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Abstract

This paper studies non-vanishing of L-functions associated to holomorphic cusp forms

of weight k and level N at various points inside the critical strip. We will establish

lower bounds in terms of level for the number of holomorphic cusp forms whose twisted

L-functions with a fixed Dirichlet character do not vanish on a certain disc inside the

critical strip.

1 Introduction

Non-vanishing of L-functions on a disc has been studied in various context in the recent

years. In the context of Dirichlet L-functions P. Elliott [6] proved that there are infinitely

many Dirichlet L-functions L(s, χp) (χp is a Dirichlet character mod p (prime)) which are

uniformly bounded below by c(log p)
1
2 in the disc |s− 1

2 | ≤ (log p)−(1+ε), and so do not vanish

there. This result has been improved by R. Balasubramanian in [2]. He proved that the

number of Dirichlet L-functions L(s, χp) that do not vanish in the disc |s− 1
2 | ≤ (log p)−(1+ε)

is bounded below by cp(log p)−2. Also, in [3] R. Balasubramanian and K. Murty studied

non-vanishing of Dirichlet L-functions in the disc |s− σj | ≤ 2(log p)−1, where σj = 1
2 + j

log p

and 2 ≤ j ≤ log p
2 − 2. They proved that for a positive proportion of the characters χp (mod

p), L(s, χp) does not have a real zero in the region 1
2 + c

log p ≤ Re(s) < 1. Here, c > 0 is an

absolute constant and p is a sufficiently large prime.
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In this paper we prove an analogue of the above results in the context of modular L-

functions. We are interested in the zeros of Lf (s, χ) in the critical strip k
2 < Re(s) < k+1

2 ,

where Lf (s, χ) is the twisted L-function associated to newform f and Dirichlet character χ.

Generalized Riemann Hypothesis predicts that Lf (s, χ) is non-zero in this strip. One of the

known results in the subject is given by K. Murty and T. Stefanicki [7]. They proved that

at least Y
2
3
−ε quadratic twists Lf (s, χd) (|d| ≤ Y, d ≡ 1 (mod 4)) attached to holomorphic

newforms and Y
2
3
−ε attached to Maass newforms do not vanish inside the disc |s − s0| <

(log Y )−(1+ε) for any ε > 0 and any point s0 inside the critical strip (the exponent 2
3 can in

fact be improved now to 1 using improved character sum estimates of Heath-Brown as in the

work of Perelli and Pomykala [8]).

Here, we prove the following theorem.

Theorem 1 Let s0 = σ0 + it0 be a point in the strip k
2 < Re(s) < k+1

2 and let CN be the disc

with center s0 and radius rN = o(1) (i.e. rN → 0 when N → ∞). Suppose that χ is a fixed

primitive Dirichlet character mod q such that (q,N) = 1. Then there are positive constants

Cσ0,k (depending only on k and σ0) and Cs0,q,k,rN (depending on q, k, s0 and rN ) such that

for prime N > Cs0,q,k,rN there exist at least Cσ0,kN(logN)−1 newforms f of weight k and

level N for which Lf (s, χ) 6= 0 for all s ∈ CN .

The methodology of the proof is based on a comparison of mean values. In sections 3

and 4, we derive asymptotic formulae for Lf (sf , χ) and |Lf (sf , χ)|2 on average, where sf

is an arbitrary point in the disc CN . To do this first we derive the asymptotic formulae

for a fixed point s0 in the critical strip (Lemmas 5 and 7). These are analogous of results

given by W. Duke [4] for the center of critical strip. Then an application of Cauchy’s integral

formula gives us the asymptotic formulae on a disc (Propositions 1 and 2). This technique has

already been applied by P. Elliott, B. Balasubramanian and B. Balasubramanian-K. Murty

for Dirichlet L-functions. Finally we have to deal with the contribution of oldforms, we apply

the technique developed by the author in [1] to overcome this difficulty. In section 5 we finish

off the proof of Theorem 1 by an application of the Cauchy-Schwarz inequality.

