Average Distributions and Product of Special Values of L-Series

Amir Akbary, University of Lethbridge
Chantal David ${ }^{\dagger}$, Concordia University
Robert Juricevic ${ }^{\ddagger}$, University of Waterloo

1 Introduction

Let E be an elliptic curve defined over the rationals. For any prime p of good reduction, let E_{p} be the elliptic curve over \mathbb{F}_{p} obtained by reducing $E \bmod p$. Let $a_{p}(E)$ be the trace of the Frobenius morphism of E_{p}. Then, Hasse proved that $\# E\left(\mathbb{F}_{p}\right)=p+1-a_{p}(E)$ with $\left|a_{p}(E)\right| \leq 2 \sqrt{p}$. The case $a_{p}(E)=0$ corresponds to supersingular reduction $\bmod p$.
Let N be a positive integer. For a fixed $r \in \mathbb{Z}$, and fixed curves E_{1}, \ldots, E_{N}, we define

$$
\pi_{E_{1}, \ldots, E_{N}}^{r}(x)=\#\left\{p \leq x: a_{p}\left(E_{1}\right)=\ldots=a_{p}\left(E_{N}\right)=r\right\} .
$$

There is a simple heuristic that can be used to predict the asymptotic behavior of $\pi_{E_{1}, \ldots, E_{N}}^{r}(x)$. From Hasse's bound, the probability that $a_{p}(E)=r$ is

$$
\operatorname{Prob}\left\{a_{p}(E)=r\right\} \sim \begin{cases}\frac{1}{4 \sqrt{p}} & \text { if }|r| \leq 2 \sqrt{p} ; \\ 0 & \text { if }|r|>2 \sqrt{p}\end{cases}
$$

This suggests the asymptotic behavior

$$
\pi_{E}^{r}(x) \sim \sum_{p \leq x} \operatorname{Prob}\left\{a_{p}(E)=r\right\} \sim C_{E, r} \frac{\sqrt{x}}{\log x}
$$

[^0]where $C_{E, r}$ is a constant depending on E and r. Similarly, assuming that $a_{p}\left(E_{1}\right)=r$ and $a_{p}\left(E_{2}\right)=r$ are independent events for non-isogenous curves E_{1} and E_{2}, we have for $|r| \leq 2 \sqrt{p}$
$$
\operatorname{Prob}\left\{a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)=r\right\} \sim \frac{1}{16 p}
$$
and more generally
$$
\operatorname{Prob}\left\{a_{p}\left(E_{1}\right)=\ldots=a_{p}\left(E_{N}\right)=r\right\} \sim \frac{1}{4^{N} p^{N / 2}}
$$

Summing the probabilities as above leads to the following conjecture.
Conjecture 1.1 (Lang-Trotter conjecture) Let N be a positive integer, let $r \in \mathbb{Z}$, and let E_{1}, \ldots, E_{N} be elliptic curves over \mathbb{Q}, not $\overline{\mathbb{Q}}$-isogenous and if $r=0$ without complex multiplication. Then,

$$
\pi_{E_{1}, \ldots, E_{N}}^{r}(x) \sim \begin{cases}C_{E_{1}, r} \frac{\sqrt{x}}{\log x} & \text { if } N=1 ; \\ C_{E_{1}, E_{2}, r} \log \log x & \text { if } N=2 ; \\ \text { is finite } & \text { if } N>2 .\end{cases}
$$

For $N=1$, there is a more precise conjecture by Lang and Trotter [LT]. Their conjecture is based on a probabilistic model more refined than the simple heuristic above, and they then get a conjectural value for the constant $C_{E, r}$. In particular, the constant can be 0 , and the asymptotic relation is then interpreted to mean that there are only finitely many primes p such that $a_{p}(E)=r$. This can happen, for example, if E has rational torsion over \mathbb{Q}. Some other such cases were classified in [DKP].
To this date, very little is known about the Lang-Trotter conjecture. It was shown by Elkies [Elk] that for any elliptic curve E over \mathbb{Q}, there are infinitely many primes such that $a_{p}(E)=0$, but this result is not known for any curve E if $r \neq 0$. The best (unconditional) lower bound for this case is $\pi_{E}^{0}(x) \geq \log _{3} x /\left(\log _{4} x\right)^{1+\delta}$ for any positive δ and x sufficiently large [FM1].
For any $r \in \mathbb{Z}$, it was shown by Serre $[\mathrm{S}]$ that $\pi_{E}^{r}(x)$ has density 0 in the set of primes, and the best result for this case is $\pi_{E}^{r}(x) \ll x^{4 / 5}(\log x)^{-1 / 5}[M M S]$ under the Generalised Riemann Hypothesis. For $r=0$, the unconditional bound $\pi_{E}^{0}(x) \ll x^{3 / 4}$ was obtained by Elkies and Ram Murty.
A classical way to get evidence for hard distribution questions like the Lang-Trotter conjecture is to look at average estimates. For any $a, b \in \mathbb{Z}$ such that $4 a^{3}+27 b^{2} \neq 0$, let $E(a, b)$ be the elliptic curve

$$
y^{2}=x^{3}+a x+b \text {. }
$$

It was shown by Murty and Fouvry [FM1] that for $r=0$, the Lang-Trotter conjecture holds on average, i.e. as $x \rightarrow \infty$

$$
\frac{1}{4 A B} \sum_{\substack{|a| \leq A \\|b| \leq B}} \pi_{E(a, b)}^{0}(x) \sim C_{0} \frac{\sqrt{x}}{\log x}
$$

where C_{0} is an explicit non-zero constant. This result was extended to all $r \in \mathbb{Z}$ by David and Pappalardi [DP] who showed that as $x \rightarrow \infty$

$$
\frac{1}{4 A B} \sum_{\substack{|a| \leq A \\|b| \leq B}} \pi_{E(a, b)}^{r}(x) \sim C_{r} \frac{\sqrt{x}}{\log x}
$$

where

$$
\begin{equation*}
C_{r}=\frac{2}{\pi} \prod_{p \mid r} \frac{p^{2}}{\left(p^{2}-1\right)} \prod_{p \nmid r} \frac{p\left(p^{2}-p-1\right)}{(p-1)\left(p^{2}-1\right)} . \tag{1}
\end{equation*}
$$

We prove in this paper that the Lang-Trotter conjecture holds on average when $N=2$. If $r=0$, this was done by Fouvry and Murty [FM2]. We extend it in this paper for all $r \in \mathbb{Z}$. As for all those average results, the key step is a theorem of Deuring which relates the number of elliptic curves over the finite fields \mathbb{F}_{p} with $a_{p}(E)=r$ to the class number of the quadratic imaginary order of discriminant $r^{2}-4 p$ (see Section 2). Using Dirichlet's class number formula, the averages to consider are then averages of special values of Dirichlet L-functions (for $N=1$), or averages of products of special values of Dirichlet L-functions (for $N \geq 2$). In the case $r=0$, one can compute those averages by splitting the L-functions

$$
L(1, \chi)=\sum_{n \geq 1} \frac{\chi(n)}{n}
$$

into 2 sums, depending if n is a square or not, as only the terms with n a square will contribute to the main term. This is not the case when $r \neq 0$, because there is a shifting in the characters χ. Then, all the terms of the Dirichlet L-functions will contribute to the main term, and the computations are more delicate. The average Lang-Trotter conjecture for 2 elliptic curves then follows from this average of products of special values of Dirichlet L-functions.

Theorem 1.2 Let $\epsilon>0$, and let r be an odd integer. Let A, B be positive integers with $A, B \geqslant x^{1+\epsilon}$. Then as $x \rightarrow \infty$,

$$
\frac{1}{16 A^{2} B^{2}} \sum_{\substack{\left|a_{1}\right|,\left|a_{2}\right| \leq A \\\left|b_{1}\right|,\left|b_{2}\right| \leqslant B}} \pi_{E_{1}, E_{2}}^{r}(x) \sim C_{r} \log \log x
$$

where

$$
\begin{equation*}
C_{r}=\frac{3}{\pi^{2}} \prod_{p \mid r} \frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \prod_{p \nmid r} \frac{p^{2}\left(p^{4}-2 p^{2}-3 p-1\right)}{(p+1)^{3}(p-1)^{3}} . \tag{2}
\end{equation*}
$$

We remark that for technical reasons, we restrict to the case r odd in the statement of Theorem 1.2. A similar result (with a different constant) would hold for r even, but is not included here, except for the case $r=0$ (done previously by Fouvry and Murty) which is done in section 5 .
The structure of this paper is as follows: in Section 2, we reduce the statement of Theorem 1.2 to an average of product of special values of L-series; in Section 3, we find a precise asymptotic for the average of product of special values of L-series that is necessary for our application; in Section 4, we find the expression for the constant C_{r} as an Euler product; in section 5 , we show that our method implies the Fouvry-Murty result in the case $r=0$.

Acknowledgment: We would like to thank Ram Murty for reading the manuscript and for commenting on an earlier version of this work.

2 From elliptic curves to L-series

In all the following, we fix an integer r. For any integers $a_{1}, a_{2}, b_{1}, b_{2}$ such that $4 a_{1}^{3}+27 b_{1}^{2} \neq 0$ and $4 a_{2}^{3}+27 b_{2}^{2} \neq 0$, let

$$
\begin{aligned}
& E_{1}: y^{2}=x^{3}+a_{1} x+b_{1} \\
& E_{2}: y^{2}=x^{3}+a_{2} x+b_{2}
\end{aligned}
$$

be two elliptic curves over \mathbb{Z}. Then, for such $a_{1}, b_{1}, a_{2}, b_{2}$, we define

$$
\pi_{E_{1}, E_{2}}^{r}(x)=\#\left\{p \leq x: a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)=r\right\} .
$$

We consider

$$
\sum_{\substack{\left|a_{1}\right|| | a_{2}|\leq A\\| b_{1}\left|,\left|b_{2}\right| \leq B\right.}} \pi_{E_{1}, E_{2}}^{r}(x)
$$

where $a_{1}, a_{2}, b_{1}, b_{2}$ are such that $\left(4 a_{1}^{3}+27 b_{1}^{2}\right)\left(4 a_{2}^{3}+27 b_{2}^{2}\right) \neq 0$. Reversing the summations, this is

$$
\begin{equation*}
\sum_{B_{r}<p \leq x} \#\left\{\left|a_{1}\right|,\left|a_{2}\right| \leq A,\left|b_{1}\right|,\left|b_{2}\right| \leq B: a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)=r\right\}+O\left(A^{2} B^{2}\right) \tag{3}
\end{equation*}
$$

where $B_{r}=\max \left(3, r^{2} / 4\right)$, and the $O\left(A^{2} B^{2}\right)$ comes from the fact that we removed the primes 2 and 3 from the sum.

Let $E(a, b)$ be the elliptic curve $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{Z}$. The reduced curve $E(a, b)_{p} / \mathbb{F}_{p}$ is the reduction modulo p of a minimal model at p for $E(a, b)$. Write $a=p^{4 k} a^{\prime}$ and $b=p^{6 k} b^{\prime}$ with $k \geq 0$ and integers a^{\prime}, b^{\prime} such that $v_{p}\left(a^{\prime}\right)<4$ or $v_{p}\left(b^{\prime}\right)<6\left(v_{p}(n)\right.$ is the power of p appearing in n). Then, for $p>3, E\left(a^{\prime}, b^{\prime}\right): y^{2}=x^{3}+a^{\prime} x+b^{\prime}$ is a minimal model for $E(a, b)$ at p. Hence, each elliptic curve E_{p} over the finite field \mathbb{F}_{p} is the reduction of

$$
\left(\frac{2 A}{p}+O(1)\right)\left(\frac{2 B}{p}+O(1)\right)+O\left(\frac{A B}{p^{10}}\right)
$$

curves $E(a, b)$ with $a, b \in \mathbb{Z}$ and $|a| \leq A,|b| \leq B$, where the second term accounts for non-minimal models. It follows that,

$$
\begin{align*}
& \#\left\{\left|a_{1}\right|,\left|a_{2}\right| \leq A,\left|b_{1}\right|,\left|b_{2}\right| \leq B: a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)=r\right\} \\
& =\left(\frac{4 A B}{p^{2}}+O\left(\frac{A}{p}+\frac{B}{p}+\frac{A B}{p^{10}}+1\right)\right)^{2} N(p, r)^{2} \tag{4}
\end{align*}
$$

where $N(p, r)$ is the number of curves E over the finite field \mathbb{F}_{p} such that $a_{p}(E)=r$, or equivalently with $p+1-r$ points over that field.

