Non-Vanishing of Modular L-Functions on a Disc
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Abstract

This paper studies non-vanishing of L-functions associated to holomorphic cusp forms
of weight k& and level N at various points inside the critical strip. We will establish
lower bounds in terms of level for the number of holomorphic cusp forms whose twisted
L-functions with a fixed Dirichlet character do not vanish on a certain disc inside the

critical strip.

1 Introduction

Non-vanishing of L-functions on a disc has been studied in various context in the recent
years. In the context of Dirichlet L-functions P. Elliott [6] proved that there are infinitely

many Dirichlet L-functions L(s,xp) (xp is a Dirichlet character mod p (prime)) which are

)—(1+6)

uniformly bounded below by ¢(log p)% in the disc |s — %\ < (logp , and so do not vanish

there. This result has been improved by R. Balasubramanian in [2]. He proved that the

number of Dirichlet L-functions L(s, x,) that do not vanish in the disc |s — 3| < (log p)f(lﬁ)

is bounded below by e¢p(logp) 2. Also, in [3] R. Balasubramanian and K. Murty studied

J
log

non-vanishing of Dirichlet L-functions in the disc |s — o;| < 2(logp)~", where o = T+

and 2 < j < 10% — 2. They proved that for a positive proportion of the characters x, (mod

p), L(s,xp) does not have a real zero in the region 3 + oep < Ite(s) < 1. Here, ¢ > 0 is an

absolute constant and p is a sufficiently large prime.
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In this paper we prove an analogue of the above results in the context of modular L-

k+1
2

functions. We are interested in the zeros of L¢(s,x) in the critical strip g < Re(s) <
where L¢(s,x) is the twisted L-function associated to newform f and Dirichlet character .
Generalized Riemann Hypothesis predicts that Ls(s, x) is non-zero in this strip. One of the
known results in the subject is given by K. Murty and T. Stefanicki [7]. They proved that
at least Y3 ° quadratic twists L¢(s,xq) (|d] <Y, d =1 (mod 4)) attached to holomorphic

¢ attached to Maass newforms do not vanish inside the disc |s — sg| <

newforms and Y3~
(log Y)_(1+€) for any € > 0 and any point sg inside the critical strip (the exponent % can in
fact be improved now to 1 using improved character sum estimates of Heath-Brown as in the

work of Perelli and Pomykala [8]).

Here, we prove the following theorem.

Theorem 1 Let sy = og+1ity be a point in the strip % < Re(s) < % and let Cn be the disc
with center sg and radius ry = o(1) (i.e. Ty — 0 when N — o0). Suppose that x is a fized
primitive Dirichlet character mod q such that (q, N) = 1. Then there are positive constants
Cook (depending only on k and og) and Cs, q1ry (depending on q, k, so and ry) such that
for prime N > Cgy o kry there exist at least Cyy 1N (log N)_1 newforms f of weight k and
level N for which L¢(s,x) # 0 for all s € Cy.

The methodology of the proof is based on a comparison of mean values. In sections 3
and 4, we derive asymptotic formulae for L¢(sf, x) and |L¢(sy, ><)|2 on average, where sy
is an arbitrary point in the disc C. To do this first we derive the asymptotic formulae
for a fixed point so in the critical strip (Lemmas 5 and 7). These are analogous of results
given by W. Duke [4] for the center of critical strip. Then an application of Cauchy’s integral
formula gives us the asymptotic formulae on a disc (Propositions 1 and 2). This technique has
already been applied by P. Elliott, B. Balasubramanian and B. Balasubramanian-K. Murty
for Dirichlet L-functions. Finally we have to deal with the contribution of oldforms, we apply
the technique developed by the author in [1] to overcome this difficulty. In section 5 we finish

off the proof of Theorem 1 by an application of the Cauchy-Schwarz inequality.

Finally, with a slight modification of our previous results, we establish asymptotic formu-

lae for Ls(sf, x) and |L¢(sy, x)|? on average, where sy is an arbitrary point in the disc Cy



with center on the critical line s = %—l—it, and as a result we prove the following non-vanishing

theorem.

