Non-Vanishing of Modular L-Functions on a Disc

Amir Akbary *

Abstract

This paper studies non-vanishing of L-functions associated to holomorphic cusp forms of weight k and level N at various points inside the critical strip. We will establish lower bounds in terms of level for the number of holomorphic cusp forms whose twisted L-functions with a fixed Dirichlet character do not vanish on a certain disc inside the critical strip.

1 Introduction

Non-vanishing of L-functions on a disc has been studied in various context in the recent years. In the context of Dirichlet L-functions P. Elliott [6] proved that there are infinitely many Dirichlet L-functions $L\left(s, \chi_{p}\right)\left(\chi_{p}\right.$ is a Dirichlet character $\bmod p($ prime $\left.)\right)$ which are uniformly bounded below by $c(\log p)^{\frac{1}{2}}$ in the disc $\left|s-\frac{1}{2}\right| \leq(\log p)^{-(1+\epsilon)}$, and so do not vanish there. This result has been improved by R. Balasubramanian in [2]. He proved that the number of Dirichlet L-functions $L\left(s, \chi_{p}\right)$ that do not vanish in the disc $\left|s-\frac{1}{2}\right| \leq(\log p)^{-(1+\epsilon)}$ is bounded below by $c p(\log p)^{-2}$. Also, in [3] R. Balasubramanian and K. Murty studied non-vanishing of Dirichlet L-functions in the disc $\left|s-\sigma_{j}\right| \leq 2(\log p)^{-1}$, where $\sigma_{j}=\frac{1}{2}+\frac{j}{\log p}$ and $2 \leq j \leq \frac{\log p}{2}-2$. They proved that for a positive proportion of the characters χ_{p} (mod $p), L\left(s, \chi_{p}\right)$ does not have a real zero in the region $\frac{1}{2}+\frac{c}{\log p} \leq \operatorname{Re}(s)<1$. Here, $c>0$ is an absolute constant and p is a sufficiently large prime.

[^0]In this paper we prove an analogue of the above results in the context of modular L functions. We are interested in the zeros of $L_{f}(s, \chi)$ in the critical strip $\frac{k}{2}<R e(s)<\frac{k+1}{2}$, where $L_{f}(s, \chi)$ is the twisted L-function associated to newform f and Dirichlet character χ. Generalized Riemann Hypothesis predicts that $L_{f}(s, \chi)$ is non-zero in this strip. One of the known results in the subject is given by K. Murty and T. Stefanicki [7]. They proved that at least $Y^{\frac{2}{3}-\epsilon}$ quadratic twists $L_{f}\left(s, \chi_{d}\right)(|d| \leq Y, d \equiv 1(\bmod 4))$ attached to holomorphic newforms and $Y^{\frac{2}{3}-\epsilon}$ attached to Maass newforms do not vanish inside the disc $\left|s-s_{0}\right|<$ $(\log Y)^{-(1+\epsilon)}$ for any $\epsilon>0$ and any point s_{0} inside the critical strip (the exponent $\frac{2}{3}$ can in fact be improved now to 1 using improved character sum estimates of Heath-Brown as in the work of Perelli and Pomykala [8]).

Here, we prove the following theorem.

Theorem 1 Let $s_{0}=\sigma_{0}+i t_{0}$ be a point in the strip $\frac{k}{2}<R e(s)<\frac{k+1}{2}$ and let C_{N} be the disc with center s_{0} and radius $r_{N}=\underline{o}(1)$ (i.e. $r_{N} \rightarrow 0$ when $N \rightarrow \infty$). Suppose that χ is a fixed primitive Dirichlet character mod q such that $(q, N)=1$. Then there are positive constants $C_{\sigma_{0}, k}$ (depending only on k and σ_{0}) and $C_{s_{0}, q, k, r_{N}}$ (depending on q, k, s_{0} and r_{N}) such that for prime $N>C_{s_{0}, q, k, r_{N}}$ there exist at least $C_{\sigma_{0}, k} N(\log N)^{-1}$ newforms f of weight k and level N for which $L_{f}(s, \chi) \neq 0$ for all $s \in C_{N}$.

The methodology of the proof is based on a comparison of mean values. In sections 3 and 4, we derive asymptotic formulae for $L_{f}\left(s_{f}, \chi\right)$ and $\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}$ on average, where s_{f} is an arbitrary point in the disc C_{N}. To do this first we derive the asymptotic formulae for a fixed point s_{0} in the critical strip (Lemmas 5 and 7). These are analogous of results given by W. Duke [4] for the center of critical strip. Then an application of Cauchy's integral formula gives us the asymptotic formulae on a disc (Propositions 1 and 2). This technique has already been applied by P. Elliott, B. Balasubramanian and B. Balasubramanian-K. Murty for Dirichlet L-functions. Finally we have to deal with the contribution of oldforms, we apply the technique developed by the author in [1] to overcome this difficulty. In section 5 we finish off the proof of Theorem 1 by an application of the Cauchy-Schwarz inequality.

Finally, with a slight modification of our previous results, we establish asymptotic formulae for $L_{f}\left(s_{f}, \chi\right)$ and $\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}$ on average, where s_{f} is an arbitrary point in the disc C_{N}
with center on the critical line $s=\frac{k}{2}+i t$, and as a result we prove the following non-vanishing theorem.

Theorem 2 Let $s_{0}=\frac{k}{2}+i t_{0}$ and let C_{N} be the disc with center s_{0} and radius $r_{N}=\frac{1}{(\log N)^{4+\epsilon}}$ $(\epsilon>0)$. Suppose that χ is a fixed primitive Dirichlet character $\bmod q$ such that $(q, N)=1$. Then there are positive constants C_{k} (depending only on k) and $C_{t_{0}, q, k, \epsilon}$ (depending on q, k, t_{0} and ϵ) such that for prime $N>C_{t_{0}, q, k, \epsilon}$ there exists at least $C_{k} N(\log N)^{-2}$ newform f of weight k and level N for which $L_{f}(s, \chi) \neq 0$ for all $s \in C_{N}$.

