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Abstract

We show that the computation of the Popov form of Ore polyno-
mial matrices can be formulated as a problem of computing the left
nullspace of such matrices. While this technique is already known for
polynomial matrices, the extension to Ore polynomial matrices is not
immediate because multiplication of the matrix entries is not commu-
tative. A number of results for polynomial matrices are extended to
Ore polynomial matrices in this paper. This in turn allows nullspace
algorithms to be used in Popov form computations. Unlike a previous
work, there is no assumption on whether the input matrix has full row
rank. In particular, recent fraction-free and modular algorithms for
nullspace computation can be used in exact arithmetic setting where
coefficient growth is a concern. When specialized to ordinary polyno-
mial matrices, our results simplify the proofs for the computation of
Popov form while maintaining the same worst case complexity.

1 Introduction

Ore polynomials provide a general setting for describing linear differential,
difference and q-difference operators [15]. Systems of equations defined by
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these operators can be represented by matrices of Ore polynomials. In this
paper we look at the problem of transforming such matrices into a normal
form known as the Popov form. If a matrix is in Popov form, its leading
coefficient is triangular so that one may rewrite high-order operators (e.g.
derivatives) in terms of lower ones (Example 2.6). Algorithms for comput-
ing the Popov form and the associated unimodular multiplier can also be
applied to the computation of greatest common right divisors (GCRDs) and
least common left multiples (LCLMs) [1, 5, 10, 11, 12], which represent the
intersection and the union of the solution spaces of systems of equations.

Algorithms for computing the Popov form for polynomial matrices are
well known [9, 13], but there have been few works on the computation of
Popov form for Ore polynomial matrices. The problem was studied in [8]
using row reductions, but efficient computation of Popov forms is not consid-
ered. In practice, row reductions can introduce significant coefficient growth
which must be controlled. This is important in the case of Ore polynomials
as coefficient growth is introduced in two ways—from multiplying on the left
by powers of the indeterminate and from elimination by cross-multiplication.
In the special case of shift polynomial matrices, the fraction-free [1, 5] and
modular [6] algorithm can be used to compute a weak Popov form while con-
trolling coefficient growth, but they cannot be used to compute the Popov
form directly.

The existing fraction-free and modular algorithms [1, 5, 6] in fact com-
pute a minimal polynomial basis of the left nullspace of any Ore polynomial
matrix, such that the basis is represented by an Ore polynomial matrix in
Popov form. In this paper, we show that the problem of computing the Popov
form and the associated unimodular transformation matrix can be reduced
to the problem of computing a left nullspace in Popov form. The case when
the input matrix has full row rank has been examined in a previous work [7].
When the input matrix does not have full row rank, the unimodular multi-
plier is no longer unique. In this case, we define a unique minimal multiplier
and show the reduction can still be applied by giving a degree bound for the
minimal multiplier.

The technique of reducing the computation of normal forms such as row-
reduced form and Popov form is well known for polynomial matrices [2, 3, 4,
14]. Unfortunately, the proofs of many of the results rely on the fact that the
entries of the matrices commute. The main contribution of our work is to
extend the results to Ore polynomial matrices and provide proofs that do not
rely on the commutativity of matrix elements. When our results are applied
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to the special case of ordinary polynomial matrices, we obtain the same worst
case complexity as those obtained previously [3] with simpler proofs.

2 Preliminaries

2.1 Notation

For any matrix A, we denote its elements by Ai,j. For any sets of row and
column indices I and J , we denote by AI,J the submatrix of A consisting
of the rows and columns indexed by I and J . For convenience, we use Ic to
denote the complement of the set I, and ∗ for I and J to denote the sets of
all rows and columns, respectively. For any vector of non-negative integers
~ω = (ω1, . . . , ωp), we denote by |~ω| =

∑p
i=1 ωi. We define ~e = (1, . . . , 1) of

the appropriate dimension. We denote by Im the m×m identity matrix.

