Non-Vanishing of Weight k Modular L-Functions with Large

 LevelAmir Akbary

Abstract

We will establish lower bounds in terms of the level for the number of holomorphic cusp forms of weight $k>2$ whose various L-functions do not vanish at the central critical point. This work generalizes the work of W. Duke [1] which was for the case of weight 2.

1 Introduction

In this paper we study the non-vanishing of the L-function associated to a cusp form of weight k and level N. More precisely, let \mathcal{F}_{N} be the set of all holomorphic (cuspidal) normalized newforms of weight k and level N. For $f \in \mathcal{F}_{N}$ and a primitive Dirichlet character mod q with $(q, N)=1$, the twisted L-function associated to f and χ is defined by

$$
L_{f}(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n) a_{f}(n)}{n^{s}}
$$

The twisted L-function is given by an absolutely convergent series on the half-plane $\operatorname{Re}(s)>$ $\frac{k+1}{2}$ and has an Euler product valid there. Also it has an analytic continuation which satisfies a certain functional equation for which $s=\frac{k}{2}$ is the centre of the critical strip. In this context one may attempt the following problem:

Problem: What can we say about $\sharp\left\{f \in \mathcal{F}_{N} ; L_{f}\left(\frac{k}{2}, \chi\right) \neq 0\right\}$ if N is large?
One known result concerning this problem is given by W. Duke [1] for the case $k=2$. By comparing mean and mean square estimate for the twisted L-function $L_{f}(s, \chi)$ attached to a newform f of weight 2 , Duke proved that there is a positive absolute constant C and a constant C_{q} depending only on q such that for any prime $N>C_{q}$ there are at least $C N(\log N)^{-2}$ newforms $f \in \mathcal{F}_{N}$ for which $L_{f}(1, \chi) \neq 0$.

The main difficulty in the generalization of the above result to the cusp forms of weight k is the contribution coming from oldforms of weight k. In this paper, by using a special

[^0]construction of a basis for the space of cusp forms of weight k and level N, introduced by A. Pizer [5], We show that the contribution of oldforms is negligible, and therefore we obtain a generalization of Duke's result to newforms of weight k and level N. More precisely, we prove the following result.

Theorem 1 Suppose that χ is a fixed primitive Dirichlet character $\bmod q$ such that $(q, N)=1$. Then there are positive constants C_{k} (depending only on k) and $C_{q, k}$ (depending only on q and k) such that for prime $N>C_{q, k}$ there exist at least $C_{k} N(\log N)^{-2}$ newforms f of weight k and level N for which $L_{f}\left(\frac{k}{2}, \chi\right) \neq 0$.

We also prove the following theorem about the non-vanishing of the product of two distinct twist of a modular L-function, which is again a generalization of a result of W. Duke ([1] Theorem 2).

Theorem 2 Let $k>2$ and $\chi_{1}\left(\bmod q_{1}\right)$ and $\chi_{2}\left(\bmod q_{2}\right)$ be fixed distinct real primitive Dirichlet characters such that $\chi_{1} \chi_{2}(-N)=1$. Then there are positive constants C_{1} and C_{2} depending only on $q_{1} q_{2}$ and k such that for prime $N>C_{1}$ there exist at least $C_{2} N(\log N)^{-6}$ newforms f of weight k and level N for which $L_{f}\left(\frac{k}{2}, \chi_{1}\right) L_{f}\left(\frac{k}{2}, \chi_{2}\right) \neq 0$.

The main technical tool in the proof of these results is the "semi-orthogonality" of the Fourier coefficients of an orthonormal basis of $S_{k}(N)$ (Proposition 1) which is a consequence of the Petersson formulae about Poincaré series. Section 2 describe this technical tool and also introduces a certain basis of the space of cusp forms which has been studied by Pizer. In Sections 3 and 4 we prove mean and mean square estimate for the twisted L-function attached to an element of the basis introduced in Section 2. Using these estimates and establishing a lower bound for the Petersson inner product in Section 5, we will be able to prove Theorem 1. Section 6 describes a proof of Theorem 2.

2 A basis for $S_{k}(N)$

We review some basic facts concerning modular forms. Let $S_{k}(N)$ be the space of cusp forms of weight k for $\Gamma_{0}(N)$ with trivial character. The space $S_{k}(N)$ is a finite dimensional complex vector space. Moreover, one can define an inner product called Petersson inner product on $S_{k}(N)$ by

$$
<f, g>=\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f(z) \overline{g(z)} y^{k} \frac{d x d y}{y^{2}}
$$

where \mathcal{H} denotes the upper half plane. For $0 \neq f \in S_{k}(N)$ set

$$
\omega_{f}=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}<f, f>} .
$$

If $f \in S_{k}(N)$, we write the Fourier expansion of f at $i \infty$ as

$$
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(n z)
$$

The following proposition explains the so called "semi-orthogonality" of the Fourier coefficients of an orthogonal basis of $S_{k}(N)$.