Acknowledgement: The author would like to thank Kumar Murty and the referee for reading the manuscript and providing many valuable suggestions.

2 Preliminaries

In this section we review some basic facts concerning modular forms and set up our notation.

Let $S_{k}(N)$ be the space of cusp forms of weight k for $\Gamma_{0}(N)$ with trivial character. The space $S_{k}(N)$ has an inner product (Petersson inner product)

$$
<f, g>=\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f(z) \overline{g(z)} y^{k} \frac{d x d y}{y^{2}}
$$

where \mathcal{H} denotes the upper half plane. For any $f \in S_{k}(N)$ let

$$
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(n z), e(z)=e^{2 \pi i z}
$$

be the Fourier expansion of f at $i \infty$.
Let χ be a primitive Dirichlet character $\bmod q$ with $(q, N)=1$, then the twisted L function associated to f and χ is defined by

$$
L_{f}(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n) a_{f}(n)}{n^{s}}
$$

The twisted L-function is given by an absolutely convergent series on the half-plane $R e(s)>\frac{k+1}{2}$ and it has an analytic continuation to the whole plane. Moreover, if f is a
newform (in Atkin-Lehner sense), then $L_{f}(s, \chi)$ has an Euler product valid on $\operatorname{Re}(s)>\frac{k+1}{2}$ and it satisfies the following functional equation

$$
\begin{equation*}
\left(\frac{q \sqrt{N}}{2 \pi}\right)^{s} \Gamma(s) L_{f}(s, \chi)=\epsilon_{\chi}\left(\frac{q \sqrt{N}}{2 \pi}\right)^{k-s} \Gamma(k-s) L_{f}(k-s, \bar{\chi}) \tag{1}
\end{equation*}
$$

where $\epsilon_{\chi}=\epsilon_{f} \chi(N) \tau(\chi)^{2} q^{-1}$ with $\epsilon_{f}= \pm 1$ (the root number of f) which depends only on f and $\tau(\chi)$ is the Gauss sum.

Let $\left\{T_{p}(p \nmid N), U_{q}(q \mid N)\right\}$ be the collection of the classical Hecke operators and let $W_{q}(q \mid N)$ be the " W operator" of Atkin and Lehner. In 1983 A. Pizer introduced the operators C_{q} on $S_{k}(N)$ for $q \mid N$, such that the action of C_{q} on the new part of $S_{k}(N)$ is the same as the action of the classical U_{q} operators. More precisely he defined C_{q} as

$$
\begin{gathered}
C_{q}=U_{q}+W_{q} U_{q} W_{q}+q^{\frac{k}{2}-1} W_{q} \quad \text { if } \quad q \| N \\
C_{q}=U_{q}+W_{q} U_{q} W_{q} \quad \text { if } q^{2} \mid N
\end{gathered}
$$

Then he showed that $T_{p}(p \nmid N), C_{q}(q \mid N)$ form a commuting family of Hermitian operators. Using this, he proved ([9], Theorem 3.10) the following result.

Theorem There exists a basis $f_{i}(z)\left(1 \leq i \leq \operatorname{dim} S_{k}(N)\right)$ of $S_{k}(N)$ such that each $f_{i}(z)$ is an eigenform for all the T_{p} and C_{q} operators with $p \nmid N$ and $q \mid N$. Let $f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(z)$ be an element of this basis. Then $a_{f}(1) \neq 0$ and assuming $f(z)$ is normalized so that $a_{f}(1)=1$, we have $f \mid T_{p}=a_{f}(p) f$ for all $p \nmid N, f \mid C_{q}=a_{f}(q) f$ for all $q \mid N$, and $a_{f}(n m)=a_{f}(n) a_{f}(m)$ whenever $(n, m)=1$. Furthermore $f(z)$ is an eigenform for all W_{q} operators, $q \mid N$. Finally, if $g(z) \in S_{k}(N)$ is an eigenform for all the T_{p} and C_{q} operators with $p \nmid N$ and $q \mid N$, then $g(z)=c f_{i}(z)$ for some $c \in \mathbb{C}^{*}$ and some unique $i, 1 \leq i \leq \operatorname{dim} S_{k}(N)$.

Now let \mathcal{F}_{N} be the set of all normalized $\left(a_{f}(1)=1\right)$ newforms in $S_{k}(N)$ and let \mathcal{P}_{N} be the basis of $S_{k}(N)$ given by the above theorem. The elements of \mathcal{P}_{N} form an orthogonal basis (with respect to Petersson inner product) for $S_{k}(N)$, any $f \in \mathcal{P}_{N}$ has real Fourier coefficient and $L_{f}(s, \chi)$ satisfies the functional equations (1). Moreover, we can show that the action of C_{q} on $S_{k}(N)^{\text {new }}$ is the same as the action of U_{q} (see [9], Remark 2.9). This shows that $\mathcal{F}_{N} \subset \mathcal{P}_{N}$.

For the Fourier coefficients of a newform f we have the Deligne bound

$$
\left|a_{f}(n)\right| \leq \mathbf{d}(n) n^{\frac{k-1}{2}}
$$

where $\mathbf{d}(n)$ is the divisor function. In the case that N is a prime, we have the following estimation of the Fourier coefficients of $f \in \mathcal{P}_{N}$.

Lemma 1 Suppose N is prime and $f \in \mathcal{P}_{N}$. Then

$$
\left|a_{f}(n)\right| \leq c_{0} n^{\frac{k}{2}}
$$

where c_{0} is an absolute constant independent of f.
Proof: Propositions 3.6 and 3.4 of [9] imply that if $f \in \mathcal{P}_{N}-\mathcal{F}_{N}$, then

$$
f(z)=h(z) \pm N^{\frac{k}{2}} h(N z)
$$

where h is the normalized newform of weight k and level 1 associated to f. Now the result follows from the Deligne bound for the newforms (see [1], Lemma 2.2 for the details).