Theorem 2 Let sg = §+ito and let C'y be the disc with center sy and radius ry = W
(e > 0). Suppose that x is a fized primitive Dirichlet character mod q such that (¢, N) = 1.
Then there are positive constants Cy, (depending only on k) and Cy, 4k (depending on g, k,
to and € ) such that for prime N > Cy, 41 there exists at least Cp N (log N)_2 newform [ of
weight k and level N for which Ly (s, x) # 0 for all s € Cy.
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2 Preliminaries

In this section we review some basic facts concerning modular forms and set up our notation.

Let Si(N) be the space of cusp forms of weight k for I'g(N) with trivial character. The

space Si(IN) has an inner product (Petersson inner product)

___  dzd
< fg>= / F(2)aE)yE
To(N)\H Y

where H denotes the upper half plane. For any f € Si(NV) let

o0

f(z) = Z af(n)e(nz), e(z) = o2miz

n=1

be the Fourier expansion of f at ico.

Let x be a primitive Dirichlet character mod ¢ with (¢, N) = 1, then the twisted L-
function associated to f and x is defined by
[ee]
x(n)ay(n)
Ly(s,x) = )~ 1=

n=1 n

The twisted L-function is given by an absolutely convergent series on the half-plane

Re(s) > % and it has an analytic continuation to the whole plane. Moreover, if f is a



> k+1

newform (in Atkin-Lehner sense), then L¢(s, x) has an Euler product valid on Re(s) 7

and it satisfies the following functional equation

(@ @)

s k—s
L ) r<s>Lf<s7x>=ex< V) T )Lk =5, %) (1)

where €, = efx(N)T(X)2q_lwith e = £1 (the root number of f) which depends only on f

and 7(x) is the Gauss sum.

Let {T, (p fN), Uy (¢|N)} be the collection of the classical Hecke operators and let
Wy (¢|N) be the “W operator” of Atkin and Lehner. In 1983 A. Pizer introduced the
operators Cy on Sy(N) for g|N, such that the action of Cy on the new part of Si(N) is the

same as the action of the classical U, operators. More precisely he defined C, as
Cy=U,+ WU W, +q2 ‘W, if q|N
Cy=U, + W, UW, if ¢*|N.

Then he showed that T}, (p fN), Cy4 (¢|N) form a commuting family of Hermitian operators.
Using this, he proved ([9], Theorem 3.10) the following result.

Theorem There exists a basis fi(z) (1 <i < dim Sp(N)) of Sk(N) such that each f;(z) is an
eigenform for all the T, and Cy operators with p /N and q|N. Let f(z) =372 ar(n)e(z) be
an element of this basis. Then a¢(1) # 0 and assuming f(z) is normalized so that ar(1) =1,
we have f|T, = a¢(p)f for allp [N, f|Cq = af(q)f for all ¢|N, and ay(nm) = ar(n)as(m)
whenever (n,m) = 1. Furthermore f(z) is an eigenform for all Wy operators, q|N. Finally,
if g(z) € Sg(N) is an eigenform for all the T, and C, operators with p /N and q|N, then

9(2) = cfi(z) for some c € C* and some unique i, 1 < i < dim Sg(N).

Now let Fn be the set of all normalized (af(1) = 1) newforms in S;(/N) and let Py be the
basis of Sk(N) given by the above theorem. The elements of Py form an orthogonal basis
(with respect to Petersson inner product) for Si(N), any f € Py has real Fourier coefficient
and L¢(s,x) satisfies the functional equations (1). Moreover, we can show that the action
of Cy on Si(N)"™ is the same as the action of U, (see [9], Remark 2.9). This shows that
Fn CPn-

For the Fourier coefficients of a newform f we have the Deligne bound

k-1

lag(n)] < d(n)n"=

4



where d(n) is the divisor function. In the case that N is a prime, we have the following

estimation of the Fourier coefficients of f € Py.

Lemma 1 Suppose N is prime and f € Py. Then

[ME

lay(n)] < con
where cg is an absolute constant independent of f.

Proof: Propositions 3.6 and 3.4 of [9] imply that if f € Py — Fn, then

£(2) = h(z) £ N2h(N2)
where h is the normalized newform of weight & and level 1 associated to f. Now the result
follows from the Deligne bound for the newforms (see [1], Lemma 2.2 for the details). O

Finally, since Py forms an orthogonal basis of Si(NV), the Fourier coefficients of its ele-
ments are semi-orthogonal in the following sense:
I(k—1)

(mt < f>
integers we have the inequality

Lemma 2 Let wy = and let 0y, be the Kronecker delta. For m and n positive

3 ag(m) as(n) - : k-1
wf - 6m,n S Md(N)N2 (m7 n) 2 (mn)
FePy ‘/mk—l ‘/nk—l

where M is a constant depending only on k and d(N) is the number of the divisors of N.