2.2 Definitions

We first give some definitions on Ore polynomial matrices. These definitions
are similar to those given in previous works [1, 5].

In this paper, we will examine Ore polynomial rings with coefficients in a
field K. That is, the ring K[Z; σ, δ] with σ an automorphism, δ a derivation
and with the multiplication rule

Z · a = σ(a)Z + δ(a)

for all a ∈ K. When δ = 0, we call the polynomials shift polynomials.
Let K[Z; σ, δ]m×n be the ring of m × n Ore polynomial matrices over

K[Z; σ, δ]. We shall adapt the following conventions for the remainder of this
paper. Let F(Z) ∈ K[Z; σ, δ]m×n and N = deg F(Z). An Ore polynomial ma-
trix F(Z) is said to have row degree ~µ = rdeg F(Z) if the ith row has degree
µi. The leading row coefficient of F(Z), denoted LCrow (F(Z)), is the ma-
trix whose entries are the coefficients of ZN of the corresponding elements of
ZN ·~e−~µ·F(Z). An Ore polynomial matrix F(Z) is row-reduced if LCrow (F(Z))
has maximal row rank. We also recall that the rank of F(Z) is the max-
imum number of K[Z; σ, δ]-linearly independent rows of F(Z), and that
U(Z) ∈ K[Z; σ, δ]m×m is unimodular if there exists V(Z) ∈ K[Z; σ, δ]m×m

such that V(Z) ·U(Z) = U(Z) ·V(Z) = Im.
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Definition 2.1 (Pivot Index) Let F(Z) ∈ K[Z; σ, δ]m×n with row degree
~µ. We define the pivot index Πi of the ith row as

Πi =

{
min1≤j≤n

{
j : deg F(Z)i,j = µi

}
µi ≥ 0,

0 otherwise.
(1)

Definition 2.2 (Popov Normal Form) Let F(Z) ∈ K[Z; σ, δ]m×n with pivot
indices Π1, . . . , Πm and row degree ~µ. Then F(Z) is in Popov form if it may
be partitioned as

F(Z) =

[
0

F(Z)Jc,∗

]
, (2)

where J = (1, . . . , n− r) and r = rank F(Z), and for all i, j ∈ Jc we have

(a) Πi < Πj whenever i < j;

(b) F(Z)i,Πi
is monic;

(c) If k = Πj for some j 6= i, then deg F(Z)i,k < µj.

If a matrix is in Popov form, its pivot set is defined as {Πi : Πi > 0}.

Remark 2.3 Our definition of the Popov form is equivalent to other defini-
tions [9] up to row permutations.

Remark 2.4 If F(Z) is in Popov form, then the definition of pivot indices
also implies that

deg F(Z)i,k



= µi k = Πi

≤ min(µi − 1, µj − 1) k < Πi and k = Πj for some j 6= i

≤ min(µi, µj − 1) k > Πi and k = Πj for some j 6= i

≤ µi − 1 k < Πi and k 6= Πj for all j 6= i

≤ µi k > Πi and k 6= Πj for all j 6= i .

(3)
Also, a matrix in Popov form is also in row-reduced form.

Every matrix F(Z) can be transformed into a unique matrix in Popov form
using the following elementary row operations:

(a) interchange two rows;

4



(b) multiply a row by a nonzero element in K;

(c) add a polynomial multiple of one row to another.

Formally, we may view a sequence of elementary row operations as a unimod-
ular transformation matrix U(Z) ∈ K[Z; σ, δ]m×m with the result of these
operations given by T(Z) = U(Z) · F(Z). We recall the following result
from [1, Theorem 2.2] and [5, Theorem 3.1].