Lemma 2.1 (Deuring's Theorem) Let p be a prime, and r an integer such that $r^{2}-4 p<$ 0. Let $H\left(r^{2}-4 p\right)$ be the Kronecker class number

$$
H\left(r^{2}-4 p\right)=2 \sum_{f^{2} \mid r^{2}-4 p} \frac{h(d)}{w(d)}
$$

where the sum runs over all positive integers f such that $f^{2} \mid r^{2}-4 p$ and $d=\left(r^{2}-4 p\right) / f^{2} \equiv$ $0,1 \bmod 4$ and is not a square, and $h(d)$ and $w(d)$ are the class number and the number of units in the order of discriminant d respectively. Then,

$$
N(p, r)=\frac{(p-1)}{2} H\left(r^{2}-4 p\right) .
$$

Proof: See [Deu] or [Cox, Theorem 14.18].
QED.
Using the last lemma and the standard bound $H\left(r^{2}-4 p\right) \ll \sqrt{p} \log ^{2} p$, we get

$$
\begin{aligned}
N(p, r)^{2} & =\frac{p^{2} H^{2}(r-4 p)}{4}+O\left(p^{2} \log ^{4} p\right) \\
& \ll p^{3} \log ^{4} p .
\end{aligned}
$$

Replacing in (4) and (3), this gives

$$
\begin{aligned}
\sum_{\substack{\left|a_{1}\right|,\left|a_{2}\right| \leq A \\
\left|b_{1}\right|,\left|z_{2}\right| \leq B}} \pi_{E_{1}, E_{2}}^{r}(x)= & 4 A^{2} B^{2} \sum_{B_{r} \leq p \leq x} \frac{H^{2}\left(r^{2}-4 p\right)}{p^{2}} \\
& +O\left(A^{2} B^{2}+\left(A^{2} B+A B^{2}\right) x \log ^{4} x+\left(A^{2}+A B+B^{2}\right) x^{2} \log ^{4} x+\ldots\right. \\
& \left.\ldots+(A+B) x^{3} \log ^{4} x+x^{4} \log ^{4} x\right)
\end{aligned}
$$

We take A, B such that

$$
\begin{equation*}
A, B \geq x^{1+\epsilon} \tag{5}
\end{equation*}
$$

for any $\epsilon>0$. Then, we have

$$
\begin{equation*}
\sum_{\substack{\left|a_{1}\right|\left|,\left|a_{2}\right| \leq A\\\right| b_{1}\left|,\left|b_{2}\right| \leq B\right.}} \pi_{E_{1}, E_{2}}^{r}(x)=4 A^{2} B^{2} \sum_{B_{r}<p \leq x} \frac{H^{2}\left(r^{2}-4 p\right)}{p^{2}}+O\left(A^{2} B^{2}\right) . \tag{6}
\end{equation*}
$$

We now analyse the main term. By definition of the Kronecker class number, and using the class number formula, we get

$$
\begin{aligned}
\frac{1}{4} \sum_{B_{r} \leq p \leq x} \frac{H^{2}\left(r^{2}-4 p\right)}{p^{2}} & =\sum_{B_{r}<p \leq x} \frac{1}{p^{2}} \sum_{\substack{f^{2} \mid r^{2}-4 p \\
f^{2} d_{1}=r^{2}-4 p}} \frac{h\left(d_{1}\right)}{w\left(d_{1}\right)} \sum_{\substack{g^{2} \mid r^{2}-4 p \\
g^{2} d_{2}=r^{2}-4 p}} \frac{h\left(d_{2}\right)}{w\left(d_{2}\right)} \\
& =\frac{1}{4 \pi^{2}} \sum_{B_{r}<p \leqslant x} \frac{1}{p^{2}} \sum_{\substack{f^{2} \mid r^{2}-4 p \\
f^{2} 2_{1}=-r^{2}-4 p}} \frac{\sqrt{4 p-r^{2}}}{f} L\left(1, \chi_{d_{1}}\right) \sum_{\substack{g^{2} \mid r^{2}-4 p \\
g^{2} d_{2}-r^{2}-4 p}} \frac{\sqrt{4 p-r^{2}}}{g} L\left(1, \chi_{d_{2}}\right) \\
& =\frac{1}{4 \pi^{2}} \sum_{\substack{f \leq 2 \sqrt{x} \\
g \leqslant 2 \sqrt{x}}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} \frac{4 p-r^{2}}{p^{2}} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right),
\end{aligned}
$$

where $S_{f, g}(x)$ is the set of primes

$$
\begin{aligned}
S_{f, g}(x)= & \left\{B_{r}<p \leq x: f^{2}\left|r^{2}-4 p, g^{2}\right| r^{2}-4 p,\right. \\
& \left.d_{1}=\left(r^{2}-4 p\right) / f^{2} \equiv 0,1 \bmod 4, d_{2}=\left(r^{2}-4 p\right) / g^{2} \equiv 0,1 \bmod 4\right\}
\end{aligned}
$$

We rewrite the last sum as

$$
\begin{equation*}
\frac{1}{\pi^{2}} \sum_{\substack{f \leqslant 2 \sqrt{x} \\ g \leqslant 2 \sqrt{x}}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} \frac{L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right)}{p}+O\left(\sum_{\substack{f \leqslant 2 \sqrt{x} \\ g \leqslant 2 \sqrt{x}}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} \frac{L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right)}{p^{2}}\right) . \tag{7}
\end{equation*}
$$

We will prove in the next section (Theorem 3.1) that for any $c>0$

$$
\sum_{\substack{f \leqslant 2 \sqrt{x} \\ g \leqslant 2 \sqrt{x}}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right) \log p=K_{r} x+O\left(\frac{x}{\log ^{c} x}\right) .
$$

Then, using Theorem 3.1 and partial summation, we find that the first sum of (7) is

$$
\begin{aligned}
& \frac{1}{\pi^{2} x \log x}\left(K_{r} x+O\left(\frac{x}{\log ^{c} x}\right)\right)+\frac{1}{\pi^{2}} \int_{2}^{x}\left(K_{r} t+O\left(\frac{t}{\log ^{c} t}\right)\right)\left(\frac{1+\log t}{t^{2} \log ^{2} t}\right) d t \\
& \quad \sim \frac{K_{r}}{\pi^{2}} \log \log x
\end{aligned}
$$

and similarly that

$$
\sum_{\substack{f \leqslant 2 \sqrt{x} \\ g \leqslant 2 \sqrt{x}}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} \frac{L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right)}{p^{2}}=O(1) .
$$

Then,

$$
\frac{1}{4} \sum_{B_{r} \leq p \leq x} \frac{H^{2}\left(r^{2}-4 p\right)}{p^{2}} \sim \frac{K_{r}}{\pi^{2}} \log \log x
$$

and replacing in (6), we get

$$
\frac{1}{16 A^{2} B^{2}} \sum_{\substack{\left|a_{1}\right|,\left|a_{2}\right| \leq A \\\left|b_{1}\right|,\left|b_{2}\right| \leq B}} \pi_{E_{1}, E_{2}}^{r}(x) \sim \frac{K_{r}}{\pi^{2}} \log \log x
$$

for $A, B \geq x^{1+\epsilon}$. Notice, assuming Theorem 3.1, this shows Theorem 1.2. The next section consists of a proof of Theorem 3.1.

3 Average values of product of Dirichlet L-functions

Theorem 3.1 Let r be an odd integer. Then, for any $c>0$,

$$
\sum_{f \leqslant 2 \sqrt{x}} \sum_{g \leqslant 2 \sqrt{x}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right) \log p=K_{r} x+O\left(\frac{x}{\log ^{c} x}\right),
$$

where

$$
K_{r}=3 \prod_{p \mid r} \frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \prod_{p \nmid r} \frac{p^{2}\left(p^{4}-2 p^{2}-3 p-1\right)}{(p+1)^{3}(p-1)^{3}} .
$$

This section consists of a proof of Theorem 3.1. As r is odd, it follows from the definition of $S_{f, g}(x)$ that f, g are also odd, and that d_{1}, d_{2} are congruent to 1 modulo 4. Also, any common factor between r and f would divide the primes $p \in S_{f, g}(x)$, which is impossible because $p>B_{r}=\max \left(3, r^{2} / 4\right)$. Then, the sum is empty unless $(2 r, f g)=1$, and we can rewrite the sum of Theorem 3.1 as

$$
\sum_{\substack{f, g \leq 2 \sqrt{x} \\(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right) \log p
$$

where

$$
S_{f, g}(x)=\left\{B_{r}<p \leq x: f^{2}\left|r^{2}-4 p, g^{2}\right| r^{2}-4 p\right\} .
$$

Let

$$
L(s)=L\left(s, \chi_{d_{1}}\right) L\left(s, \chi_{d_{2}}\right)=\sum_{\substack{m=1 \\ n=1}}^{\infty} \frac{\chi_{d_{1}}(m) \chi_{d_{2}}(n)}{(m n)^{s}}=\sum_{\ell=1}^{\infty} \frac{a_{d_{1}, d_{2}}(\ell)}{\ell^{s}}
$$

where

$$
\begin{equation*}
a_{d_{1}, d_{2}}(\ell)=\sum_{m n=\ell} \chi_{d_{1}}(m) \chi_{d_{2}}(n) . \tag{8}
\end{equation*}
$$

We then have the trivial bound

$$
\begin{equation*}
a_{d_{1}, d_{2}}(\ell) \ll d(\ell) \ll \ell^{\epsilon} \tag{9}
\end{equation*}
$$

for any $\epsilon>0$, where $d(\ell)$ is the number of divisors of ℓ. We need an expression for the truncated L-series of $L(1)$.

Lemma 3.2 Let $U>0$. Then, for any $\epsilon>0$,

$$
L(1)=\sum_{\ell=1}^{\infty} \frac{a_{d_{1}, d_{2}}(\ell)}{\ell} e^{-\ell / U}+O\left(\frac{\left|d_{1} d_{2}\right|^{3 / 16+\epsilon}}{U^{1 / 2}}\right)
$$

where the error term depends on ϵ.
Proof: We have the integral representation

$$
e^{-\frac{1}{U}}=\frac{1}{2 \pi i} \int_{(1)} \Gamma(s+1) U^{s} \frac{d s}{s}
$$

(see $[\mathrm{M}]$, p. 353 for a proof). Using this we have

$$
\sum_{\ell=1}^{\infty} \frac{a_{d_{1}, d_{2}}(\ell)}{\ell} e^{-\ell / U}=\frac{1}{2 \pi i} \int_{(1)} L(s+1) \Gamma(s+1) U^{s} \frac{d s}{s} .
$$

Now moving the line of integration from (1) to ($-\frac{1}{2}$) and calculating the residue at $s=0$ yields

$$
\begin{equation*}
\sum_{\ell=1}^{\infty} \frac{a_{d_{1}, d_{2}}(\ell)}{\ell} e^{-\ell / U}=L(1)+\frac{1}{2 \pi i} \int_{\left(-\frac{1}{2}\right)} L(s+1) \Gamma(s+1) U^{s} \frac{d s}{s} \tag{10}
\end{equation*}
$$

Recalling Burgess's result (see [Bur]), we have for any $\epsilon>0$,

$$
L(1 / 2+i t)=L\left(1 / 2+i t, \chi_{d_{1}}\right) L\left(1 / 2+i t, \chi_{d_{2}}\right)<_{\epsilon}\left|d_{1} d_{2}\right|^{3 / 16+\epsilon},
$$

and then

$$
\frac{1}{2 \pi i} \int_{\left(-\frac{1}{2}\right)} L(s+1) \Gamma(s+1) U^{s} \frac{d s}{s}<_{\epsilon} \frac{\left|d_{1} d_{2}\right|^{3 / 16+\epsilon}}{U^{1 / 2}}
$$

