Average Values of Symmetric Square L-Functions at $R e(s)=2$

Amir Akbary *

Appeared in C. R. Math. Rep. Acad. Sci. Canada, 22 (2000) no. 3, 97-104

Abstract

Let $L_{s y m^{2}(f)}(s)$ be the symmetric square L-function associated to a newform of weight 2 and level N. For N prime, we will derive asymptotic formulae for the average values of $L_{s y m^{2}(f)}(s)$ at a general point on the line $\operatorname{Re}(s)=2$ when f varies over the set of all normalized newforms.

RÉSUMÉ: Soit $L_{s y m^{2}(f)}(s)$ la fonction L du carré symétrique d'une forme primitive de poids 2 et niveau N. Pour N premier, on dérive une formule asymptotique pour les valeurs moyennes de $L_{s y m^{2}(f)}(s)$ en un point général de la droite $\operatorname{Re}(s)=2$ et f variant dans l'ensemble des formes primitives normalisées.

1 Introduction

Many important theorems of number theory are intimately connected with the values of various L functions at the edge of their critical strips. For example, the distribution of prime numbers in arithmetic progressions is related to the non-vanishing of Dirichlet L-functions on the line $\operatorname{Re}(s)=1$. Another famous example is Dirichlet's class-number formula. Here we are interested in a similar situation in the context of modular L-functions.

Let $S_{2}(N)$ be the space of cusp forms of weight 2 for $\Gamma_{0}(N)$ with trivial character. The space $S_{2}(N)$ has an inner product (Petersson inner product)

$$
<f, g>=\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f(z) \overline{g(z)} d x d y
$$

where \mathcal{H} denotes the upper half plane. For $f \in S_{2}(N)$ let

$$
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e(n z), e(z)=e^{2 \pi i z}
$$

be the Fourier expansion of f at $i \infty$ and let \mathcal{F}_{N} be the set of all normalized $\left(a_{f}(1)=1\right)$ newforms in $S_{2}(N)$.

The symmetric square L-function associated to $f \in \mathcal{F}_{N}$ is defined (for $\operatorname{Re}(s)>2$) by

$$
\begin{equation*}
L_{s y m^{2}(f)}(s)=\zeta_{N}(2 s-2) \sum_{n=1}^{\infty} \frac{a_{f}\left(n^{2}\right)}{n^{s}}=\sum_{\substack{d, e \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{d^{2 s-2} e^{s}} \tag{1}
\end{equation*}
$$

[^0]where $\zeta_{N}(s)$ is the Riemann zeta function with the Euler factors corresponding to $p \mid N$ removed. It is known that $L_{s^{\prime} m^{2}(f)}(s)$ extends to an entire function (see [4]) and for square free N, it satisfies a functional equation of the form
\[

$$
\begin{equation*}
R(s)=A^{s} \Gamma\left(\frac{s}{2}\right)^{2} \Gamma\left(\frac{s+1}{2}\right) L_{s y m^{2}(f)}(s)=R(3-s), \quad A=\frac{N}{\pi^{\frac{3}{2}}} . \tag{2}
\end{equation*}
$$

\]

Similar to Dirichlet's class number formula the value of $L_{s y m^{2}(f)}(s)$ at the edge of the critical strip (in this case $s=2$) is of interest. One can show that $L_{s y m^{2}(f)}(2)$ is a constant multiple (depending on N) of the Petersson inner product of f and f, more precisely

$$
\begin{equation*}
L_{s y m^{2}(f)}(2)=\frac{8 \pi^{3} \phi(N)}{N^{2} \prod_{p \mid N}\left(1-\frac{1}{p}\right)}<f, f> \tag{3}
\end{equation*}
$$