Proposition 1 If $\left\{f_{1}, \ldots, f_{r}\right\}$ is an orthogonal basis for $S_{k}(N)$, for m and n positive integers we have the inequality

$$
\left|\sum_{i} \omega_{f_{i}} \frac{a_{f_{i}}(m)}{\sqrt{m^{k-1}}} \frac{a_{f_{i}}(n)}{\sqrt{n^{k-1}}}-\delta_{m n}\right| \leq M \boldsymbol{d}(N) N^{\frac{1}{2}-k}(m, n)^{\frac{1}{2}} \sqrt{(m n)^{k-1}}
$$

where M is a constant depending only on k and $\boldsymbol{d}(N)$ is the number of divisor of N.
Proof: See [1] Lemma 1.
We are going to generalize Duke's result to cusp forms of weight k and prime level N (see [1], Theorem 1). The first difficulty that we encounter is that \mathcal{F}_{N} is not a basis for $S_{k}(N)$ when k is large (more precisely if $k>12$ and $k \neq 14$). So we must find a basis for $S_{k}(N)$ with good analytic properties. A theorem of Pizer guarantees the existence of such basis for $S_{k}(N)$.

Given a two by two real matrix $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ with positive determinant, define its action on a modular form f of weight k to be

$$
(f \mid \gamma)(z)=(\operatorname{det} \gamma)^{\frac{k}{2}}(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)
$$

Now let $\left\{T_{p}(p \nmid N), U_{q}(q \mid N)\right\}$ be the collection of the classical Hecke operators and let $W_{q}(q \mid N)$ be the " W operator" of Atkin and Lehner. In 1983 A. Pizer introduced the operators C_{q} on $S_{k}(N)$ for $q \mid N$, such that the action of C_{q} on the new part of $S_{k}(N)$ is the same as the action of the classical U_{q} operators. More precisely he defined C_{q} as

$$
\begin{gathered}
C_{q}=U_{q}+W_{q} U_{q} W_{q}+q^{\frac{k}{2}-1} W_{q} \quad \text { if } q \| N \\
C_{q}=U_{q}+W_{q} U_{q} W_{q} \quad \text { if } q^{2} \mid N
\end{gathered}
$$

then he showed that $T_{p}(p \nmid N), C_{q}(q \mid N)$ form a commuting family of Hermitian operators. Using this, he proved ([5] Theorem 3.10) the following result.

Theorem There exists a basis $f_{i}(z)\left(1 \leq i \leq \operatorname{dim} S_{k}(N)\right)$ of $S_{k}(N)$ such that each $f_{i}(z)$ is an eigenform for all the T_{p} and C_{q} operators with $p \nmid N$ and $q \mid N$. Let $f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(z)$ be an element of this basis. Then $a_{f}(1) \neq 0$ and assuming $f(z)$ is normalized so that $a_{f}(1)=1$, we have $f \mid T_{p}=a_{f}(p) f$ for all $p \nmid N, f \mid C_{q}=a_{f}(q) f$ for all $q \mid N$, and $a_{f}(n m)=a_{f}(n) a_{f}(m)$ whenever $(n, m)=1$. Furthermore $f(z)$ is an eigenform for all W_{q} operators, $q \mid N$. Finally, if $g(z) \in S_{k}(N)$ is an eigenform for all the T_{p} and C_{q} operators with $p \nmid N$ and $q \mid N$, then $g(z)=c f_{i}(z)$ for some $c \in \mathbb{C}^{*}$ and some unique $i, 1 \leq i \leq \operatorname{dim} S_{k}(N)$.

Now let \mathcal{P}_{N} be the basis of $S_{k}(N)$ given by the above theorem. The elements of \mathcal{P}_{N} form an orthogonal basis for $S_{k}(N)$ and their L-functions have analytic continuation and satisfy certain functional equations. We can show that the action of C_{q} on $S_{k}(N)^{n e w}$ is the same as the action of U_{q} (see [5] Remark 2.9). This shows that $\mathcal{F}_{N} \subset \mathcal{P}_{N}$.

In the sequel we need an estimation for the Fourier coefficient of an oldform in \mathcal{P}_{N}.
Lemma 1 Suppose N is a prime and $f \in \mathcal{P}_{N}$. Then

$$
\left|a_{f}(n)\right| \leq c_{0} n^{\frac{k}{2}}
$$

where c_{0} is an absolute constant independent of f.
Proof: If $f \in \mathcal{F}_{N}$ we know that $\left|a_{f}(n)\right| \leq \mathbf{d}(n) n^{\frac{k-1}{2}}$ (Deligne's bound) and therefore the result is clear.

If $f \in \mathcal{P}_{N}-\mathcal{F}_{N}$ Propositions 3.6 and 3.4 of [5] imply that

$$
f(z)=h(z) \pm N^{\frac{k}{2}} h(N z)
$$

where h is the normalized newform of weight k and level 1 associated to f. Now if $(n, N)=1$ then $a_{f}(n)=c_{h}(n)$ where $c_{h}(N)$ is the N-th Fourier coefficient of h, and therefore the Deligne bound implies the result, and if $(n, N) \neq 1$ then $n=m N$ and we can write

$$
a_{f}(N m)=c_{h}(N m)+A c_{h}(m) .
$$

By using the Deligne bound for the Fourier coefficients of h we get

$$
\begin{gathered}
\left|a_{f}(N m)\right| \leq \mathbf{d}(N m)(N m)^{\frac{k-1}{2}}+N^{\frac{k}{2}} \mathbf{d}(m) m^{\frac{k-1}{2}} \\
=\left(\frac{\mathbf{d}(N m)}{(N m)^{\frac{1}{2}}}+\frac{\mathbf{d}(m)}{m^{\frac{1}{2}}}\right)(N m)^{\frac{k}{2}}
\end{gathered}
$$

The result follows from the fact that $\mathbf{d}(n)=O\left(n^{\frac{1}{2}}\right)$ with an absolute constant.