Finally, with a slight modification of our previous results, we establish asymptotic formu-

lae for Lf (sf , χ) and |Lf (sf , χ)|2 on average, where sf is an arbitrary point in the disc CN
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with center on the critical line s = k
2 +it, and as a result we prove the following non-vanishing

theorem.

Theorem 2 Let s0 = k
2 + it0 and let CN be the disc with center s0 and radius rN = 1

(logN)4+ε

(ε > 0). Suppose that χ is a fixed primitive Dirichlet character mod q such that (q,N) = 1.

Then there are positive constants Ck (depending only on k) and Ct0,q,k,ε (depending on q, k,

t0 and ε ) such that for prime N > Ct0,q,k,ε there exists at least CkN(logN)−2 newform f of

weight k and level N for which Lf (s, χ) 6= 0 for all s ∈ CN .

Acknowledgement: The author would like to thank Kumar Murty and the referee for

reading the manuscript and providing many valuable suggestions.

2 Preliminaries

In this section we review some basic facts concerning modular forms and set up our notation.

Let Sk(N) be the space of cusp forms of weight k for Γ0(N) with trivial character. The

space Sk(N) has an inner product (Petersson inner product)

< f, g >=
∫

Γ0(N)\H
f(z)g(z)yk

dxdy

y2

where H denotes the upper half plane. For any f ∈ Sk(N) let

f(z) =
∞∑
n=1

af (n)e(nz), e(z) = e2πiz

be the Fourier expansion of f at i∞.

Let χ be a primitive Dirichlet character mod q with (q,N) = 1, then the twisted L-

function associated to f and χ is defined by

Lf (s, χ) =
∞∑
n=1

χ(n)af (n)
ns

.

The twisted L-function is given by an absolutely convergent series on the half-plane

Re(s) > k+1
2 and it has an analytic continuation to the whole plane. Moreover, if f is a
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newform (in Atkin-Lehner sense), then Lf (s, χ) has an Euler product valid on Re(s) > k+1
2

and it satisfies the following functional equation(
q
√
N

2π

)s
Γ(s)Lf (s, χ) = εχ

(
q
√
N

2π

)k−s
Γ(k − s)Lf (k − s, χ̄) (1)

where εχ = εfχ(N)τ(χ)2q−1with εf = ±1 (the root number of f) which depends only on f

and τ(χ) is the Gauss sum.

Let {Tp (p 6 |N), Uq (q|N)} be the collection of the classical Hecke operators and let

Wq (q|N) be the “W operator” of Atkin and Lehner. In 1983 A. Pizer introduced the

operators Cq on Sk(N) for q|N , such that the action of Cq on the new part of Sk(N) is the

same as the action of the classical Uq operators. More precisely he defined Cq as

Cq = Uq +WqUqWq + q
k
2
−1Wq if q‖N

Cq = Uq +WqUqWq if q2|N.

Then he showed that Tp (p 6 |N), Cq (q|N) form a commuting family of Hermitian operators.

Using this, he proved ([9], Theorem 3.10) the following result.

Theorem There exists a basis fi(z) (1 ≤ i ≤ dim Sk(N)) of Sk(N) such that each fi(z) is an

eigenform for all the Tp and Cq operators with p 6 |N and q|N . Let f(z) =
∑∞
n=1 af (n)e(z) be

an element of this basis. Then af (1) 6= 0 and assuming f(z) is normalized so that af (1) = 1,

we have f |Tp = af (p)f for all p 6 |N , f |Cq = af (q)f for all q|N , and af (nm) = af (n)af (m)

whenever (n,m) = 1. Furthermore f(z) is an eigenform for all Wq operators, q|N . Finally,

if g(z) ∈ Sk(N) is an eigenform for all the Tp and Cq operators with p 6 |N and q|N , then

g(z) = cfi(z) for some c ∈ C∗ and some unique i, 1 ≤ i ≤ dim Sk(N).