where ϕ is the Euler totient function. Therefore to study the average values of the Petersson inner product when f varies in \mathcal{F}_{N}, it is enough to find an asymptotic formula for the average values of $L_{s_{s y m}^{2}(f)}(2)$. In the case that N is prime and $L_{s y m^{2}(f)}(s)$ satisfies the Lindelöf hypothesis, R. Murty [3] has proved:
Theorem: If we assume that $L_{\text {sym }^{2}(f)}\left(\frac{3}{2}+i t\right) \ll(N|t|)^{\theta}$, for some $\theta>0$, then for N prime

$$
\sum_{f \in \mathcal{F}_{N}} L_{\text {sym }^{2}(f)}(2)=\frac{N}{12} \zeta^{2}(2)+O\left(N^{\frac{7}{10}+\frac{4}{5} \theta} \log ^{3} N\right)
$$

In this note we develop a similar asymptotic formula which works unconditionally. Also our method enables us to derive asymptotic formulae for average values of symmetric square L-functions at a general point in the line $\operatorname{Re}(s)=2$. The main observation is a modification of Murty's approximate trace formula (Proposition 1). We employ the recent method of Kowalski (see [2], section 3. 5) to obtain this.

2 An approximate trace formula

In this section we will derive an asymptotic formula for $\sum_{f \in \mathcal{F}_{N}} a_{f}(n)$ in term of N. Let T and S be positive and non-integer. We start by considering the integral

$$
\frac{1}{2 \pi i} \int_{(1)} L_{s y m^{2}(f)}(s+2) T^{s} \frac{d s}{s}=\sum_{\substack{d^{2} e<T \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{d^{2} e^{2}}=\sum_{n<T} \frac{g_{f}(n)}{n^{2}}
$$

(see (1)). Upon moving the line of integration from 1 to -2 and using the functional equation (2), this integral is

$$
=L_{s y m^{2}(f)}(2)+\frac{1}{A} \frac{1}{2 \pi i} \int_{(-2)} \frac{\Gamma\left(\frac{1-s}{2}\right)^{2} \Gamma\left(\frac{2-s}{2}\right)}{\Gamma\left(\frac{s+2}{2}\right)^{2} \Gamma\left(\frac{s+3}{2}\right)} L_{s y m^{2}(f)}(1-s)\left(\frac{T}{A^{2}}\right)^{s} \frac{d s}{s} .
$$

Since $A=\frac{N}{\pi^{\frac{3}{2}}}$ and $L_{s y m^{2}(f)}(s)$ is absolutely convergent for $\operatorname{Re}(s)>2$, this identity implies that

$$
\begin{equation*}
L_{s y m^{2}(f)}(2)=\sum_{\substack{d^{2} e<T \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{d^{2} e^{2}}+O\left(\frac{N^{3}}{T^{2}}\right)=\sum_{\substack{d^{2} e<S \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{d^{2} e^{2}}+\omega(S, T)+O\left(\frac{N^{3}}{T^{2}}\right) \tag{4}
\end{equation*}
$$

where $\omega(S, T)=\sum_{S \leq n<T} \frac{g_{f}(n)}{n^{2}}$.
We use the following three lemmas to get some information about $\sum_{f \in \mathcal{F}_{N}} \frac{L_{s y m^{2}(f)}(2)}{4 \pi<f, f>} a_{f}(n)$.
Lemma 1

$$
\sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} a_{f}(m) a_{f}(n)=\delta_{m n} \sqrt{m} \sqrt{n}+O\left(N^{-\frac{3}{2}}(m, n)^{\frac{1}{2}} m n\right)
$$

Proof: See [3], Proposition 1.

Lemma 2

$$
\sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} \sum_{\substack{d^{2} e<S \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{d^{2} e^{2}} a_{f}(n)=\left(\zeta_{N}(2)+S^{-\frac{1}{2}} n^{\frac{1}{4}}\right) \delta_{n=\square}+O\left(N^{-\frac{3}{2}} n \boldsymbol{d}(n) S\right)
$$

where $\boldsymbol{d}(n)$ is the number of divisors of n and $\delta_{n=\square}=1$ if n is a square and is zero otherwise.
Proof: This follows from Lemma 1 and familiar estimates of analytic number theory, see [3] p. 272 for details.