3 First moments

In this section we will find an asymptotic formula for $\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(\frac{k}{2}, \chi\right)$. Let $f \in \mathcal{P}_{N}$, then since it is an eigenform for the Atkin-Lehner involution, the twisted L-function $L_{f}(s, \chi)$ is known to be entire and to satisfy the functional equation

$$
\left(\frac{q \sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L_{f}(s, \chi)=\epsilon_{\chi}\left(\frac{q \sqrt{N}}{2 \pi}\right)^{k-s} \Gamma(k-s) L_{f}(k-s, \bar{\chi})
$$

where $\epsilon_{\chi}=\epsilon_{f} \chi(N) \tau(\chi)^{2} q^{-1}$ with $\epsilon_{f}= \pm 1$ (the root number of f) which depends only on f and $\tau(\chi)$ is the Gauss sum (see [6] p. 93).

We start with giving a representation of $L_{f}\left(\frac{k}{2}, \chi\right)$ as a sum of two convergent series for $f \in \mathcal{P}_{N}$ using the functional equation.

Lemma 2 For any $x>0$, let

$$
\mathcal{A}(x)=\sum_{n \geq 1} \chi(n) a_{f}(n) n^{-\frac{k}{2}}\left\{\sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}\left(\frac{2 \pi n}{x}\right)^{j}\right\} e^{-\frac{2 \pi n}{x}} .
$$

Where $f \in \mathcal{P}_{N}$ and χ is a fixed primitive Dirichlet character mod q with $(q, N)=1$. Then we have

$$
L_{f}\left(\frac{k}{2}, \chi\right)=\mathcal{A}(x)+\epsilon_{\chi} \overline{\mathcal{A}}\left(N q^{2} / x\right)
$$

where ϵ_{χ} is the root number of $L_{f}(s, \chi)$ and $\overline{\mathcal{A}}$ is the conjugate of \mathcal{A}.
Proof: Define the function $\mathcal{E}(x)$ by

$$
\mathcal{E}(x)=\frac{1}{2 \pi i} \int_{\left(\frac{3}{4}\right)}\left(-\frac{1}{x}\right)^{s} \Gamma\left(s+\frac{k}{2}\right) \frac{d s}{s}
$$

then

$$
\frac{1}{\Gamma\left(\frac{k}{2}\right)} \mathcal{E}\left(-\frac{1}{x}\right)=\left(\sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}\left(\frac{1}{x}\right)^{j}\right) e^{-\frac{1}{x}}
$$

Now by definition of $\mathcal{E}(x)$, it is clear that

$$
\mathcal{A}(x)=\frac{1}{2 \pi i} \int_{\left(\frac{3}{4}\right)} L_{f}\left(s+\frac{k}{2}, \chi\right)\left(\frac{x}{2 \pi}\right)^{s} \frac{\Gamma\left(s+\frac{k}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} s^{-1} d s .
$$

Moving the line of integration from $\frac{3}{4}$ to $-\frac{3}{4}$, and using the functional equation for $L_{f}(s, \chi)$ yields

$$
\mathcal{A}(x)=L_{f}\left(\frac{k}{2}, \chi\right)+\epsilon_{\chi} \int_{\left(-\frac{3}{4}\right)}\left(\frac{2 \pi x}{q^{2} N}\right)^{s} \frac{\Gamma\left(-s+\frac{k}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} L_{f}\left(-s+\frac{k}{2}, \bar{\chi}\right) s^{-1} d s
$$

Now changing variables $s \mapsto-s$ gives the result.

Proposition 2 Let χ be a fixed primitive character modulo q. Then we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(\frac{k}{2}, \chi\right)=1+O\left(N^{-\frac{1}{2}}(\log N)^{k-1}\right)
$$

for N prime. The implied constant depends on q and k.
Proof: Choosing $x=q^{2} N \log N$ in Lemma 2 gives

$$
\overline{\mathcal{A}}\left(\frac{N q^{2}}{x}\right)=\sum_{n \geq 1} \overline{\chi(n)} a_{f}(n) n^{-\frac{k}{2}}\left\{\sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}(2 \pi n \log N)^{j}\right\}\left(N^{-2 \pi}\right)^{n} .
$$

Using Lemma 1, we get

$$
\left|\overline{\mathcal{A}}\left(\frac{N q^{2}}{x}\right)\right| \leq c_{0} \frac{k}{2}(2 \pi)^{\frac{k}{2}-1}(\log N)^{\frac{k}{2}-1} O\left(N^{-2 \pi}\right)
$$

Therefore from Lemma 2, we have

$$
\begin{gathered}
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(\frac{k}{2}, \chi\right)-1=\sum_{n \geq 1} \chi(n)\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f} \frac{a_{f}(n)}{\sqrt{n^{k-1}}}-\delta_{1 n}\right)\left\{\sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}\left(\frac{2 \pi n}{q^{2} N \log N}\right)^{j}\right\} \frac{1}{\sqrt{n}} e^{-\frac{2 \pi n}{q^{2} N \log N}} \\
+\left(\sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}\left(\frac{2 \pi}{q^{2} N \log N}\right)^{j}\right) e^{-\frac{2 \pi}{q^{2} N \log N}}-1+\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f}\right) O\left(N^{-6}(\log N)^{\frac{k}{2}-1}\right) .
\end{gathered}
$$