Now let FN be the set of all normalized (af (1) = 1) newforms in Sk(N) and let PN be the

basis of Sk(N) given by the above theorem. The elements of PN form an orthogonal basis

(with respect to Petersson inner product) for Sk(N), any f ∈ PN has real Fourier coefficient

and Lf (s, χ) satisfies the functional equations (1). Moreover, we can show that the action

of Cq on Sk(N)new is the same as the action of Uq (see [9], Remark 2.9). This shows that

FN ⊂ PN .

For the Fourier coefficients of a newform f we have the Deligne bound

|af (n)| ≤ d(n)n
k−1

2
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where d(n) is the divisor function. In the case that N is a prime, we have the following

estimation of the Fourier coefficients of f ∈ PN .

Lemma 1 Suppose N is prime and f ∈ PN . Then

|af (n)| ≤ c0n
k
2

where c0 is an absolute constant independent of f .

Proof: Propositions 3.6 and 3.4 of [9] imply that if f ∈ PN −FN , then

f(z) = h(z)±N
k
2 h(Nz)

where h is the normalized newform of weight k and level 1 associated to f . Now the result

follows from the Deligne bound for the newforms (see [1], Lemma 2.2 for the details). 2

Finally, since PN forms an orthogonal basis of Sk(N), the Fourier coefficients of its ele-

ments are semi-orthogonal in the following sense:

Lemma 2 Let ωf = Γ(k−1)

(4π)k−1<f,f>
and let δm,n be the Kronecker delta. For m and n positive

integers we have the inequality∣∣∣∣∣∣
∑
f∈PN

ωf
af (m)√
mk−1

af (n)√
nk−1

− δm,n

∣∣∣∣∣∣ ≤Md(N)N
1
2
−k(m,n)

1
2

√
(mn)k−1

where M is a constant depending only on k and d(N) is the number of the divisors of N .

Proof: See [4] Lemma 1. 2

3 Mean estimation

In this section we will find an asymptotic formula for

∑
f∈PN

ωfLf (sf , χ)

where sf is a variable point in the disc with center s0 = σ0 + it0 (k2 < σ0 <
k+1

2 ) and radius

rN = o(1).
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Lemma 3 For any x > 0 and s0 = σ0 + it0 ∈ C where k−1
2 ≤ σ0 ≤ k+1

2 , let

W (s0, x) =
1

2πi

∫
( 5

4
)
Γ(s+ s0)x−s

ds

s

and

Af,χ(x, s0) =
∑
n≥1

χ(n)af (n)n−s0W (s0,
2πn
x

)

where χ is a fixed primitive Dirichlet character mod q with (q,N) = 1. Then we have

Γ(s0)Lf (s0, χ) = Af,χ(x, s0) + εχ

(
q
√
N

2π

)k−2s0

Af,χ̄(
q2N

x
, k − s0)

where εχ is the root number of Lf (s, χ).

Proof: From the definition of W (s0, x) it is clear that

Af,χ(x, s0) =
1

2πi

∫
( 5

4
)
Lf (s+ s0, χ)(

x

2π
)
s
Γ(s+ s0)

ds

s
.

Changing the line of integration from 5
4 to −5

4 and using the functional equation (1) yields

Af,χ(x, s0) = Γ(s0)Lf (s0, χ)+εχ

(
q
√
N

2π

)k−2s0 1
2πi

∫
(− 5

4
)
Lf (k−s−s0, χ̄)(

2πx
q2N

)
s

Γ(k−s−s0)
ds

s
.

Now changing variables s→ −s implies the result. 2

Lemma 4 Under the assumptions of Lemma 3

W (s0, x)� xσ0−1e−x

when x→∞ and

W (s0, x)�k 1

when x→ 0.

Proof: We have

W (s0, x) =
1

2πi

∫
( 5

4
)

(∫ ∞
0

e−tts+s0−1dt

)
x−s

ds

s
=
∫ ∞
x

ts0−1e−tdt.

Therefore

|W (s0, x)| =
∣∣∣∣∫ ∞
x

ts0−1e−tdt

∣∣∣∣ ≤ ∫ ∞
x

tσ0−1e−tdt.

Now the first result follows from the estimation of the last integral using integration by parts.