Lemma 3 For any positive integer r, we have

$$
\sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} \omega(S, T) a_{f}(n) \ll\left(\boldsymbol{d}(n) \sqrt{n}(\log N)^{\frac{1}{2 r}} N^{-\frac{1}{2 r}}\right)\left(\sum_{f \in \mathcal{F}_{N}}(\omega(S, T))^{2 r}\right)^{\frac{1}{2 r}}
$$

Proof: From the Hölder inequality, for any r and s that $\frac{1}{2 r}+\frac{1}{s}=1$, we have

$$
\sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} \omega(S, T) a_{f}(n) \leq\left(\sum_{f \in \mathcal{F}_{N}}(\omega(S, T))^{2 r}\right)^{\frac{1}{2 r}}\left(\sum_{f \in \mathcal{F}_{N}}\left(\frac{1}{4 \pi<f, f>}\left|a_{f}(n)\right|\right)^{s}\right)^{\frac{1}{s}}
$$

Since $\left|a_{f}(n)\right| \leq \mathbf{d}(n) \sqrt{n}$ (Deligne's bound) and $\frac{1}{4 \pi<f, f\rangle} \ll \frac{\log N}{N}$ (see [1] Proposition 4), we have

$$
\begin{gathered}
\left(\sum_{f \in \mathcal{F}_{N}}\left(\frac{1}{4 \pi<f, f>}\left|a_{f}(n)\right|\right)^{s}\right)^{\frac{1}{s}}=\left(\sum_{f \in \mathcal{F}_{N}}\left(\frac{1}{4 \pi<f, f>}\left|a_{f}(n)\right|\right)^{s-1}\left(\frac{1}{4 \pi<f, f>}\left|a_{f}(n)\right|\right)^{\frac{1}{s}}\right. \\
\ll\left(\frac{\mathbf{d}(n) \sqrt{n} \log N}{N}\right)^{\frac{1}{2 r}}(\mathbf{d}(n) \sqrt{n})^{\frac{1}{s}}=\mathbf{d}(n) \sqrt{n}(\log N)^{\frac{1}{2 r}} N^{-\frac{1}{2 r}} . \square
\end{gathered}
$$

Now we can state and prove the main result of this section.
Proposition 1 For prime N, we have

$$
\sum_{f \in \mathcal{F}_{N}} a_{f}(n)=\frac{N-1}{12} \delta_{n=\square}+O\left(N^{-\frac{1}{2}+\delta} n \boldsymbol{d}(n)+\sqrt{n} \boldsymbol{d}(n) N^{1-\frac{1}{2 r}}(\log N)^{C}\right)
$$

where $0<\delta<1, r \geq \frac{11}{\delta}$ is an integer, $C>0$ is a constant depending on δ and r.
Proof: From (3) and (4) we get

$$
\begin{gathered}
\sum_{f \in \mathcal{F}_{N}} a_{f}(n)=\sum_{f \in \mathcal{F}_{N}} \frac{L_{s y m^{2}(f)}(2)}{L_{s y m^{2}(f)}(2)} a_{f}(n) \\
=\frac{N}{2 \pi^{2}}\left(\sum_{\substack{d^{2} e<S \\
(d, N)=1}} \frac{1}{d^{2} e^{2}} \sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} a_{f}\left(e^{2}\right) a_{f}(n)+\sum_{f \in \mathcal{F}_{N}} \frac{1}{4 \pi<f, f>} \omega(S, T) a_{f}(n)\right)+O\left(\frac{N^{4}}{T^{2}} \mathbf{d}(n) \sqrt{n}\right)
\end{gathered}
$$