Finally, since \mathcal{P}_{N} forms an orthogonal basis of $S_{k}(N)$, the Fourier coefficients of its elements are semi-orthogonal in the following sense:

Lemma 2 Let $\omega_{f}=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}<f, f>}$ and let $\delta_{m, n}$ be the Kronecker delta. For m and n positive integers we have the inequality

$$
\left|\sum_{f \in \mathcal{P}_{N}} \omega_{f} \frac{a_{f}(m)}{\sqrt{m^{k-1}}} \frac{a_{f}(n)}{\sqrt{n^{k-1}}}-\delta_{m, n}\right| \leq M \mathbf{d}(N) N^{\frac{1}{2}-k}(m, n)^{\frac{1}{2}} \sqrt{(m n)^{k-1}}
$$

where M is a constant depending only on k and $\mathbf{d}(N)$ is the number of the divisors of N.

Proof: See [4] Lemma 1.

3 Mean estimation

In this section we will find an asymptotic formula for

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)
$$

where s_{f} is a variable point in the disc with center $s_{0}=\sigma_{0}+i t_{0}\left(\frac{k}{2}<\sigma_{0}<\frac{k+1}{2}\right)$ and radius $r_{N}=\underline{o}(1)$.

Lemma 3 For any $x>0$ and $s_{0}=\sigma_{0}+i t_{0} \in \mathbb{C}$ where $\frac{k-1}{2} \leq \sigma_{0} \leq \frac{k+1}{2}$, let

$$
W\left(s_{0}, x\right)=\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)} \Gamma\left(s+s_{0}\right) x^{-s} \frac{d s}{s}
$$

and

$$
\mathcal{A}_{f, \chi}\left(x, s_{0}\right)=\sum_{n \geq 1} \chi(n) a_{f}(n) n^{-s_{0}} W\left(s_{0}, \frac{2 \pi n}{x}\right)
$$

where χ is a fixed primitive Dirichlet character $\bmod q$ with $(q, N)=1$. Then we have

$$
\Gamma\left(s_{0}\right) L_{f}\left(s_{0}, \chi\right)=\mathcal{A}_{f, \chi}\left(x, s_{0}\right)+\epsilon_{\chi}\left(\frac{q \sqrt{N}}{2 \pi}\right)^{k-2 s_{0}} \mathcal{A}_{f, \bar{\chi}}\left(\frac{q^{2} N}{x}, k-s_{0}\right)
$$

where ϵ_{χ} is the root number of $L_{f}(s, \chi)$.
Proof: From the definition of $W\left(s_{0}, x\right)$ it is clear that

$$
\mathcal{A}_{f, \chi}\left(x, s_{0}\right)=\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)} L_{f}\left(s+s_{0}, \chi\right)\left(\frac{x}{2 \pi}\right)^{s} \Gamma\left(s+s_{0}\right) \frac{d s}{s}
$$

Changing the line of integration from $\frac{5}{4}$ to $-\frac{5}{4}$ and using the functional equation (1) yields $\mathcal{A}_{f, \chi}\left(x, s_{0}\right)=\Gamma\left(s_{0}\right) L_{f}\left(s_{0}, \chi\right)+\epsilon_{\chi}\left(\frac{q \sqrt{N}}{2 \pi}\right)^{k-2 s_{0}} \frac{1}{2 \pi i} \int_{\left(-\frac{5}{4}\right)} L_{f}\left(k-s-s_{0}, \bar{\chi}\right)\left(\frac{2 \pi x}{q^{2} N}\right)^{s} \Gamma\left(k-s-s_{0}\right) \frac{d s}{s}$.

Now changing variables $s \rightarrow-s$ implies the result.

Lemma 4 Under the assumptions of Lemma 3

$$
W\left(s_{0}, x\right) \ll x^{\sigma_{0}-1} e^{-x}
$$

when $x \rightarrow \infty$ and

$$
W\left(s_{0}, x\right) \ll_{k} 1
$$

when $x \rightarrow 0$.

Proof: We have

$$
W\left(s_{0}, x\right)=\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)}\left(\int_{0}^{\infty} e^{-t} t^{s+s_{0}-1} d t\right) x^{-s} \frac{d s}{s}=\int_{x}^{\infty} t^{s_{0}-1} e^{-t} d t
$$

Therefore

$$
\left|W\left(s_{0}, x\right)\right|=\left|\int_{x}^{\infty} t^{s_{0}-1} e^{-t} d t\right| \leq \int_{x}^{\infty} t^{\sigma_{0}-1} e^{-t} d t
$$

Now the first result follows from the estimation of the last integral using integration by parts.
The second result is clear since $\left|W\left(s_{0}, x\right)\right| \leq \Gamma\left(\sigma_{0}\right)$ when $x \rightarrow 0$.

Lemma 5 Let χ be a fixed primitive Dirichlet character mod q with $(q, N)=1$ and let $s_{0}=\sigma_{0}+i t_{0}$ be a point in the strip $\frac{k-1}{2}<\operatorname{Re}(s) \leq \frac{k+1}{2}$. Then we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{0}, \chi\right)=1+O\left(\frac{1}{\left|\Gamma\left(s_{0}\right)\right|} N^{\frac{1}{2}-\sigma_{0}}(\log N)^{k-\sigma_{0}}\right)+O\left(\frac{1}{\left|\Gamma\left(s_{0}\right)\right|} N^{\frac{k-12}{2}-\sigma_{0}}(\log N)^{k-\sigma_{0}-1}\right)
$$

for N prime. The implied constant depends only on q and k.

