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Abstract

Let Lyym2(y)(s) be the symmetric square L-function associated to a newform of weight 2 and level
N. For N prime, we will derive asymptotic formulae for the average values of L,,,,2(s)(s) at a general
point on the line Re(s) = 2 when f varies over the set of all normalized newforms.

RESUME: Soit Loym2(5)(s) la fonction L du carré symétrique d’une forme primitive de poids 2
et niveau N. Pour N premier, on dérive une formule asymptotique pour les valeurs moyennes de
Loym2(5)(s) en un point général de la droite Re(s) = 2 et f variant dans I’ensemble des formes
primitives normalisées.

1 Introduction

Many important theorems of number theory are intimately connected with the values of various L-
functions at the edge of their critical strips. For example, the distribution of prime numbers in arithmetic
progressions is related to the non-vanishing of Dirichlet L-functions on the line Re(s) = 1. Another famous
example is Dirichlet’s class-number formula. Here we are interested in a similar situation in the context
of modular L-functions.

Let S2(N) be the space of cusp forms of weight 2 for T'g(N) with trivial character. The space Sz(N)
has an inner product (Petersson inner product)

<fg>= / f(2)g(2)dxdy
To(N)\H
where H denotes the upper half plane. For f € Sy(N) let
f(2) =) as(n)e(nz), e(z) = ™
n=1
be the Fourier expansion of f at ico and let Fy be the set of all normalized (a;(1) = 1) newforms in

Sa(N).
The symmetric square L-function associated to f € Fy is defined (for Re(s) > 2) by

=L ay(n?) ar(e?)
Lsym2(f) (5) = CN(2S - 2) § : f?SIS = Z dQJ;EZes (1)
n=1 d,e
(d,N)=1
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where (n(s) is the Riemann zeta function with the Euler factors corresponding to p|N removed. It
is known that Lgym,2(s)(s) extends to an entire function (see [4]) and for square free N, it satisfies a
functional equation of the form

s/ 82 5+1 N

T2
Similar to Dirichlet’s class number formula the value of Lgyn2(f)(s) at the edge of the critical strip (in
this case s = 2) is of interest. One can show that Lym,2()(2) is a constant multiple (depending on N') of
the Petersson inner product of f and f, more precisely
8736(N)

Lsym2(f)(2) = W <f,f> (3)
P p

where ¢ is the Euler totient function. Therefore to study the average values of the Petersson inner product

when f varies in Fy, it is enough to find an asymptotic formula for the average values of Lgy,2(5)(2). In
the case that N is prime and Ly,,2(s)(s) satisfies the Lindel6f hypothesis, R. Murty [3] has proved:

Theorem: If we assume that Lgyy:2(p)(3 +it) < (N|t))?, for some 0 > 0, then for N prime

N T4
> Lopma(n)(2) = 5¢(2) + OV T+ 37l0g’ V).
feFN

In this note we develop a similar asymptotic formula which works unconditionally. Also our method
enables us to derive asymptotic formulae for average values of symmetric square L-functions at a general
point in the line Re(s) = 2. The main observation is a modification of Murty’s approximate trace formula
(Proposition 1). We employ the recent method of Kowalski (see [2], section 3. 5) to obtain this.

2 An approximate trace formula

In this section we will derive an asymptotic formula for 3° .. ay(n) in term of N. Let T" and S be
positive and non-integer. We start by considering the integral

1 s ds as(e?) g¢(n)
i Lsyma(p)(s +2)T 5 Z d2e2 n2
1) d2e<T n<T
(d,N)=1

(see (1)). Upon moving the line of integration from 1 to -2 and using the functional equation (2), this
integral is

11 P(452)°T(35) T\ ds
— L 2) + —— 2L =\ w) 5
sme(f)( )+A27Ti ‘/(_2) 1—‘(3—5—2)2F(%) symz(f)( 5)(A2> S

Since A = ﬂ% and Lgym2(5)(s) is absolutely convergent for Re(s) > 2, this identity implies that

ar(e? N3 ayr(e? N3
Lumep@= Y B voln= 3 U usnroly) (@
@5 @

where w(S,T) = Y g o1 9:(m)

n2

We use the following three lemmas to get some information about >,z %ﬁff)f)a 7(n).
Lemma 1 1
Z ————ap(m)as(n) = Spuv/my/n+ O(N"2 (m,n)>mn).
iF dr < f, f >