Replacing this in (10) completes the proof.
Using Lemma 3.2, we write, for any $\epsilon>0$,

$$
\begin{aligned}
& \sum_{\substack{f, g \leq 2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L(1) \log p \\
& =\sum_{\substack{f, g \leq 2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)}\left\{\sum_{\ell=1}^{\infty} \frac{a_{d_{1}, d_{2}}(\ell)}{\ell} e^{-\ell / U}+O\left(\frac{\left|d_{1} d_{2}\right|^{3 / 16+\epsilon}}{U^{1 / 2}}\right)\right\} \log p \\
& =\sum_{\substack{f, g=2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell=1}^{\infty} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p+O\left(\frac{1}{U^{1 / 2}} \sum_{\substack{f, g \leq 2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)}\left|d_{1} d_{2}\right|^{3 / 16+\epsilon} \log p\right) .
\end{aligned}
$$

Replacing d_{1} and d_{2} by their definition, we can bound the sum in the error term by

$$
\begin{aligned}
& \ll \frac{1}{U^{1 / 2}} \sum_{\substack{f, g \leq \sqrt{x} \\
(2, f g)=1}} \frac{1}{(f g)^{11 / 8+2 \epsilon}} \sum_{p \in S_{f, g}(x)} p^{3 / 8+2 \epsilon} \log p \\
& \ll \frac{x^{3 / 8+2 \epsilon} \log x}{U^{1 / 2}} \sum_{\substack{f, q<2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{(f g)^{11 / 8+2 \epsilon}} \sum_{p \in S_{f, g}(x)} 1 \ll \frac{x^{11 / 8+2 \epsilon}}{U^{1 / 2}},
\end{aligned}
$$

and we have

$$
\begin{equation*}
\sum_{\substack{f, g \leq 2 \sqrt{x} \\(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L(1) \log p=\sum_{\substack{f, g \leq 2 \sqrt{x} \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell=1}^{\infty} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p+O\left(\frac{x^{11 / 8+2 \epsilon}}{U^{1 / 2}}\right) \tag{11}
\end{equation*}
$$

for any $\epsilon>0$.

Let $1<V \leqslant 2 \sqrt{x}$ be a parameter to be chosen later. We write the sum in (11) as

$$
\sum_{\substack{f, g \leq V \\(2 r, f g)=1}} \sum_{\ell=1}^{\infty} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p+\sum_{\substack{V<f, g<2 \sqrt{x} \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell=1}^{\infty} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p .
$$

For the sum over large values of f and g, we first notice that for such f and g, we have $\left[f^{2}, g^{2}\right] \mid r^{2}-4 p$ which implies that $\left[f^{2}, g^{2}\right] \leq 4 x$. We also have that $4 p \equiv r^{2} \bmod f^{2}$ and $4 p \equiv r^{2} \bmod g^{2} \Longleftrightarrow 4 p \equiv r^{2} \bmod \left[f^{2}, g^{2}\right]$. Then,

$$
\begin{align*}
& \leq \log x\left|\sum_{\ell=1}^{\infty} \frac{d(\ell)}{\ell} e^{-\ell / U}\right| \sum_{\substack{\left\langle<f, g \leqslant 2 \sqrt{x} \\
(2, f g)=1 \\
\left[f^{2}, g^{2}\right] \leq 4 x\right.}} \frac{1}{f g} \sum_{\substack{p \leq x \\
4 p=r^{2} \bmod \left[f^{2}, g^{2}\right]}} 1 \\
& \leq x \log x\left|\sum_{\ell=1}^{\infty} \frac{d(\ell)}{\ell} e^{-\ell / U}\right| \sum_{\substack{\left(f, g \leqslant 2 \sqrt{x} \\
\text { and } \\
\left(f^{2}, f, f\right)=1 \\
\left[f^{2}\right] \leq 4 x\right.}} \frac{1}{f g\left[f^{2}, g^{2}\right]} . \tag{12}
\end{align*}
$$

Lemma 3.3

$$
\sum_{\ell=1}^{\infty} \frac{d(\ell)}{\ell} e^{-\ell / U} \ll \log ^{2} U
$$

Proof: As in Lemma 3.2, we have the integral representation

$$
\sum_{\ell=1}^{\infty} \frac{d(\ell)}{\ell} e^{-\ell / U}=\frac{1}{2 \pi i} \int_{(1)} \zeta^{2}(s+1) \Gamma(s+1) U^{s} \frac{d s}{s}
$$

for the infinite sum that we want to bound, where $\zeta(s)$ is the Riemann zeta function. Note that since

$$
\zeta(s)=\frac{1}{s-1}+\gamma+c_{1}(s-1)+\ldots
$$

(see $[\mathrm{M}]$, p. 63), the residue of the integrand at $s=0$ is

$$
\frac{1}{2} \log ^{2} U+2 \gamma \log U+c_{0}
$$

where γ is the Euler constant and c_{0} a constant. Now by moving the line of integration from (1) to $\left(-\frac{1}{2}\right)$ and calculating the residue at $s=0$ we get the desired bound.

QED.

Using this lemma, we can bound (12) by

$$
x \log x \log ^{2} U \sum_{\substack{V<f, g<2 \sqrt{x} \\(2 r, f g)=1}} \frac{\left(f^{2}, g^{2}\right)}{f^{3} g^{3}} \leqslant x \log x \log ^{2} U \sum_{\substack{V<f, g<2 \sqrt{x} \\(2 r, f g)=1}} \frac{1}{f^{2} g^{2}} \ll \frac{x \log x \log ^{2} U}{V^{2}}
$$

to get that

$$
\begin{gather*}
\sum_{\substack{f, g \leq 2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L(1) \log p=\sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell=1}^{\infty} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p \\
+O\left(\frac{x^{11 / 8+2 \epsilon}}{U^{1 / 2}}\right)+O\left(\frac{x \log x \log ^{2} U}{V^{2}}\right) . \tag{13}
\end{gather*}
$$

We now write the sum on the right hand side of (13) as

$$
\sum_{\substack{f, g \leq V \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leq U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p+\sum_{\substack{f, g \leq V=\\(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell>U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p
$$

for some parameter $U=U(x)$ to be chosen later.
We first estimate the sum for large values of ℓ. For any $\epsilon>0$, we have

$$
\begin{aligned}
\sum_{\ell>U \log U} \frac{d(\ell)}{\ell} e^{-\ell / U} & \ll \sum_{\ell>U \log U} \frac{e^{-\ell / U}}{\ell^{1-\epsilon}} \ll \frac{1}{(U \log U)^{1-\epsilon}} \sum_{\ell>U \log U} e^{-\ell / U} \\
& \ll \frac{1}{(U \log U)^{1-\epsilon}} \int_{U \log U}^{\infty} e^{-t / U} d t=\frac{1}{(U \log U)^{1-\epsilon}}
\end{aligned}
$$

and then

$$
\begin{aligned}
\sum_{\substack{f, g, V \\
(2, f g)=1}} \frac{1}{f g} & \sum_{\ell>U \log U} \frac{1}{\ell} e^{-\ell / U} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p \\
& \ll x \log x \sum_{\ell>U \log U} \frac{d(\ell)}{\ell} e^{-\ell / U} \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g\left[f^{2}, g^{2}\right]} \ll \frac{x \log x \log ^{2} V}{(U \log U)^{1-\epsilon}} .
\end{aligned}
$$

Using this last result and (13), we get that for any $\epsilon>0$,

$$
\begin{gather*}
\sum_{\substack{f, g \leq 2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}(x)} L(1) \log p=\sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leq U \log U} \frac{1}{\ell} e^{-\ell / U} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p \\
+O\left(\frac{x^{11 / 8+2 \epsilon}}{U^{1 / 2}}\right)+O\left(\frac{x \log x \log ^{2} U}{V^{2}}\right)+O\left(\frac{x \log x \log ^{2} V}{(U \log U)^{1-\epsilon}}\right) \tag{14}
\end{gather*}
$$

We now estimate the sum of the right-hand side of (14). By quadratic reciprocity,

$$
\chi_{d_{1}}(m)=\chi_{d_{1}^{\prime}}(m) \text { if } d_{1} \equiv d_{1}^{\prime} \bmod (4 m)
$$

We then have

$$
\begin{aligned}
& \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leq U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} \log p \sum_{m n=\ell} \chi_{d_{1}}(m) \chi_{d_{2}}(n) \\
&=\sum_{\substack{f, g \leq V \\
(2, f, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \leq U \log U \\
m n=\ell}} \frac{e^{-\ell / U}}{\ell} \sum_{\substack{a \bmod 4 m \\
b \bmod 4 n}}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right) \sum_{p}^{*} \log p
\end{aligned}
$$

where \sum_{p}^{*} runs over primes p such that $p \in S_{f, g}(x)$ and $d_{1} \equiv a \bmod (4 m), d_{2} \equiv b \bmod (4 n)$, i.e. the primes p such that $B_{r}<p \leq x$ and

$$
p \equiv\left(r^{2}-a f^{2}\right) / 4 \bmod m f^{2} \quad \text { and } \quad p \equiv\left(r^{2}-b g^{2}\right) / 4 \bmod n g^{2} .
$$

If $\left(r^{2}-a f^{2}\right) / 4 \not \equiv\left(r^{2}-b g^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right)$, there are no such primes. If the above congruence is satisfied, let $\theta=\theta(a, b, m, n, f, g)$ be the unique residue modulo $\left[m f^{2}, n g^{2}\right]$ which is congruent to $\left(r^{2}-a f^{2}\right) / 4$ modulo $m f^{2}$, and congruent to $\left(r^{2}-b g^{2}\right) / 4$ modulo $n g^{2}$. If $\left(r^{2}-a f^{2}\right) / 4 \not \equiv\left(r^{2}-b g^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right)$, we set $\theta=0$. Then, we can rewrite the last sum as

$$
\sum_{\substack{f, g \leq V \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \leqslant U \log U \\ m n=\ell}} \frac{1}{\ell} e^{-\ell / U} \sum_{\substack{a \bmod 4 m \\ b \bmod 4 n}}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right) \sum_{\substack{B r<p \leqslant x \\ p \equiv \theta \bmod \left[m f^{2}, n g^{2}\right]}} \log p .
$$

Let a, n be positive integers with $(a, n)=1$. Following the standard notation, we write

$$
\psi(x ; n, a)=\sum_{\substack{p \leq x \\ p \equiv a \bmod n}} \log p=\frac{x}{\phi(n)}+E(x ; n, a) .
$$

With this notation, we rewrite the last sum as

$$
\sum_{\substack{f, g \leq V=V \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \leqslant U \log U \\ m n=\ell}} \frac{1}{\ell} e^{-\ell / U} \sum_{\substack{a \bmod 4 m \\ b \bmod 4 n}}^{*}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right)\left(\frac{x}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)}+E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right)\right)
$$

where $\sum_{\substack{a \text { mod 4m } \\ b \text { mod } 4 n}}^{*}$ means that the sum runs over invertible residues a, b modulo m, n respectively such that $\left(r^{2}-a f^{2}\right) / 4 \equiv\left(r^{2}-b g^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right)$, and θ is invertible modulo $\left[m f^{2}, n g^{2}\right.$], or equivalently $\left(r^{2}-a f^{2}, 4 m\right)=4$ and $\left(r^{2}-b g^{2}, 4 n\right)=4$. We then define

$$
\begin{equation*}
c_{f, g}^{r}(m, n)=\sum_{\substack{a(4 m)^{*} \\\left(r^{2}-a f^{2}, 4 m\right)=4}} \sum_{\substack{\left.b(4 n)^{*} \\\left(r^{2}-r^{2}-b\right)^{2}-4 n\right)=4 \\\left(r^{2}-a f^{2}\right) / 4=\left(r^{2}-b g^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right)}}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right) . \tag{15}
\end{equation*}
$$