The second result is clear since |W (s0, x)| ≤ Γ(σ0) when x→ 0. 2

6



Lemma 5 Let χ be a fixed primitive Dirichlet character mod q with (q,N) = 1 and let

s0 = σ0 + it0 be a point in the strip k−1
2 < Re(s) ≤ k+1

2 . Then we have

∑
f∈PN

ωfLf (s0, χ) = 1+O

(
1

|Γ(s0)|
N

1
2
−σ0(logN)k−σ0

)
+O

(
1

|Γ(s0)|
N

k−12
2
−σ0(logN)k−σ0−1

)

for N prime. The implied constant depends only on q and k.

Proof: Choosing x = q2N logN in Lemma 3 gives

Af,χ̄(
Nq2

x
, k − s0) =

∑
n≥1

χ̄(n)af (n)ns0−kW (k − s0, 2πn logN).

Using Lemma 4 and Lemma 1 we have∣∣∣∣Af,χ̄(
1

logN
, k − s0)

∣∣∣∣ ≤∑
n≥1

|af (n)|nσ0−k|W (k − s0, 2πn logN)|

≤
∑
n≥1

c0n
k
2nσ0−k(2πn logN)k−σ0−1e−2πn logN = c0(2π logN)k−σ0−1

∑
n≥1

n
k
2
−1

(N2π)n
.

Therefore from Lemma 3 we get

Γ(s0)
∑
f∈PN

ωfLf (s0, χ) =
∑
f∈PN

ωfAf,χ(x, s0) + (
∑
f∈PN

ωf )Oq,k(N−6+ k
2
−σ0(logN)k−σ0−1).

From this, we have

Γ(s0)
∑
f∈PN

ωfLf (s0, χ)− Γ(s0) =
∑
n≥1

χ(n)(
∑
f∈PN

ωf
af (n)

n
k−1

2

− δ1,n)W (s0,
2πn

q2N logN
)n

k−1
2
−s0

+W (s0,
2π

q2N logN
)− Γ(s0) + (

∑
f∈PN

ωf )Oq,k(N−6+ k
2
−σ0(logN)k−σ0−1).

Note that

W (s0,
2π

q2N logN
)− Γ(s0) =

∫ 2π
q2N logN

0
ts0−1e−tdt = Oq,k((N logN)−σ0).

Also from, Lemma 2 for m = n = 1 follows that

∑
f∈PN

ωf = 1 +O(N
1
2
−k).

By applying m = 1 in Lemma 2 and using the above identities, we have∣∣∣∣∣∣Γ(s0)

 ∑
f∈PN

ωfLf (s0, χ)− 1

∣∣∣∣∣∣ ≤M1
N

1
2
−k

(N logN)σ0−1

∑
n≥1

nk−2e
− 2πn
q2N logN +M2(N logN)−σ0
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+M3N
−6+ k

2
−σ0(logN)k−σ0−1

where M1, M2 and M3 are constants depending on q and k. This proves the desired result.

2

Proposition 1 Let s0 = σ0 + it0 be a point in the strip k
2 < Re(s) < k+1

2 and let Γ and

CN be the circles with center (σ0, t0) and radius R = 1
2min{

k+1
2 − σ0, σ0 − k

2} and rN = o(1)

respectively. Then for N prime

∑
f∈PN

ωfLf (sf , χ) = 1 +Oq,k

(
1

|Γ(s0)|
N−

1
2

)
+Oq,k,s0

(
rN

R− rN
N−

1
2

)
where sf is an arbitrary point in CN .

Proof: By Cauchy’s integral formula for any sf ∈ CN , we have

Lf (sf , χ)− Lf (s0, χ) =
1

2πi

∫
Γ
Lf (w,χ)(

1
w − sf

− 1
w − s0

)dw

where Γ traversed in the counter clockwise direction. Therefore

∑
f∈PN

ωfLf (sf , χ) =
∑
f∈PN

ωfLf (s0, χ) +
1

2πi

∫
Γ

 ∑
f∈PN

ωfLf (w,χ)

 sf − s0

(w − sf )(w − s0)
dw.

