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Abstract

Motivated by several constructions of permutation polynomials done by several authors (most notably
by Zieve), we propose a unified treatment for a large set of classes of permutation polynomials of Fq. Our
approach yields a recipe for constructing several new and old classes of permutation polynomials of Fq.
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1. Introduction

Let p be a prime number; we are interested in constructing permutation polynomials of a finite field
Fq of q = pn elements. In this case all the permutations of Fq can be represented by polynomials in
Fq[x]. Note that we may assume each polynomial defined over Fq has degree at most (q − 1) because
xq = x for each x ∈ Fq. The study of permutations of finite fields started in 19th century with the
work of Hermite and later Dickson. In recent years, there has been tremendous amount of interest in
constructing permutation polynomials of Fq due to their applications in combinatorics, cryptography,
and coding theory. In general finding nontrivial classes of permutation polynomials of finite fields is a
difficult problem (for more background material on permutation polynomials we refer to [5, Chapter 7]).

In [11, Lemma 2.1], Zieve gives a very important criterion for constructing permutation polynomials
of Fq.

Theorem 1.1 (Zieve). Pick d, r > 0 with d | (q − 1), and let h ∈ Fq[x]. Then f(x) := xrh(x(q−1)/d)
permutes Fq if and only if both

(1) gcd(r, (q − 1)/d) = 1 and
(2) xrh(x)(q−1)/d permutes the set µd of roots of unity of order dividing d.

The great importance of the criterion from Theorem 1.1 is that it reduces the problem of determining
whether a given polynomial is a permutation polynomial to establishing whether another polynomial
permutes a smaller set (in this case, the set of roots of unity of order dividing d). The above criterion

IResearch of the authors was partially supported by NSERC of Canada
∗Corresponding author
Email addresses: amir.akbary@uleth.ca (Amir Akbary), dghioca@math.ubc.ca (Dragos Ghioca),

wang@math.carleton.ca (Qiang Wang)

Preprint submitted to Elsevier August 24, 2010



was discovered independently by various authors under various forms (see [7, Theorem 2.3], [10, Theorem
1]). In Theorem 1.1, both xr and x(q−1)/d yield endomorphisms of (F×q , ·). So, it is natural to search for
an additive analogue of Theorem 1.1, where xr and x(q−1)/d are replaced by arbitrary endomorphisms
of (Fq,+). This analogue was found by Zieve in [12, Proposition 3], which allowed him to produce new
classes of permutation polynomials.

Inspired by the work of Marcos [6] and Zieve [12], in this paper we prove the following general criterion
for permutations of a finite set (which generalizes both [11, Lemma 2.1] and [12, Proposition 3]).

Lemma 1.2. Let A, S and S̄ be finite sets with #S = #S̄, and let f : A → A, f̄ : S → S̄, λ : A → S,
and λ̄ : A → S̄ be maps such that λ̄ ◦ f = f̄ ◦ λ. If both λ and λ̄ are surjective, then the following
statements are equivalent:

(i) f is a bijection (a permutation of A); and
(ii) f̄ is a bijection from S to S̄ and f is injective on λ−1(s) for each s ∈ S.

For example, if

1. A = Fq;
2. f(x) = A(x) + g(B(x)) (for two additive polynomials A(x) and B(x), while g is any polynomial in

Fq[x]);
3. S = B(Fq) and S̄ = Fq/A(ker(B)) (seen as a quotient of additive groups);
4. λ(x) = B(x) and λ̄(x) is the canonical projection Fq → Fq/A(ker(B)); and
5. f̄(x) = A(B̂(x)) + g(x) (where B̂(x) is any additive polynomial such that B(B̂(x)) is the identity

on B(Fq)) seen as an induced map between S and S̄,

we obtain [12, Proposition 3] (also note that in [12, Proposition 3] it is immediate first to check that
ker(A) ∩ ker(B) = {0} and thus #A(ker(B)) = # ker(B), which yields that #S = #S̄). Similarly, if we
take

1. A = Fq;
2. f(x) = g(B(x)) + h(B(x)) · A(x), where B(x) is the trace map for the extension Fq/Fp, while
A(x) ∈ Fp[x] is an additive polynomial, and g(x) ∈ Fq[x] and h(x) ∈ Fp[x] are arbitrary polynomials;

3. S = S̄ = Fp;
4. λ(x) = λ̄(x) = B(x); and
5. f̄(x) = B(g(x)) + h(x) ·A(x),

we obtain [12, Theorem 6]. Also, if A = Fq, S = S̄ = µd ∪ {0}, and λ(x) = λ̄(x) = x(q−1)/d, we obtain
Theorem 1.1. Furthermore, if we take

1. A = Fpn ;
2. f(x) = x ·h(B(x)) for any polynomials h,B ∈ Fp[x] such that B(Fpn) ⊆ Fp and moreover, B(aα) =
a2 ·B(α) for each a ∈ Fp and each α ∈ Fpn ;

3. S = S̄ = B(Fp);
4. λ(x) = λ̄(x) = B(x); and
5. f̄(x) = x · h2(x),

we obtain [6, Proposition 12]. In Section 6 we will give a further generalization of [6, Proposition 12] (see
our Theorem 6.3).
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Proof of Lemma 1.2. Assume first that f is bijective. Then f is injective on each λ−1(s). Furthermore,
because λ̄ and f are surjective and λ̄ ◦ f = f̄ ◦λ, then f̄ : S → S̄ is surjective and so is bijective (because
S and S̄ are finite sets of the same cardinality).

Conversely, assume f(a1) = f(a2) for some a1, a2 ∈ A. Then f̄(λ(a1)) = λ̄(f(a1)) = λ̄(f(a2)) =
f̄(λ(a2)). Because f̄ is a bijection, we obtain λ(a1) = λ(a2). Hence a1, a2 are in λ−1(s) for some s ∈ S.
Because f is injective on each λ−1(s), we conclude that a1 = a2. So f is injective and in fact, it is
bijective (since A is a finite set).

This simple lemma gives us a recipe in which under suitable conditions one can construct permutations
of A out of bijections between two proper subsets of A, for example. In particular, if λ̄ = λ, one can
construct permutations of A out of the permutations of a subset S of A. Therefore, we are exactly in
the same situation as in [11, Lemma 2.1] or [12, Proposition 3 and Theorem 6] where we can reduce the
problem of determining whether a given polynomial is a permutation polynomial of Fq to the simpler
question of determining whether another polynomial permutes a smaller set.

So, we will be particularly interested in the case A is a finite field Fq in Lemma 1.2, and we will prove
several new results on permutation polynomials (see Theorems 5.1, 5.5, 5.10, 5.11, 5.12, 6.1, 6.3 and 6.4,
Propositions 5.4 and 5.9, and Corollary 6.5). We will also show that some known classes of permutation
polynomials can be constructed by a suitable application of Lemma 1.2. These classes include several
classes of permutation polynomials found recently by Coulter, Henderson and Matthews [2], Kyureghyan
[3], Marcos [6], and Zieve [12] among others. In other words here we give a simple unified treatment of
many classes of permutation polynomials and in the process we demonstrate the centrality of Lemma 1.2
in these constructions. We stress out that our work builds on the seminal work of Zieve in the area of
permutation polynomials, who envisioned in [12] some important special cases of Lemma 1.2 which led
us to formulating and proving the above general criterion.