Using this notation, we have

$$
\begin{align*}
& \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leq U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{p \in S_{f, g}(x)} a_{d_{1}, d_{2}}(\ell) \log p=x \sum_{\substack{f, f \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \leq U \log U \\
m=\ell}} \frac{e^{-\ell / U}}{\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} \\
&+\sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \leq U \log U \\
\ell=m n}} \frac{e^{-\ell / U}}{\ell} \sum_{\substack{a \bmod 4 m \\
b \bmod 4 n}}^{*}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right) E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right) . \tag{16}
\end{align*}
$$

We first deal with the second sum of (16) which is bounded by

$$
\sum_{\substack{f, g \leq V=\\(2 r, f g)=1}} \frac{1}{f g} \sum_{m n \leq U \log U} \frac{1}{m n} \sum_{\substack{a \bmod 4 m \\ b \bmod 4 n}}^{*}\left|E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right)\right| .
$$

In the sum $\sum_{\substack{a \text { mod 4m } \\ b \text { mod } 4 n}}^{*}$, each pair of residues a, b modulo $4 m$ and $4 n$ respectively yields a different residue θ modulo $\left[m f^{2}, n g^{2}\right]$. We then have

$$
\begin{aligned}
\sum_{m n \leq U \log U} \frac{1}{m n} \sum_{\substack{a \bmod 4 m \\
b \bmod 4 n}}^{*}\left|E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right)\right| & \leq \sum_{m n \leq U \log U} \frac{1}{m n} \sum_{\theta \bmod \left[m f^{2}, n g^{2}\right]}\left|E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right)\right| \\
& \ll f^{2} g^{2} \sum_{\ell \leq U \log U f^{2} g^{2}} \frac{1}{\ell} \sum_{\theta \bmod \ell} c(\ell)|E(x ; \ell, \theta)|
\end{aligned}
$$

where $c(\ell)$ is the number of ways that we can write $\ell=\left[m f^{2}, n g^{2}\right]$. More generally, we have
Lemma 3.4 Let n be a positive integer, and let $C(n)$ be the number of ways to write $n=$ $\left[n_{1}, n_{2}\right]$ for any positive integers n_{1} and n_{2}. Then, $C(n) \leq 2^{\nu(n)} d(n)$, where $\nu(n)$ is the number of distinct prime factors of n and $d(n)$ is the number of divisors of n.

Proof: Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ with $\alpha_{i} \geq 1$ for $i=1, \ldots, r$. Then, $n=\left[n_{1}, n_{2}\right]$ implies that $n_{1}=\prod_{i=1}^{r} p_{i}^{\beta_{i}}$ and $n_{2}=\prod_{i=1}^{r} p_{i}^{\gamma_{i}}$ with $0 \leq \beta_{i}, \gamma_{i} \leq \alpha_{i}$ and $\max \left(\beta_{i}, \gamma_{i}\right)=\alpha_{i}$ for $i=1, \ldots, r$. As there are $2 \alpha_{i}+1$ such pairs $\left(\beta_{i}, \gamma_{i}\right)$ for each i, we have

$$
C(n)=\prod_{i=1}^{r}\left(2 \alpha_{i}+1\right) \leq \prod_{i=1}^{r} 2\left(\alpha_{i}+1\right)=2^{\nu(n)} d(n) .
$$

QED.
Using this result in the last bound, we get

$$
\sum_{m n \leq U \log U} \frac{1}{m n} \sum_{\substack{a \bmod 4 m \\ b \bmod 4 n}}^{*}\left|E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right)\right| \ll f^{2} g^{2} \sum_{\ell \leq U \log U f^{2} g^{2}} \frac{d^{2}(\ell)}{\ell} \sum_{\theta \bmod \ell}|E(x ; \ell, \theta)|
$$

$$
\leq f^{2} g^{2}\left(\sum_{\substack{\ell \leq U \log U f^{2} g^{2} \\ \theta \bmod \ell}} \frac{d^{4}(\ell)}{\ell^{2}}\right)^{1 / 2}\left(\sum_{\substack{\ell \leq U \log U f^{2} g^{2} \\ \theta \bmod \ell}} E^{2}(x ; \ell, \theta)\right)^{1 / 2}
$$

using the Cauchy-Schwartz inequality.
For the first parenthesis, we use the result of Ramanujan [Wil]

$$
\sum_{\ell \leq N} d^{r}(\ell) \sim A_{r} N \log ^{2^{r}-1}(N), \quad \text { for } r \geq 2 \text { and } A_{r} \text { an absolute constant }
$$

with $r=4$. Using partial summation, and the fact that $f, g \leq V$, this gives

$$
\left(\sum_{\substack{\ell \leq U \log U f^{2} g^{2} \\ \theta \bmod \ell}} \frac{d^{4}(\ell)}{\ell^{2}}\right)^{1 / 2} \leq\left(\sum_{\substack{\ell \leq U \log U f^{2} g^{2}}} \frac{d^{4}(\ell)}{\ell}\right)^{1 / 2} \ll \log ^{8}\left(V^{4} U \log U\right)
$$

For the second parenthesis, we apply the theorem of Barban-Davenport-Halberstam [Dav, p. 169]. This gives

$$
\left(\sum_{\substack{e \leq V^{4} U \log U \\ \theta \bmod \ell}} E^{2}(x ; \ell, \theta)\right)^{1 / 2} \ll\left(V^{4} U x \log U \log x\right)^{1 / 2}
$$

whenever

$$
\begin{equation*}
\frac{x}{\log ^{A} x} \leqslant V^{4} U \log U \leqslant x \tag{17}
\end{equation*}
$$

for some $A>0$.
Finally, summing over f, g, this gives

$$
\begin{align*}
\sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} & \sum_{\substack{\ell \leq U \log U \\
\ell=m n}} \frac{e^{-\ell / U}}{\ell} \sum_{\substack{a \bmod 4 m \\
b \bmod 4 n}}^{*}\left(\frac{a}{m}\right)\left(\frac{b}{n}\right) E\left(x ;\left[m f^{2}, n g^{2}\right], \theta\right) \\
& \ll\left(V^{4} U x \log U \log x\right)^{1 / 2} \log ^{8}\left(V^{4} U \log U\right) \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} f g \\
& \ll V^{6}(U x \log U \log x)^{1 / 2} \log ^{8} x \tag{18}
\end{align*}
$$

whenever (17) holds.

We now have to evaluate the first sum of (16). We first rewrite the sum as

$$
\begin{gather*}
x \sum_{\substack{f, g=1 \\
(2 r, f g)=1}}^{\infty} \frac{1}{f g} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) e^{-m n / U}}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)}-x \sum_{\substack{f, g \leq v=1 \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell \cup \log U \\
m n=\ell}} \frac{e^{-\ell / U}}{\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} \\
-x \sum_{\substack{f, g>V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) e^{-m n / U}}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)} . \tag{19}
\end{gather*}
$$

We first deal with the two error terms of (19). This is done using the bound

$$
\begin{equation*}
c_{f, g}^{r}(m, n) \ll \frac{m n}{\kappa(m n)(m, n)} \tag{20}
\end{equation*}
$$

which is shown in Lemma 4.8. Using the notation of Section 4, we write $k=(f, g)$ and $f=k f^{\prime}$ and $g=k g^{\prime}$. If $\left(f^{\prime}, n\right) \neq 1$ or $\left(g^{\prime}, m\right) \neq 1$, we have $c_{f, g}^{r}(m, n)=0$ by Lemma 4.3(i). If $\left(f^{\prime}, n\right)=\left(g^{\prime}, m\right)=1$, then $\left(m f^{2}, n g^{2}\right)=(m, n)\left(f^{2}, g^{2}\right)$. This gives

$$
\begin{aligned}
\frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} & =\frac{\left(m f^{2}, n g^{2}\right) c_{f, g}^{r}(m, n)}{\phi\left(m n f^{2} g^{2}\right)}=\frac{(m, n)\left(f^{2}, g^{2}\right) c_{f, g}^{r}(m, n)}{\phi\left(m n f^{2} g^{2}\right)} \\
& \leq \frac{(m, n)\left(f^{2}, g^{2}\right) c_{f, g}^{r}(m, n)}{\phi(m n) \phi\left(f^{2}\right) \phi\left(g^{2}\right)} \ll \frac{m n\left(f^{2}, g^{2}\right)}{\kappa(m n) \phi(m n) \phi\left(f^{2}\right) \phi\left(g^{2}\right)}
\end{aligned}
$$

using the bound (20) for $c_{f, g}^{r}(m, n)$. Replacing in the first error term of (19), we get that

$$
x \sum_{\substack{f, g<V \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell>U \log U \\ m n=\ell}} \frac{e^{-\ell / U}}{\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} \ll x \sum_{\substack{f, g \leqslant V \\(2 r, f g)=1}} \frac{\left(f^{2}, g^{2}\right)}{f g \phi\left(f^{2}\right) \phi\left(g^{2}\right)} \sum_{\ell>U \log U} \frac{d(\ell)}{\kappa(\ell) \phi(\ell)} .
$$

It is shown in [DP, Lemma 3.4] that

$$
\begin{equation*}
\sum_{\ell=1}^{\infty} \frac{\ell^{3 / 2}}{\kappa(\ell) \phi(\ell)} \ell^{-s} \tag{21}
\end{equation*}
$$

converges for $\operatorname{Re}(s)>1$. Clearly, this implies that $\sum_{\ell=1}^{\infty} \frac{d(\ell)}{\kappa(\ell) \phi(\ell)}$ converges. Furthermore, using the Wiener-Ikehara Tauberian Theorem and partial summation as in the proof of [DP, Lemma 3.4], we can show that for any $\epsilon>0$,

$$
\begin{equation*}
\sum_{\ell>U \log U} \frac{d(\ell)}{\kappa(\ell) \phi(\ell)} \ll(U \log U)^{-1 / 2+\epsilon} . \tag{22}
\end{equation*}
$$

Also,

$$
\sum_{\substack{f, g \leq V \\(2, f g)=1}} \frac{\left(f^{2}, g^{2}\right)}{f g \phi\left(f^{2}\right) \phi\left(g^{2}\right)} \leq 2 \sum_{\substack{f, g \leq g \\ f \leq g}} \frac{1}{g^{2} \phi(f) \phi(g)} \leq 2\left(\sum_{f \leq V} \frac{1}{f \phi(f)}\right)^{2}=O(1)
$$

and then

$$
\begin{equation*}
x \sum_{\substack{f, g \leqslant V=1 \\(2 r, f g)=1}} \frac{1}{f g} \sum_{\substack{\ell>U \log U \\ m n=\ell}} \frac{e^{-\ell / U}}{\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)}=O\left(\frac{x}{(U \log U)^{1 / 2-\epsilon}}\right) . \tag{23}
\end{equation*}
$$

We now look at the second error term of (19). As above, we have

$$
\begin{aligned}
x \sum_{\substack{f, g>V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) e^{-m n / U}}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)} & \ll x \sum_{f, g>V} \frac{\left(f^{2}, g^{2}\right)}{f g \phi\left(f^{2}\right) \phi\left(g^{2}\right)} \\
& \leq x\left(\sum_{f>V} \frac{1}{f \phi(f)}\right)^{2} \ll \frac{x}{V^{2-2 \epsilon}}
\end{aligned}
$$

for any positive $\epsilon>0$, as $\phi(n) \gg n^{1-\epsilon}$ for any positive $\epsilon>0[\mathrm{HW}, \mathrm{p} .267]$.
Then, replacing in (19), we get

$$
\begin{align*}
& x \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leqslant U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{m n=\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} \\
& =x \sum_{\substack{f, g=1 \\
(2 r, f g)=1}}^{\infty} \frac{1}{f g} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) e^{-m n / U}}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)}+O\left(\frac{x}{(U \log U)^{1 / 2-\epsilon}}\right)+O\left(\frac{x}{V^{2-2 \epsilon}}\right) . \tag{24}
\end{align*}
$$