Theorem 2.5 For any F(Z) ∈ K[Z; σ, δ]m×n there exists a unimodular ma-
trix U(Z) ∈ K[Z; σ, δ]m×m, with T(Z) = U(Z) ·F(Z) having r ≤ min{m, n}
nonzero rows, rdeg T(Z) ≤ rdeg F(Z), and where the submatrix consisting
of the r nonzero rows of T(Z) is row-reduced. Moreover, the unimodular
multiplier satisfies the degree bound

rdeg U(Z) ≤ ~ν + (|~µ| − |~ν| − α) · ~e (4)

where ~µ = max(~0, rdeg F(Z)), ~ν = max(~0, rdeg T(Z)), and α = minj{µj}.

Example 2.6 Consider the differential algebraic system

y′′1(t) + (t + 2)y1(t) + y′′2(t) + y2(t) + y′3(t) + y3(t) = 0

y′′1(t) + y′1(t) + 3y1(t) + y
(3)
2 (t) + 2y′2(t)− y2(t) + y

(3)
3 (t)− 2t2y3(t) = 0

y′1(t) + y1(t) + y
(3)
2 (t) + 2ty′2(t)− y2(t) + y

(4)
3 (t) = 0.

(5)
Let D denote the differential operator on Q(t) such that D · f(t) = d

dt
f(t).

Then the matrix form of (5) is: D2 + (t + 2) D2 + 1 D + 1
D2 + D + 3 D3 + 2D − 1 D3 − 2t2

D + 1 D3 + 2tD + 1 D4

 ·

y1(t)
y2(t)
y3(t)

 = 0. (6)

The leading row coefficient (matrix of coefficients of the highest power of the
corresponding row) is upper triangular. This allows us to rewrite the highest
derivative in each row as a combination of other derivatives. For example,
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we can eliminate the highest derivatives of y2(t) as follows:

y
(3)
2 (t) =− y′′1(t)− y′1(t)− 3y1(t)− 2y′2(t) + y2(t)− y

(3)
3 (t) + 2t2y3(t)

=− ((t + 2)y1(t)− y′′2(t)− y2(t)− y′3(t)− y3(t))− y′1(t)− 3y1(t)

− 2y′2(t) + y2(t)− y
(3)
3 (t) + 2t2y3(t)

=− y′1(t)− (t + 5)y1(t) + y′′2(t)− 2y′2(t) + 2y2(t)− y
(3)
3 (t) + y′3(t)

+ (2t2 + 1)y3(t).

3 General Approach

Given an m × n matrix F(Z) ∈ K[Z; σ, δ]m×n, we wish to compute a uni-
modular matrix U(Z) ∈ K[Z; σ, δ]m×m and T(Z) ∈ K[Z; σ, δ]m×n such that

U(Z) · F(Z) = T(Z), (7)

where T(Z) is in Popov form.
Given an Ore polynomial matrix G(Z), the fraction-free and modular

algorithms [1, 5, 6] can be used to compute a minimal polynomial basis
M(Z) of the left nullspace of G(Z) such that M(Z) ·G(Z) = 0 and M(Z)
is in Popov form. Using these algorithms, we compute the left nullspace of
the matrix [

F(Z) · Zb

−In.

]
(8)

Then the nullspace M(Z) can be partitioned as [U(Z) T(Z) ·Zb] such that[
U(Z) T(Z) · Zb

]
·
[
F(Z) · Zb

−In

]
= 0. (9)

The matrix U(Z) obtained in this manner is unimodular.

Lemma 3.1 Suppose that
[
U(Z) T(Z)

]
is a basis of the left nullspace of[

F(Z)
−In

]
. Then U(Z) is unimodular.

Proof. Note that the rows of
[
Im F(Z)

]
belong to the left nullspace of[

F(Z)
−In

]
. Since

[
U(Z) T(Z)

]
is a basis of the left nullspace, there exists
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V(Z) ∈ K[Z; σ, δ]m×m such that V(Z) · U(Z) = Im. In other words, U(Z)
has a left inverse.