Proof: See [3], Proposition 1. O

Lemma 2

2
) In <1f 7> > adf2(z2)af(N) = (CN(Q) + S_En1> Spet 4+ O (N—End(n)g)
Jer TSRS

where d(n) is the number of divisors of n and d,—0 = 1 if n is a square and is zero otherwise.

Proof: This follows from Lemma 1 and familiar estimates of analytic number theory, see [3] p. 272 for
details. O

Lemma 3 For any positive integer r, we have

L
2r

> (S Tas(n) < (dln)Valog N)FNE) [ 3 (s 1)

fer dr < f, f > fery

Proof: From the Holder inequality, for any r and s that 2—1T + % =1, we have

2r

1 ) 1 .
ey e O RS (D ON Xyl I (D O = s )

Terw feFN fEFN
Since |af(n)| < d(n)y/n (Deligne’s bound) and W < 10%1\[ (see [1] Proposition 4), we have
1 s\ ° 1 s—1 1 H
f;f:N <W|af(n)|> B erf:N (W'af(w) (WW(”N)

o =

< (W#f(d(n)\/ﬁ) — d(n)v(log N)# N~%. C

Now we can state and prove the main result of this section.

Proposition 1 For prime N, we have

N - 1 1 1
Z ag(n) = Tan:D +0 (N_5+6nd(”) + Vnd(n)N'~ 2 (log N)C>
feEFN

where 0 < d <1, r > 1751 is an integer, C' > 0 is a constant depending on § and r.

Proof: From (3) and (4) we get

Y apm)= 3 Lo @

fEFN jery Laym2(n(2)
N 1 1 ) 1 N4
=53 —w(S,T O =d
272 d;s d2e? fez]-‘:N dr < f, f >af(e Jay(n) + fez]-‘:N ir < f,f >w( ,Tag(n) |+ (Tz (n)ﬁ)
(d,N)=1

Now by applying Lemma 2 and 3 this expression becomes

N—1+N—1 N
12 12N 272



1

+0 (d(n)\/ﬁ(logzv)%w%) 3 (w(s,T)” +0(N4 (n)\/ﬁ>. (5)
fEFN

Let 0 < § < 1 and let S = N°, choose r > L. then from [2] (see Lemma 4, p. 64), we know that for
T < N

1

2r

Z (w(S, 7)) < (log N)”

feEFN

where D is a positive number which depends on §. Applying this inequality in (5) and choosing T a
non-integer bigger than N3 in (5) yields the result. O

3 Mean estimate

In the following lemma we give a representation of Lgym2(f)(s0) as a sum of two absolutely convergent
series.

Lemma 4 For any x > 0 and sq = oq + ity € C where o¢ > 2, let g < m and

1 3, ., 85+80.2 L, 85+s0+1 ds ar(e?) T
%% = 25 T r s— I = ——W —
(s0,0) = 55 /(n)ﬂ () =) &5 (o) Zde o2V (50 )
(d,N)=1

where f € Fn. Then we have

250 3
S0 2 So + 1 T2 N2
F(E) F( B) )Lsme(f)(SO) ZIf(So,l‘)+ (W) If(?)—SO,?).

Proof: Tt is similar to the proof of Lemma 3 in [1].

Now we evaluate the values of Lgy,,2(5)(s0) on average, where f ranges over all newforms of weight 2
and level N. From Lemma 4 with x = N and Proposition 1, we have

1 N-1 1 N
2 L0 = e | T 2 o )
feFN 2 2 (d,(Zi\}jzl
250—3
+7r% ’ —12 L s Nl is 4s ©)
N 12 2 Bsodi-2 0 Be Lo
(d,N)=1

where

1 1 e?d(e?) N 1 ed(e?) N
—5+0 11— C AV
51 < T N2 ; 270 q200—2 W(So,%) + N2 (log N) dz: £00 2002 (So’d%) (7)
(a4, Ny=1 (d,N)=1
and S < yzg=sr
N-3to ) N 1- ed(e?) N
S et [V so |+ N HaNE S S W6 s )
(@ V5= @N=1

Here, T’ = |F(%°)\2|I‘(%)| Now we apply the following three lemmas to estimate the terms of (6).