Finally, we remove the exponential $e^{-\ell / U}$ from the main term. We have, for any $c_{1}>0$,

$$
\begin{aligned}
x \sum_{\substack{f, g, m, n=1 \\
(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n) e^{-m n / U}}{m n f g \phi\left(\left[m f^{2}, n g^{2}\right]\right)} & =\frac{x}{2 \pi i} \sum_{\substack{f, g, m, n=1 \\
(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{f g m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)} \int_{\left(c_{1}\right)} \Gamma(s)\left(\frac{U}{m n}\right)^{s} d s \\
& =\frac{x}{2 \pi i} \int_{\left(c_{1}\right)}\left(\sum_{\substack{f, g, m, n=1 \\
(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{\infty g(m n)^{s+1} \phi\left(\left[m f^{2}, n g^{2}\right]\right)}\right) \Gamma(s)^{s} d s .
\end{aligned}
$$

Using the bound (20) and working as above, we get

$$
\sum_{\substack{f, g, m, n=1 \\(2 r, f g=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{(m n)^{s+1} f g \phi\left(\left[m f^{2}, n g^{2}\right]\right)} \ll \sum_{\ell=1}^{\infty} \frac{d(\ell)}{\kappa(\ell) \phi(\ell) \ell^{s}}
$$

and from (21), the sum converges for $\operatorname{Re}(s)>-1 / 2+\epsilon$, for any $\epsilon>0$. Then we can move the line of integration to any $-1 / 2+\epsilon<\gamma<0$, say $\gamma=-1 / 4$. As $\Gamma(s)$ has a simple pole at $s=0$, by using Cauchy's residue theorem and working as in the proof of Lemma 3.2, we get

$$
x \sum_{\substack{f, g, m, n=1 \\(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{\operatorname{ggmn} \phi\left(\left[m f^{2}, n g^{2}\right]\right)} e^{-m n / U}=x \sum_{\substack{f, g, m, n=1 \\(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{\operatorname{fgmn} \phi\left(\left[m f^{2}, n g^{2}\right]\right)}+O\left(\frac{x}{U^{1 / 4}}\right)
$$

and replacing in (24), we have

$$
\begin{align*}
& x \sum_{\substack{f, g \leq V \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{\ell \leqslant U \log U} \frac{e^{-\ell / U}}{\ell} \sum_{m n=\ell} \frac{c_{f, g}^{r}(m, n)}{\phi\left(\left[m f^{2}, n g^{2}\right]\right)} \\
& =x \sum_{\substack{f, g, m, n=1 \\
(2 r, f g)=1}}^{\infty} \frac{c_{f, g}^{r}(m, n)}{f g m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)}+O\left(\frac{x}{(U \log U)^{1 / 2-\epsilon}}+\frac{x}{V^{2-2 \epsilon}}+\frac{x}{U^{1 / 4}}\right) . \tag{25}
\end{align*}
$$

This finishes the proof of Theorem 3.1. Indeed, replacing (25) and (18) in (16) and (14), we get that

$$
\begin{aligned}
& \sum_{\substack{f, g<2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}^{r}(x)} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right) \log p=K_{r} x+O\left(\frac{x}{(U \log U)^{1 / 2-\epsilon}}+\frac{x}{V^{2-2 \epsilon}}+\ldots\right. \\
& \left.\ldots+\frac{x}{U^{1 / 4}}+V^{6}(U x \log U \log x)^{1 / 2} \log ^{8} x+\frac{x^{11 / 8+2 \epsilon}}{U^{1 / 2}}+\frac{x \log x \log ^{2} U}{V^{2}}+\frac{x \log x \log ^{2} V}{(U \log U)^{1-\epsilon}}\right)
\end{aligned}
$$

for all $\epsilon>0$, with

$$
\begin{equation*}
K_{r}=\sum_{\substack{f, g=1 \\(2 r, f g)=1}}^{\infty} \frac{1}{f g} \sum_{m n=1}^{\infty} \frac{c_{f, g}^{r}(m, n)}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)} . \tag{26}
\end{equation*}
$$

We choose $U=x / \log ^{\alpha} x$ and $V=\log ^{\beta} x$ for positive integers α, β such that $\alpha-4 \beta-1 \geq 1$ insuring that the condition (17) is satisfied. Then,

$$
\begin{aligned}
\sum_{\substack{f, g<2 \sqrt{x} \\
(2 r, f g)=1}} \frac{1}{f g} \sum_{p \in S_{f, g}^{r}(x)} L\left(1, \chi_{d_{1}}\right) L\left(1, \chi_{d_{2}}\right) \log p & =K_{r} x+O\left(\frac{x}{\log ^{\beta} x}+\frac{x}{\log ^{\alpha / 2-6 \beta-9} x}\right) \\
& =K_{r} x+O\left(\frac{x}{\log ^{c} x}\right)
\end{aligned}
$$

for any $c>0$ for an appropriate choice of α and β. This proves Theorem 3.1, provided that we get the Euler product expansion for the constant K_{r} of (26). This is done in the next section.

4 The constant

In this section, we express the constant K_{r} as an Euler product of local factors. We first prove that the coefficients $c_{f, g}^{r}(m, n)$ are multiplicative, and we then use this result to prove a bound on the size of $c_{f, g}^{r}(m, n)$ needed to complete the proof of Theorem 3.1 (see Lemma 4.8). Moreover, we also use the multiplicativity of these coefficients to derive the Euler product for the constant K_{r} in Theorem 3.1.

4.1 Multiplicativity of the coefficients $c_{f, g}^{r}(m, n)$

For all this section, let r be an odd integer, and let f and g be positive odd integers. Let $k=(f, g)$, and let f^{\prime}, g^{\prime} be such that $f=f^{\prime} k$ and $g=g^{\prime} k$. Let m and n be positive integers. For a prime p and an integer n, the valuation $v_{p}(n)$ is the power of p appearing in the integer n.

Definition 4.1 (1) Let

$$
c_{f}^{r}(m)=\sum_{\substack{a(4 m)^{*} \\\left(r^{2}-a f^{2}, 4 m\right)=4}}\left(\frac{a}{m}\right)
$$

(2) For any invertible residue a modulo $4 m$, let

$$
\begin{aligned}
c_{f, g}^{r}(n ; m, a)= & \sum_{\substack{b(4 n)^{*} \\
\left(r^{2}-b g^{2}, 4 n\right)=4 \\
\hline}}\left(\frac{b}{n}\right) ; \\
& \left(r^{2}-b g^{2}\right) / 4 \equiv\left(r^{2}-a f^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right)
\end{aligned}
$$

(3) Let

$$
c_{f, g}^{r}(m, n)=\sum_{\substack{a(4 m)^{*} \\\left(r^{2}-a f^{2}, 4 m\right)=4}}\left(\frac{a}{m}\right) c_{f, g}^{r}(n ; m, a) .
$$

Of course, this definition agrees with the previous definition of $c_{f, g}^{r}(m, n)$ in (15).
Definition 4.2 A function $F(m, n)$ defined on the set of positive integers m, n is multiplicative if it satisfies

$$
F(m, n)=\prod_{p \mid m n} F\left(p^{v_{p}(m)}, p^{v_{p}(n)}\right) .
$$

Lemma 4.3 (i) If $\left(m, g^{\prime}\right) \neq 1$ or $\left(n, f^{\prime}\right) \neq 1$, then $c_{f, g}^{r}(m, n)=0$.
(ii) If $\left(n_{1}, n_{2}\right)=1$, then $c_{f, g}^{r}\left(n_{1} n_{2} ; m, a\right)=c_{f, g}^{r}\left(n_{1} ; m, a\right) c_{f, g}^{r}\left(n_{2} ; m, a\right)$.

Proof: (i) As $\left(r^{2}-b g^{2}\right) / 4 \equiv\left(r^{2}-a f^{2}\right) / 4 \bmod \left(m f^{2}, n g^{2}\right) \quad \Longleftrightarrow \quad\left(a f^{\prime 2}-b g^{\prime 2}\right) / 4 \equiv$ $0 \bmod \left(m f^{\prime 2}, n g^{\prime 2}\right)$, we have

$$
c_{f, g}^{r}(m, n)=\sum_{\substack{a(4 m)^{*} \\\left(r^{2}-a f^{2}, 4 m\right)=4}}\left(\frac{a}{m}\right) \sum_{\substack{\left.b(4 n n)^{*} \\\left(a f^{\prime 2}-b g^{\prime 2}\right) / r^{2}-b g^{2}, 4 n\right)=4 \\\left(\# \bmod \left(m f^{\prime 2}, n g^{\prime 2}\right)\right.}}\left(\frac{b}{n}\right) .
$$

Suppose there is a prime p dividing $\left(n, f^{\prime}\right)$. Then, $c_{f, g}^{r}(m, n)=0$ because $b \equiv 0 \bmod p$, as p divides $\left(m f^{\prime 2}, n g^{\prime 2}\right)$ and $\left(g^{\prime}, p\right)=1$. The case $\left(m, g^{\prime}\right) \neq 1$ is similar.
(ii) From the Generalised Chinese Remainder Theorem, there is a bijection between the set of invertible residues b modulo $4 n_{1} n_{2}$ such that $\left(r^{2}-b g^{2}, 4 n_{1} n_{2}\right)=4$ and the set of pairs $\left(b_{1}, b_{2}\right)$ of invertible residues modulo $4 n_{1}$ and $4 n_{2}$ respectively such that $\left(r^{2}-b_{1} g^{2}, 4 n_{1}\right)=4$ and $\left(r^{2}-b_{2} g^{2}, 4 n_{2}\right)=4$. Furthermore,

$$
\left(a f^{2}-b g^{2}\right) / 4 \equiv 0 \bmod \left(m f^{2}, n_{1} n_{2} g^{2}\right)
$$

if and only if

$$
\left(a f^{2}-b_{1} g^{2}\right) / 4 \equiv 0 \bmod \left(m f^{2}, n_{1} g^{2}\right) \text { and }\left(a f^{2}-b_{2} g^{2}\right) / 4 \equiv 0 \bmod \left(m f^{2}, n_{2} g^{2}\right)
$$

as the least common multiple of $\left(m f^{2}, n_{1} g^{2}\right)$ and $\left(m f^{2}, n_{2} g^{2}\right)$ is $\left(m f^{2}, n_{1} n_{2} g^{2}\right)$. This proves the result.

QED.

Lemma 4.4 Let $m_{1}, m_{2}, n_{1}, n_{2}$ be positive integers such that $\left(m_{1}, m_{2}\right)=\left(n_{1}, n_{2}\right)=\left(m_{1}, n_{2}\right)=$ $\left(m_{2}, n_{1}\right)=1$. Then,

$$
c_{f, g}^{r}\left(m_{1} m_{2}, n_{1} n_{2}\right)=c_{f, g}^{r}\left(m_{1}, n_{1}\right) c_{f, g}^{r}\left(m_{2}, n_{2}\right) .
$$

Equivalently, the functions $c_{f, g}^{r}(m, n)$ are multiplicative.
Proof: Let $n=n_{1} n_{2}$ and $m=m_{1} m_{2}$. If $\left(m, g^{\prime}\right) \neq 1$, or $\left(n, f^{\prime}\right) \neq 1$, then $c_{f, g}^{r}\left(m_{1} m_{2}, n_{1} n_{2}\right)=$ 0 by Lemma 4.3(i). But then, one of $\left(m_{1}, g^{\prime}\right),\left(m_{2}, g^{\prime}\right),\left(n_{1}, f^{\prime}\right),\left(n_{2}, f^{\prime}\right)$ is not 1 , and either

$$
c_{f, g}^{r}\left(m_{1}, n_{1}\right)=0 \quad \text { or } \quad c_{f, g}^{r}\left(m_{2}, n_{2}\right)=0
$$

by Lemma 4.3(i). This proves the lemma in this case, and we now suppose that $\left(m, g^{\prime}\right)=$ $\left(n, f^{\prime}\right)=1$. Using Lemma 4.3(ii), we have

$$
c_{f, g}^{r}\left(m, n_{1} n_{2}\right)=\sum_{\substack{a(4 m)^{*} \\\left(r^{2}-a f^{2}, 4 m\right)=4}}\left(\frac{a}{m}\right) c_{f, g}^{r}\left(n_{1} ; m, a\right) c_{f, g}^{r}\left(n_{2} ; m, a\right)
$$

with

$$
c_{f, g}^{r}\left(n_{1} ; m, a\right)=\sum_{\substack{\left.b_{1}\left(4 n_{1}\right)^{*} \\\left(a f^{\prime 2}-b_{1} g^{\prime 2}\right) / 4 \equiv 0 \cos g^{2}, 4 n_{1}\right)=4 \\\left(a \bmod ^{\prime 2}\left(m f^{\prime 2}, n_{1} g^{\prime 2}\right)\right.}}\left(\frac{b_{1}}{n_{1}}\right) .
$$