Several of our constructions can be described in the more general context of permutations of a finite
group. To describe our result, first we set up the notation.

Notation 1.3. Throughout the paper (G,+) denotes a finite group. We denote the operation by “+”
although the group may not be abelian. We also denote the additive group of a finite field Fq by (Fq,+),
moreover the multiplicative group of Fq is denoted by (F×q , ·).

We denote by End(G) the set of all endomorphisms of G.
We denote by im(ϕ) = ϕ(G) the image of an endomorphism ϕ : G −→ G, and we denote by ker(ϕ)

its kernel.
We say that ϕ,ψ ∈ End(G) commute if ϕ ◦ ψ = ψ ◦ ϕ.

Our first theorem provides necessary and sufficient conditions under which one can construct a per-
mutation of a finite group G from two given endomorphisms of (G,+). More precisely in part (a) of
Theorem 1.4, we use Lemma 1.2 to give necessary and sufficient conditions for permutations of the form

f(x) := ϕ(x) + g(ψ(x))

where ϕ and ψ are two endomorphisms of G satisfying ϕ ◦ ψ = ψ̄ ◦ ϕ for some endomorphism ψ̄, and
g : G→ G is any mapping. More precisely, we prove the following.

Theorem 1.4. Let (G,+) be a finite group, and let ϕ,ψ, ψ̄ ∈ End(G) be group endomorphisms such that
ψ̄ ◦ϕ = ϕ ◦ψ and #im(ψ) = #im(ψ̄). Let g : G −→ G be any mapping, and let f : G −→ G be defined by

f(x) = ϕ(x) + g(ψ(x)).
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Then,
(a) f permutes G if and only if the following two conditions hold:

(i) ker(ϕ) ∩ ker(ψ) = {0} (or equivalently, ϕ induces a bijection between ker(ψ) and ker(ψ̄)); and
(ii) the function f̄(x) := ϕ(x) + ψ̄(g(x)) restricts to a bijection from im(ψ) to im(ψ̄).

(b) For any fixed endomorphisms ϕ, ψ and ψ̄ satisfying (i), there are

(#im(ψ))! ·
(
# ker(ψ̄)

)#im(ψ)

such permutation functions f (when g varies).
(c) Let g : G −→ G be such that

(
ψ̄ ◦ g

)
|im(ψ) = 0. Then f = ϕ + g ◦ ψ permutes G if and only if ϕ

is a permutation of G.
(d) Assume ϕ◦ψ = 0 and g : G −→ G be a mapping such that g(x) restricted to im(ψ) is a permutation

of im(ψ). Then
f(x) = ϕ(x) + g(ψ(x))

permutes G if and only if ϕ and ψ satisfy (i), and ψ̄ restricted to im(ψ) is a bijection from im(ψ) to
im(ψ̄).

We prove the above theorem in Section 2.
In Section 3 we apply the above theorem in the case (G,+) = (F×q , ·), the multiplicative group, which

immediately gives us the known results due to Wan-Lidl [9], Park-Lee [7], Akbary-Wang [1], Wang [10],
and Zieve [11]. The main observation here is that the group endomorphisms of F×q are maps of the form
xs for s ∈ Z.

In Section 4 we describe the natural analogue of parts (a) and (c) of Theorem 1.4 for an elliptic
curve E defined over a finite field, and under multiplication-by-m-maps (for various integers m), or the
Frobenius map for the endomorphisms ϕ and ψ.

Next we consider the additive group of Fq. The situation in this case is far more interesting than F×q
and E, and it was also studied by Zieve [12]. We point out that most of our results from Section 5 were
motivated by [12, Proposition 3 and Theorem 6]. Proposition 3 of [12] deals with permutation polynomials
of the form A(x) + g(B(x)) where both A and B are additive polynomials, while Theorem 6 of [12] deals
with permutation polynomials of the form h(B(x))A(x)+g(B(x)) where A is an additive polynomial and
B(x) = xq + xq/p + · · ·+ xp. Most of our results from Section 5 are written for polynomials of the form
h(B(x))A(x) + g(B(x)) for any additive polynomials A and B, thus extending both [12, Proposition 3
and Theorem 6].

One can show that the group endomorphisms of (Fq,+) are additive polynomials over Fq (or p-
polynomials over Fq). These endomorphisms of (Fq,+) are given by polynomials

ϕ(x) =
s∑
j=0

ajx
pj

, where aj ∈ Fq.

If ϕ(x) =
∑s
j=0 ajx

qj

with aj ∈ Fq, then we call ϕ(x) a Fq-linear polynomial ; obviously, each additive
polynomial is actually a Fp-linear polynomial. If in addition, each aj ∈ Fq, then we call ϕ a Fq-linear
polynomial over Fq (or q-polynomial over Fq). It is clear that any two Fq-linear polynomials ϕ and ψ
over Fq commute, i.e. ϕ(ψ(x)) = ψ(ϕ(x)) for all x ∈ Fq.

The following result is essentially part (a) of our Theorem 5.1.
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Theorem 1.5. Let q be a power of the prime number p. Consider any polynomial g ∈ Fq[x], any additive
polynomials ϕ,ψ, ψ̄ ∈ Fq[x] satisfying ϕ◦ψ = ψ̄ ◦ϕ and #ψ(Fq) = #ψ̄(Fq), and any polynomial h ∈ Fq[x]
such that h(ψ(Fq)) ⊂ Fp \ {0}.

Then, f(x) := h(ψ(x))ϕ(x) + g(ψ(x)) permutes Fq if and only if

(i) ker(ϕ) ∩ ker(ψ) = {0}; and

(ii) f̄(x) := h(x)ϕ(x) + ψ̄(g(x)) is a bijection between ψ(Fq) and ψ̄(Fq).

The above theorem is a generalization of [12, Theorem 6], which treated the case

ψ(x) = ψ̄(x) = xq + xq/p + · · ·+ xp.

Also, in Theorem 1.5 when h(x) = 1 and ψ = ψ̄, we obtain [12, Corollary 5]. We also point out that in [12,
Proposition 3], Zieve gives a necessary and sufficient criterion for a polynomial of the form A(x)+g(B(x))
to be a permutation polynomial (where A(x) and B(x) are arbitrary additive polynomials). Finally, note
that in the additive setting (unlike the multiplicative case) there are additive polynomials ϕ, ψ, ψ̄ such
that ϕ ◦ ψ = ψ̄ ◦ ϕ and ψ 6= ψ̄. See Example 5.2 for polynomials with this property.

We can use Theorem 5.1 to construct many classes of permutation polynomials. To illustrate the
power of our method, in Section 5, we give a sample of such results for two different choices of the
endomorphism ψ in Theorem 5.1. Firstly we consider ψ(x) = ψ̄(x) = xq

n−1
+ · · ·+xq+x; this polynomial

is the trace function for the extension Fqn/Fq and is denoted by Trn(x). Secondly by considering ψ(x) =
ψ̄(x) = xq − x, and suitable choices for the additive polynomial ϕ(x) in Theorem 5.1 we are able to
generate several other classes of permutation polynomials; for example we have the following (see part
(b) of Theorem 5.10).