Proof: See [4] Lemma 1. O

3 Mean estimation

In this section we will find an asymptotic formula for
> wrly(sx)
f€PN

where s; is a variable point in the disc with center sg = oq + itg (% <og < %) and radius

ry = o(1).



Lemma 3 For any x > 0 and sy = oo + ity € C where % <o < %, let

ds
78
SQ, 2 /§ F S + 8() ?
4
and
2™
Apx(®,50) = > x(n)ag(n)n™ W (so, = =)
n>1

where x is a fized primitive Dirichlet character mod q with (¢, N) = 1. Then we have

\/N k—2sg 2N
F(SO)Lf(S()a X) = Af,x(m’ 50) + €y (qﬁ .Af’;((qT, k— 80)

where €, is the root number of L (s, x).

Proof: From the definition of W (sg, ) it is clear that

T s ds
Apslasso) = 55 [ Lo 000 Tls +50)

Changing the line of integration from 2 to —2 and using the functional equation (1) yields

k—2sg
qV N 1 / 27z S ds
— — Le(k—s— ——) I'(k—s—sgp)—.
oy ) ) s s(k—s SO,X)(q ) T(k—s 50)3

Apx (@, s0) = F(So)Lf(SO»X)+GX< 2mi

Now changing variables s — —s implies the result. O
Lemma 4 Under the assumptions of Lemma &
W (s, ) < 270 te

when x — 0o and

W(sp,x) < 1

when r — 0.

Proof: We have

1 o0 [e¢]
W(so,x) = —/ (/ e—tt5+50—1dt> p b :/ t0 - te~tqt.
211 (2) \Jo S x

o0 [ee]
W (s0, )I—/ ts“‘le‘tdt’</ oo Le—t gt
T €T

Now the first result follows from the estimation of the last integral using integration by parts.

Therefore

The second result is clear since |W(sg,x)| < I'(0g) when z — 0. O



Lemma 5 Let x be a fized primitive Dirichlet character mod q with (¢, N) = 1 and let

k+1

so = 00 + ity be a point in the strip 51 < Re(s) < ®EL. Then we have

_1
IT'(s0)]

> wrLs(so,x) =140 ( N2~ (log N)*~ Uo) ) < (log N)k_go_1>

P T (s0)]

for N prime. The implied constant depends only on q and k.

Proof: Choosing = ¢?Nlog N in Lemma 3 gives

N 2
Af,x(Tqa k—s0) = Z )‘((n)af(n)nso_kW(k: — 80,2mnlog N).

n>1

Using Lemma 4 and Lemma 1 we have

1
‘Af’x(logN Z lag(n)|n?0~ k|W( — sp,2mnlog N)|
n>1
k k —1
< Z Con§n‘7°7k(27m log N)k_"o_le*%nlogN co(27 log N) k: oo—1 Z n
=t n>1 N )

Therefore from Lemma 3 we get

k —oa—
T(s0) > wrLs(so,x) = Y wrApy(@,s0)+ (Y W) Oy (N~6F2790 (Iog N)F=o0~ 1),
fEPN fGPN fEPN

From this, we have

ar(n) 21 [
I'(so) Z wrLys(s0,x) ZX Z —nf% _61’n)W(80’7q2NlogN>n 3 %0
fePN n>1 feEPN
27 —6+k_g —oo—
W0, e ) = Tlso) + (3 @) 0N 057 log )70,
f€PN
Note that
2t 22—77
W0, rxrogy) ~ To0) = [ 77t = 0 (N Tog N) ™),

Also from, Lemma 2 for m = n = 1 follows that

Z wf = 1+ O(N%_k).

fEPN

By applying m = 1 in Lemma 2 and using the above identities, we have

1
N__k _ 2mn
F(SO) Z waf(S(]aX) -1 < Mlz—go_l Z nk_ze ¢?NlogN | MQ(NIOg N)_UO
s (Nlog N)™ T &



+M3N_6+§_U° (log N)k_ao_1

where My, My and M3 are constants depending on ¢ and k. This proves the desired result.