Now by applying Lemma 2 and 3 this expression becomes

$$
=\left(\frac{N-1}{12}+\frac{N-1}{12 N}+\frac{N}{2 \pi^{2}} S^{-\frac{1}{2}} n^{\frac{1}{4}}\right) \delta_{n=\square}+O\left(N^{-\frac{1}{2}} n \mathbf{d}(n) S\right)
$$

$$
\begin{equation*}
+O\left(\mathbf{d}(n) \sqrt{n}(\log N)^{\frac{1}{2 r}} N^{1-\frac{1}{2 r}}\right)\left(\sum_{f \in \mathcal{F}_{N}}(\omega(S, T))^{2 r}\right)^{\frac{1}{2 r}}+O\left(\frac{N^{4}}{T^{2}} \mathbf{d}(n) \sqrt{n}\right) \tag{5}
\end{equation*}
$$

Let $0<\delta<1$ and let $S=N^{\delta}$, choose $r \geq \frac{11}{\delta}$, then from [2] (see Lemma 4, p. 64), we know that for $T<N^{10}$

$$
\left(\sum_{f \in \mathcal{F}_{N}}(\omega(S, T))^{2 r}\right)^{\frac{1}{2 r}} \ll(\log N)^{D}
$$

where D is a positive number which depends on δ. Applying this inequality in (5) and choosing T a non-integer bigger than N^{3} in (5) yields the result.

3 Mean estimate

In the following lemma we give a representation of $L_{s y m^{2}(f)}\left(s_{0}\right)$ as a sum of two absolutely convergent series.

Lemma 4 For any $x>0$ and $s_{0}=\sigma_{0}+i t_{0} \in \mathbb{C}$ where $\sigma_{0} \geq \frac{3}{2}$, let $\sigma_{0}<\eta$ and

$$
W\left(s_{0}, x\right)=\frac{1}{2 \pi i} \int_{(\eta)} \pi^{-\frac{3}{2} s} \Gamma\left(\frac{s+s_{0}}{2}\right)^{2} \Gamma\left(\frac{s+s_{0}+1}{2}\right) \quad x^{s} \frac{d s}{s}, \quad I_{f}\left(s_{0}, x\right)=\sum_{\substack{d, e \\(d, N)=1}} \frac{a_{f}\left(e^{2}\right)}{e^{s_{0}} d^{2 s_{0}-2}} W\left(s_{0}, \frac{x}{d^{2} e}\right)
$$

where $f \in \mathcal{F}_{N}$. Then we have

$$
\Gamma\left(\frac{s_{0}}{2}\right)^{2} \Gamma\left(\frac{s_{0}+1}{2}\right) L_{s y m^{2}(f)}\left(s_{0}\right)=I_{f}\left(s_{0}, x\right)+\left(\frac{\pi^{\frac{3}{2}}}{N}\right)^{2 s_{0}-3} I_{f}\left(3-s_{0}, \frac{N^{2}}{x}\right) .
$$

Proof: It is similar to the proof of Lemma 3 in [1].
Now we evaluate the values of $L_{s y m^{2}(f)}\left(s_{0}\right)$ on average, where f ranges over all newforms of weight 2 and level N. From Lemma 4 with $x=N$ and Proposition 1, we have