Proof: Choosing $x=q^{2} N \log N$ in Lemma 3 gives

$$
\mathcal{A}_{f, \bar{\chi}}\left(\frac{N q^{2}}{x}, k-s_{0}\right)=\sum_{n \geq 1} \bar{\chi}(n) a_{f}(n) n^{s_{0}-k} W\left(k-s_{0}, 2 \pi n \log N\right)
$$

Using Lemma 4 and Lemma 1 we have

$$
\begin{gathered}
\left|\mathcal{A}_{f, \bar{\chi}}\left(\frac{1}{\log N}, k-s_{0}\right)\right| \leq \sum_{n \geq 1}\left|a_{f}(n)\right| n^{\sigma_{0}-k}\left|W\left(k-s_{0}, 2 \pi n \log N\right)\right| \\
\leq \sum_{n \geq 1} c_{0} n^{\frac{k}{2}} n^{\sigma_{0}-k}(2 \pi n \log N)^{k-\sigma_{0}-1} e^{-2 \pi n \log N}=c_{0}(2 \pi \log N)^{k-\sigma_{0}-1} \sum_{n \geq 1} \frac{n^{\frac{k}{2}-1}}{\left(N^{2 \pi}\right)^{n}}
\end{gathered}
$$

Therefore from Lemma 3 we get

$$
\Gamma\left(s_{0}\right) \sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{0}, \chi\right)=\sum_{f \in \mathcal{P}_{N}} \omega_{f} \mathcal{A}_{f, \chi}\left(x, s_{0}\right)+\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f}\right) O_{q, k}\left(N^{-6+\frac{k}{2}-\sigma_{0}}(\log N)^{k-\sigma_{0}-1}\right)
$$

From this, we have

$$
\begin{gathered}
\Gamma\left(s_{0}\right) \sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{0}, \chi\right)-\Gamma\left(s_{0}\right)=\sum_{n \geq 1} \chi(n)\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f} \frac{a_{f}(n)}{n^{\frac{k-1}{2}}}-\delta_{1, n}\right) W\left(s_{0}, \frac{2 \pi n}{q^{2} N \log N}\right) n^{\frac{k-1}{2}-s_{0}} \\
+W\left(s_{0}, \frac{2 \pi}{q^{2} N \log N}\right)-\Gamma\left(s_{0}\right)+\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f}\right) O_{q, k}\left(N^{-6+\frac{k}{2}-\sigma_{0}}(\log N)^{k-\sigma_{0}-1}\right) .
\end{gathered}
$$

Note that

$$
W\left(s_{0}, \frac{2 \pi}{q^{2} N \log N}\right)-\Gamma\left(s_{0}\right)=\int_{0}^{\frac{2 \pi}{q^{2} N \log N}} t^{s_{0}-1} e^{-t} d t=O_{q, k}\left((N \log N)^{-\sigma_{0}}\right)
$$

Also from, Lemma 2 for $m=n=1$ follows that

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}=1+O\left(N^{\frac{1}{2}-k}\right) .
$$

By applying $m=1$ in Lemma 2 and using the above identities, we have

$$
\left|\Gamma\left(s_{0}\right)\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{0}, \chi\right)-1\right)\right| \leq M_{1} \frac{N^{\frac{1}{2}-k}}{(N \log N)^{\sigma_{0}-1}} \sum_{n \geq 1} n^{k-2} e^{-\frac{2 \pi n}{q^{2} N \log N}}+M_{2}(N \log N)^{-\sigma_{0}}
$$

$$
+M_{3} N^{-6+\frac{k}{2}-\sigma_{0}}(\log N)^{k-\sigma_{0}-1}
$$

where M_{1}, M_{2} and M_{3} are constants depending on q and k. This proves the desired result.

Proposition 1 Let $s_{0}=\sigma_{0}+i t_{0}$ be a point in the strip $\frac{k}{2}<\operatorname{Re}(s)<\frac{k+1}{2}$ and let Γ and C_{N} be the circles with center $\left(\sigma_{0}, t_{0}\right)$ and radius $R=\frac{1}{2} \min \left\{\frac{k+1}{2}-\sigma_{0}, \sigma_{0}-\frac{k}{2}\right\}$ and $r_{N}=o(1)$ respectively. Then for N prime

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)=1+O_{q, k}\left(\frac{1}{\left|\Gamma\left(s_{0}\right)\right|} N^{-\frac{1}{2}}\right)+O_{q, k, s_{0}}\left(\frac{r_{N}}{R-r_{N}} N^{-\frac{1}{2}}\right)
$$

where s_{f} is an arbitrary point in C_{N}.

Proof: By Cauchy's integral formula for any $s_{f} \in C_{N}$, we have

$$
L_{f}\left(s_{f}, \chi\right)-L_{f}\left(s_{0}, \chi\right)=\frac{1}{2 \pi i} \int_{\Gamma} L_{f}(w, \chi)\left(\frac{1}{w-s_{f}}-\frac{1}{w-s_{0}}\right) d w
$$

where Γ traversed in the counter clockwise direction. Therefore

$$
\begin{equation*}
\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)=\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{0}, \chi\right)+\frac{1}{2 \pi i} \int_{\Gamma}\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}(w, \chi)\right) \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d w \tag{2}
\end{equation*}
$$

Now using Lemma 5 yields

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{\Gamma}\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}(w, \chi)\right) \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d w\right| \leq \frac{r_{N}}{R-r_{N}} O_{q, k, s_{0}}\left(N^{-\frac{1}{2}}\right) \tag{3}
\end{equation*}
$$

Note that here we used the fact that $\frac{1}{2 \pi i} \int_{\Gamma} \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d w=0$. Applying (3) and Lemma 5 in (2) completes the proof.

4 Mean square estimation

In this section we are going to find an asymptotic formula for the average values of $\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}$ where s_{f} is a variable point in a disc with centre $s_{0}=\sigma_{0}+i t_{0}\left(\frac{k}{2}<\sigma_{0}<\frac{k+1}{2}\right)$ and radius $r_{N}=\underline{o}(1)$. We start with writing $\left|L_{f}\left(s_{0}, \chi\right)\right|^{2}$ as a sum of two convergent series.

Let $\left|L_{f}\left(s_{0}, \chi\right)\right|^{2}=\sum_{l \geq 1} b_{f}(l) l^{-\sigma_{0}}$ so that

$$
\begin{equation*}
b_{f}(l)=\sum_{m n=l} \chi(n) \bar{\chi}(m) a_{f}(n) a_{f}(m)\left(\frac{m}{n}\right)^{i t_{0}} \tag{4}
\end{equation*}
$$

For $x>0$ and $s_{0}=\sigma_{0}+i t_{0} \in \mathbb{C}$ where $\frac{k-1}{2} \leq \sigma_{0} \leq \frac{k+1}{2}$, define

$$
\begin{equation*}
\mathcal{B}_{f}\left(x, s_{0}\right)=\sum_{l \geq 1} \frac{b_{f}(l)}{l^{\sigma_{0}}} Z\left(s_{0}, \frac{l}{x}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
Z\left(s_{0}, x\right)=\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)}(2 \pi)^{-2 s} \Gamma\left(s+s_{0}\right) \Gamma\left(s+\overline{s_{0}}\right) x^{-s} \frac{d s}{s} \tag{6}
\end{equation*}
$$

Using Deligne's bound in (4) and standard estimates for $Z\left(s_{0}, x\right)$ shows that (5) is absolutely convergent.