Lemma 5 Let og > %, then

1 N 50,2, 80+ 1 2—0p
e,zd crogzo—2 WV (80, 55-) = P(5) T(=5=)C(s0)Cn (250 = 2) + O (NZ77°)

(d,N)=1

and

1 N L,
> ST gz W3 = 80, 552) = Oo (NUO )

e,d
(d,N)=1

where W (so,x) is defined in Lemma 4.
Proof: From the definition of W (sp, ) it is clear that

1 N
Z 50 2502 W (s0, %)

e,d
(d,N)=1

Sds

1 1 3 s4+50.2  s+59+1 N
— _ 25 T IR 2 289 — 2)(—
> g, ™ T T e 2 -2

By moving the line of integration from () to the left of (2 — 09), we get the desired result. The second
identity proves in a similar way by choosing n > max{3 — 09,00 — %} and moving the line of integration
of the corresponding integral to the left of (o9 — %) O

Lemma 6 |W(sg,x)| < W(0g,x).

Proof: From the Legendre duplication formula, we have

s+ sg+1
2

™
) = QSi:—l F(S + SO).

S+ So
2

I'( )T

Now by applying this identity in the definition of W(sg,z) and writing the I' functions in terms of
integrals, we get

1 7 OO0 skso g 73z ds
w = _— ty 77 T lgpsteolem(titta) gy gy -,
(50,7) = 5 5o /w) (/0 /O ! 2 ¢ vtz ) (=)

By interchanging the order of integration, we have

(o] o0
W(So,.’lﬁ) = 2T\/i ; tl%_le_tl /2« tgso_le_tZdtg dty.

[V

[N

Tty
The result follows by applying the triangle inequality in the above identity. O

Lemma 7 Let a < min{#,’y + 1}, then

6w
)

d(e? N
> —i B)W(%—Q ) ~
. ed d*e 6 Y\27 [ v+L 3 .

(@N)=1 (v (BT (3) T (%) log” N if a=1

as N — 0.



Proof: First note that Y oo diig) = % for Re(s) > 1. Now by this identity and the definition of

W(.,.) the above sum is equal to

11 _3s s+v2. s+v+1 C(s+a) N °ds
__/() ) M s o (@) 5

Moving the line of integration to the left of (1 — «) and calculating the residue at s = 1 — « yields the
result. O

Now by using Lemma 6 and Lemma 7 in (7) and (8), we get upper bounds for S; and S5. Applying
these upper bounds and Lemma 5 in (6) yields

Z Lsme(f)(SO) = C(SO)CN@SO_?)%+OUU (N%“’O)—i-OUO (

N5—o0+s log® N + N3—00—3; (log N)C>
feFn

502 s
INCOIRINES]
(9)
where 0 < d < 1, 17 > % is an integer and C' > 0 is a constant depending on § and r. It is clear that if

oo = 2 the above formula gives us an asymptotic formula, and in this case we can see that the choice of
0= % and r = 23 gives the optimal error term, thus we proved the following theorem:

Theorem 1 Let N be prime, then there exists B > 0 such that for any real number t

. . S N-—1 N i (log N)?
Z Lgymz()(2 4 it) = ((2 + it)(n (2 + 2it) 5 +0 ( oz P )
fEFN D) IT(E52)]

Corollary 1 Under the assumptions of Theorem 1
™ 91
> <hf>= N0 (N4s (1ogN)B) .
fEFN
Proof: In Theorem 1, let t = 0 and then use (3) to write Lym2(f)(s) in terms of < f, f >. O

1

Note: It is worth mentioning that (9) is an asymptotic formula if og = Re(so) > 2 — 5.
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