(2)

Now using Lemma 5 yields∣∣∣∣∣∣ 1
2πi

∫
Γ

 ∑
f∈PN

ωfLf (w,χ)

 sf − s0

(w − sf )(w − s0)
dw

∣∣∣∣∣∣ ≤ rN
R− rN

Oq,k,s0

(
N−

1
2

)
. (3)

Note that here we used the fact that 1
2πi

∫
Γ

sf−s0
(w−sf )(w−s0)dw = 0. Applying (3) and Lemma

5 in (2) completes the proof. 2

4 Mean square estimation

In this section we are going to find an asymptotic formula for the average values of |Lf (sf , χ)|2

where sf is a variable point in a disc with centre s0 = σ0 + it0 (k2 < σ0 <
k+1

2 ) and radius

rN = o(1). We start with writing |Lf (s0, χ)|2 as a sum of two convergent series.

Let |Lf (s0, χ)|2 =
∑
l≥1 bf (l)l−σ0 so that

bf (l) =
∑
mn=l

χ(n)χ̄(m)af (n)af (m)(
m

n
)
it0
. (4)
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For x > 0 and s0 = σ0 + it0 ∈ C where k−1
2 ≤ σ0 ≤ k+1

2 , define

Bf (x, s0) =
∑
l≥1

bf (l)
lσ0

Z(s0,
l

x
) (5)

where

Z(s0, x) =
1

2πi

∫
( 5

4
)
(2π)−2sΓ(s+ s0)Γ(s+ s̄0)x−s

ds

s
. (6)

Using Deligne’s bound in (4) and standard estimates for Z(s0, x) shows that (5) is absolutely

convergent.

Lemma 6 Let f ∈ PN and suppose that χ is a primitive Dirichlet character mod q with

(q,N) = 1. For any x > 0 we have

|Γ(s0)Lf (s0, χ)|2 = Bf (x, s0) +

(
q2N

4π2

)k−2σ0

Bf (
(q2N)2

x
, k − s̄0).

Proof: From (6) we have

Bf (x, s0) =
1

2πi

∫
( 5

4
)
(2π)−2sΓ(s+ s0)Γ(s+ s̄0)Lf (s+ s0, χ)Lf (s+ s̄0, χ̄)xs

ds

s
.

By changing the line of integration from 5
4 to −5

4 and using the functional equation (1) we

get

Bf (x, s0) = |Γ(s0)Lf (s0, χ)|2 +

(
q2N

4π2

)k−2σ0

∫
(− 5

4
)
(2π)2sΓ(k − s− s0)Γ(k − s− s̄0)Lf (k − s− s0, χ̄)Lf (k − s− s̄0, χ)(

x

(q2N)2 )
sds

s
.

Now changing variables s→ −s yields the result. 2

We estimate Bf (x, s0) on average. From (4) and (5) it follows that

∑
f∈PN

ωfBf (x, s0) =
∑
f∈PN

ωf
∑
l≥1

bf (l)l−σ0Z(s0,
l

x
)

=
∑

m,n≥1

χ(n)χ̄(m)Z(s0,
mn

x
)

(mn )it0

(mn)σ0− k−1
2

∑
f∈PN

ωf
af (m)√
mk−1

af (n)√
nk−1

=
∑
n≥1

|χ(n)|2Z(s0,
n2

x
)

1
n2σ0−k+1

+R (7)
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where

R� N
1
2
−k ∑

m,n≥1

Z(σ0,
mn

x
)(m,n)

1
2 (mn)−σ0+k−1. (8)

Note that here we are using the inequality |Z(s0, x)| ≤ Z(σ0, x). This is true since by writing

Γ functions in terms of integrals in (6) and interchanging the order of integration, we have

Z(s0, x) =
∫ ∞

0
t1
s0−1e−t1

(∫ ∞
4π2x
t1

e−t2t2
s̄0−1dt2

)
dt1.

Applying the triangle inequality in the above identity implies the desired inequality.