To see that V(Z) is also a right inverse, we note that U(Z)·V(Z)·U(Z) =
U(Z). Therefore,

(U(Z) ·V(Z)− Im) ·U(Z) = 0. (10)

Now
m = rank Im = rank (V(Z) ·U(Z)) ≤ rank U(Z) ≤ m (11)

It follows that U(Z) has full row rank. Thus, (10) implies that U(Z)·V(Z)−
Im = 0, so that V(Z) is also a right inverse of U(Z). Since U(Z) has a two-
sided inverse, it is unimodular. �
Furthermore, if b > deg U(Z), this also implies that T(z) is in Popov form
since the leading coefficients are “contributed” by T(z). Thus, our goal is to
determine an upper bound on deg U(Z).

A similar approach has also been used to compute the row-reduced form
and the Popov form of polynomial matrices [2, 3, 4, 14].

4 Degree Bound in the Full Row Rank Case

In the case when the input matrix F(Z) has full row rank, we follow the ap-
proach of [4] in order to obtain a bound for deg U(Z). Our main contribution
is the generalization of the proofs to the case of Ore polynomial matrices.

We first prove some results which relate the degrees of the input matrix
F(Z), the unimodular multiplier U(Z), and the transformed matrix T(Z).

Lemma 4.1 Suppose F(Z) ∈ K[Z; σ, δ]m×n has full row rank, and let T1(Z) ∈
K[Z; σ, δ]m×n be a row-reduced form of F(Z). Suppose that T2(Z) = U2(Z) ·
F(Z) for some unimodular matrix U2(Z) ∈ K[Z; σ, δ]m×m, with ~γ = rdeg T2(Z).
There exists a unimodular matrix V(Z) such that T2(Z) = V(Z) ·T1(Z) and
deg V(Z)i,j ≤ γi − νj where ~ν = rdeg T1(Z).

Proof. Since T1(Z) is a row-reduced form of F(Z), there exists a uni-
modular matrix U1(Z) ∈ K[Z; σ, δ]m×m such that U1(Z) · F(Z) = T1(Z).
Setting V(Z) = U2(Z) ·U1(Z)−1 gives T2(Z) = V(Z) ·T1(Z). Since V(Z)
is a product of unimodular matrices, it is unimodular.
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Since T1(Z) is row-reduced, we can apply the predictable degree prop-
erty [1, Lemma A.1(a)] to obtain

deg V(Z)i,j + deg T1(Z)j,· ≤ deg T2(Z)i,·, (12)

which implies that deg V(Z)i,j ≤ γi − νj. �

Theorem 4.2 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank. Let
V(Z) ∈ K[Z; σ, δ]m×m be unimodular and let T(Z) = V(Z) · F(Z) with
~γ = rdeg T(Z). There exists a unimodular matrix U(Z) such that U(Z) ·
F(Z) = T(Z) and

rdeg U(Z) ≤ ~γ + (|~µ| − α) · ~e, (13)

where ~µ = rdeg F(Z) and α = minj{µj}.

Proof. By Theorem 2.5, there exists a unimodular matrix U1(Z) such that
T1(Z) = U1(Z) · F(Z) is row-reduced and

rdeg U1(Z) ≤ ~ν + (|~µ| − |~ν| − α) · ~e, (14)

with ~ν = rdeg T1(Z). By Lemma 4.1, there exists a unimodular matrix
U2(Z) such that T(Z) = U2(Z) · T1(Z) = U2(Z) · U1(Z) · F(Z). Setting
U(Z) = U2(Z) ·U1(Z) gives

U(Z) · F(Z) = T(Z).

For the degree bound, note that

deg U(Z)i,j ≤ max
1≤k≤m

deg U2(Z)i,k + deg U1(Z)k,j (15)

≤ max
1≤k≤m

(γi − νk) + (νk + |~µ| − |~ν| − α) (16)

≤ γi + |~µ| − α. (17)

�
We have only stated the existence of unimodular matrices satisfying cer-

tain degree bounds in the previous results. We now show that such unimod-
ular matrices are also unique.