Theorem 1.6. Let p be a prime number, let q be a power of p, let h(x) ∈ Fqn [x] be any polynomial such
that h(xq−x) ∈ Fq \{0} for all x ∈ Fqn , and let g(x) ∈ Fqn [x] be a polynomial that induces a permutation
of S = {αq − α | α ∈ Fqn}. Then the polynomial f(x) := h(xq − x)Trn(x) + g(xq − x) is a permutation
polynomial of Fqn if and only if p - n.

In Theorem 5.11 we prove that in the case q = p = 2 and h(x) = 1, in the above theorem, one can relax
the condition on g by assuming only that g |S is a one-to-one mapping onto S′ := {δ+ y : y ∈ S}, where
δ is any given element of F2n . We note that neither Theorem 1.6 nor Theorem 5.11 are consequences of
the results from [12].

In Section 5 we also construct the following classes of permutations of Fq2 .

Theorem 5.12 Let q = pm. Then the following are permutation polynomials of Fq2 :
(a) fa,b,k(x) := axq + bx+ (xq − x)k, for a, b ∈ Fq such that a 6= ±b, and for all even positive integers

k.
(b) fa,k(x) := axq + ax + (xq − x)k, if a ∈ F×q , and p and k are odd, and in addition k is relatively

prime with q − 1.

A complete mapping f over Fq is a permutation polynomial of Fq such that f(x) + x is again a
permutation polynomial of Fq. We note that the above class of polynomials fa,b,k(x) := axq+bx+(xq−x)k
over Fq2 contains complete mappings. More precisely we have the following.

Corollary 1.7. The polynomial fa,b,k(x) := axq + bx+(xq−x)k is a complete mapping over Fq2 for any
a, b ∈ Fq such that b 6= ±a and b+ 1 6= ±a, and for all even positive integers k.
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In Section 6 we construct new classes of permutation polynomials by direct applications of Lemma
1.2. These results are not consequences of Theorem 1.4 and well illustrate the power of Lemma 1.2 in
generating permutations of Fq. Our theorems from Section 6 generalize several known constructions of
permutation polynomials such as the ones from [2] and [3]. In Section 6 we prove the following result
(which generalizes [2, Theorem 3]).

Theorem 6.1 Let q be a prime power, let n be a positive integer, and let L1, L2, L3 be Fq-linear poly-
nomials over Fq seen as endomorphisms of (Fqn ,+). Let g(x) ∈ Fqn [x] such that g(L3(Fqn)) ⊆ Fq.
Then

f(x) = L1(x) + L2(x)g(L3(x))

is a permutation polynomial of Fqn if and only if the following two conditions hold

(i) ker(Fy) ∩ ker(L3) = {0}, for any y ∈ im(L3), where Fy : Fqn −→ Fqn is defined by

Fy(x) := L1(x) + L2(x)g(y).

(ii) f̄(x) := L1(x) + L2(x)g(x) permutes im(L3).

We also point out that in the above result, f(x) cannot be written as h(B(X))A(X)+g(B(x)) for some
additive polynomials A and B; therefore, Theorem 6.1 is neither covered by our results from Section 5
nor is covered by the results from [12].

We conclude our paper by considering mappings that are not necessarily additive even though they
satisfy a certain translation property. More precisely we define the following class of mappings of Fq.

Definition 1.8. Let S ⊆ Fq and let γ, b ∈ Fq. We say that γ is a b-linear translator with respect to S
for the mapping F : Fq −→ Fq, if

F (x+ uγ) = F (x) + ub

for all x ∈ Fqn and for all u ∈ S.

The above definition is a generalization of the concept of b-linear translator given in [3] which deals
with the case q = pmn (for a prime number p), and S = Fpm . In our definition S can be any subset of
Fq. The relaxation on the condition for S provides a much richer class of functions (see Examples 6.6).

Our final result (see Section 6) is a generalization of [3, Theorem 11].

Theorem 6.4 Let S ⊆ Fq and F : Fq −→ S be a surjective map. Let γ ∈ Fq be a b-linear translator with
respect to S for the map F . Then for any G ∈ Fq[x] which maps S into S, we have that x + γG(F (x))
is a permutation polynomial of Fq if and only if x+ bG(x) permutes S.

In conclusion, Lemma 1.2 provides a criterion which can be used for finding numerous classes of
permutation polynomials. Important special cases of Lemma 1.2 were previously discovered by Michael
Zieve (whom we thank both for his comments on our paper, and also for inspiring our results through
his work from [12]). We believe the merits of this paper lie not only in connecting various results in the
literature (see Sections 3 and 5) and introducing some genuinely new classes of permutation polynomials
(see Sections 5 and 6), but they also lie in proving Theorem 1.4 which we believe many authors will be
able to use it in the future to generate permutations of various finite groups (not necessarily of Fq). For
example, in Theorem 1.4 one may take G to be the group of Fq-rational points for any algebraic group
(not necessarily an elliptic curve as we do in Section 4) and then one may generate permutations of G.
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2. Proof of Theorem 1.4

Proof. (a) We apply Lemma 1.2 with A = G, S = im(ψ), S̄ = im(ψ̄), λ = ψ, λ̄ = ψ̄, because f̄ ◦ψ = ψ̄ ◦f
(here we use that ϕ ◦ ψ = ψ̄ ◦ ϕ). We conclude that f is a permutation of G if and only if f̄ induces a
bijection from im(ψ) to im(ψ̄) (this is exactly condition (ii) from our conclusion), and if f is injective on
each ψ−1(i) := {α ∈ G : ψ(α) = i} (for each i ∈ im(ψ)). Now, for each i ∈ im(ψ), and for any distinct
α, β ∈ ψ−1(i), we have

0 6= f(α)− f(β) = ϕ(α) + g(ψ(α))− g(ψ(β))− ϕ(β) = ϕ(α− β)

if and only if ker(ϕ) ∩ ker(ψ) = {0}, because α − β ∈ ker(ψ). Finally, note that because ϕ ◦ ψ = ψ̄ ◦ ϕ,
we deduce that ϕ(ker(ψ)) ⊂ ker(ψ̄). Because ker(ϕ) ∩ ker(ψ) = {0}, we obtain that the induced map by
ϕ on ker(ψ) is injective. Because #im(ψ) = #im(ψ̄), we conclude that # ker(ψ) = # ker(ψ̄), and thus ϕ
induces a bijection between ker(ψ) and ker(ψ̄), as desired.

(b) Now, for a finite group G we fix ϕ and ψ satisfying (i), and we count the number of distinct
permutations f of G of the form ϕ + g ◦ ψ (when g varies). Indeed, we first note that f is determined
uniquely by the values of g on im(ψ). On the other hand, for each bijection σ from im(ψ) to im(ψ̄),
according to (ii) we solve for g such that

ϕ(x) + ψ̄(g(x)) = σ(x) for each x ∈ im(ψ). (2.1)

As ϕ, ψ̄ and σ are fixed, then for each x ∈ im(ψ), there are # ker(ψ̄) possibilities for g(x). Because there
are (#im(ψ))! bijections σ from im(ψ) to im(ψ̄), our conclusion follows.

(c) The result follows from part (a) since the associated function f̄(x) corresponding to f(x) (restricted
to im(ψ)) is

ϕ(x) + ψ̄(g(x)) = ϕ(x),

and so, f(x) permutes G if and only if ϕ(x) induces a bijection from ker(ψ) to ker(ψ̄) (which is condition
(i)) and induces a bijection from im(ψ) to im(ψ̄) (which is condition (ii)). However these two conditions
are equivalent to ϕ being a permutation of G.