By hypothesis, $\left(m f^{\prime 2}, n_{1} g^{2}\right)=\left(m_{1} f^{\prime 2}, n_{1} g^{2}\right)$, and $c_{f, g}^{r}\left(n_{1} ; m, a\right)=c_{f, g}^{r}\left(n_{1} ; m_{1}, a_{1}\right)$ where a_{1} is the reduction of a modulo $4 m_{1}$. Similarly, we have $c_{f, g}^{r}\left(n_{2} ; m, a\right)=c_{f, g}^{r}\left(n_{2} ; m_{2}, a_{2}\right)$ where a_{2} is the reduction of a modulo $4 m_{2}$.
Then, applying the Generalised Chinese Reminder theorem, we have

$$
\begin{aligned}
c_{f, g}^{r}(m, n)= & \sum_{\substack{a\left(4 m_{1} m_{2}\right)^{*} \\
\left(r^{2}-a f^{2}, 4 m_{1} m_{2}\right)=4}}\left(\frac{a}{m_{1} m_{2}}\right) c_{f, g}^{r}\left(n_{1} ; m_{1}, a_{1}\right) c_{f, g}^{r}\left(n_{2} ; m_{2}, a_{2}\right) \\
= & \sum_{\substack{a_{1}\left(4 m_{1}\right)^{*} \\
\left(r^{2}-a_{1} f^{2}, 4 m_{1}\right)=4}}\left(\frac{a_{1}}{m_{1}}\right) c_{f, g}^{r}\left(n_{1} ; m_{1}, a_{1}\right) \sum_{\substack{a_{2}\left(4 m_{2}\right)^{*} \\
\left(r^{2}-a_{2} f^{2}, 4 m_{2}\right)=4}}\left(\frac{a_{2}}{m_{2}}\right) c_{f, g}^{r}\left(n_{2} ; m_{2}, a_{2}\right)
\end{aligned}
$$

which proves the lemma.

4.2 Bounds for the coefficients $c_{f, g}^{r}(m, n)$

We prove in this section that the functions $c_{f, g}^{r}(m, n)$ satisfy the bound (20). This is the result needed to complete the proof of Theorem 3.1.

Lemma 4.5 Let p be a prime, and let $\alpha, \beta \geq 0$ be integers. Then,
(i) $c_{f, g}^{r}(1,1)=1$;
(ii) If $p \nmid f g$ (i.e. $\left.v_{p}(f)=v_{p}(g)=0\right)$, then $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)$;
(iii) If $p \mid f g$ and $v_{p}(f)=v_{p}(g)$, then $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)$;
(iv) Suppose $p \mid$ fg and $v_{p}(f) \neq v_{p}(g)$. If $\alpha, \beta \geq 1$, then $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$. If $\alpha=0$ and $\beta \geq 1$, then $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$ when $v_{p}(g)<v_{p}(f)$ and $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{p}^{r}\left(p^{\beta}\right)$ when $v_{p}(g)>v_{p}(f)$. If $\alpha \geq 1$ and $\beta=0$, then $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$ when $v_{p}(f)<v_{p}(g)$ and $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{p}^{r}\left(p^{\alpha}\right)$ when $v_{p}(f)>v_{p}(g)$.

Proof: (i) By definition.
(ii) By definition,

$$
c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)=\sum_{\substack{a\left(4 p^{\alpha}\right)^{*} \\\left(r^{2}-a, 4 p^{\alpha}\right)=4}}\left(\frac{a}{p^{\alpha}}\right) \sum_{\substack{b\left(4 p^{\beta}\right)^{*} \\\left(r^{2}-b, 4 p^{\beta}\right)=4 \\(a-b) / 4 \equiv 0 \bmod \left(p^{\alpha}, p^{\beta}\right)}}\left(\frac{b}{p^{\beta}}\right) .
$$

As $(f, 2 p)=(g, 2 p)=1$, there is a bijection between the invertible residues modulo $4 p^{\alpha}$ (respectively $4 p^{\beta}$) and the set of $a f^{2}$ (respectively $b g^{2}$), where a (respectively b) runs over the set of invertible residues modulo $4 p^{\alpha}$ (respectively $4 p^{\beta}$). This gives

$$
c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)=\sum_{\substack{a\left(4 p^{\alpha}\right)^{*} \\
\left(r^{2}-a f^{2}, 4 p^{\alpha}\right)=4}}\left(\frac{a f^{2}}{p^{\alpha}}\right) \sum_{\substack{b\left(4 p^{\beta}\right)^{*} * \\
\left(\begin{array}{c}
\left(r^{2}-b p^{2}, 4 p^{\beta}\right)=4 \\
\left(a f^{2}-b g^{2}\right) / 4=0 \bmod \left(p^{\alpha}, p^{\beta}\right)
\end{array}\right.}}\left(\frac{b g^{2}}{p^{\beta}}\right) .
$$

As

$$
\left(a f^{2}-b g^{2}\right) / 4 \equiv 0 \bmod \left(p^{\alpha}, p^{\beta}\right) \Longleftrightarrow\left(a f^{2}-b g^{2}\right) / 4 \equiv 0 \bmod \left(p^{\alpha} f^{2}, p^{\beta} g^{2}\right)
$$

and

$$
\left(\frac{a f^{2}}{p^{\alpha}}\right)=\left(\frac{a}{p^{\alpha}}\right), \quad\left(\frac{b g^{2}}{p^{\beta}}\right)=\left(\frac{b}{p^{\beta}}\right)
$$

we get that $c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)$.
(iii) As $p \mid f g$, and $v_{p}(f)=v_{p}(g), p$ is odd, and we have

$$
\left(a f^{2}-b g^{2}\right) / 4 \equiv 0 \bmod \left(p^{\alpha} f^{2}, p^{\beta} g^{2}\right) \Longleftrightarrow a f^{\prime 2} \equiv b g^{\prime 2} \bmod \left(p^{\alpha}, p^{\beta}\right)
$$

Let $h=f^{\prime-2} g^{\prime 2}$ modulo $4 p^{\beta}$. Then, there is a bijection between the set of invertible residues b modulo $4 p^{\beta}$ and the set of $h b$, where b runs over the invertible residues b modulo $4 p^{\beta}$. Then,

$$
\begin{aligned}
c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)= & \sum_{\substack{a\left(4 p^{\alpha}\right)^{*} \\
\left(r^{2}-a p^{2}, 4 p^{\alpha}\right)=4}}\left(\frac{a}{p^{\alpha}}\right) \sum_{\substack{b\left(4 p^{\beta}\right)^{*} \\
\left(r^{2}-b p^{2} 4 p^{\beta}\right)=4 \\
a \equiv b \bmod \left(p^{\alpha}, p^{\beta}\right)}}\left(\frac{b}{p^{\beta}}\right) \\
= & \sum_{\substack{a\left(4 p^{\alpha}\right)^{*} \\
\left(r^{2}-a p^{2}, 4 p^{\alpha}\right)=4}}\left(\frac{a}{p^{\alpha}}\right) \sum_{\substack{\left.b\left(4 p^{\beta}\right)^{*} \\
\text { (r) } \\
a \equiv h b \bmod p^{2}\left(p^{\beta}\right)=4 \\
p^{\alpha}, p^{\beta}\right)}}\left(\frac{b h}{p^{\beta}}\right) .
\end{aligned}
$$

As $\left(r^{2}-a p^{2}, 4 p^{\alpha}\right)=4$ if and only if $\left(r^{2}-a f^{2}, 4 p^{\alpha}\right)=4,\left(r^{2}-h b p^{2}, 4 p^{\beta}\right)=4$ if and only if $\left(r^{2}-b g^{2}, 4 p^{\beta}\right)=4$, and

$$
\left(\frac{b h}{p^{\beta}}\right)=\left(\frac{b}{p^{\beta}}\right)
$$

we get that $c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)=c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)$.
(iv) Suppose that $p \mid f g$, and $v_{p}(f) \neq v_{p}(g)$. If $\alpha, \beta \geq 1$, then one of $\left(p^{\alpha}, g^{\prime}\right)$ or $\left(p^{\beta}, f^{\prime}\right)$ is divisible by p. Then, $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$ by Lemma 4.3(i).

If $\alpha=0, \beta \geq 1$ and $v_{p}(f)>v_{p}(g)$, then $\left(p^{\beta}, f^{\prime}\right)$ is divisible by p and $c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$ by Lemma 4.3(i). If $\alpha=0, \beta \geq 1$ and $v_{p}(f)<v_{p}(g)$, then

$$
c_{f, g}^{r}\left(1, p^{\beta}\right)=\sum_{\substack{b\left(4 p^{\beta} \beta * * \\\left(r^{2}-4 g^{2}, 4 p^{\beta}\right)=4 \\\left(a f^{\prime 2}-b g^{\prime 2}\right) / 4 \equiv 0 \bmod \left(f^{\prime 2}, p^{\beta} g^{\prime 2}\right)\right.}}\left(\frac{b}{p^{\beta}}\right)
$$

is equal to $c_{g}\left(p^{\beta}\right)$ as $\left(f^{\prime 2}, p^{\beta} g^{\prime 2}\right)=1$. Finally, from [DP, Lemma 3.3(3)], $c_{g}^{r}\left(p^{\beta}\right)=c_{p}^{r}\left(p^{\beta}\right)$.
The proof is similar for $\alpha \geq 1, \beta=0$ and $v_{p}(f) \neq v_{p}(g)$.
QED.
Lemma 4.6 Let $\alpha \geq 0$.
(i) For p odd,

$$
\frac{c_{1}^{r}\left(p^{\alpha}\right)}{p^{\alpha-1}}= \begin{cases}-\left(\frac{r^{2}}{p}\right) & \text { when } \alpha \text { is odd } \\ p-1-\left(\frac{r^{2}}{p}\right) & \text { when } \alpha \text { is even }\end{cases}
$$

(ii) For p odd,

$$
\frac{c_{p}^{r}\left(p^{\alpha}\right)}{p^{\alpha-1}}= \begin{cases}0 & \text { when } p \mid r ; \\ p-1 & \text { when } \alpha \text { is even and } p \nmid r ; \\ 0 & \text { when } \alpha \text { is odd and } p \nmid r .\end{cases}
$$

(iii)

$$
\frac{c_{1}^{r}\left(2^{\alpha}\right)}{2^{\alpha-1}}=(-1)^{\alpha} .
$$

Proof: This is [DP, Lemma 3.3].
QED.
Lemma 4.7 Let $\alpha, \beta \geq 0$, not both 0 .
(i) For p odd,

$$
\frac{c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\max (\alpha, \beta)-1}}= \begin{cases}-\left(\frac{r^{2}}{p}\right) & \text { when } \alpha+\beta \text { is odd } \\ p-1-\left(\frac{r^{2}}{p}\right) & \text { when } \alpha+\beta \text { is even }\end{cases}
$$

(ii) For p odd,

$$
\frac{c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\max (\alpha, \beta)-1}}= \begin{cases}0 & \text { when } p \mid r ; \\ p-1 & \text { when } \alpha+\beta \text { is even and } p \nmid r ; \\ 0 & \text { when } \alpha+\beta \text { is odd and } p \nmid r .\end{cases}
$$

(iii)

$$
\frac{c_{1,1}^{r}\left(2^{\alpha}, 2^{\beta}\right)}{2^{\max (\alpha, \beta)-1}}=(-1)^{\alpha+\beta} .
$$