Lemma 6 Let $f \in \mathcal{P}_{N}$ and suppose that χ is a primitive Dirichlet character mod q with $(q, N)=1$. For any $x>0$ we have

$$
\left|\Gamma\left(s_{0}\right) L_{f}\left(s_{0}, \chi\right)\right|^{2}=\mathcal{B}_{f}\left(x, s_{0}\right)+\left(\frac{q^{2} N}{4 \pi^{2}}\right)^{k-2 \sigma_{0}} \mathcal{B}_{f}\left(\frac{\left(q^{2} N\right)^{2}}{x}, k-\overline{s_{0}}\right)
$$

Proof: From (6) we have

$$
\mathcal{B}_{f}\left(x, s_{0}\right)=\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)}(2 \pi)^{-2 s} \Gamma\left(s+s_{0}\right) \Gamma\left(s+\overline{s_{0}}\right) L_{f}\left(s+s_{0}, \chi\right) L_{f}\left(s+\overline{s_{0}}, \bar{\chi}\right) x^{s} \frac{d s}{s}
$$

By changing the line of integration from $\frac{5}{4}$ to $-\frac{5}{4}$ and using the functional equation (1) we get

$$
\begin{gathered}
\mathcal{B}_{f}\left(x, s_{0}\right)=\left|\Gamma\left(s_{0}\right) L_{f}\left(s_{0}, \chi\right)\right|^{2}+\left(\frac{q^{2} N}{4 \pi^{2}}\right)^{k-2 \sigma_{0}} \\
\int_{\left(-\frac{5}{4}\right)}(2 \pi)^{2 s} \Gamma\left(k-s-s_{0}\right) \Gamma\left(k-s-\overline{s_{0}}\right) L_{f}\left(k-s-s_{0}, \bar{\chi}\right) L_{f}\left(k-s-\overline{s_{0}}, \chi\right)\left(\frac{x}{\left(q^{2} N\right)^{2}}\right)^{s} \frac{d s}{s} .
\end{gathered}
$$

Now changing variables $s \rightarrow-s$ yields the result.
We estimate $\mathcal{B}_{f}\left(x, s_{0}\right)$ on average. From (4) and (5) it follows that

$$
\begin{gather*}
\sum_{f \in \mathcal{P}_{N}} \omega_{f} \mathcal{B}_{f}\left(x, s_{0}\right)=\sum_{f \in \mathcal{P}_{N}} \omega_{f} \sum_{l \geq 1} b_{f}(l) l^{-\sigma_{0}} Z\left(s_{0}, \frac{l}{x}\right) \\
=\sum_{m, n \geq 1} \chi(n) \bar{\chi}(m) Z\left(s_{0}, \frac{m n}{x}\right) \frac{\left(\frac{m}{n}\right)^{i t_{0}}}{(m n)^{\sigma_{0}-\frac{k-1}{2}}} \sum_{f \in \mathcal{P}_{N}} \omega_{f} \frac{a_{f}(m)}{\sqrt{m^{k-1}}} \frac{a_{f}(n)}{\sqrt{n^{k-1}}} \\
=\sum_{n \geq 1}|\chi(n)|^{2} Z\left(s_{0}, \frac{n^{2}}{x}\right) \frac{1}{n^{2 \sigma_{0}-k+1}}+R \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
R \ll N^{\frac{1}{2}-k} \sum_{m, n \geq 1} Z\left(\sigma_{0}, \frac{m n}{x}\right)(m, n)^{\frac{1}{2}}(m n)^{-\sigma_{0}+k-1} \tag{8}
\end{equation*}
$$

Note that here we are using the inequality $\left|Z\left(s_{0}, x\right)\right| \leq Z\left(\sigma_{0}, x\right)$. This is true since by writing Γ functions in terms of integrals in (6) and interchanging the order of integration, we have

$$
Z\left(s_{0}, x\right)=\int_{0}^{\infty} t_{1}^{s_{0}-1} e^{-t_{1}}\left(\int_{\frac{4 \pi^{2} x}{t_{1}}}^{\infty} e^{-t_{2}} t_{2}^{\overline{s_{0}}-1} d t_{2}\right) d t_{1}
$$

Applying the triangle inequality in the above identity implies the desired inequality.
Using the definition of $Z\left(s_{0}, x\right)$, the first term in (7) is equal to

$$
\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)} L\left(2 s+2 \sigma_{0}-k+1, \chi_{0}\right)(2 \pi)^{-2 s} \Gamma\left(s+s_{0}\right) \Gamma\left(s+\bar{s}_{0}\right) x^{s} \frac{d s}{s}
$$

where χ_{0} is the principal character $\bmod q$ and $L\left(s, \chi_{0}\right)=\zeta(s) \prod_{p \mid q}\left(1-\frac{1}{p^{s}}\right)$. Now we assume that $\sigma_{0} \neq \frac{k}{2}$, since the integrand has simple poles at $s=0$ and $s=\frac{k}{2}-\sigma_{0}$, by moving the line of integration from $\frac{5}{4}$ to $-\frac{1}{2}$, the integral is equal to

$$
\begin{gather*}
\left|\Gamma\left(s_{0}\right)\right|^{2} \prod_{p \mid q}\left(1-\frac{1}{p^{2 \sigma_{0}-k+1}}\right) \zeta\left(2 \sigma_{0}-k+1\right)+\frac{\prod_{p \mid q}\left(1-\frac{1}{p}\right)(2 \pi)^{2 \sigma_{0}-k}}{k-2 \sigma_{0}} \Gamma\left(\frac{k}{2}+i t_{0}\right) \Gamma\left(\frac{k}{2}-i t_{0}\right) x^{\frac{k}{2}-\sigma_{0}} \\
+O_{\sigma_{0}, q, k}\left(x^{-\frac{1}{2}}\right) \tag{9}
\end{gather*}
$$