Lemma 4.3 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank. Given
T(Z) ∈ K[Z; σ, δ]m×n, the solution U(Z) ∈ K[Z; σ, δ]m×m to the equation

U(Z) · F(Z) = T(Z) (18)

is unique (if it exists).
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Proof. Let U1(Z) and U2(Z) be two matrices such that

U1(Z) · F(Z) = T(Z) = U2(Z) · F(Z). (19)

Then (U1(Z)−U2(Z)) · F(Z) = 0. Since F(Z) has full row rank, it follows
that U1(Z)−U2(Z) = 0 and hence U1(Z) = U2(Z). �

Since F(Z) has full row rank, the uniqueness of the unimodular multiplier
gives us a bound on the degree of the unimodular multiplier.

Theorem 4.4 Suppose that F(Z) has full row rank. If T(Z) = U(Z) ·F(Z)
for some unimodular matrix U(Z) then U(Z) satisfies the degree bound (4).

Proof. This is an easy consequence of Theorem 4.2 and Lemma 4.3. �
Finally, we give a degree bound on U(Z) and provide a method to com-

pute the Popov form of F(Z) and the associated unimodular multiplier U(Z).

Theorem 4.5 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has full row rank and has
row degree ~µ. Let b > |~µ| −minj{µj}, and suppose

[
U(Z) R(Z)

]
is a basis

in Popov form of the left nullspace of

[
F(Z) · Zb

−In

]
. Let T(Z) = R(Z) · Z−b.

Then

(a) U(Z) is unimodular;

(b) T(Z) = U(Z) · F(Z) ∈ K[Z; σ, δ]m×n;

(c) T(Z) is in Popov form.

Proof. Part (a) is immediate from Lemma 3.1. For (b), we see that
U(Z) ·F(Z) ·Zb = R(Z), so T(Z) = U(Z) ·F(Z). To prove (c), we see from
Theorem 4.4 that

rdeg U(Z) ≤ ~ν + (|~µ| − α) · ~e (20)

where ~µ = rdeg F(Z), ~ν = rdeg T(Z), and α = minj{µj}. Therefore,

rdeg U(Z) ≤ rdeg R(Z) + (|~µ| − α− b) · ~e < rdeg R(Z). (21)

Thus, the leading coefficient of
[
U(Z) R(Z)

]
is the same as the leading

coefficient of
[
0 R(Z)

]
. It follows that R(Z) and hence T(Z) is in Popov

form. �
From Theorem 4.5, we see that the computation of Popov form and the

associated unimodular matrix can be reduced to left nullspace computation.
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5 Minimal Multipliers

In the case when the input matrix F(Z) does not have full row rank, the
situation is considerably more complicated. In fact, a unimodular multiplier
of arbitrarily high degree exists. To see this, suppose

T(Z) =

[
0

T(Z)Jc,∗

]
= U(Z) · F(Z) (22)

is the Popov form of F(Z). It follows that one may add any polynomial
multiple of the rows of U(Z)J,∗ to the other rows of U(Z) and still obtain a
unimodular multiplier U′(Z) satisfying T(Z) = U′(Z) · F(Z).

In this section, we show that all unimodular multipliers satisfying T(Z) =
U(Z) ·F(Z) are related, and that there is a unique multiplier that has min-
imal column degrees and is normalized in some way. Before we prove the
main results, we first give an important result related to “division” of Ore
polynomial matrices. Intuitively, this allows to “reduce” one Ore polynomial
matrix by another one that is in Popov form to obtain a unique remainder.
This is an analogue of [3, Lemma 3.5].

Lemma 5.1 Let B(Z) ∈ K[Z; σ, δ]n×n be a full row rank matrix in Popov

form with row degree ~β. Then for any A(Z) ∈ K[Z; σ, δ]m×n with row degree
~γ, there exist unique matrices Q(Z),R(Z) ∈ K[Z; σ, δ]m×n such that

A(Z)−Q(Z) ·B(Z) = R(Z), (23)

where for all i, j, deg R(Z)i,j < βj and deg Q(Z)i,j ≤ γi − βj.