Proof: (i) If $\alpha=0$, then $c_{1,1}^{r}\left(1, p^{\beta}\right)=c_{1}^{r}\left(p^{\beta}\right)$, and the result follows from Lemma 4.6(i). Similarly for $\beta=0$. We then suppose that $\alpha, \beta \geq 1$, and without loss of generality that $\alpha \leq \beta$. As p is odd, we have

$$
\begin{aligned}
c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right) & =\sum_{\substack{a\left(p^{\alpha}\right)^{*} \\
\left(r^{2}-a, p\right)=1}}\left(\frac{a}{p}\right)^{\alpha} \sum_{\substack{\left(b p^{\beta}\right)^{*} \\
\left(r^{2}-b, p=1 \\
b \equiv a \bmod p^{\alpha}\right.}}\left(\frac{b}{p}\right)^{\beta} \\
& =p^{\beta-\alpha} \sum_{\substack{a\left(p^{\alpha}\right)^{*} \\
\left(r^{2}-a, p\right)=1}}\left(\frac{a}{p}\right)^{\alpha+\beta}=p^{\beta-1} \sum_{\substack{a(p) * \\
a \neq r^{2} \bmod p}}\left(\frac{a}{p}\right)^{\alpha+\beta} .
\end{aligned}
$$

This proves (i).
(ii) As in (i), we can suppose that $1 \leq \alpha \leq \beta$. As p is odd, we have

$$
c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)=\sum_{\substack{a\left(p^{\alpha}\right)^{*} \\\left(r^{2}-a p^{2}, p\right)=1}}\left(\frac{a}{p}\right)^{\alpha} \sum_{\substack{\left.b\left(p^{\beta}\right) * \\ \text { bp } \\ b p^{2} \equiv a p^{2}-p^{2}, p, p\right)=1 \\ \bmod p^{\alpha+2}}}\left(\frac{b}{p}\right)^{\beta}
$$

If $p \mid r$, then $p \mid\left(r^{2}-a p^{2}, p\right)$, and $c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)=0$. If $p \nmid r$, then $\left(r^{2}-a p^{2}, p\right)=1$, and

$$
\begin{aligned}
c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right) & =\sum_{a\left(p^{\alpha}\right)^{*}}\left(\frac{a}{p}\right)^{\alpha} \sum_{\substack{b\left(p^{\beta}\right)^{*} \\
b \equiv a \bmod p^{\alpha}}}\left(\frac{b}{p}\right)^{\beta} \\
& =p^{\beta-\alpha} \sum_{a\left(p^{\alpha}\right)^{*}}\left(\frac{a}{p}\right)^{\alpha+\beta}=p^{\beta-1} \sum_{a(p)^{*}}\left(\frac{a}{p}\right)^{\alpha+\beta} .
\end{aligned}
$$

This proves (ii).
(iii) As above, we can suppose that $1 \leq \alpha \leq \beta$. We have

$$
\begin{aligned}
c_{1,1}^{r}\left(2^{\alpha}, 2^{\beta}\right) & =\sum_{\substack{a\left(2^{\alpha+2}\right)^{*} \\
\left(r^{2}-a, 2^{\alpha+2}\right)=4}}\left(\frac{a}{2}\right)^{\alpha} \sum_{\substack{b\left(2^{\beta+2}\right)^{*} \\
\left(r^{2}-b, 2^{2+2}\right)=4 \\
a \equiv b \bmod ^{2 \alpha+2}}}\left(\frac{b}{2}\right)^{\beta} \\
= & 2^{\beta-\alpha} \sum_{\substack{a(2 \alpha+2)^{*} \\
\left(r^{2}-a, 2^{\alpha+2}\right)=4}}\left(\frac{a}{2}\right)^{\alpha+\beta} .
\end{aligned}
$$

As the value of the character depends only on the value of a modulo 8 , and as $r^{2} \equiv 1 \bmod 8$, we have

$$
c_{1,1}^{r}\left(2^{\alpha}, 2^{\beta}\right)=2^{\beta-\alpha} 2^{\alpha-1} \sum_{\substack{a(8)^{*} \\ a \equiv 5 \bmod 8}}\left(\frac{a}{2}\right)^{\alpha+\beta}=2^{\beta-1}(-1)^{\alpha+\beta} .
$$

This proves (iii).
Lemma 4.8 For any integers $m, n \geq 1$, we have

$$
c_{f, g}^{r}(m, n)=O\left(\frac{m n}{\kappa(m n)(m, n)}\right) .
$$

Here $\kappa(n)$ is the multiplicative arithmetic function generated by the identity

$$
\kappa\left(p^{\alpha}\right)=\left\{\begin{array}{cc}
p & \alpha \text { odd } \\
1 & \alpha \text { even }
\end{array}\right.
$$

for any prime p and any positive integer α.
Proof: From Lemma 4.4, $c_{f, g}^{r}(m, n)$ is multiplicative, i.e.

$$
c_{f, g}^{r}(m, n)=\prod_{p \mid m n} c_{f, g}^{r}\left(p^{\alpha(p)}, p^{\beta(p)}\right) .
$$

Let p be any prime. It then follows from Lemmas 4.5, 4.6 and 4.7 that for integers $\alpha, \beta \geq 0$, we have

$$
c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right) \ll\left(\frac{p^{\alpha+\beta}}{\kappa\left(p^{\alpha+\beta}\right)\left(p^{\alpha}, p^{\beta}\right)}\right)
$$

with an absolute constant. We then have

$$
c_{f, g}^{r}(m, n) \ll \prod_{p \mid m n} \frac{p^{\alpha(p)+\beta(p)}}{\kappa\left(p^{\alpha(p)+\beta(p)}\right)\left(p^{\alpha(p)}, p^{\beta(p)}\right)}=\frac{m n}{\kappa(m n)(m, n)} .
$$

QED.

4.3 Euler Product

We compute in this section the Euler product for the constant C_{r}. We recall from Section 2 that

$$
C_{r}=\frac{K_{r}}{\pi^{2}}
$$

and from (26)

$$
K_{r}=\sum_{\substack{f, g=1 \\(2 r, f g)=1}}^{\infty} \frac{1}{f g} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n)}{m n \phi\left(\left[m f^{2}, n g^{2}\right]\right)} .
$$

From Lemma 4.3(i), $c_{f, g}^{r}(m, n)=0$ when $\left(f^{\prime}, n\right) \neq 1$ or $\left(g^{\prime}, m\right) \neq 1$. Now, if $\left(f^{\prime}, n\right)=$ $\left(g^{\prime}, m\right)=1$,

$$
\left[m f^{2}, n g^{2}\right]=k^{2}\left[m f^{\prime 2}, n g^{\prime 2}\right]=k^{2}[m, n] f^{\prime 2} g^{\prime 2}=[m, n]\left[f^{2}, g^{2}\right] .
$$

Using that and the identity

$$
\phi(a b)=\frac{\phi(a) \phi(b)(a, b)}{\phi(a, b)}
$$

we get that

$$
\begin{equation*}
K_{r}=\sum_{\substack{f, g>1 \\(2 r, f g)=1}} \frac{1}{f g \phi\left(\left[f^{2}, g^{2}\right]\right)} \sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) \phi\left(\left[f^{2}, g^{2}\right],[m, n]\right)}{m n \phi([m, n])\left(\left[f^{2}, g^{2}\right],[m, n]\right)} \tag{27}
\end{equation*}
$$

One can check that the function in the inside sum is a multiplicative function of m and n. For such functions, we have the following.
Lemma 4.9 (Euler product) Let $F(m, n)$ be a multiplicative function. Then,

$$
\sum_{m, n \geq 1} F(m, n)=\prod_{p} \sum_{\alpha, \beta \geq 0} F\left(p^{\alpha}, p^{\beta}\right)
$$

We then write the inside sum of (27) as

$$
\sum_{m, n=1}^{\infty} \frac{c_{f, g}^{r}(m, n) \phi\left(\left[f^{2}, g^{2}\right],[m, n]\right)}{m n \phi([m, n])\left(\left[f^{2}, g^{2}\right],[m, n]\right)}=\prod_{p} \sum_{\alpha, \beta \geq 0} \frac{c_{f, g}^{r}\left(p^{\alpha}, p^{\beta}\right) \phi\left(\left[f^{2}, g^{2}\right],\left[p^{\alpha}, p^{\beta}\right]\right)}{p^{\alpha} p^{\beta} \phi\left(\left[p^{\alpha}, p^{\beta}\right]\right)\left(\left[f^{2}, g^{2}\right],\left[p^{\alpha}, p^{\beta}\right]\right)}
$$

We now break the product in 3 parts, depending on the p-adic valuations of f and g. We first notice that for any prime p

$$
\frac{\phi\left(\left[f^{2}, g^{2}\right],\left[p^{\alpha}, p^{\beta}\right]\right)}{\left(\left[f^{2}, g^{2}\right],\left[p^{\alpha}, p^{\beta}\right]\right)}=\left\{\begin{array}{cl}
1 & \text { if } \alpha=\beta=0 \\
1 & \text { if } p \nmid f g ; \\
\frac{p-1}{p} & p \mid f g, \alpha, \beta \text { not both } 0
\end{array}\right.
$$

Then, using Lemma 4.5, we can rewrite the last product as

$$
\begin{aligned}
& \prod_{p \nmid f g} \sum_{\alpha, \beta \geq 0} \frac{c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\alpha} p^{\beta} \phi\left(\left[p^{\alpha}, p^{\beta}\right]\right)} \prod_{\substack{p \mid f g \\
v_{p}(f)=v_{p}(g)}}\left(1+\frac{p-1}{p} \sum_{\substack{\alpha, \beta \geq 0 \\
(\alpha, \beta) \neq(0,0)}} \frac{c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\alpha} p^{\beta} \phi\left(\left[p^{\alpha}, p^{\beta}\right]\right)}\right) \\
& \quad \times \prod_{\substack{p \mid f g \\
v_{p}(f)<v_{p}(g)}}\left(1+\frac{p-1}{p} \sum_{\beta>0} \frac{c_{p}^{r}\left(p^{\beta}\right)}{p^{\beta} \phi\left(p^{\beta}\right)}\right) \prod_{\substack{p \mid f g \\
v_{p}(f)>v_{p}(g)}}\left(1+\frac{p-1}{p} \sum_{\alpha>0} \frac{c_{p}^{r}\left(p^{\alpha}\right)}{p^{\alpha} \phi\left(p^{\alpha}\right)}\right) \\
&=\prod_{p} E_{1}(p) \prod_{\substack{p \mid f g \\
v_{p}(f)=v_{p}(g)}} \frac{E_{2}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g \\
v_{p}(f)<v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g \\
v_{p}(f)>v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)}
\end{aligned}
$$

where

$$
\begin{aligned}
& E_{1}(p)=\sum_{\alpha, \beta \geq 0} \frac{c_{1,1}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\alpha} p^{\beta} \phi\left(\left[p^{\alpha}, p^{\beta}\right]\right)} \\
& E_{2}(p)=1+\frac{p-1}{p} \sum_{\substack{\alpha, \beta \geq 0 \\
(\alpha, \beta) \neq(0,0)}} \frac{c_{p, p}^{r}\left(p^{\alpha}, p^{\beta}\right)}{p^{\alpha} p^{\beta} \phi\left(\left[p^{\alpha}, p^{\beta}\right]\right)} \\
& E_{3}(p)=1+\frac{p-1}{p} \sum_{\beta>0} \frac{c_{p}^{r}\left(p^{\beta}\right)}{p^{\beta} \phi\left(p^{\beta}\right)} .
\end{aligned}
$$

Replacing the last equation in (27), we get

$$
K_{r}=\prod_{p} E_{1}(p) \sum_{\substack{f, g>1 \\(2 r, f g)=1}} \frac{1}{f g \phi\left(\left[f^{2}, g^{2}\right]\right)} \prod_{\substack{p \mid f g \\ v_{p}(f)=v_{p}(g)}} \frac{E_{2}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g \\ v_{p}(f)<v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g \\ v_{p}(f)>v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)} .
$$