Now in (7) we estimate the reminder term R. We calculate

$$
\sum_{m, n \geq 1} Z\left(\sigma_{0}, \frac{m n}{x}\right)(m, n)^{\frac{1}{2}}(m n)^{-\sigma_{0}+k-1}
$$

It is

$$
\frac{1}{2 \pi i} \int_{\left(\frac{k+1}{2}\right)}(2 \pi)^{-2 s}\left(\Gamma\left(s+\sigma_{0}\right)\right)^{2} x^{s}\left(\sum_{m, n \geq 1}(m, n)^{\frac{1}{2}}(m n)^{-\left(s+\sigma_{0}-k+1\right)}\right) \frac{d s}{s}
$$

Note that since the integrand does not have any pole in the strip $\frac{5}{4}<\operatorname{Re}(s)<\frac{k+1}{2}$, we can move the line of integration from $\frac{5}{4}$ to $\frac{k+1}{2}$. From [4] Lemma 4, we know that

$$
\sum_{m, n \geq 1}(m, n)^{\frac{1}{2}}(m n)^{-\left(s+\sigma_{0}-k+1\right)}=\frac{\zeta\left(2 s+2 \sigma_{0}-2 k+\frac{3}{2}\right) \zeta\left(s+\sigma_{0}-k+1\right)^{2}}{\zeta\left(2 s+2 s_{0}-2 k+2\right)}
$$

Applying this identity to the above integral and moving the line of integration from $\frac{k+1}{2}$ to $k-\sigma_{0}-\epsilon(\epsilon>0)$ yields

$$
\begin{equation*}
\sum_{m, n \geq 1} Z\left(\sigma_{0}, \frac{m n}{x}\right)(m, n)^{\frac{1}{2}}(m n)^{-\left(s+\sigma_{0}-k+1\right)} \sim C_{\sigma_{0}, k} x^{k-\sigma_{0}} \log x \tag{10}
\end{equation*}
$$

and by (8), $R \ll N^{\frac{1}{2}-k} x^{k-\sigma_{0}} \log x$. Therefore we have

$$
\begin{gather*}
\sum_{f \in \mathcal{P}_{N}} \omega_{f} \mathcal{B}_{f}\left(x, s_{0}\right)=\left|\Gamma\left(s_{0}\right)\right|^{2} \prod_{p \mid q}\left(1-\frac{1}{p^{2 \sigma_{0}-k+1}}\right) \zeta\left(2 \sigma_{0}-k+1\right)+\frac{\prod_{p \mid q}\left(1-\frac{1}{p}\right)(2 \pi)^{2 \sigma_{0}-k}}{k-2 \sigma_{0}} \\
\Gamma\left(\frac{k}{2}+i t_{0}\right) \Gamma\left(\frac{k}{2}-i t_{0}\right) x^{\frac{k}{2}-\sigma_{0}}+O_{\sigma_{0}, q, k}\left(x^{-\frac{1}{2}}\right)+O_{\sigma_{0}, k}\left(N^{\frac{1}{2}-k} x^{k-\sigma_{0}} \log x\right) . \tag{11}
\end{gather*}
$$

Lemma 7 Let χ be a fixed primitive Dirichlet character $\bmod q$ with $(q, N)=1$ and let $s_{0}=\sigma_{0}+i t_{0}$ where $\frac{k}{2}<\sigma_{0} \leq \frac{k+1}{2}$. Then we have

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{0}, \chi\right)\right|^{2}=\prod_{p \mid q}\left(1-\frac{1}{p^{2 \sigma_{0}-k+1}}\right) \zeta\left(2 \sigma_{0}-k+1\right)+c_{1} N^{\frac{k}{2}-\sigma_{0}}+O_{s_{0}, q, k}\left(N^{-\frac{1}{2}}\right)
$$

for N prime. Here, c_{1} depends on s_{0}, q and k.
Proof: Choosing $x=q^{2} N$ in Lemma 6 and applying (11) in it, proves the Lemma.

Proposition 2 Under the assumptions of Proposition 1

$$
\begin{gathered}
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}=\prod_{p \mid q}\left(1-\frac{1}{p^{2 \sigma_{0}-k+1}}\right) \zeta\left(2 \sigma_{0}-k+1\right)+c_{1} N^{\frac{k}{2}-\sigma_{0}}++O_{s_{0}, q, k}\left(N^{-\frac{1}{2}}\right) \\
+O_{\sigma_{0}, k}\left(\frac{r_{N}}{R-r_{N}}\right)+O_{s_{0}, q, k}\left(\frac{r_{N}}{R-r_{N}} N^{\frac{k}{2}-\sigma_{0}+R}\right) .
\end{gathered}
$$

Here, c_{1} depends on s_{0}, q and k.
Proof: We have

$$
\begin{aligned}
\left.\left|\sum_{f \in \mathcal{P}_{N}} \omega_{f}\right| L_{f}\left(s_{f}, \chi\right)\right|^{2}- & \sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{0}, \chi\right)\right|^{2}\left|\leq \sum_{f \in \mathcal{P}_{N}} \omega_{f}\right|\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}-\left|L_{f}\left(s_{0}, \chi\right)\right|^{2} \mid \\
& \leq \sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}^{2}\left(s_{f}, \chi\right)-L_{f}^{2}\left(s_{0}, \chi\right)\right| .
\end{aligned}
$$

By applying Cauchy's integral formula and Lemma 7, the last expression equals to

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\frac{1}{2 \pi i} \int_{\Gamma} L_{f}^{2}(w, \chi) \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d w\right| \leq \frac{r_{N}}{R-r_{N}}\left(O_{\sigma_{0}, k}(1)+O_{s_{0}, q, k}\left(N^{\frac{k}{2}-\sigma_{0}+R}\right)\right) .
$$

This shows that

$$
\begin{equation*}
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}=\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{0}, \chi\right)\right|^{2}+\frac{r_{N}}{R-r_{N}}\left(O_{\sigma_{0}, k}(1)+O_{s_{0}, q, k}\left(N^{\frac{k}{2}-\sigma_{0}+R}\right)\right) . \tag{12}
\end{equation*}
$$

Now applying Lemma 7 in (12) completes the proof.