To see the equivalence of conditions (i) and (ii) with the fact that ϕ is a permutation of G, in
Lemma 1.2, we let A = G, f = ϕ, λ = ψ, λ̄ = ψ̄, S = im(ψ), S̄ = im(ψ̄), and f̄ = ϕ |S . Since
ψ̄ ◦ ϕ = ϕ ◦ ψ, by Lemma 1.2 we know that ϕ is a permutation of G if and only if ϕ is a bijection from
im(ψ) to im(ψ̄) and ϕ is injective on ψ−1(s) for any s ∈ im(ψ). Since ϕ, and ψ are group endomorphisms,
the latter condition is equivalent to injectivity of ϕ on ψ−1(0) = ker(ψ).

(d) The result follows from part (a) since the associated function f̄(x) corresponding to f(x) (restricted
to im(ψ)) is

ϕ(x) + ψ̄(g(x)) = (ψ̄ ◦ g)(x),
and so, f(x) permutes G if and only if ϕ(x) induces a bijection from ker(ψ) to ker(ψ̄) (which is condition
(i)) and ψ̄ ◦ g induces a bijection from im(ψ) to im(ψ̄) (which is condition (ii)). Since g permutes im(ψ),
the latter condition is the same with asking that ψ̄ induces a bijection from im(ψ) to im(ψ̄).

3. Multiplicative Group Case

In this section we deal with the case (G,+) = (F×q , ·). Since F×q is a finite cyclic group, the endomor-
phisms of F×q are maps of the form xs for s ∈ Z. So, part (a) of Theorem 1.4 in the case F×q yields the
following result for permutation polynomials of Fq (note that any ϕ ∈ End(F×q ) extends naturally to Fq
by letting ϕ(0) = 0).
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Proposition 3.1. Let r and s be positive integers. Then xrg(xs) is a permutation polynomial of Fq if
and only if gcd(r, s, q − 1) = 1 and xrg(x)s permutes (F×q )s.

Proposition 3.1 is essentially [11, Lemma 2.1]. In the above Proposition the case that s | (q − 1) is of
special interest, since one can show that any polynomial f(x) satisfying f(0) = 0 can be written in the
form xrg(xs) for a suitable polynomial g and with the condition s | (q − 1).

The following is a direct corollary of Theorem 1.4 for (F×q , ·).

Proposition 3.2. Let r, ` be positive integers such that ` | q − 1 and let s = q−1
` . Then

(a) xrg(xs) is a permutation polynomial of Fq if and only if gcd(r, s) = 1, and xrg(x)s permutes µ`
where µ` is the subset of Fq containing all the `-th roots of unity.

(b) For each relatively prime r and s as above, there are `! · s` distinct permutation polynomials of Fq
of the form xrg(xs).

(c) Assume that g(x)s = 1 for any x ∈ µ`. Then xrg(xs) is a permutation polynomial of Fq if and
only if gcd(r, q − 1) = 1.

(d) Assume that g ∈ Fq[x] restricted to µ` induces a permutation of µ`. Then x`g(xs) is a permutation
polynomial of Fq if and only if gcd(`, s) = 1.

Part (a) is the well-known criterion from Theorem 1.1, part (b) is a result of Wan and Lidl [9, Corollary
3.5], and part (c) is a result of Akbary and Wang [1, Theorem 3.1] (see also [5, Theorem 7.10], and [4,
Theorem 3.1] for examples of g satisfying the condition g(x)s = 1 for all x ∈ µ`).

The following result is a special case of part (d) of Proposition 3.2.

Corollary 3.3. Let q be a prime power, and let n ∈ N. Then for any polynomial g ∈ Fqn [x] which
permutes µq−1 = F×q the polynomial xq−1g

(
x(qn−1)/(q−1)

)
is a permutation polynomial of Fqn if and only

if gcd(n, q − 1) = 1.

Proof. In this case, let ` = q− 1 and s = qn−1
q−1 = qn−1 + · · ·+ q+ 1 = (q− 1)a+ n for some integer a. So

gcd(`, s) = 1 if and only if gcd(n, q−1) = 1. Hence the result follows from part (d) of Proposition 3.2.

4. Elliptic Curve Case

In the case G is the group of rational points of an elliptic curve E defined over Fq, we can also
construct permutations of E(Fq) as in Theorem 1.4. Note that each elliptic curve E defined over Fq has
roughly q points, or more precisely it has q + 1 + t points, where |t| ≤ 2

√
q according to the Hasse’s

bound (see [8, Chapter V]). The following result is an immediate consequence of parts (a) and (c) of
Theorem 1.4 in the case that G is an elliptic curve defined over Fq.

Proposition 4.1. Let E be an elliptic curve defined over Fq and let m and n be positive integers. Then
for any map g : E(Fq) −→ E(Fq), we have that mx + g(nx) is a permutation of E(Fq) if and only if
gcd(m,n,#E(Fq)) = 1 and mx+ ng(x) is a permutation of nE(Fq). Moreover, if #E(Fq) = n1n2 then
mx+ n2g(n1x) is a permutation of E(Fq) if and only if gcd(m,n1n2) = 1.

Since the Frobenius endomorphism for an elliptic curve E defined over Fq induces a permutation on
each finite group E(Fqn), our next result is an easy application of Theorem 1.4 (c).

Proposition 4.2. Let E be an elliptic curve defined over Fq, and let m and n be any positive integers.
We denote by E[m](Fqn) the set of points of E(Fqn) which are killed by the multiplication-by-m-map on
E. Let g : E(Fqn) −→ E[m](Fqn) be any function, and let Frob be the Frobenius corresponding to Fq seen
as an endomorphism of E(Fqn). Then Frob(x) + g(mx) is a permutation of E(Fqn).

8



5. Additive Group Case

Since (Fq,+, ·) is a field, we can extend Theorem 1.4 in this case by inserting a suitable polynomial
h(x) (our result is a generalization of [12, Theorem 6], which also motivated our extension).

Theorem 5.1. Consider any polynomial g ∈ Fqn [x], any additive polynomials ϕ,ψ ∈ Fqn [x], any Fq-
linear polynomial ψ̄ ∈ Fqn [x] satisfying ϕ ◦ ψ = ψ̄ ◦ ϕ and #ψ(Fqn) = #ψ̄(Fqn), and any polynomial
h ∈ Fqn [x] such that h(ψ(Fqn)) ⊂ Fq \ {0}.

Then,
(a) f(x) := h(ψ(x))ϕ(x) + g(ψ(x)) permutes Fqn if and only if

(i) ker(ϕ) ∩ ker(ψ) = {0}; and

(ii) f̄(x) := h(x)ϕ(x) + ψ̄(g(x)) is a bijection between ψ(Fqn) and ψ̄(Fqn).

(b) For any fixed h, ϕ, ψ and ψ̄ satisfying the above hypothesis plus condition (i) from part (a), there
are (#im(ψ))!·

(
# ker(ψ̄)

)#im(ψ) such permutation functions f (when g varies) (where ψ and ψ̄ are viewed
as endomorphisms of (Fqn ,+)).