$$
\begin{align*}
& \sum_{f \in \mathcal{F}_{N}} L_{s y m^{2}(f)}\left(s_{0}\right)=\frac{1}{\Gamma\left(\frac{s_{0}}{2}\right)^{2} \Gamma\left(\frac{s_{0}+1}{2}\right)}\left(\frac{N-1}{12} \sum_{\substack{d, e \\
(d, N)=1}} \frac{1}{e^{s_{0}} d^{2 s_{0}-2}} W\left(s_{0}, \frac{N}{d^{2} e}\right)\right. \\
& \left.\quad+\left(\frac{\pi^{\frac{3}{2}}}{N}\right)^{2 s_{0}-3} \frac{N-1}{12} \sum_{\substack{d, e \\
(d, N)=1}} \frac{1}{e^{3-s_{0}} d^{4-2 s_{0}}} W\left(3-s_{0}, \frac{N}{d^{2} e}\right)\right)+S_{1}+S_{2} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
S_{1} \ll \frac{1}{\Gamma}\left(N^{-\frac{1}{2}+\delta} \sum_{\substack{d, e \\(d, N)=1}} \frac{e^{2} \mathbf{d}\left(e^{2}\right)}{e^{\sigma_{0}} d^{2 \sigma_{0}-2}}\left|W\left(s_{0}, \frac{N}{d^{2} e}\right)\right|+N^{1-\frac{1}{2 r}}(\log N)^{C} \sum_{\substack{d, e \\(d, N)=1}} \frac{e \mathbf{d}\left(e^{2}\right)}{e^{\sigma_{0}} d^{2 \sigma_{0}-2}}\left|W\left(s_{0}, \frac{N}{d^{2} e}\right)\right|\right) \tag{7}
\end{equation*}
$$

and $S_{2} \ll \frac{1}{N^{2 \sigma_{0}-3} \Gamma}$

$$
\begin{equation*}
\left(N^{-\frac{1}{2}+\delta} \sum_{\substack{d, e \\(d, N)=1}} \frac{e^{2} \mathbf{d}\left(e^{2}\right)}{e^{3-\sigma_{0}} d^{4-2 \sigma_{0}}}\left|W\left(3-s_{0}, \frac{N}{d^{2} e}\right)\right|+N^{1-\frac{1}{2 r}}(\log N)^{C} \sum_{\substack{d, e \\(d, N)=1}} \frac{e \mathbf{d}\left(e^{2}\right)}{e^{3-\sigma_{0}} d^{4-2 \sigma_{0}}}\left|W\left(3-s_{0}, \frac{N}{d^{2} e}\right)\right|\right) . \tag{8}
\end{equation*}
$$

Here, $\Gamma=\left|\Gamma\left(\frac{s_{0}}{2}\right)\right|^{2}\left|\Gamma\left(\frac{s_{0}+1}{2}\right)\right|$. Now we apply the following three lemmas to estimate the terms of (6).

Lemma 5 Let $\sigma_{0}>\frac{3}{2}$, then

$$
\sum_{\substack{e, d \\(d, N)=1}} \frac{1}{e^{s_{0}} d^{2 s_{0}-2}} W\left(s_{0}, \frac{N}{d^{2} e}\right)=\Gamma\left(\frac{s_{0}}{2}\right)^{2} \Gamma\left(\frac{s_{0}+1}{2}\right) \zeta\left(s_{0}\right) \zeta_{N}\left(2 s_{0}-2\right)+O_{\sigma_{0}}\left(N^{\frac{3}{2}-\sigma_{0}}\right)
$$

and

$$
\sum_{\substack{e, d \\(d, N)=1}} \frac{1}{e^{3-s_{0}} d^{4-2 s_{0}}} W\left(3-s_{0}, \frac{N}{d^{2} e}\right)=O_{\sigma_{0}}\left(N^{\sigma_{0}-\frac{3}{2}}\right)
$$

where $W\left(s_{0}, x\right)$ is defined in Lemma 4.
Proof: From the definition of $W\left(s_{0}, x\right)$ it is clear that

$$
\begin{gathered}
\sum_{\substack{e, d \\
(d, N)=1}} \frac{1}{e^{s_{0}} d^{2 s_{0}-2}} W\left(s_{0}, \frac{N}{d^{2} e}\right) \\
=\sum_{e} \frac{1}{e^{s_{0}}} \frac{1}{2 \pi i} \int_{(\eta)} \pi^{-\frac{3}{2} s} \Gamma\left(\frac{s+s_{0}}{2}\right)^{2} \Gamma\left(\frac{s+s_{0}+1}{2}\right) \zeta_{N}\left(2 s+2 s_{0}-2\right)\left(\frac{N}{e}\right)^{s} \frac{d s}{s} .
\end{gathered}
$$