5 Proof of Theorem 1

We need the following estimation of ω_{f}.
Proposition 3 For N prime we have

$$
\omega_{f} \ll k\left\{\begin{array}{c}
\log N / N \quad \tag{13}\\
1 / N \quad ; f \in \mathcal{F}_{N} \\
\quad ; f \in \mathcal{P}_{N}-\mathcal{F}_{N}
\end{array} .\right.
$$

Proof: See [4], Proposition 4 for the case $f \in \mathcal{F}_{N}$. If $f \in \mathcal{P}_{N}-\mathcal{F}_{N}$ then

$$
f(z)=h(z) \pm N^{\frac{k}{2}} h(N z)
$$

as we mentioned in the proof of Lemma 1. Now the result follows from the fact that

$$
<f, f>=<h(z) \pm N^{\frac{k}{2}} h(N z), h(z) \pm N^{\frac{k}{2}} h(N z)>
$$

is bounded below by a constant multiple of N (See [1], Proposition 5.3 for the details).
Now we can prove our theorem. Set

$$
\mathcal{E}_{N}=\left\{f \in \mathcal{P}_{N}: L_{f}(s, \chi) \neq 0, \text { for all s in } C_{N}\right\} .
$$

Proposition 1 shows that $\mathcal{E}_{N} \neq \emptyset$ for large N. Now if $f \in \mathcal{P}_{N}-\mathcal{E}_{N}$ we choose s_{f} such that $L_{f}\left(s_{f}, \chi\right)=0$. With this choice of s_{f} for elements of $\mathcal{P}_{N}-\mathcal{E}_{N}$ and arbitrary choice of s_{f} in C_{N} for elements of \mathcal{E}_{N} and applying the Cauchy-Schwarz inequality and (13), we get

$$
\begin{align*}
& \left|\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)\right|^{2}=\left|\sum_{f \in \mathcal{E}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)\right|^{2} \leq\left(\sum_{f \in \mathcal{E}_{N} \cap \mathcal{F}_{N}} \omega_{f}+\sum_{f \in \mathcal{E}_{N}-\mathcal{F}_{N}} \omega_{f}\right)\left(\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}\right) \\
& \ll\left(\sharp\left\{f \in \mathcal{F}_{N} ; L_{f}(s, \chi) \neq 0 \text { for all } s \in C_{N}\right\} \frac{\log N}{N}+2 \operatorname{dim} S_{k}(1) \frac{1}{N}\right) \sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2} . \tag{14}
\end{align*}
$$

Theorem 1 follows by applying propositions 1 and 2 in (14).

6 Proof of Theorem 2

We first establish the analogues of Proposition 1, Lemma 7 and Proposition 2 for a point s_{0} on the critical line $\sigma=\frac{k}{2}$.

Proposition 1^{\prime} Let N be prime, and let Γ and C_{N} be the circles with center $\left(\frac{k}{2}, t_{0}\right)$ and radius R_{N} and r_{N} respectively. Suppose that $0<r_{N}<R_{N}<\frac{1}{2}$, and $\frac{r_{N}}{R_{N}} N^{R_{N}}(\log N)^{R_{N}}=\underline{o}\left(\frac{N^{\frac{1}{2}}}{\log N}\right)$. Then
$\sum_{f \in \mathcal{P}_{N}} \omega_{f} L_{f}\left(s_{f}, \chi\right)=1+O_{q, k}\left(\frac{1}{\Gamma\left(\frac{k}{2}+t_{0}\right)} N^{-\frac{1}{2}} \log N\right)+O_{q, k, t_{0}}\left(\frac{r_{N}}{R_{N}-r_{N}} N^{R_{N}-\frac{1}{2}}(\log N)^{R_{N}+1}\right)$ where s_{f} is an arbitrary point in C_{N}.

Proof: It is similar to the proof of Proposition 1.
Lemma 7^{\prime} Let χ be a fixed primitive Dirichlet character $\bmod q$ with $(q, N)=1$ and let $s_{0}=\frac{k}{2}+i t_{0}$. Then

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(\frac{k}{2}+i t_{0}, \chi\right)\right|^{2}=\prod_{p \mid q}\left(1-\frac{1}{p}\right) \log N+c_{1}+O_{t_{0}, q, k}\left(N^{-\frac{1}{2}} \log N\right)
$$

for N prime. Here, c_{1} depends on t_{0}, q and k.
Proof: The proof is exactly similar to the proof of Lemma 7. The result follows by observing that

$$
\frac{1}{2 \pi i} \int_{\left(\frac{5}{4}\right)} L\left(2 s+1, \chi_{0}\right)(2 \pi)^{-2 s} \Gamma\left(s+\frac{k}{2}+i t_{0}\right) \Gamma\left(s+\frac{k}{2}-i t_{0}\right) x^{s} \frac{d s}{s}
$$

has a double pole at $s=\frac{k}{2}$ which contributes $\log N$ to the main term (see [1], Proposition 4.2 for the details).