Proposition 1, with $m=n=1$ implies

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}=1+O\left(N^{\frac{1}{2}-k}\right) .
$$

Now by applying $m=1$ in Proposition 1 and using the above identity, we have

$$
\begin{aligned}
& \left|\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(\frac{k}{2}, \chi\right)-1\right| \leq M_{1} N^{\frac{1}{2}-k} \sum_{n \geq 1} n^{k-2} e^{-\frac{2 \pi n}{q^{2} N \log N}}+\left(\sum_{j=\frac{k}{2}}^{\infty} \frac{1}{j!}\left(\frac{2 \pi}{q^{2} N \log N}\right)^{j}\right) e^{-\frac{2 \pi}{q^{2} N \log N}} \\
& \quad+M_{2} N^{-6}(\log N)^{\frac{k}{2}-1} \leq M_{3} N^{-\frac{1}{2}}(\log N)^{k-1}+M_{4}(N \log N)^{-\frac{k}{2}}+M_{2} N^{-6}(\log N)^{\frac{k}{2}-1}
\end{aligned}
$$

where $M_{1}, M_{2}, M_{3}, M_{4}$ are constants. This completes the proof.

4 Second moments

In this section we are going to find an asymptotic relation for the average values of $\left|L_{f}\left(\frac{k}{2}, \chi\right)\right|^{2}$ where f varies over \mathcal{P}_{N}. To start let $P_{f}(s)=L_{f}\left(s, \chi_{1}\right) L_{f}\left(s, \chi_{2}\right)$ where χ_{1} and χ_{2} are fixed primitive Dirichlet characters $\bmod q_{1}$ and q_{2}. Then we have $P_{f}(s)=\sum_{l \geq 1} b_{f}(l) l^{-s}$, where

$$
b_{f}(l)=\sum_{m n=l} \chi_{1}(m) \chi_{2}(n) a_{f}(m) a_{f}(n) .
$$

Define for $x>0$

$$
\begin{equation*}
g(x)=\frac{1}{2 \pi i} \int_{\left(\frac{3}{4}\right)}(2 \pi)^{-2 s} \frac{\Gamma\left(s+\frac{k}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}} x^{-s} \frac{d s}{s} \tag{1}
\end{equation*}
$$

and set $\mathcal{B}(x)=\sum_{l \geq 1} b_{f}(l) l^{-\frac{k}{2}} g\left(\frac{l}{x}\right)$. Then we have
Lemma 3 Let $f \in \mathcal{P}_{N}$ and suppose that χ_{1} and χ_{2} are primitive Dirichlet characters mod q_{1}, q_{2} with $\left(q_{1} q_{2}, N\right)=1$. For any $x>0$, we have

$$
P_{f}\left(\frac{k}{2}\right)=\mathcal{B}(x)+\hat{\epsilon}_{\chi_{1} \chi_{2}} \overline{\mathcal{B}}\left(\frac{\left(N q_{1} q_{2}\right)^{2}}{x}\right)
$$

where $\hat{\epsilon}_{\chi_{1} \chi_{2}}=\chi_{1} \chi_{2}(N)\left(\tau\left(\chi_{1}\right) \tau\left(\chi_{2}\right)\right)^{2}\left(q_{1} q_{2}\right)^{-1}$ is the root number of $P_{f}(s)$ and $\overline{\mathcal{B}}$ is the conjugate of \mathcal{B}.

Proof: It is similar to the proof of Lemma 2, by writing $\mathcal{B}(x)$ as a line integral, moving the line of integration to the left of zero and applying the functional equation of $P_{f}(s)$, we get the desired result.

We come now to the following proposition.
Proposition 3 Let χ be a primitive Dirichlet character mod q. Then

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(\frac{k}{2}, \chi\right)\right|^{2}=\sum_{f \in \mathcal{P}_{N}} \omega_{f} P_{f}\left(\frac{k}{2}\right)=\prod_{p \mid q}\left(1-p^{-1}\right) \log N+c+O\left(N^{-\frac{1}{2}} \log N\right)
$$

for N prime with $(q, N)=1$, where c and the implied constant depend on q and k.
Proof: In Lemma 3, set $\chi_{1}=\chi, \chi_{2}=\bar{\chi}$, we have $\mathcal{B}=\overline{\mathcal{B}}$ and $\hat{\epsilon}_{\chi \bar{\chi}}=1$. In Lemma 3 let $x=N q^{2}$, then

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} P_{f}\left(\frac{k}{2}\right)=2 \sum_{m, n \geq 1} \chi(m) \bar{\chi}(n) g\left(\frac{m n}{N q^{2}}\right) \frac{1}{(m n)^{\frac{1}{2}}} \sum_{f \in \mathcal{P}_{N}} \omega_{f} \frac{a_{f}(m)}{\sqrt{m^{k-1}}} \frac{a_{f}(n)}{\sqrt{n^{k-1}}}
$$

By Proposition 1, it is clear that

$$
\begin{equation*}
\sum_{f \in \mathcal{P}_{N}} \omega_{f} P_{f}\left(\frac{k}{2}\right)=2 \sum_{n \geq 1}|\chi(n)|^{2} g\left(\frac{n^{2}}{N q^{2}}\right) n^{-1}+R \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
R \ll N^{\frac{1}{2}-k} \sum_{m, n \geq 1} g\left(\frac{m n}{N q^{2}}\right)(m, n)^{\frac{1}{2}}(m n)^{\frac{k}{2}-1} \tag{3}
\end{equation*}
$$