By moving the line of integration from (η) to the left of $\left(\frac{3}{2}-\sigma_{0}\right)$, we get the desired result. The second identity proves in a similar way by choosing $\eta>\max \left\{3-\sigma_{0}, \sigma_{0}-\frac{3}{2}\right\}$ and moving the line of integration of the corresponding integral to the left of $\left(\sigma_{0}-\frac{3}{2}\right)$.
Lemma $6\left|W\left(s_{0}, x\right)\right| \leq W\left(\sigma_{0}, x\right)$.
Proof: From the Legendre duplication formula, we have

$$
\Gamma\left(\frac{s+s_{0}}{2}\right) \Gamma\left(\frac{s+s_{0}+1}{2}\right)=\frac{\sqrt{\pi}}{2^{s+s_{0}-1}} \Gamma\left(s+s_{0}\right) .
$$

Now by applying this identity in the definition of $W\left(s_{0}, x\right)$ and writing the Γ functions in terms of integrals, we get

$$
W\left(s_{0}, x\right)=\frac{1}{2 \pi i} \frac{\sqrt{\pi}}{2^{s_{0}-1}} \int_{(\eta)}\left(\int_{0}^{\infty} \int_{0}^{\infty} t_{1}^{\frac{s+s_{0}}{2}-1} t_{2}^{s+s_{0}-1} e^{-\left(t_{1}+t_{2}\right)} d t_{1} d t_{2}\right)\left(\frac{\pi^{-\frac{3}{2}} x}{2}\right)^{s} \frac{d s}{s}
$$

By interchanging the order of integration, we have

$$
W\left(s_{0}, x\right)=\frac{\sqrt{\pi}}{2^{s_{0}-1}} \int_{0}^{\infty} t_{1}^{\frac{s_{0}}{2}-1} e^{-t_{1}}\left(\int_{\frac{2 \pi^{\frac{3}{2}}}{x t_{1} \frac{1}{2}}}^{\infty} t_{2}^{s_{0}-1} e^{-t_{2}} d t_{2}\right) d t_{1}
$$

The result follows by applying the triangle inequality in the above identity.
Lemma 7 Let $\alpha<\min \left\{\frac{1+\beta}{2}, \gamma+1\right\}$, then

$$
\sum_{\substack{d, e \\
(d, N)=1}} \frac{\boldsymbol{d}\left(e^{2}\right)}{e^{\alpha} d^{\beta}} W\left(\gamma, \frac{N}{d^{2} e}\right) \sim\left\{\begin{array}{cc}
\frac{6}{\pi^{2}} \frac{\pi^{-\frac{3}{2}(1-\alpha)}}{1-\alpha} \zeta_{N}(\beta-2 \alpha+2) \Gamma\left(\frac{\gamma-\alpha+1}{2}\right)^{2} \Gamma\left(\frac{\gamma-\alpha+2}{2}\right) N^{1-\alpha} \log ^{2} N & \text { if } \alpha<1 \\
\frac{6}{\pi^{2}} \zeta_{N}(\beta) \Gamma\left(\frac{\gamma}{2}\right)^{2} \Gamma\left(\frac{\gamma+1}{2}\right) \log ^{3} N & \text { if } \alpha=1
\end{array}\right.
$$

as $N \rightarrow \infty$.