O

Proposition 1 Let sg = o¢ + itg be a point in the strip % < Re(s) < k—;l and let T' and
Cn be the circles with center (09, to) and radius R = imin{%* — 09,00 — £} and rnv = o(1)
respectively. Then for N prime

1 _1 TN _1
Z Wfo(Sf,X) =1+ Oqu (—’F(S >‘N 2) + Oq,k,so <—R N 2)
J€PN 0

where sy is an arbitrary point in Cy.

Proof: By Cauchy’s integral formula for any s; € C, we have

1 1

1
Lg(sg.x) — Lg(s0,x) = ﬁ/po(w’X)(w —s; we SO)dw

where I traversed in the counter clockwise direction. Therefore

S wrksla) = Y wrlylao) + g [ |3 wksw) e 1)
r

fePn fepy 2714 fePy (w—s¢)(w — s0)

Now using Lemma 5 yields

1 w w 5 %0 w
27Tz'/r(z 7L ’X)) (w—Sf)(wao)d =

r
= R—ryn

Ogrso (N2). (3)

Note that here we used the fact that ﬁ Jr (w_sz)%dw = 0. Applying (3) and Lemma

5 in (2) completes the proof. O

4 Mean square estimation

In this section we are going to find an asymptotic formula for the average values of |L¢(sy, x) |2
where sy is a variable point in a disc with centre sg = og + it (% <oy < %) and radius

rn = o(1). We start with writing |L¢(so, ¥)|? as a sum of two convergent series.
Let ]Lf(so,x)]2 =21 bp(1)I77° so that

m o

n

br(l) = Y x(m)x(m)as(n)ag(m)(

mn=l



be(l l
By(.so) = 3 10 7000, ) (5)
>1
where
Z(s0.) = 5z [ () Tls + so)T(s + ) (©
S0, L) = i (%) ™ S S0 S S0)T S .

Using Deligne’s bound in (4) and standard estimates for Z (s, z) shows that (5) is absolutely

convergent.

Lemma 6 Let f € Py and suppose that x is a primitive Dirichlet character mod q with

(¢, N) =1. For any x > 0 we have

2N k—200 2N 2
Pl = Byt + (55) 52— )

Proof: From (6) we have

1 _9s _ . Gds
By(as0) = g [, 0m) P T (s s0)Tls + 80)Ly(s 4 s )L (s 50, 0o
4

By changing the line of integration from % to —% and using the functional equation (1) we

get

q2N k—200
B (x,50) = [T(s0)L (50, X)|” + (m)

/(5) (271)251“(147 —s—s0)['(k—s—50)L¢(k—s—s0,x)Ls(k—5—50,x)( p

Now changing variables s — —s yields the result. O

We estimate By(z, sg) on average. From (4) and (5) it follows that

Z waf(JJ,So): Z wabf(l)lﬂ’OZ(So,é)

fEPN feEPN >1

_ mn (%)ito ar(m) ar(n)
- s B




where

mn

R< Nz F % Z(ao,7)(m,n)%(mn)_go+k_l. 8)

m,n>1

Note that here we are using the inequality |Z(so,x)| < Z(0p, ). This is true since by writing

" functions in terms of integrals in (6) and interchanging the order of integration, we have

00 00 -
Z(So,x) :/0 tlsoileftl Aﬂ% eitthsofldtQ dty.
Tt

Applying the triangle inequality in the above identity implies the desired inequality.

Using the definition of Z(sg,x), the first term in (7) is equal to

d
i /(%) L(2s 42009 — k + 1, Xo)(27r)’23f‘(5 + s0)I'(s + $0)2° ?S

where X is the principal character mod ¢ and L(s, x0) = ¢(s) [1p4(1 — 1&%) Now we assume

that og # %, since the integrand has simple poles at s = 0 and s = % — 09, by moving the
line of integration from 5 to —5, the integral is equal to
Iy, (1= 1) @m)>* 4 k
2 plq P . . k_
80 g < m) <<20'0—k+1)+ ]{;—20’0 F(§+2t0)r(§—lt0)$2 70
_1
0004, (272). 9)