(c) Assume in addition that
(
ψ̄ ◦ g

)
|im(ψ) = 0. Then f(x) = h(ψ(x))ϕ(x) + g(ψ(x)) permutes Fqn if

and only if ker(ϕ) ∩ ker(ψ) = {0} and h(x)ϕ(x) induces a bijection from ψ(Fqn) to ψ̄(Fqn).
(d) Assume in addition that ϕ ◦ ψ = 0, and that g(x) restricted to im(ψ) is a permutation of im(ψ).

Then f(x) = h(ψ(x))ϕ(x)+ g(ψ(x)) permutes Fqn if and only if ker(ϕ)∩ker(ψ) = {0} and if ψ̄ restricted
to im(ψ) is a bijection between im(ψ) and im(ψ̄).

Proof. (a) We apply Lemma 1.2 with A = Fqn , S = ψ(Fqn), S̄ = ψ̄(Fqn), λ = ψ, and λ̄ = ψ̄. It
is obvious that ψ̄(f(x)) = ψ̄(g(ψ(x)) + h(ψ̄(x))ϕ(x)) = ψ̄(g(ψ(x))) + ψ̄(h(ψ(x))ϕ(x)) = ψ̄(g(ψ(x))) +
h(ψ(x))ψ̄(ϕ(x)) = ψ̄(g(ψ(x))) + h(ψ(x))ϕ(ψ(x)) = f̄(ψ(x)). In the last computation we used the fact
that ψ̄ is a Fq-linear polynomial, and that h(ψ(Fqn)) ⊂ Fq.

So all we need to check now is that f is injective on each ψ−1(s) for s ∈ ψ(Fqn) if and only if
ker(ϕ) ∩ ker(ψ) = {0}. Indeed, for each a 6= b ∈ ψ−1(s) we must have f(a) 6= f(b) which is equivalent
with h(s)ϕ(a) 6= h(s)ϕ(b). The last inequality is equivalent with h(s) 6= 0 (which is known due to our
hypothesis) and a− b /∈ ker(ϕ). Since a− b ∈ ker(ψ), this concludes the proof of part (a) of Theorem 5.1.

(b) Indeed, we first note that f is determined uniquely by the values of g on im(ψ). On the other
hand, for each bijection σ from im(ψ) to im(ψ̄), according to (ii) we solve for g such that

h(x)ϕ(x) + ψ̄(g(x)) = σ(x) for each x ∈ im(ψ). (5.1)

As h, ϕ, ψ̄ and σ are fixed, then for each x ∈ im(ψ), there are # ker(ψ̄) possibilities for g(x). Because
there are (#im(ψ))! bijections σ from im(ψ) to im(ψ̄), our conclusion follows.

(c) The result follows from part (a) since the associated function f̄(x) corresponding to f(x) (restricted
to im(ψ)) is h(x)ϕ(x) + ψ̄(g(x)) = h(x)ϕ(x).

(d) The result follows from part (a) since the associated function f̄(x) corresponding to f(x) (restricted
to im(ψ)) is h(x)ϕ(x)+ ψ̄(g(x)) = (ψ̄◦g)(x); using that g permutes im(ψ), we conclude that f̄(x) induces
a bijection between im(ψ) and im(ψ̄) if and only if ker(ϕ) ∩ ker(ψ) = {0} and if ψ̄ induces a bijection
between im(ψ) and im(ψ̄).

Next we show an example of three additive polynomials ϕ, ψ, and ψ̄ defined over a finite field Fq
satisfying ϕ ◦ ψ = ψ̄ ◦ ϕ and ψ 6= ψ̄.
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Example 5.2. Let q = pn, where p is any odd prime number, and n is any even positive integer not
divisible by p. Denote by Trn(x) := x + xp + · · · + xp

n−1
. Because n is even, we can find some ε ∈ Fq

such that εp−1 = −1. Let ϕ(x) = ε · Trn(x), ψ(x) = x − xp, and ψ̄(x) = x + xp. Then it is immediate
to check that ϕ ◦ ψ = ψ̄ ◦ ϕ. Furthermore, we claim that ker(ϕ) ∩ ker(ψ) = {0} seen as endomorphisms
of Fq. Indeed, if c ∈ ker(ψ), then c ∈ Fp, and so, c ∈ ker(ϕ) would imply that nc = 0, which yields that
c = 0 since p - n.

Using the above observation, the following result is a direct consequence of Theorem 5.1 (a).

Proposition 5.3. Let q = pn, where p is any odd prime number, and n is any even positive integer
not divisible by p. Denote by Trn(x) := x + xp + · · · + xp

n−1
. Let ε ∈ Fq such that εp−1 = −1. Let

ϕ(x) = ε · Trn(x), ψ(x) = x − xp, and ψ̄(x) = x + xp. For any polynomial h(x) ∈ Fq[x] such that
h(ψ(Fq)) ⊂ Fp \ {0}, and for any g(x) ∈ Fq[x], the map f(x) := h(ψ(x))ϕ(x) + g(ψ(x)) is a permutation
polynomial of Fq if and only if f̄(x) := h(x)ϕ(x) + ψ̄(g(x)) induces a bijection between im(ψ) and im(ψ̄).

Proof. It is immediate to check that #ψ(Fq) = #ψ̄(Fq) since both ψ and ψ̄ have precisely p elements in
their kernel as endomorphisms of Fq. Then the result follows immediately from Theorem 5.1 (a) and the
discussions from Example 5.2.

Next note that Theorem 5.1 also holds under the stronger assumption that ϕ,ψ ∈ End(G) are com-
muting endomorphisms; in this case, ψ̄ = ψ.

From Section 1 recall that a class of commuting additive polynomials over Fq are the Fq-linear poly-
nomials over Fq, which are of the form

s∑
j=0

ajx
qj

with aj ∈ Fq.

We note that any Fq-linear polynomial ϕ over Fq acts as a linear polynomial on Fq, i.e.

ϕ(x) =

 s∑
j=0

aj

x, for x ∈ Fq.

Moreover, if ϕ is an Fq-linear polynomial over Fq, then ϕ induces a permutation of Fq if and only if its
restriction on Fq is not the trivial function.

Since Fq-linear polynomials over Fq are commuting endomorphisms of (Fqn ,+), one can generate
permutations of (Fqn ,+) by applying Theorem 5.1 for different choices of Fq-linear polynomials. More
precisely, we have the following.

Proposition 5.4. Let ϕ(x) and ψ(x) be two Fq-linear polynomials over Fq seen as endomorphisms of
Fqn , and let g ∈ Fqn [x] and h ∈ Fqn [x] such that h(ψ(Fqn)) ⊂ Fq \ {0}. Then

f(x) = h(ψ(x))ϕ(x) + g(ψ(x))

is a permutation polynomial of Fqn if and only if the following two conditions hold

(i) ker(ϕ) ∩ ker(ψ) = {0}; and
(ii) h(x)ϕ(x) + ψ(g(x)) permutes ψ(Fqn).

Our next result is an easy consequence of our Proposition 5.4.
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Theorem 5.5. Let q be a prime power, a ∈ Fq, and let b ∈ Fqn . Let P (x) and L(x) be Fq-linear
polynomial over Fq. Let H(x) ∈ Fqn [x] such that H(L(Fqn)) ⊆ Fq \ {−a}. Then

f(x) = aP (x) + (P (x) + b)H(L(x))

is a permutation polynomial of Fqn if and only if the following two conditions hold

(i) ker(P ) ∩ ker(L) = {0}.
(ii) f̄(x) := aP (x) + (P (x) + L(b))H(x) permutes L(Fqn).