The first term on the right hand side of (2) is evaluated using the definition of g as

$$
\frac{1}{\pi i} \int_{\left(\frac{3}{4}\right)} L\left(2 s+1, \chi_{0}\right)(2 \pi)^{-2 s} \frac{\Gamma\left(s+\frac{k}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\left(N q^{2}\right)^{s} \frac{d s}{s}
$$

where χ_{0} is the principal character $\bmod q$ and $L\left(s, \chi_{0}\right)=\zeta(s) \prod_{p \mid q}\left(1-\frac{1}{p^{s}}\right)$. Since the integrand has a double pole at $s=0$, by moving the line of integration from $\frac{3}{4}$ to $-\frac{1}{2}$, we see that the above integral is equal to

$$
\begin{equation*}
\prod_{p \mid q}\left(1-p^{-1}\right) \log N+c+O\left(N^{-\frac{1}{2}}\right) \tag{4}
\end{equation*}
$$

Now in (3) we calculate $\sum_{m, n \geq 1} g\left(\frac{m n}{N q^{2}}\right)(m, n)^{\frac{1}{2}}(m n)^{\frac{k}{2}-1}$. It is

$$
\frac{1}{2 \pi i} \int_{\left(\frac{k+1}{2}\right)}(2 \pi)^{-2 s} \frac{\Gamma\left(s+\frac{k}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\left(\sum_{m, n \geq 1}(m, n)^{\frac{1}{2}}(m n)^{-\left(s-\frac{k}{2}+1\right)}\right)\left(N q^{2}\right)^{s} \frac{d s}{s}
$$

because the integrand does not have any poles in the strip $\frac{3}{4}<R e(s)<\frac{k+1}{2}$ and

$$
\sum_{m, n \geq 1}(m, n)^{\frac{1}{2}}(m n)^{-\left(s-\frac{k}{2}+1\right)}
$$

is absolutely convergent. Next we use the following identity

$$
\sum_{m, n \geq 1}(m, n)^{\frac{1}{2}}(m n)^{-\left(s-\frac{k}{2}+1\right)}=\frac{\zeta\left(2 s-k+\frac{3}{2}\right) \zeta\left(s-\frac{k}{2}+1\right)^{2}}{\zeta(2 s-k+2)}
$$

(See [1] Lemma 4). By moving the line of integration from $\frac{k+1}{2}$ to $\frac{k}{2}-\epsilon(\epsilon>0)$ we get

$$
\sum_{m, n \geq 1} g\left(\frac{m n}{N q^{2}}\right)(m, n)^{\frac{1}{2}}(m n)^{\frac{k}{2}-1} \sim c_{1} N^{\frac{k}{2}} \log N
$$

and by (3), $R \ll N^{\frac{1}{2}-\frac{k}{2}} \log N$. This and (4) prove the Proposition.

5 A lower bound for the Petersson inner product

To complete the proof of Theorem 1 we need a lower bound in terms of N for $\langle f, f\rangle$ when $f \in \mathcal{P}_{N}$. Note that if $N_{1} \mid N_{2}$ then $S_{k}\left(N_{1}\right) \subset S_{k}\left(N_{2}\right)$, therefore the value of the Petersson inner product depends on N. To emphasize this dependency from now on we show the Petersson inner product by $<., .>_{N}$.

Lemma 4 If h is a normalized newform of level 1, then

$$
<h, h(N z)>_{N}=N^{1-k} c_{h}(N)<h, h>_{1}
$$

where $c_{h}(N)$ is the N-th Fourier coefficient of h.
Proof: Since $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) W_{N}=\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$, and $h \in S_{k}(1)$, and the operator W_{N} is Hermitian, we have

$$
<h, \left.h(N z)>_{N}=N^{-\frac{k}{2}}<h \right\rvert\, W_{N}, h(z)>_{N} .
$$

Now let F be a fundamental domain of $\Gamma_{0}(1) \backslash \mathcal{H}$ and let the elements

$$
\left\{\gamma_{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \gamma_{j}=\left(\begin{array}{cc}
0 & -1 \\
1 & j
\end{array}\right), 0 \leq j<N\right\}
$$

be coset representatives for $\Gamma=\Gamma_{0}(N) \backslash \Gamma_{0}(1)$. Then since $\Gamma_{0}(1)=\bigcup_{i=-1}^{N-1} \Gamma_{0}(N) \gamma_{i}$,

$$
F^{\prime}=\bigcup_{i=-1}^{N-1} \gamma_{i} F
$$

is a fundamental domain of $\Gamma_{0}(N) \backslash \mathcal{H}$. So we have

$$
<h, h(N z)>_{N}=N^{-\frac{k}{2}} \sum_{j=-1}^{N-1} \int_{\gamma_{j} F}\left(h \mid W_{N}\right)(z) \overline{h(z)} y^{k} \frac{d x d y}{y^{2}} .
$$

Using the change of variable $z=\gamma_{j} w$, where $w=u+i v$ we find that this is

$$
=N^{-\frac{k}{2}} \sum_{j=-1}^{N-1} \int_{F}\left(\left(h \mid W_{N}\right) \mid \gamma_{j}\right)(w) \overline{\left(h \mid \gamma_{j}\right)(w)} v^{k} \frac{d u d v}{v^{2}}
$$

Now let $\operatorname{Tr}\left(h \mid W_{N}\right)=\sum_{j=-1}^{N-1}\left(h \mid W_{N}\right) \mid \gamma_{j}$, then since $h \mid \gamma_{j}=h\left(h \in S_{k}(1)\right)$, we have

$$
<h, h(N z)>_{N}=N^{-\frac{k}{2}}<\operatorname{Tr}\left(h \mid W_{N}\right), h>_{1}
$$

But we know that

$$
\operatorname{Tr}\left(h \mid W_{N}\right)=N^{1-\frac{k}{2}} c_{h}(N) h
$$

where $c_{h}(N)$ is the N-th Fourier coefficient of h (see [4] P. 175, Problem 8). This completes the proof.

