (5) yields

(∗) =
∑
l≤X

2l−
k
2 g(

l

Nq1q2
)

∑
mn=l,(m,N)=1

χ1(m)χ2(n)
∑

d|(m,n)

dk−1af (
l

d2
).

By setting j = l
d2 and rearranging the above sum, we have

(∗) =
∑
j≤X

 ∑
d≤
√

X
j

2

j
k
2 d

g(
jd2

Nq1q2
)
∑

mn=jd2

d|(m,n)

χ1(m)χ2(n)

 af (j) =
∑
j≤X

αjaf (j) (7)

where αj � d(j)

j
k
2

logN by using Lemma 7.

Now suppose that N |m. Since m ≤ X = Nq1q2(logN)2, for N large enough we can
assume that m = m0N where (m0, N) = 1. Using the multiplicative property of af (n)’s, we
have

(†) =
∑
l≤X

2l−
k
2 g(

l

Nq1q2
)

∑
mn=l,m=m0N

χ1(m)χ2(n)af (N)
∑

d|(m0,n)

dk−1af (
l

Nd2
).

Now set l
Nd2 = j. Rearranging (†) yields

(†) =
∑
j≤X

N

 ∑
d≤
√

X
Nj

2N−
k
2 af (N)

j
k
2 d

g(
jd2

q1q2
)

∑
mn=Njd2,m=m0N

d|(m0,n)

χ1(m)χ2(n)

 af (j) =
∑
j≤X

N

βjaf (j)

(8)
where βj � d(j)

j
k
2

logN . Here again we are using Lemma 7 and the fact that |af (N)| ≤ c0N
k
2

(Lemma 1).
The result follows from (6), (7) and (8). 2

We now employ the following mean value result.

Lemma 9 For N prime and complex numbers cn we have

∑
f∈PN

ωf |
∑
l≤X

claf (l)|
2

= (1 +O(N−1X logX))
∑
l≤X

l|cl|2

with an absolute implied constant.

Proof: See [2] Theorem 1. 2

Now by applying Lemma 9 to Lemma 8, we get

12



Proposition 6 Under the assumption of Proposition 5 we have

∑
f∈PN

ωf |Pf (
k

2
)|

2

� (logN)5

for k > 2. The implied constant depends on q1q2 and k.

We can now state the proof of Theorem 2.

Proof of Theorem 2:
It is enough to replace Lf (k2 , χ) with Pf (k2 , χ) in the proof of Theorem 1 and apply

propositions 5 and 6. 2

Note: In the case k = 2 we get the lower bound C2N(logN)−10 for the number of non-
vanishing Pf (k2 ) (see [1] Theorem 2).
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