Proof. We apply Proposition 5.4 with h(x) = a+H(x), ϕ(x) = P (x), ψ(x) = L(x) and g(x) = b ·H(x).
We also note that for x ∈ L(Fqn), since H(x) ∈ Fq we obtain

L(b) ·H(x) = L(b ·H(x)) = ψ(g(x)),

and thus f̄(x) = (a+H(x))P (x) + L(b)H(x) = h(x)ϕ(x) + ψ(g(x)), as in Theorem 5.1.

The above theorem for H(x) ∈ Fq[x] and L(x) = Trn(x) will give us [6, Theorem 10] (which is written
for prime q in [6]). We also note that Zieve generalized [6, Theorem 10] in his [12, Theorem 6], but in a
different direction since in [12, Theorem 6], the result there is written only for L(x) = Trn(x).

Next we study in detail some of the consequences of Proposition 5.4 (or alternatively of Theorem 5.1
when ψ = ψ̄) for two specific choices of Fq-linear polynomials. First we consider the case ψ(x) = Trn(x)
and next we study the case ψ(x) = xq − x.

Case 1: ψ(x) = ψ̄(x) = Trn(x) = xq
n−1

+ · · ·+ xq + x
The following result is an immediate consequence of parts (a) and (b) of Theorem 5.1. We only need

to observe that Trn : Fqn −→ Fq is surjective, and moreover that for each β ∈ Fq, the set

Tr−1
n (β) := {α ∈ Fqn : Trn(α) = β},

has qn−1 elements; hence also ker(Trn) has qn−1 elements. We also note that part (a) of our result is
essentially [12, Theorem 6].

Proposition 5.6. Let ϕ(x) be an Fq-linear polynomial over Fq and Trn(x) be the trace function from
Fqn to Fq. Let g(x) be any polynomial in Fqn [x] and h(x) ∈ Fqn [x] be any polynomial such that h(Fq) ⊂
Fq \ {0}. Then

(a) f(x) := h(Trn(x))ϕ(x) + g(Trn(x)) is a permutation polynomial of Fqn if and only if

(i) ker(ϕ) ∩ ker(Trn) = {0}; and
(ii) f̄(x) := h(x)ϕ(x) + Trn(g(x)) is a permutation polynomial when restricted to Fq.

(b) For each fixed h and ϕ(x) satisfying the above hypothesis plus condition (i), there are q! · q(n−1)q

distinct permutation polynomials f of Fqn of the form h(Trn(x))ϕ(x) + g(Trn(x)).

In particular, we obtain the following corollary which is essentially [6, Theorem 1].

Corollary 5.7 (Marcos, 2009). Let q be a prime power and ϕ(x) = a0x+a1x
q+· · ·+an−1x

qn−1 ∈ Fq[x]
be a permutation polynomial of Fqn . Let g(x) ∈ Fq[x], let γ ∈ Fqn , and let a = Trn(γ). Then f(x) =
ϕ(x) + γg(Trn(x)) is a permutation polynomial of Fqn if and only if (a0 + a1 + · · ·+ an−1)x+ ag(x) is a
permutation polynomial of Fq.
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The above corollary is a straightforward application of part (a) of Proposition 5.6 (and it also follows
from [12]). Note that if ϕ(x) is a permutation polynomial of Fqn , then it is always true that ker(ϕ) ∩
ker(Trn) = {0}. The following result is another consequence of our Theorem 5.1 (c)-(d).

Theorem 5.8. Let ϕ be a Fq-linear polynomial over Fq, let g(x) ∈ Fqn [x], and let h(x) ∈ Fqn [x] such
that h(Fq) ⊂ Fq \ {0}.

(a) Then f(x) := h(Trn(x))ϕ(x) + g(Trn(x))q − g(Trn(x)) is a permutation polynomial of Fqn if and
only if h(x)ϕ(x) restricts to a permutation of Fq, and ker(ϕ) ∩ ker(Trn) = {0}.

(b) Assume g(x) restricted to Fq induces a permutation of Fq. Then f(x) := h(Trn(x))(xq − x) +
g(Trn(x)) is a permutation polynomial of Fqn if and only if p - n.

Proof. (a) We apply part (c) of Theorem 5.1 and note that Trn(x) ◦ (xq − x) = 0.
(b) In part (d) of Theorem 5.1, we let ϕ(x) = xq − x, and ψ = ψ̄ = Trn. Since ϕ ◦ψ = 0, we conclude

that f(x) is a permutation polynomial of Fqn if and only if
(i) ker(xq − x) ∩ ker(Trn(x)) = {0}, and
(ii) Trn(x) is a bijection from Fq to Fq.
Since ker(xq − x) = Fq and for x ∈ Fq, Trn(x) = nx, both (i) and (ii) hold if and only if p - n.

Case 2: ψ(x) = ψ̄(x) = xq − x
The following result is an immediate consequence of parts (a) and (b) of our Theorem 5.1. Observe

that ψ(Fqn) = ker(Trn) = {αq − α | α ∈ Fqn}, ker(ψ) = Fq, and so, ker(ϕ) ∩ ker(ψ) = {0} if and only if
ϕ(x) induces a permutation polynomial of Fq.

Proposition 5.9. Let ϕ(x) be an Fq-linear polynomial over Fq, h(x) ∈ Fqn [x] be any polynomial such
that h(xq − x) ∈ Fq \ {0} for all x ∈ Fqn , and let g(x) ∈ Fqn [x] be any polynomial. Then

(a) h(xq − x)ϕ(x) + g(xq − x) is a permutation polynomial of Fqn if and only if

(i) ϕ(x) induces a permutation polynomial of Fq.
(ii) h(x)ϕ(x) + g(x)q − g(x) permutes S = {αq − α | α ∈ Fqn}.

(b) For each ϕ(x) satisfying (i), we have (qn−1)! · qqn−1
permutation polynomials of Fqn of the form

ϕ(x) + g(xq − x).

We also obtain the following result.

Theorem 5.10. Let ϕ be an Fq-linear polynomial over Fq, let h ∈ Fqn [x] such that h(xq − x) ∈ Fq \ {0}
for all x ∈ Fqn , and g ∈ Fqn [x] be any polynomial. Let S = {xq − x : x ∈ Fqn}.

(a) Then f1(x) := h(xq −x)ϕ(x) + Trn(g(xq −x)) and f2(x) := h(xq −x)ϕ(x) + g(xq −x)(qn−1)/(q−1)

are permutation polynomials of Fqn if and only if ker(ϕ)∩Fq = {0} and if h(x)ϕ(x) induces a permutation
of S.

(b) Assume in addition that g restricted to S induces a permutation of S. Then the polynomial
f(x) := h(xq − x)Trn(x) + g(xq − x) is a permutation polynomial of Fqn if and only if p - n.