Now we use the above Lemma to get a lower bound for $<f, f>_{N}$.
Lemma 5 If $f \in \mathcal{P}_{N}-\mathcal{F}_{N}$ and N is a prime then

$$
<f, f>_{N} \geq\left(N-4 N^{\frac{1}{2}}+1\right)<h, h>_{1}
$$

where h is the normalized newform of weight k and level 1 associated to f.
Proof: Proposition 3.6 and 3.4 of [5] imply that $f(z)=h(z) \pm N^{\frac{k}{2}} h(N z)$. Now by applying Lemma 4 we have
$<f, f>_{N}=<h \pm N^{\frac{k}{2}} h(N z), h \pm N^{\frac{k}{2}} h(N z)>_{N} \geq\left(N+1 \pm 2 N^{\frac{k}{2}} N^{1-k} c_{h}(N)\right)<h, h>_{1}$.
Now applying the Deligne bound $\left(\left|c_{h}(n)\right| \leq \mathbf{d}(n) n^{\frac{k-1}{2}}\right)$ for $c_{h}(N)$ yields the result.
The following proposition is the direct consequence of Lemma 5.
Proposition 4 If $f \in \mathcal{P}_{N}-\mathcal{F}_{N}$, for N prime large enough

$$
\omega_{f} \ll k \frac{1}{N}
$$

with implied constant depending on k.
We are in the situation that we can prove the main theorem of this paper.

Proof of Theorem 1:

We know that $\omega_{f} \ll k \frac{\log N}{N}$ if $f \in \mathcal{F}_{N}$ (see [3] p. 178, remark and paragraph following the Main Theorem), now by Proposition 4 and the Cauchy-Schwarz inequality, we have

$$
\begin{gathered}
\left|\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(\frac{k}{2}, \chi\right)\right|^{2} \leq\left(\sum_{f \in \mathcal{F}_{N} ; L_{f}\left(\frac{k}{2}, \chi\right) \neq 0} \omega_{f}+\sum_{f \in \mathcal{P}_{N}-\mathcal{F}_{N} ; L_{f}\left(\frac{k}{2}, \chi\right) \neq 0} \omega_{f}\right) \sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(\frac{k}{2}, \chi\right)\right|^{2} \\
\ll\left(\sharp\left\{f \in \mathcal{F}_{N} ; L_{f}\left(\frac{k}{2}, \chi\right) \neq 0\right\} \frac{\log N}{N}+2 \operatorname{dim} S_{k}(1) \frac{1}{N}\right) \sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(\frac{k}{2}, \chi\right)\right|^{2}
\end{gathered}
$$

Now theorem follows from Propositions 2 and 3.

6 Non-vanishing of product of twisted modular L-functions

We may try to use the above method to find a lower bound for the number of newforms f for which $P_{f}(s)=L_{f}\left(s, \chi_{1}\right) L_{f}\left(s, \chi_{2}\right)$ is non-zero at the centre of the critical strip. Here we assume that χ_{1} and χ_{2} are real and distinct such that $\chi_{1} \chi_{2}(-N)=1$. To do this we need to derive asymptotic formulae for $\sum_{f \in \mathcal{P}_{N}} \omega_{f} P_{f}\left(\frac{k}{2}\right)$ and $\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|P_{f}\left(\frac{k}{2}\right)\right|^{2}$.

Proposition 5 Let $\chi_{1}\left(\bmod q_{1}\right)$ and $\chi_{2}\left(\bmod q_{2}\right)$ be distinct real primitive Dirichlet characters such that $\chi_{1} \chi_{2}(-N)=1$, then for N prime we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} P_{f}\left(\frac{k}{2}\right)=2 L\left(1, \chi_{1} \chi_{2}\right)+O\left(N^{-\frac{1}{2}} \log N\right)
$$

where the implied constant depends on $q_{1} q_{2}$ and k.
Proof: In Lemma 3 we have $\hat{\epsilon}_{\chi_{1} \chi_{2}}=1$. This is because $\left(\tau\left(\chi_{i}\right)\right)^{2}=\chi_{i}(-1) q_{i}$ for $i=1,2$ (see [6] p. 91). So we may repeat the proof of Proposition 3 line by line. The result follows with the observation that

$$
\frac{1}{\pi i} \int_{\left(\frac{3}{4}\right)} L\left(2 s+1, \chi_{1} \chi_{2}\right)(2 \pi)^{-2 s} \frac{\Gamma\left(s+\frac{k}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\left(N q_{1} q_{2}\right)^{s} \frac{d s}{s}
$$

is equal to

$$
2 L\left(1, \chi_{1} \chi_{2}\right)+O\left(N^{-\frac{1}{2}}\right) .
$$

We recall from (1) the definition of $g(x)$ as

$$
g(x)=\frac{1}{2 \pi i} \int_{\left(\frac{3}{4}\right)}(2 \pi)^{-2 s} \frac{\Gamma\left(s+\frac{k}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}} x^{-s} \frac{d s}{s} .
$$