Lemma 8 Let Γ be a circle with center $\left(\frac{k}{2}, t_{0}\right)$ and radius $0<R_{N}<\frac{1}{2}$, and let w be a point on (or inside) Γ. Then if $\sigma=\operatorname{Re}(w) \geq \frac{k}{2}$,

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}(w, \chi)\right|^{2}<_{k, q, t_{0}}(\log N)^{4}
$$

and if $\sigma=R e(w) \leq \frac{k}{2}$,

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}(w, \chi)\right|^{2} \ll_{k, q, t_{0}} N^{k-2 \sigma}(\log N)^{4}
$$

Proof: First we assume that $\sigma=R e(w) \geq \frac{k}{2}$. Choosing $x=q^{2} N \log N$ in Lemma 3 gives

$$
\Gamma(w) L_{f}(w, \chi)=\sum_{n \geq 1} \frac{\chi(n) a_{f}(n)}{n^{w}} W\left(w, \frac{2 \pi n}{q^{2} N \log N}\right)+O_{q, k}\left(N^{-6+\frac{k}{2}-\sigma}(\log N)^{k-\sigma+1}\right)
$$

Now by applying the upper bound of Lemma 1 for $a_{f}(n)$ and the upper bound of Lemma 4 for $W(w,$.$) , we deduce that$

$$
\sum_{n>q^{2} N(\log N)^{2}} \frac{\chi(n) a_{f}(n)}{n^{w}} W\left(w, \frac{2 \pi n}{q^{2} N \log N}\right)=O_{q, k}\left(N^{-5+\frac{k}{2}-\sigma}(\log N)^{k-\sigma}\right) .
$$

Therefore

$$
\begin{equation*}
\Gamma(w) L_{f}(w, \chi)=\sum_{n \leq q^{2} N(\log N)^{2}} \frac{\chi(n)}{n^{w}} W\left(w, \frac{2 \pi n}{q^{2} N \log N}\right) a_{f}(n)+O_{q, k}\left(N^{-5}(\log N)^{\frac{k}{2}}\right) . \tag{15}
\end{equation*}
$$

We know that for complex numbers c_{n}

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\sum_{n \leq X} c_{n} a_{f}(n)\right|^{2}=\left(1+O\left(N^{-1} X \log X\right)\right) \sum_{n \leq X} n^{k-1}\left|c_{n}\right|^{2}
$$

with an absolute implied constant (see [5], Theorem 1). Applying this identity for $X=$ $N q^{2}(\log N)^{2}, c_{n}=\frac{\chi(n)}{n^{w}} W\left(w, \frac{2 \pi n}{q^{2} N \log N}\right)$, and using Lemma 4 imply that

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\sum_{n \leq q^{2} N(\log N)^{2}} c_{n} a_{f}(n)\right|^{2}=O_{q, k}\left((\log N)^{3} \sum_{n \leq q^{2} N(\log N)^{2}} \frac{1}{n^{2 \sigma-k+1}}\right)=O_{q, k}\left((\log N)^{4}\right) .
$$

This together with (15) proves the lemma.
If $\sigma=\operatorname{Re}(w)<\frac{k}{2}$ the results from the functional equation of $\left|L_{f}(w, \chi)\right|^{2}$.
Proposition 2^{\prime} Let N be prime, and let Γ and C_{N} be the circles with center $\left(\frac{k}{2}, t_{0}\right)$ and radius R_{N} and r_{N} respectively. Suppose that $0<r_{N}<R_{N}<\frac{1}{2}$ and $\frac{r_{N} N^{22 R_{N}}}{R_{N}}=\underline{o}\left(\frac{1}{(\log N)^{3}}\right)$. Then

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}=\prod_{p \mid q}\left(1-\frac{1}{p}\right) \log N+c_{1}++O_{t_{0}, q, k}\left(N^{-\frac{1}{2}} \log N\right)+O_{t_{0}, q, k}\left(\frac{r_{N} N^{2 R_{N}}(\log N)^{4}}{R_{N}-r_{N}}\right)
$$

where s_{f} is an arbitrary point in C_{N} and c_{1} depends on t_{0}, q and k.
Proof: From the proof of Proposition 2, we know that

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|L_{f}\left(s_{f}, \chi\right)\right|^{2}=\sum_{f \in \mathcal{P}_{N}} \omega\left|L_{f}\left(\frac{k}{2}+i t, \chi\right)\right|^{2}+\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\frac{1}{2 \pi i} \int_{\Gamma} L_{f}^{2}(w, \chi) \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d \omega\right|
$$

The result follows by applying Lemma 7^{\prime} in the above identity and the fact that by Lemma 8

$$
\sum_{f \in \mathcal{P}_{N}} \omega_{f}\left|\frac{1}{2 \pi i} \int_{\Gamma} L_{f}^{2}(w, \chi) \frac{s_{f}-s_{0}}{\left(w-s_{f}\right)\left(w-s_{0}\right)} d \omega\right| \leq \frac{r_{N}}{R_{N}-r_{N}} O_{t_{0}, q, k}\left(N^{2 R_{N}}(\log N)^{4}\right) .
$$

Now in Proposition 1^{\prime} and 2^{\prime}, let $R_{N}=\frac{1}{\log N}$ and $r_{N}=\frac{1}{(\log N)^{4+\epsilon}}$. We then proceed in a way similar to the proof of Theorem 1 and finally Theorem 2 follows by applying Proposition 1^{\prime} and Proposition 2^{\prime} in (14).

References

[1] A. Akbary, Non-vanishing of weight k modular L-functions with large level, J. Ramanujan Math. Soc. 14 (1999), 37-54.
[2] R. Balasubramanian, A note on Dirichlet's L-functions, Acta Arith. XXXVIII (1980), 273-283.
[3] R. Balasubramanian, V. K. Murty, Zeros of Dirichlet L-functions, Ann. scient. Éc. Norm. Sup. 25 (1992), 567-615.
[4] W. Duke, The critical order of vanishing of automorphic L-functions with large level, Invent. Math. 119 (1995), 165-174.
[5] W. Duke, J. B. Friedlander, H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994), 219-239.
[6] P. D. T. A. Elliott, on the distribution of the values of Dirichlet L-series in the half plane $\sigma>\frac{1}{2}$, Indag. Math 33 (1971), 222-234.
[7] V. K. Murty, T. Stefanicki, Average values of quadratic twists of modular L-functions, unpublished.
[8] A. Perelli, J. Pomykala, Averages of twisted elliptic L-functions, Act Arith. 80 (1997), 149-163.
[9] A. Pizer, Hecke operators for $\Gamma_{0}(N)$, Journal of Algebra 83 (1983), 39-64.

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Quebec, H3G 1M8, CANADA
E-mail: akbary@cicma.concordia.ca

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification. Primary 11F67.
 *Research partially supported by Concordia Research Funds