Proof. (a) We apply part (c) of Theorem 5.1, while noting that both Trn(g(x)) and g(x)(q
n−1)/(q−1) are

in Fq for all x ∈ Fqn , and thus are killed by ψ(x) = xq − x.
(b) In part (d) of Theorem 5.1, we let ϕ(x) = Trn(x), and ψ(x) = ψ̄(x) = xq − x. Since ϕ ◦ψ = 0, we

conclude that f(x) is a permutation polynomial of Fqn if and only if
(i) ker(Trn(x)) ∩ ker(xq − x) = {0}, and
(ii) xq − x induces a bijection from S to S.
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Since ker(xq − x) = Fq and for x ∈ Fq, Trn(x) = nx, if (i) holds then p - n. Conversely if p - n then
(i) holds. Moreover if αq −α ∈ ker(xq − x) then αq −α ∈ Fq, and so 0 = Trn(αq −α) = n(αq −α). Since
p - n this implies that αq − α = 0, so (ii) holds. In other words (i) and (ii) hold if and only if p - n.

Next we show that in the case q = p = 2 and h(x) = 1, we can relax the condition on g in part (b) of
Proposition 5.10. Note that in this case Trn(x) = x2n−1

+ · · ·+ x2 + x.

Theorem 5.11. Let S = {α2 − α | α ∈ F2n}. For a fixed δ ∈ F2n , let g(x) be a polynomial in F2n [x]
such that g |S is a one-to-one mapping onto S′ := {δ + y : y ∈ S}. Then f(x) = Trn(x) + g(x2 − x) is a
permutation polynomial of F2n if and only if n is odd.

Proof. If f is a permutation polynomial, then f(1) 6= f(0), which means that Trn(1) = n 6= 0 = Trn(0),
i.e. n is odd.

Now suppose that n is odd. In particular, this means that Trn(x) is a permutation polynomial of F2.
Now, g(x)2 − g(x) + Trn(x) maps S to S since Trn(x) = 0 for each x ∈ S. We will prove that

g(x)2 − g(x) + Trn(x) is one-to-one on S, which will yield that f is a permutation polynomial (by
Proposition 5.9 (a)). Let β, γ ∈ F2n such that

g(β2 − β)2 − g(β2 − β) = g(γ2 − γ)2 − g(γ2 − γ).

If g(β2 − β) 6= g(γ2 − γ), then g(β2 − β) + g(γ2 − γ)− 1 = 0 and so,

Trn(g(β2 − β)) + Trn(g(γ2 − γ))− 1 = 0

because Trn(1) = 1 (since n is odd). However, Trn(g(β2−β)) = Trn(g(γ2−γ)) = Trn(δ) because g maps
S onto S′ = δ + S. This yields a contradiction. Hence g(β2 − β) = g(γ2 − γ). Because g is a one-to-one
mapping when restricted to S, we must have β2 − β = γ2 − γ, and so we are done.

We observe that in the above proposition there are many polynomials g(x) ∈ F2n [x] which map S

injectively to S′. Indeed, for each fixed δ, we have (2n−1)! · 2n2n−1
possibilities for the choices of g(x),

which yield (2n−1)! distinct permutation polynomials f(x) of F2n .
Finally, we have the following result which follows from Proposition 5.9 (a) by letting h(x) = 1.

Theorem 5.12. Let q = pm. Then the following are permutation polynomials of Fq2 :
(a) fa,b,k(x) := axq + bx+ (xq − x)k, for a, b ∈ Fq such that a 6= ±b, and for all even positive integers

k.
(b) fa,k(x) := axq + ax + (xq − x)k, if a ∈ F×q , and p and k are odd, and in addition k is relatively

prime with q − 1.

Proof. (a) Let L(x) := axq + bx. Since a, b (a 6= ±b) are both in Fq, we conclude that L(x) is an Fq-
linear polynomial over Fq which is also a permutation polynomial of Fq2 (note that the only elements c ∈
F×q ∩(F×q2)

q−1 are ±1). According to Proposition 5.9 (a) all we need to show is that f̄(x) := L(x)+xqk−xk
induces a permutation of S = {αq − α | α ∈ Fq2}. This is clear because

f̄(αq − α) = L(αq − α) + (αq
2
− αq)k − (αq − α)k = L(αq − α) = L(α)q − L(α) ∈ S, (5.2)

and because L(x) induces a permutation of Fq2 . In deriving Equation (5.2) we also used that αq
2

= α
(since α ∈ Fq2) and that k is even.
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(b) It is clear that xq + x is a permutation polynomial of Fq (here we use that 2 6= 0 in Fq). So, using
Proposition 5.9 (a), it suffices to show that

f̄(x) := axq + ax+ xkq − xk

induces a permutation of S = {αq −α | α ∈ Fq2}. It is immediate to check that for any α ∈ Fq2 , we have

f̄(αq − α) = (αq − α)kq − (αq − α)k.

Let ε ∈ Fq2 \ Fq such that εq−1 = −1 (we use that q is odd). Then each α ∈ Fq2 is uniquely written as
a+ bε for some a, b ∈ Fq. We compute then easily that αq − α = −2bε. Hence

f̄(αq − α) = (αq − α)kq − (αq − α)k

= (−2bε)kq − (−2bε)k

= (−2b)k(−ε)k − (−2b)kεk

= −2(−2b)kεk,

since k is odd. Now, if f̄(αq −α) = h(βq −β) for some α, β ∈ Fq2 , where α = a+ bε and β = c+ dε (with
a, b, c, d ∈ Fq), then we obtain that (−2b)k = (−2d)k. However, because gcd(k, q − 1) = 1, we conclude
that b = d; this yields that α− β ∈ Fq, and so, αq − α = βq − β. Therefore f̄(x) induces a permutation
of S, as desired.

6. Other Applications of Lemma 1.2

Using Lemma 1.2, we can also obtain the following results.

Theorem 6.1. Let q be a prime power, let n be a positive integer, and let L1, L2, L3 be Fq-linear poly-
nomials over Fq seen as endomorphisms of (Fqn ,+). Let g(x) ∈ Fqn [x] such that g(L3(Fqn)) ⊆ Fq.
Then

f(x) = L1(x) + L2(x)g(L3(x))

is a permutation polynomial of Fqn if and only if the following two conditions hold

(i) ker(Fy) ∩ ker(L3) = {0}, for any y ∈ im(L3), where

Fy(x) := L1(x) + L2(x)g(y).

(ii) f̄(x) := L1(x) + L2(x)g(x) permutes L3(Fqn).

Proof. We apply Lemma 1.2 with A = Fqn , f = L1 + L2 · (g ◦ L3), S = S̄ = L3(Fqn), λ = λ̄ = L3

and f̄ = L1 + L2 · g (note that because L1, L2 and L3 are Fq-linear polynomials over Fq, and because
g(L3(Fqn)) ⊂ Fq we obtain that f̄ induces a well-defined self-map on S). Also, because g(L3(Fqn)) ⊆ Fq,
and L1, L2, and L3 are Fq-linear over Fq we have λ ◦ f = f̄ ◦ λ. So by Lemma 1.2, f(x) is a permutation
polynomial of Fqn if and only if f̄(x) is a permutation polynomial of L3(Fqn) and f(x) is injective on
each L−1

3 (y) ⊂ Fqn for all y ∈ L3(Fqn). Since f(α) = L1(α) + L2(α)g(y) = Fy(α) for each α ∈ L−1
3 (y),

then Fy(α) 6= Fy(β) for any α 6= β in L−1
3 (y) is equivalent to ker(Fy) ∩ ker(L3) = {0}.