Now in (7) we estimate the reminder term R. We calculate

Z Z 00, mn)(m n)%(mn)—ao-i—k—l.
m,n>1
It is
L . /(k+1) (27) "3 (T(s + 09))*z* ( Z (m7n)%(mn)(s+aok+l)) @
=

21 el S

Note that since the integrand does not have any pole in the strip % < Re(s) < k—;l, we can

move the line of integration from % to % From [4] Lemma 4, we know that

(25 + 200 — 2k + 3)((s + 00 — k + 1)
(254 250 — 2k + 2) '

Z (m’ n)%(mn)f(s+0'0*k+l) —

m,n>1
Applying this identity to the above integral and moving the line of integration from % to
k — oo — € (e > 0) yields
1
" Z(oo, =) (m,m)2 (mn) "D« Gy ah 70 loga (10)

m,n>1

10



and by (8), R < N2—kgh=oo log z. Therefore we have

Mg (1-3) @)

1
2
Z (A)fo(.T,SO): ’F(SON H(l—]m> C(an—k—l—l)—i- k—20’0
f€PN plg
k. k. k_ _1 1 g g
I‘(§ + zto)I‘(§ —itg)x2" %% + Ogy g k(27 2) + Ogy (N2 2" 0 log ). (11)

Lemma 7 Let x be a fized primitive Dirichlet character mod q with (¢, N) = 1 and let

so = oo + ity where g < og < % Then we have

1 k_ _1
Z (,df‘.[/f(S(),X)’2 = H (]. — W) €(20'0 -k + ].) + CIN2 o0 + Oso,q,k(N 2)
fEPN pla p

for N prime. Here, ¢; depends on sg, q and k.

Proof: Choosing z = ¢?N in Lemma 6 and applying (11) in it, proves the Lemma. O

Proposition 2 Under the assumptions of Proposition 1

1 k_g 1
S wplLe(sp )P =] (1 - m) C(200 —k+1) +c1N277° + +04, g k(N7 2)
fePn plg p
N N k_50+R
+000,k (m) + Oso 0k (R e LI ) :

Here, ci depends on sy, q and k.
Proof: We have

> wilLy(sr 0 = Y wilLy(so, )| < Y0 wr [1Ls(sp 01" = [L4(s0, 01|

fE€EPN fEPN fE€EPN
< 37 wp|LAr ) = L350, %)),
f€PN

By applying Cauchy’s integral formula and Lemma 7, the last expression equals to

Z wy Sf — S0

— | L¢(w,x) dw
fePn omi Jpf (w—sf)(w — s0)

This shows that

N kE_4
< (Oa (1) + O (Vo0 H))

N k_
> wplLilsr )P = 32 wrlLs(s0, 0P + T (Oag(1) + Oy gk (NE=0HR)) . (12)
fePN fEPN N

Now applying Lemma 7 in (12) completes the proof. O

11



5 Proof of Theorem 1

We need the following estimation of wy.

Proposition 3 For N prime we have

log N/N ; feF
wy Lk s N/ d N . (13)
/N 5 fePN—FN

Proof: See [4], Proposition 4 for the case f € Fn. If f € Py — Fn then
F(z) = h(z) = N2h(Nz)
as we mentioned in the proof of Lemma 1. Now the result follows from the fact that
< f.f >=<h(z) £ N2h(Nz),h(z) £ Nsh(Nz) >

is bounded below by a constant multiple of N (See [1], Proposition 5.3 for the details). O

Now we can prove our theorem. Set
En={f€Pn: L¢(s,x) #0, forall sin Cn}.

Proposition 1 shows that &y # 0 for large N. Now if f € Py — En we choose sy such that
L¢(sf,x) = 0. With this choice of sy for elements of Py — En and arbitrary choice of s¢ in
Cy for elements of £y and applying the Cauchy-Schwarz inequality and (13), we get

2 2
YoowrLs(sp )| =D wilplsp)| < | wr+ > wr || X wrlLp(sp )l
fePN fEEN fEENNFN feEN—FnN feEPN
log N . 1 2
< (#7 € Fwi Ly(s) 20 for all s € Oy} BN 4 20imSu (1) ) 3 wplLs(ss0

fePN
(14)

Theorem 1 follows by applying propositions 1 and 2 in (14). O

6 Proof of Theorem 2

We first establish the analogues of Proposition 1, Lemma 7 and Proposition 2 for a point sg

on the critical line o = %

12



Proposition 1/ Let N be prime, and let T and Cn be the circles with center (%,tg) and radius