For $x>0$ and a non-negative integer v, let

$$
K_{v}(x)=\frac{1}{2} \int_{0}^{\infty} e^{-\frac{x}{2}\left(u+\frac{1}{u}\right)} u^{-(v+1)} d u
$$

be the K_{v}-Bessel function.
In the next lemma we give a representation of $g(x)$ as a sum of the K-Bessel functions.
Lemma $6 g(x)=\frac{2}{\Gamma\left(\frac{k}{2}\right)} \sum_{j=0}^{\frac{k}{2}-1} \frac{1}{j!}(2 \pi \sqrt{x})^{\frac{k}{2}+j} K_{\frac{k}{2}-j}(4 \pi \sqrt{x})$
Proof: From the definition of $g(x)$ and Γ function we have

$$
I=\Gamma\left(\frac{k}{2}\right)^{2} g(x)=\frac{1}{2 \pi i} \int_{\left(\frac{3}{4}\right)}\left(\int_{0}^{\infty} \int_{0}^{\infty} t_{1}^{s+\frac{k}{2}-1} t_{2}^{s+\frac{k}{2}-1} e^{-\left(t_{1}+t_{2}\right)} d t_{1} d t_{2}\right)\left(4 \pi^{2} x\right)^{-s} \frac{d s}{s} .
$$

By interchanging the order of integration we get

$$
I=\int_{0}^{\infty} t_{1}^{\frac{k}{2}-1} e^{-t_{1}}\left(\int_{\frac{4 \pi^{2} x}{t_{1}}}^{\infty} e^{-t_{2}} t_{2}^{\frac{k}{2}-1} d t_{2}\right) d t_{1}
$$

Now the result follows by applying integration by parts in I and the fact that

$$
\int_{0}^{\infty} t^{\frac{k}{2}-1-j} e^{-\left(t+\frac{4 \pi^{2} x}{t}\right)} d t=2\left(4 \pi^{2} x\right)^{\frac{k}{4}-\frac{j}{2}} K_{\frac{k}{2}-j}(4 \pi \sqrt{x})
$$

(see [7] p. 235, Formula 9.42).
Lemma $7 g(x) \ll\left\{\begin{array}{ll}1 & \text { for } x \leq 1 \\ x^{\frac{k}{2}-\frac{3}{4}} e^{-4 \pi \sqrt{x}} & \text { for } x>1\end{array}\right.$.
Proof: By moving the line of integration from $\frac{3}{4}$ to $-\frac{3}{4}$, we have

$$
g(x)=1+O\left(x^{\frac{3}{4}}\right)
$$

which proves the Lemma if $x \leq 1$.
If $x>1$, we know

$$
K_{v}(x)=\left(\frac{\pi}{2 x}\right)^{\frac{1}{2}} e^{-x}\left[1+O\left(\frac{1}{x}\right)\right]
$$

(see [8] p. 202). Now applying this identity to Lemma 6 yields the result.
Lemma 8 Under the assumptions of Proposition 5, for $f \in \mathcal{P}_{N}$ and $X=N q_{1} q_{2}(\log N)^{2}$, we have

$$
P_{f}\left(\frac{k}{2}\right)=\sum_{l \leq X} c_{l} a_{f}(l)+O\left(N^{-11}\right)
$$

where $c_{l} \ll \frac{\boldsymbol{d}(j)}{l^{\frac{k}{2}}} \log N$ and the implied constants depend on $q_{1} q_{2}$ and k.
Proof: In Lemma 3 set $x=N q_{1} q_{2}$, then we have

$$
P_{f}\left(\frac{k}{2}\right)=2 \sum_{l=1}^{\infty} b_{f}(l) l^{-\frac{k}{2}} g\left(\frac{l}{N q_{1} q_{2}}\right)
$$

Now by using Lemma 7 and the fact that $b_{f}(l) \leq c_{0}{ }^{2} \mathbf{d}(l) l^{\frac{k}{2}}$ (see Lemma 1), we have

$$
\begin{equation*}
P_{f}\left(\frac{k}{2}\right)=2 \sum_{l \leq X} b_{f}(l) l^{-\frac{k}{2}} g\left(\frac{l}{N q_{1} q_{2}}\right)+O\left(N^{-11}\right) \tag{5}
\end{equation*}
$$

In (5) the sum can be written as

$$
\begin{equation*}
\sum_{l \leq X} 2 l^{-\frac{k}{2}} g\left(\frac{l}{N q_{1} q_{2}}\right) \sum_{m n=l} \chi_{1}(m) \chi_{2}(n) a_{f}(m) a_{f}(n)=(*)+(\dagger) \tag{6}
\end{equation*}
$$

where $(*)$ is the sum over the terms with $(m, N)=1$, and (\dagger) is the sum over the terms with $N \mid m$.