In particular, if L2(x) = x and L3(x) = Trn(x), we obtain the following result from [2, Theorem 3] as
a corollary.
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Corollary 6.2 (Coulter-Henderson-Matthews, 2009). Let q be a prime power, let g(x) ∈ Fq[x], let
L(x) be an Fq-linear polynomial over Fq, and let f(x) = L(x) + xg(Trn(x)). Then f(x) is a permutation
polynomial of Fqn if and only if the following two conditions hold

(i) For any y ∈ Fq and any x ∈ Fqn we have L(x) + xg(y) = 0 and Trn(x) = 0 if and only if x = 0.
(ii) f̄(x) = L(x) + xg(x) is a permutation polynomial of Fq.

We point out that in Theorem 6.1 it is crucial that L1 and L2 are Fq-linear polynomials over Fq, since
otherwise they may not commute with L3, and so we may not be able to employ Lemma 1.2.

Using directly Lemma 1.2 we can prove the following generalization of [6, Proposition 12] (simply
take S = Fq and k(x) = x2 in our Theorem 6.3). We note that in [12], Zieve mentioned that his method
does not yield any generalization of [6, Proposition 12], even though it would be desirable to find such a
generalization.

Theorem 6.3. Let q be any power of the prime number p, let n be any positive integer, and let S be any
subset of Fqn containing 0. Let h, k ∈ Fqn [x] be any polynomials such that h(0) 6= 0 and k(0) = 0, and
let B ∈ Fqn [x] be any polynomial satisfying

(a) h(B(Fqn)) ⊆ S; and
(b) B(aα) = k(a) ·B(α) for all a ∈ S and all α ∈ Fqn .

Then the polynomial f(x) := xh(B(x)) is a permutation polynomial for Fqn if and only if f̄(x) := xk(h(x))
induces a permutation of B(Fqn).

Proof. We apply our Lemma 1.2 for f, f̄ above, and for λ = λ̄ = B. Hypothesis (a) and (b) yield

B(f(x)) = B(xh(B(x))) = k(h(B(x))) ·B(x) = f̄(B(x)).

We also note that for each s ∈ B(Fqn), we have that f(x) is injective on B−1(s) as long as h(s) 6= 0. On
the other hand, if h(s) = 0, then s 6= 0 (since we assumed that h(0) 6= 0). But then f̄(s) = 0 = f̄(0)
contradicting our assumption that f̄ induces a permutation of B(Fq) (we remark that 0 ∈ B(Fqn) by
hypothesis (b) and the fact that k(0) = 0). Therefore the hypotheses of our Lemma 1.2 are verified and
thus the conclusion of Theorem 6.3 follows.

There are several examples of functions B(x) satisfying hypothesis (b) as in Theorem 6.3 when S = Fq
and k(x) = x` for any positive integer `. For example, we may take

B(x) =
∑

1≤i1<i2<···i`≤n

xq
i1+qi2+···qi`

,

or we may take B(x) =
∑n
i=1 x

`qi

= TrFqn/Fq
(x`), or we may take B(x) =

∑
1≤i 6=j≤n x

(`−1)qi+qj

(this
time the sum is not ordered since i and j are not interchangeable).

There are also many examples of functions B(x) ∈ Fqn [x] satisfying hypothesis (b) from Theorem 6.3
when S is not Fq. Let d be any divisor of (qn−1), and let S = Fqn . Then B(x) := xd satisfies hypothesis
(b) above together with the function k(x) := xd. Therefore Theorem 6.3 yields that for any polynomial
h ∈ Fqn [x], we have that

xh(xd) is a permutation polynomial for Fqn if and only

xh(x)d induces a permutation on µ(qn−1)/d,
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where µ(qn−1)/d is the set of roots of unity of order dividing (qn−1)/d. The above statement is essentially
Theorem 1.1.

We also remark that Theorem 6.3 can be generalized for f(x) := A(x)h(B(x)) and f̄(x) := C(x)k(h(x))
where A(x), C(x) ∈ Fq[x] are any polynomials such that B(A(x)) = C(B(x)) and A(x) is injective on
B−1(s) for each s ∈ B(Fq).

The following result is for the class of functions which admit a linear translator, as defined in Section 1
(see Definition 1.8).

Theorem 6.4. Let S ⊆ Fq and F : Fq −→ S be a surjective map. Let γ ∈ Fq be a b-linear translator with
respect to S for the map F . Then for any G ∈ Fq[x] which maps S into S, we have that x + γG(F (x))
is a permutation polynomial of Fq if and only if x+ bG(x) permutes S.

Proof. In Lemma 1.2 set A = Fq, f(x) = x+γG(F (x)), S = S̄ = F (Fq), λ = λ̄ = F , and f̄(x) = x+bG(x).
Since γ is a b-linear translator of F : Fq −→ S with respect to S, and since G(S) ⊂ S, we have
F (x+ γG(F (x))) = F (x) + bG(F (x)). So by Lemma 1.2, x+ γG(F (x)) is a permutation polynomial of
Fq if and only if x+ bG(x) is a permutation of S and x+ γG(F (x)) is injective on F−1(s) for any s ∈ S.
Since x+ γG(F (x)) is injective on F−1(s) for any s ∈ S the result follows.

Corollary 6.5. Under the conditions of the above theorem we have the following:
(a) If G(x) = x we have that x+ γF (x) is a permutation polynomial of Fq if and only if b 6= −1.
(b) If q is odd and 2S = S, then x+ γF (x) is a complete mapping of Fq if and only if b 6∈ {−1,−2}.

Proof. (a) This is true since x+ bx permutes S if and only if b 6= −1 (also note that S + b · S ⊆ S since
F : Fq −→ S admits a b-linear translator).

(b) Because q is odd and 2S = S, we have that γ
2 is a b

2 -linear translator of F with respect to S. Then
the result follows since both x+ γF (x) and 2x+ γF (x) = 2 ·

(
x+ γ

2F (x)
)

are permutation polynomials
using part (a).

Theorem 6.4 and Corollary 6.5 are generalizations of results given in [3] in which b-linear translators
with respect to Fpm (p prime) for maps F : Fpmn −→ Fpm are being considered (see Theorem 2(a),
Corollary 1 and Theorem 11 of [3]). To see that our results in fact produce new classes of permutation
polynomials (different from the ones given by our Section 5, and the ones constructed in [3]), we need to
construct non-additive maps f : Fq −→ Fq and γ, b ∈ Fq for which γ is a b-linear translator with respect
to im(f) for f . The following are examples of such maps.

Examples 6.6. Let p be an odd prime and q = p2m. Let ε ∈ Fp2m \ Fpm such that εp
m−1 = −1. Then

any element of Fp2m can be written uniquely as α+ βε with α, β ∈ Fpm .

(a) Define f : Fp2m −→ Fp2m by
f(α+ βε) = α2ε.

It is clear that f is not additive. Moreover 1 is a 0-translator with respect to S = im(f) = ε(Fpm)2 6=
Fpm for f . So, by part (a) of Corollary 6.5, x+ f(x) is a permutation polynomial of Fp2m .

(b) Define f : Fp2m −→ Fp2m by
f(α+ βε) = (α2 + β)ε.

Then 1 is a 1-translator with respect to im(f) = ε · Fpm 6= Fpm for the non-additive mapping f .
Again, x + f(x) is a permutation polynomial of Fp2m . Moreover, using part (b) of Corollary 6.5,
x+ f(x) is a complete mapping of Fp2m for any p > 3.
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