Using the definition of Z(s0, x), the first term in (7) is equal to

1
2πi

∫
( 5

4
)
L(2s+ 2σ0 − k + 1, χ0)(2π)−2sΓ(s+ s0)Γ(s+ s̄0)xs

ds

s

where χ0 is the principal character mod q and L(s, χ0) = ζ(s)
∏
p|q(1− 1

ps ). Now we assume

that σ0 6= k
2 , since the integrand has simple poles at s = 0 and s = k

2 − σ0, by moving the

line of integration from 5
4 to −1

2 , the integral is equal to

|Γ(s0)|2
∏
p|q

(
1− 1

p2σ0−k+1

)
ζ(2σ0−k+1)+

∏
p|q

(
1− 1

p

)
(2π)2σ0−k

k − 2σ0
Γ(
k

2
+ it0)Γ(

k

2
− it0)x

k
2
−σ0

+Oσ0,q,k(x
− 1

2 ). (9)

Now in (7) we estimate the reminder term R. We calculate

∑
m,n≥1

Z(σ0,
mn

x
)(m,n)

1
2 (mn)−σ0+k−1.

It is
1

2πi

∫
( k+1

2
)
(2π)−2s(Γ(s+ σ0))2xs

 ∑
m,n≥1

(m,n)
1
2 (mn)−(s+σ0−k+1)

 ds

s
.

Note that since the integrand does not have any pole in the strip 5
4 < Re(s) < k+1

2 , we can

move the line of integration from 5
4 to k+1

2 . From [4] Lemma 4, we know that

∑
m,n≥1

(m,n)
1
2 (mn)−(s+σ0−k+1) =

ζ(2s+ 2σ0 − 2k + 3
2)ζ(s+ σ0 − k + 1)2

ζ(2s+ 2s0 − 2k + 2)
.

Applying this identity to the above integral and moving the line of integration from k+1
2 to

k − σ0 − ε (ε > 0) yields

∑
m,n≥1

Z(σ0,
mn

x
)(m,n)

1
2 (mn)−(s+σ0−k+1) ∼ Cσ0,k x

k−σ0 log x (10)
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and by (8), R� N
1
2
−kxk−σ0 log x. Therefore we have

∑
f∈PN

ωfBf (x, s0) = |Γ(s0)|2
∏
p|q

(
1− 1

p2σ0−k+1

)
ζ(2σ0 − k + 1) +

∏
p|q

(
1− 1

p

)
(2π)2σ0−k

k − 2σ0

Γ(
k

2
+ it0)Γ(

k

2
− it0)x

k
2
−σ0 +Oσ0,q,k(x

− 1
2 ) +Oσ0,k(N

1
2
−kxk−σ0 log x). (11)

Lemma 7 Let χ be a fixed primitive Dirichlet character mod q with (q,N) = 1 and let

s0 = σ0 + it0 where k
2 < σ0 ≤ k+1

2 . Then we have∑
f∈PN

ωf |Lf (s0, χ)|2 =
∏
p|q

(
1− 1

p2σ0−k+1

)
ζ(2σ0 − k + 1) + c1N

k
2
−σ0 +Os0,q,k(N

− 1
2 )

for N prime. Here, c1 depends on s0, q and k.

Proof: Choosing x = q2N in Lemma 6 and applying (11) in it, proves the Lemma. 2

Proposition 2 Under the assumptions of Proposition 1∑
f∈PN

ωf |Lf (sf , χ)|2 =
∏
p|q

(
1− 1

p2σ0−k+1

)
ζ(2σ0 − k + 1) + c1N

k
2
−σ0 + +Os0,q,k(N

− 1
2 )

+Oσ0,k

(
rN

R− rN

)
+Os0,q,k

(
rN

R− rN
N

k
2
−σ0+R

)
.

Here, c1 depends on s0, q and k.