Proof: First note that $\sum_{e=1}^{\infty} \frac{\mathbf{d}\left(e^{2}\right)}{e^{s}}=\frac{\zeta^{3}(s)}{\zeta(2 s)}$ for $\operatorname{Re}(s)>1$. Now by this identity and the definition of $W(.,$.$) the above sum is equal to$

$$
\sum_{(d, N)=1} \frac{1}{d^{\beta}} \frac{1}{2 \pi i} \int_{(\eta)} \pi^{-\frac{3}{2} s} \Gamma\left(\frac{s+\gamma}{2}\right)^{2} \Gamma\left(\frac{s+\gamma+1}{2}\right) \frac{\zeta^{3}(s+\alpha)}{\zeta(2 s+2 \alpha)}\left(\frac{N}{d^{2}}\right)^{s} \frac{d s}{s}
$$

Moving the line of integration to the left of $(1-\alpha)$ and calculating the residue at $s=1-\alpha$ yields the result.

Now by using Lemma 6 and Lemma 7 in (7) and (8), we get upper bounds for S_{1} and S_{2}. Applying these upper bounds and Lemma 5 in (6) yields

$$
\begin{equation*}
\sum_{f \in \mathcal{F}_{N}} L_{s y m^{2}(f)}\left(s_{0}\right)=\zeta\left(s_{0}\right) \zeta_{N}\left(2 s_{0}-2\right) \frac{N-1}{12}+O_{\sigma_{0}}\left(N^{\frac{5}{2}-\sigma_{0}}\right)+O_{\sigma_{0}}\left(\frac{N^{\frac{5}{2}-\sigma_{0}+\delta} \log ^{3} N+N^{3-\sigma_{0}-\frac{1}{2 r}}(\log N)^{C}}{\left|\Gamma\left(\frac{s_{0}}{2}\right)\right|^{2}\left|\Gamma\left(\frac{s_{0}+1}{2}\right)\right|}\right) \tag{9}
\end{equation*}
$$

where $0<\delta<1, r \geq \frac{11}{\delta}$ is an integer and $C>0$ is a constant depending on δ and r. It is clear that if $\sigma_{0}=2$ the above formula gives us an asymptotic formula, and in this case we can see that the choice of $\delta=\frac{11}{23}$ and $r=23$ gives the optimal error term, thus we proved the following theorem:

Theorem 1 Let N be prime, then there exists $B>0$ such that for any real number t

$$
\sum_{f \in \mathcal{F}_{N}} L_{s^{\prime y m}(f)}(2+i t)=\zeta(2+i t) \zeta_{N}(2+2 i t) \frac{N-1}{12}+O\left(\frac{N^{\frac{45}{46}}(\log N)^{B}}{\left|\Gamma\left(\frac{2+i t}{2}\right)\right|^{2}\left|\Gamma\left(\frac{3+i t}{2}\right)\right|}\right)
$$

Corollary 1 Under the assumptions of Theorem 1

$$
\sum_{f \in \mathcal{F}_{N}}<f, f>=\frac{\pi}{2^{7} 3^{3}} N^{2}+O\left(N^{\frac{91}{46}}(\log N)^{B}\right)
$$

Proof: In Theorem 1, let $t=0$ and then use (3) to write $L_{s_{s y m}{ }^{2}(f)}(s)$ in terms of $<f, f>$.
Note: It is worth mentioning that (9) is an asymptotic formula if $\sigma_{0}=\operatorname{Re}\left(s_{0}\right)>2-\frac{1}{46}$.
Acknowledgement: The author wishes to thank Ram Murty, Kumar Murty and Ali Rajaei for many helpful discussions related to this work.

References

[1] W. Duke, The critical order of vanishing of automorphic L-functions with large level. Invent. Math. 119 (1995), 165-174.
[2] E. Kowalski, The rank of the Jacobian of modular curves: analytic methods. Ph. D. Thesis, Rutgers University, 1998.
[3] R. Murty, The analytic rank of $J_{o}(N)(\mathbb{Q})$. CMS Conference Proceeding. 15 (1995), 263-277.
[4] G. Shimura, On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. (3) 31 (1975), 79-98.
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Quebec, H3G 1M8, CANADA
E-mail: akbary@cicma.concordia.ca

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification. Primary 11F67.
 *Research partially supported by Concordia General Research Funds.