One can check that the function

$$
F(f, g)=\frac{1}{f g \phi\left(\left[f^{2}, g^{2}\right]\right)} \prod_{\substack{p \mid f g \\ v_{p}(f)=v_{p}(g)}} \frac{E_{2}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g^{\prime} \\ v_{p}(f)<v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)} \prod_{\substack{p \mid f g \\ v_{p}(f)>v_{p}(g)}} \frac{E_{3}(p)}{E_{1}(p)}
$$

is a multiplicative function of f and g. We compute $F(1,1)=1$, and for $\gamma, \delta \geq 0$ not both 0

$$
F\left(p^{\gamma}, p^{\delta}\right)= \begin{cases}\frac{1}{p^{\gamma} p^{\delta} \phi\left(\left[p^{2 \gamma}, p^{2 \delta}\right]\right)} \frac{E_{2}(p)}{E_{1}(p)} & \text { if } \gamma=\delta ; \\ \frac{1}{p^{\gamma} p^{\delta} \phi\left(\left[p^{2 \gamma}, p^{2 \delta}\right]\right)} \frac{E_{3}(p)}{E_{1}(p)} & \text { if } \gamma<\delta ; \\ \frac{1}{p^{\gamma} p^{\delta} \phi\left(\left[p^{2 \gamma}, p^{2 \delta}\right]\right)} \frac{E_{3}(p)}{E_{1}(p)} & \text { if } \gamma>\delta .\end{cases}
$$

Using Lemma 4.9, this gives

$$
\begin{aligned}
K_{r} & =\prod_{p} E_{1}(p) \prod_{p \nmid 2 r} \sum_{\gamma, \delta \geq 0} F\left(p^{\gamma}, p^{\delta}\right) \\
& =\prod_{p \mid 2 r} E_{1}(p) \prod_{p \nmid 2 r}\left(E_{1}(p)+E_{2}(p) \sum_{\gamma \geq 1} \frac{1}{p^{2 \gamma} \phi\left(p^{2 \gamma}\right)}+2 E_{3}(p) \sum_{\substack{\gamma, \delta \geq 0 \\
\gamma<\delta}} \frac{1}{p^{\gamma} p^{\delta} \phi\left(\left[p^{2 \gamma}, p^{2 \delta}\right]\right)}\right) .
\end{aligned}
$$

One computes

$$
\begin{aligned}
E_{1}(2) & =\frac{4}{9} \\
E_{1}(p) & =\frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \text { for } p \mid r \\
E_{1}(p) & =\frac{p^{5}-p^{4}-p^{3}-4 p^{2}+1}{(p-1)^{3}(p+1)^{2}} \text { for } p \nmid 2 r \\
E_{2}(p) & =\frac{p^{4}+p^{3}+2 p^{2}-p-1}{p(p-1)(p+1)^{2}} \text { for } p \nmid 2 r \\
E_{3}(p) & =1+\frac{1}{p(p+1)}=\frac{p^{2}+p+1}{p(p+1)} \\
\sum_{\gamma \geq 1} \frac{1}{p^{2 \gamma} \phi\left(p^{2 \gamma}\right)} & =\frac{p}{(p-1)\left(p^{4}-1\right)} \\
\sum_{\substack{\gamma, \delta \geq 0 \\
\gamma<\delta}} \frac{1}{p^{\gamma} p^{\delta} \phi\left(\left[p^{2 \gamma}, p^{2 \delta}\right]\right)} & =\left(\frac{p}{p-1}\right)^{2}\left(\frac{1}{p^{3}-1}-\frac{1}{p^{4}-1}\right)=\frac{p^{5}}{\left(p^{4}-1\right)\left(p^{3}-1\right)(p-1)} .
\end{aligned}
$$

Replacing in the last expression for K_{r}, this gives

$$
\begin{aligned}
K_{r} & =\frac{4}{9} \prod_{p \mid r} \frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \prod_{p \nmid 2 r} \frac{p^{2}\left(p^{4}-2 p^{2}-3 p-1\right)}{(p+1)^{3}(p-1)^{3}} \\
& =3 \prod_{p \mid r} \frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \prod_{p \nmid r} \frac{p^{2}\left(p^{4}-2 p^{2}-3 p-1\right)}{(p+1)^{3}(p-1)^{3}}
\end{aligned}
$$

and finally

$$
C_{r}=\frac{3}{\pi^{2}} \prod_{p \mid r} \frac{p^{2}\left(p^{2}+1\right)}{\left(p^{2}-1\right)^{2}} \prod_{p \nmid r} \frac{p^{2}\left(p^{4}-2 p^{2}-3 p-1\right)}{(p+1)^{3}(p-1)^{3}} .
$$

5 The supersingular case

The case $r=0$ was considered by Fouvry and Murty in [FM2], and we verify here that our method gives the same asymptotic. We start by considering Equation (3.1) of [FM2]

$$
\begin{aligned}
T(x) & =\sum_{p \leq x} \frac{h^{2}(-p)}{p^{2}}+2 \sum_{p \leq x} \frac{h(-p) h(-4 p)}{p^{2}}+\sum_{p \leq x} \frac{h^{2}(-4 p)}{p^{2}} \\
& =T_{1,1}(x)+2 T_{1,4}(x)+T_{4,4}(x) .
\end{aligned}
$$

Proceeding as in Section 2, we write

$$
\begin{aligned}
& T_{1,1}(x)=\sum_{p \in S_{2,2}(x)} \frac{L\left(1, \chi_{-p}\right) L\left(1, \chi_{-p}\right)}{p} \\
& T_{1,4}(x)=2 \sum_{p \in S_{2,1}(x)} \frac{L\left(1, \chi_{-p}\right) L\left(1, \chi_{-4 p}\right)}{p} \\
& T_{4,4}(x)=4 \sum_{p \in S_{1,1}(x)} \frac{L\left(1, \chi_{-4 p}\right) L\left(1, \chi_{-4 p}\right)}{p} .
\end{aligned}
$$

We replace $1 / p$ by $\log p$ in the above sums, and we call the corresponding new sums $\hat{T}_{i, j}(x)$. One can easily get the asymptotic for T from \hat{T} by partial summation as in Section 2. We now calculate each of the sums $\hat{T}_{i, j}(x)$.
Proceeding as in Section 3, we get

$$
\hat{T}_{1,1}(x) \sim\left(\sum_{m, n=1}^{\infty} \frac{c_{2,2}^{0}(m, n)}{m n \phi([4 m, 4 n])}\right) x
$$

where

When m and n are odd, we have

$$
c_{2,2}^{0}(m, n)=\sum_{a(m)^{*}}\left(\frac{a}{m}\right) \sum_{\substack{b(n)^{*}(m, n) \\ a \equiv b \bmod (m)}}\left(\frac{b}{n}\right)
$$

and for $1 \leq \alpha \leq \beta$, we have

$$
c_{2,2}^{0}\left(2^{\alpha}, 2^{\beta}\right)=2^{\beta-1}\left(1+(-1)^{\alpha+\beta}\right) .
$$

Using these and following the arguments of Section 4, we get the Euler product

$$
\sum_{m, n=1}^{\infty} \frac{c_{2,2}^{0}(m, n)}{m n \phi([4 m, 4 n])}=\frac{1}{2} \prod_{p} \frac{1+1 / p^{2}}{\left(1-1 / p^{2}\right)^{2}}=\frac{5 \pi^{2}}{24}
$$

Proceeding similarly, we get

$$
\hat{T}_{1,4}(x) \sim\left(2 \sum_{\substack{m, n=1 \\ n \text { odd }}}^{\infty} \frac{c_{2,1}^{0}(m, n)}{m n \phi([4 m, n])}\right) x
$$

where

$$
c_{2,1}^{0}(m, n)=\sum_{\substack{a(4 m)^{*} \\ a \equiv 1 \bmod 4}}\left(\frac{a}{m}\right) \sum_{\substack{b(n)^{*} \\ a \equiv b \bmod (4 m, n)}}\left(\frac{b}{n}\right)
$$

When m is odd, we have

$$
c_{2,1}^{0}(m, n)=\sum_{a(m)^{*}}\left(\frac{a}{m}\right) \sum_{\substack{b(n)^{*} \\ a \equiv b \bmod (m, n)}}\left(\frac{b}{n}\right)
$$

and for $\alpha \geq 1$, we have

$$
c_{2,1}^{0}\left(2^{\alpha}, 1\right)=2^{\alpha-1}(-1)^{\alpha} .
$$

Using these and following the arguments of Section 4, we get the Euler product

$$
2 \sum_{\substack{m, n=1 \\ n \text { odd }}}^{\infty} \frac{c_{2,1}^{0}(m, n)}{m n \phi([4 m, n])}=2\left(\frac{1}{2}\right)\left(\frac{1}{1-1 / 2^{2}}\right) \prod_{p \geq 3} \frac{1+1 / p^{2}}{\left(1-1 / p^{2}\right)^{2}}=\frac{\pi^{2}}{4} .
$$

Proceeding in the same way, we get

$$
\hat{T}_{4,4}(x) \sim\left(4 \sum_{\substack{m, n=1 \\ m, n \text { odd }}}^{\infty} \frac{c_{1,1}^{0}(m, n)}{m n \phi([m, n])}\right) x
$$

where

$$
c_{1,1}^{0}(m, n)=\sum_{a(m)^{*}}\left(\frac{a}{m}\right) \sum_{\substack{b=\equiv\left(n n^{*}(m, n) \\ a \equiv b \bmod (m, n\right.}}\left(\frac{b}{n}\right) .
$$

Here m and n are odd, and we have

$$
4 \sum_{\substack{m, n=1 \\ m, n \text { odd }}}^{\infty} \frac{c_{1,1}^{0}(m, n)}{m n \phi([m, n])}=4 \prod_{p \geq 3} \frac{1+1 / p^{2}}{\left(1-1 / p^{2}\right)^{2}}=\frac{3 \pi^{2}}{4}
$$

Finally, putting the last 3 estimates together, we get

$$
T(x) \sim\left(\frac{5}{24}+\frac{1}{2}+\frac{3}{4}\right) \frac{x}{\log x}=\frac{35}{24} \frac{x}{\log x}
$$

and then Theorem 1.2 also holds for $r=0$ with $C_{0}=35 / 96$. This is the result obtained by Fouvry and Murty in [FM2].

References

[Bur] D. A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. 13 (1963), 524-536.
[Cox] D. A. Cox, Primes of the form $x^{2}+n y^{2}$, Wiley, 1989.
[DP] C. David and F. Pappalardi, Average Frobenius distributions of elliptic curves, Mathematics Research Notices no 4 (1999), 165-183.
[DKP] C. David, H. Kisilevsky and F. Pappalardi, Galois representations with nonsurjective traces, Can. J. Math. 51 (1999), 936-951.
[Dav] H. Davenport, Multiplicative number theory, Springer-Verlag, 1980.
[Deu] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
[Elk] N. D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over \mathbb{Q}, Invent. Math. 89 (1987), 561-567.
[FM1] E. Fouvry and M. R. Murty, On the distribution of supersingular primes, Can. J. Math. 48 (1996), 81-104.
[FM2] E. Fouvry and M. R. Murty, Supersingular primes common to two elliptic curves, Number Theory (Paris, 1992-1993), 91-102, London Math. Soc. Lecture Note Ser., 215, Cambridge Univ. Press, 1995.
[HW] G. H. Hardy and E. M. Wright, An Introduction to the theory of numbers, 5th ed., Clarendon Press (Oxford), 1979.
[LT] S. Lang and H. Trotter, Frobenius distributions in GL2-extensions, Springer-Verlag Lecture Notes in Mathematics 504, 1976.
[M] M. R. Murty, Problems in analytic number theory, Springer, 2001.
[MMS] M. R. Murty, V. K. Murty and N. Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math., 110 (1998), 253-281.
[S] J.-P. Serre, Quelques applications du théorme de densité de Chebotarev, Publ. Math. IHES, 54 (1982), 123-201.
[Wil] B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. London Math. Soc. 21 (1922), 235-255.

Amir Akbary, Department of Mathematics and Computer Science, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, CANADA
E-mail: akbary@cs.uleth.ca
Chantal David, Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Quebec, H3G 1M8, CANADA
E-mail: cdavid@mathstat.concordia.ca

Robert Juricevic, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA
E-mail: rjuricevic@math.uwaterloo.ca

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: Primary 11G05, Secondary 11M41
 *Research partially supported by University of Lethbridge Research Fund and NSERC
 ${ }^{\dagger}$ Research partially supported by NSERC and FCAR
 \ddagger Research partially supported by NSERC and FCAR