Proof: We have∣∣∣∣∣∣
∑
f∈PN

ωf |Lf (sf , χ)|2 −
∑
f∈PN

ωf |Lf (s0, χ)|2
∣∣∣∣∣∣ ≤

∑
f∈PN

ωf
∣∣∣|Lf (sf , χ)|2 − |Lf (s0, χ)|2

∣∣∣
≤

∑
f∈PN

ωf
∣∣∣Lf 2(sf , χ)− Lf 2(s0, χ)

∣∣∣.
By applying Cauchy’s integral formula and Lemma 7, the last expression equals to∑
f∈PN

ωf

∣∣∣∣∣ 1
2πi

∫
Γ
Lf

2(w,χ)
sf − s0

(w − sf )(w − s0)
dw

∣∣∣∣∣ ≤ rN
R− rN

(
Oσ0,k(1) +Os0,q,k(N

k
2
−σ0+R)

)
.

This shows that∑
f∈PN

ωf |Lf (sf , χ)|2 =
∑
f∈PN

ωf |Lf (s0, χ)|2 +
rN

R− rN

(
Oσ0,k(1) +Os0,q,k(N

k
2
−σ0+R)

)
. (12)

Now applying Lemma 7 in (12) completes the proof. 2
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5 Proof of Theorem 1

We need the following estimation of ωf .

Proposition 3 For N prime we have

ωf �k

 logN/N ; f ∈ FN

1/N ; f ∈ PN −FN
. (13)

Proof: See [4], Proposition 4 for the case f ∈ FN . If f ∈ PN −FN then

f(z) = h(z)±N
k
2 h(Nz)

as we mentioned in the proof of Lemma 1. Now the result follows from the fact that

< f, f >=< h(z)±N
k
2 h(Nz), h(z)±N

k
2 h(Nz) >

is bounded below by a constant multiple of N (See [1], Proposition 5.3 for the details). 2

Now we can prove our theorem. Set

EN = {f ∈ PN : Lf (s, χ) 6= 0, for all s in CN} .

Proposition 1 shows that EN 6= ∅ for large N . Now if f ∈ PN − EN we choose sf such that

Lf (sf , χ) = 0. With this choice of sf for elements of PN − EN and arbitrary choice of sf in

CN for elements of EN and applying the Cauchy-Schwarz inequality and (13), we get∣∣∣∣∣∣
∑
f∈PN

ωfLf (sf , χ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
f∈EN

ωfLf (sf , χ)

∣∣∣∣∣∣
2

≤

 ∑
f∈EN∩FN

ωf +
∑

f∈EN−FN

ωf

 ∑
f∈PN

ωf |Lf (sf , χ)|2


�
(
]{f ∈ FN ; Lf (s, χ) 6= 0 for all s ∈ CN}

logN
N

+ 2dimSk(1)
1
N

) ∑
f∈PN

ωf |Lf (sf , χ)|2.

(14)

Theorem 1 follows by applying propositions 1 and 2 in (14). 2

6 Proof of Theorem 2

We first establish the analogues of Proposition 1, Lemma 7 and Proposition 2 for a point s0

on the critical line σ = k
2 .

12



Proposition 1′ Let N be prime, and let Γ and CN be the circles with center (k2 , t0) and radius

RN and rN respectively. Suppose that 0 < rN < RN < 1
2 , and rN

RN
NRN (logN)RN = o

(
N

1
2

logN

)
.

Then

∑
f∈PN

ωfLf (sf , χ) = 1+Oq,k

(
1

Γ(k2 + t0)
N−

1
2 logN

)
+Oq,k,t0

(
rN

RN − rN
NRN− 1

2 (logN)RN+1
)

where sf is an arbitrary point in CN .

Proof: It is similar to the proof of Proposition 1. 2

Lemma 7′ Let χ be a fixed primitive Dirichlet character mod q with (q,N) = 1 and let

s0 = k
2 + it0. Then

∑
f∈PN

ωf |Lf (
k

2
+ it0, χ)|

2

=
∏
p|q

(1− 1
p

) logN + c1 +Ot0,q,k(N
− 1

2 logN)

for N prime. Here, c1 depends on t0, q and k.