N2
O(logN)'

1 1 r 1
> wrLy(syx) = 140 (WN 210%N> 04,k o (ﬁNRN Q(IOgN)RNH)
€PN (3 +to) N —TN

k
27
Ry and ry respectively. Suppose that0 < ry < Ry < %, and ]’%—I;’VNRN (log N)R
Then

where sy is an arbitrary point in Cy.
Proof: It is similar to the proof of Proposition 1. O

Lemma 7' Let x be a fized primitive Dirichlet character mod q with (¢, N) = 1 and let
s = g + itg. Then

k 2 1 _1
Z qu|Lf( + ito, X)| :H(l——)logN—Fcl—FOtO,q,k(N 2 log N)
fePN plg P

for N prime. Here, c1 depends on tg, q and k.

Proof: The proof is exactly similar to the proof of Lemma 7. The result follows by observing
that
ds

k k
/ L(2s 41, x0)(27) % T(s + = + ito)[(s + 5~ itg)x® 5

2mi 2

has a double pole at s = 5 which contributes log N to the main term (see [1], Proposition

4.2 for the details). O

Lemma 8 Let I' be a circle with center (%,to) and radius 0 < Ry < %, and let w be a point

. . . k
on (or inside) I'. Then if 0 = Re(w) > 3,

Z wf|Lf(wa X)|2 Lk,q.to (lOg N)4
fEPN

and if 0 = Re(w) < g,

ST wilLp(w, )P <kgte N¥72 (log N) .
fePn

Proof: First we assume that o0 = Re(w) > % Choosing z = ¢?N log N in Lemma 3 gives

x(n)a 2mn 6k k—o
L(w) Ly (w, x) Z f W(w >m)+0q,k(]\f 6+3=7(log N) H).
n>1

13



Now by applying the upper bound of Lemma 1 for as(n) and the upper bound of Lemma 4
for W(w,.), we deduce that

S Xmas() g, 2y O (N5 (log N)*~7).

w ’ 42
n>q¢2N(log N)? "N log N
Therefore
B x(n) 21n _5 k
P)liw) = Y SEWw, o ar(n) + Og (N“*(log N)7).  (15)

n<g2N (log N)?
We know that for complex numbers ¢,
2 _ _
Z wyl Z craf(n)| = (l—i—O(N 1XlogX)) Z nf e, |?
fePN n<X n<X
with an absolute implied constant (see [5], Theorem 1). Applying this identity for X =

N¢?(log N)Q, Cn = %W(w, q21\2771r:gN)7 and using Lemma 4 imply that

2
1

3 4
Z wy Z cnaf(n)| = Ogx | (logN) Z 2R | Oy .k ((logN) ) .
F€PN n<q2N(log N)? n<q2N(log N)?
This together with (15) proves the lemma.

If 0 = Re(w) < g the results from the functional equation of |Ls(w, x)|*. O

Proposition 2’ Let N be prime, and let T' and Cx be the circles with center (%,to) and

radius Ry and ry respectively. Suppose that 0 < ry < Ry < % and TNJ}\{;RN =0 (W)
Then

1 1 rn N2EN (log N)*
> wilLs(sg 0P = [[(1==)log N+e1++04 g (N 210gN)+Oto,q,k< z 7 _( e ) )
f€PN plg P NN

where sy is an arbitrary point in Cn and ¢ depends on ty, q and k.

Proof: From the proof of Proposition 2, we know that

ko 2
ST wslLe(sp )P = > wWlLy(G +it. x| + > w

1 _
T/LfQ(w,X) o %0 dw| .
f€EPN fePn fEPN T Jr (

w—sg)(w—$o)

The result follows by applying Lemma 7’ in the above identity and the fact that by Lemma

1

— [ L2 T g
27rz'/r f (w’X)(w—Sf)(w—so) “

> wy

J€PN

N 2Ry 4
< R — rNOtO’q’k (N (log N) ) .0

14



Now in Proposition 1" and 2/, let Ry = ﬁ and ry = W. We then proceed in a
way similar to the proof of Theorem 1 and finally Theorem 2 follows by applying Proposition
1" and Proposition 2’ in (14). O
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