We know that if $(m, N)=1$ then for $f \in \mathcal{P}_{N}$

$$
a_{f}(m) a_{f}(n)=\sum_{d \mid(m, n)} d^{k-1} a_{f}\left(\frac{m n}{d^{2}}\right)
$$

(see [4], p. 163, Proposition 39). Using this identity in (5) yields

$$
(*)=\sum_{l \leq X} 2 l^{-\frac{k}{2}} g\left(\frac{l}{N q_{1} q_{2}}\right) \sum_{m n=l,(m, N)=1} \chi_{1}(m) \chi_{2}(n) \sum_{d \mid(m, n)} d^{k-1} a_{f}\left(\frac{l}{d^{2}}\right)
$$

By setting $j=\frac{l}{d^{2}}$ and rearranging the above sum, we have

$$
\begin{equation*}
(*)=\sum_{j \leq X}\left(\sum_{\substack{\frac{X}{j}}} \frac{2}{j^{\frac{k}{2}} d} g\left(\frac{j d^{2}}{N q_{1} q_{2}}\right) \sum_{\substack{m n=j d^{2} \\ d \mid(m, n)}} \chi_{1}(m) \chi_{2}(n)\right) a_{f}(j)=\sum_{j \leq X} \alpha_{j} a_{f}(j) \tag{7}
\end{equation*}
$$

where $\alpha_{j} \ll \frac{\mathbf{d}(j)}{j^{\frac{k}{2}}} \log N$ by using Lemma 7 .
Now suppose that $N \mid m$. Since $m \leq X=N q_{1} q_{2}(\log N)^{2}$, for N large enough we can assume that $m=m_{0} N$ where $\left(m_{0}, N\right)=1$. Using the multiplicative property of $a_{f}(n)$'s, we have

$$
(\dagger)=\sum_{l \leq X} 2 l^{-\frac{k}{2}} g\left(\frac{l}{N q_{1} q_{2}}\right) \sum_{m n=l, m=m_{0} N} \chi_{1}(m) \chi_{2}(n) a_{f}(N) \sum_{d \mid\left(m_{0}, n\right)} d^{k-1} a_{f}\left(\frac{l}{N d^{2}}\right)
$$

Now set $\frac{l}{N d^{2}}=j$. Rearranging (\dagger) yields

$$
\begin{equation*}
(\dagger)=\sum_{j \leq \frac{X}{N}}\left(\sum_{d \leq \sqrt{\frac{X}{N j}}} \frac{2 N^{-\frac{k}{2}} a_{f}(N)}{j^{\frac{k}{2}} d} g\left(\frac{j d^{2}}{q_{1} q_{2}}\right) \sum_{\substack{m n=N j d^{2}, m=m_{0} N \\ d \backslash\left(m_{0}, n\right)}} \chi_{1}(m) \chi_{2}(n)\right) a_{f}(j)=\sum_{j \leq \frac{X}{N}} \beta_{j} a_{f}(j) \tag{8}
\end{equation*}
$$

where $\beta_{j} \ll \frac{\mathbf{d}(j)}{j^{\frac{k}{2}}} \log N$. Here again we are using Lemma 7 and the fact that $\left|a_{f}(N)\right| \leq c_{0} N^{\frac{k}{2}}$ (Lemma 1).

The result follows from (6), (7) and (8).
We now employ the following mean value result.
Lemma 9 For N prime and complex numbers c_{n} we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\sum_{l \leq X} c_{l} a_{f}(l)\right|^{2}=\left(1+O\left(N^{-1} X \log X\right)\right) \sum_{l \leq X} l\left|c_{l}\right|^{2}
$$

with an absolute implied constant.
Proof: See [2] Theorem 1.
Now by applying Lemma 9 to Lemma 8, we get

Proposition 6 Under the assumption of Proposition 5 we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|P_{f}\left(\frac{k}{2}\right)\right|^{2} \ll(\log N)^{5}
$$

for $k>2$. The implied constant depends on $q_{1} q_{2}$ and k.
We can now state the proof of Theorem 2.

Proof of Theorem 2:

It is enough to replace $L_{f}\left(\frac{k}{2}, \chi\right)$ with $P_{f}\left(\frac{k}{2}, \chi\right)$ in the proof of Theorem 1 and apply propositions 5 and 6.

Note: In the case $k=2$ we get the lower bound $C_{2} N(\log N)^{-10}$ for the number of nonvanishing $P_{f}\left(\frac{k}{2}\right)$ (see [1] Theorem 2).

Acknowledgements: I would like to thank Professor Kumar Murty for reading the manuscript and providing many helpful suggestions and discussions. Also I would like to thank Vijay Patankar for helpful discussions.

References

[1] W. Duke, The critical order of vanishing of automorphic L-functions with large level, Invent. Math. 119 (1995), 165-174.
[2] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions. II., Invent. Math. 115 (1994), 219-239.
[3] D. Goldfeld, J. Hoffstein, and D. Lieman, An effective zero free region, Appendix to: Coefficients of Maass forms and the Sigel zero, Ann. Math 140 (1994), 177-181.
[4] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1993.
[5] A. Pizer, Hecke operators for $\Gamma_{0}(N)$, Journal of Algebra 83 (1983), 39-64.
[6] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1971.
[7] N. M. Temme, Special functions: an introduction to the classical functions of mathematical physics, John Wiely, 1996.
[8] G. N. Watson, A treatise on the theory of Bessel functions, Second ed., Cambridge University Press, 1948.

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Quebec, H3G 1M8, CANADA
E-mail: akbary@cicma.concordia.ca

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification. Primary 11F67.