Proof: The proof is exactly similar to the proof of Lemma 7. The result follows by observing

that
1

2πi

∫
( 5

4
)
L(2s+ 1, χ0)(2π)−2sΓ(s+

k

2
+ it0)Γ(s+

k

2
− it0)xs

ds

s

has a double pole at s = k
2 which contributes logN to the main term (see [1], Proposition

4.2 for the details). 2

Lemma 8 Let Γ be a circle with center (k2 , t0) and radius 0 < RN < 1
2 , and let w be a point

on (or inside) Γ. Then if σ = Re(w) ≥ k
2 ,

∑
f∈PN

ωf |Lf (w,χ)|2 �k,q,t0 (logN)4

and if σ = Re(w) ≤ k
2 ,

∑
f∈PN

ωf |Lf (w,χ)|2 �k,q,t0 N
k−2σ(logN)4.

Proof: First we assume that σ = Re(w) ≥ k
2 . Choosing x = q2N logN in Lemma 3 gives

Γ(w)Lf (w,χ) =
∑
n≥1

χ(n)af (n)
nw

W (w,
2πn

q2N logN
) +Oq,k(N−6+ k

2
−σ(logN)k−σ+1).

13



Now by applying the upper bound of Lemma 1 for af (n) and the upper bound of Lemma 4

for W (w, .), we deduce that

∑
n>q2N(logN)2

χ(n)af (n)
nw

W (w,
2πn

q2N logN
) = Oq,k

(
N−5+ k

2
−σ(logN)k−σ

)
.

Therefore

Γ(w)Lf (w,χ) =
∑

n≤q2N(logN)2

χ(n)
nw

W (w,
2πn

q2N logN
)af (n) +Oq,k

(
N−5(logN)

k
2

)
. (15)

We know that for complex numbers cn∑
f∈PN

ωf |
∑
n≤X

cnaf (n)|
2

=
(
1 +O(N−1X logX)

) ∑
n≤X

nk−1|cn|2

with an absolute implied constant (see [5], Theorem 1). Applying this identity for X =

Nq2(logN)2, cn = χ(n)
nw W (w, 2πn

q2N logN
), and using Lemma 4 imply that

∑
f∈PN

ωf

∣∣∣∣∣∣∣
∑

n≤q2N(logN)2

cnaf (n)

∣∣∣∣∣∣∣
2

= Oq,k

(logN)3
∑

n≤q2N(logN)2

1
n2σ−k+1

 = Oq,k
(
(logN)4

)
.

This together with (15) proves the lemma.

If σ = Re(w) < k
2 the results from the functional equation of |Lf (w,χ)|2. 2

Proposition 2′ Let N be prime, and let Γ and CN be the circles with center (k2 , t0) and

radius RN and rN respectively. Suppose that 0 < rN < RN < 1
2 and rNN

2RN

RN
= o

(
1

(logN)3

)
.

Then

∑
f∈PN

ωf |Lf (sf , χ)|2 =
∏
p|q

(1−1
p

) logN+c1++Ot0,q,k(N
− 1

2 logN)+Ot0,q,k

(
rNN

2RN (logN)4

RN − rN

)

where sf is an arbitrary point in CN and c1 depends on t0, q and k.

Proof: From the proof of Proposition 2, we know that

∑
f∈PN

ωf |Lf (sf , χ)|2 =
∑
f∈PN

ω|Lf (
k

2
+ it, χ)|

2

+
∑
f∈PN

ωf

∣∣∣∣∣ 1
2πi

∫
Γ
Lf

2(w,χ)
sf − s0

(w − sf )(w − s0)
dω

∣∣∣∣∣ .
The result follows by applying Lemma 7′ in the above identity and the fact that by Lemma

8

∑
f∈PN

ωf

∣∣∣∣∣ 1
2πi

∫
Γ
Lf

2(w,χ)
sf − s0

(w − sf )(w − s0)
dω

∣∣∣∣∣ ≤ rN
RN − rN

Ot0,q,k
(
N2RN (logN)4

)
. 2
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Now in Proposition 1′ and 2′, let RN = 1
logN and rN = 1

(logN)4+ε . We then proceed in a

way similar to the proof of Theorem 1 and finally Theorem 2 follows by applying Proposition

1′ and Proposition 2′ in (14). 2
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