Proof. It suffices to prove this in the case m = 1 as we may consider each
row of (23) independently.

We first show the existence of Q(Z) and R(Z). Let K = {k : deg A(Z)1,k ≥
βk}, and d = deg A(Z)1,K . Define t ∈ K to be the pivot index of A(Z)1,K .
Thus,

A(Z)1,t = aZd + · · · (24)

for some a ∈ K. If
B(Z)t,t = bZβt + · · · (25)

for some b ∈ K. Let

R̂1(Z) = A(Z)− Q̂1(Z) ·B(Z) (26)
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where Q̂1(Z) =
[
0 · · · 0 a

σd−βt (b)
Zd−βt 0 · · · 0

]
with the nonzero element in

the tth column. It is easy to see that R̂1(Z)1,t < d.
Since B(Z) is in Popov form,

deg B(Z)t,s ≤

{
βt if s ≥ t,

βt − 1 otherwise.
(27)

From the degree bounds on A(Z)1,K , we see that for s ∈ K we have

deg R̂1(Z)1,s ≤

{
d if s > t,

d− 1 otherwise.
(28)

For s 6∈ K, we have

deg R̂1(Z)1,s = deg [A(Z)− Q̂1(Z) ·B(Z)]1,s

≤ max(deg A(Z)1,s, deg [Q̂1(Z) ·B(Z)]1,s).
(29)

If deg R̂1(Z)1,s ≤ deg A(Z)1,s, then deg R̂1(Z)1,s < βs by definition of K.
Otherwise,

deg R̂1(Z)1,s = deg [Q̂1(Z) ·B(Z)]1,s ≤

{
(d− βt) + βt = d if s > t,

(d− βt) + βt − 1 = d− 1 otherwise.

(30)
Let K̂ = {k : deg R̂1(Z)1,k ≥ βk}. We see that either deg R̂1(Z) < d, or

deg R̂1(Z) = d and the pivot index of R̂1(Z)1,K̂ must be greater than t. We

also note that it is possible that K̂ 6= K.
Continuing in this way we may construct R̂2(Z), R̂3(Z), . . . , so that

after each step either the degree is decreased or the pivot index is increased.
Therefore, in a finite number of steps we will have

R̂k(Z) = A(Z)−
[
Q̂1(Z) + · · ·+ Q̂k(Z)

]
·B(Z), (31)

where deg R̂k(Z)1,j < βj for all j. Finally, setting Q(Z) = Q̂1(Z) + · · · +
Q̂k(Z), R(Z) = R̂k(Z) gives us the desired divisor and remainder matrices
of (23).
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To show uniqueness, suppose that we have

A(Z)1,∗ = Q1(Z) ·B(Z) + R1(Z)

= Q2(Z) ·B(Z) + R2(Z)

for some Q1(Z), Q2(Z), R1(Z), and R2(Z) ∈ K[Z; σ, δ]1×n. Letting Q̂(Z) =
Q1(Z)−Q2(Z) and R̂(Z) = R2(Z)−R1(Z) gives

R̂(Z) = Q̂(Z) ·B(Z) (32)

with deg R̂(Z)1,j < βj. Let k be such that deg R̂(Z)1,k = deg R̂(Z). Since
B(Z) is row reduced, the predictable degree property [1, Lemma A.1(a)]
implies that

deg Q̂(Z)1,k ≤ deg R̂(Z)1,k − βk < 0, (33)

so that Q̂(Z)1,k = 0 whenever deg R̂(Z)1,k = deg R̂(Z). Now, let K = {k :

deg R̂(Z)1,k < deg R̂(Z)}. If K is non-empty, consider the equation

R̂(Z)1,K = Q̂(Z)1,K ·B(Z)K,K . (34)

A similar argument shows that Q̂(Z)1,k = 0 whenever deg R̂(Z)1,k = deg R̂(Z)1,K .

Continuing in this way it can be seen that Q̂(Z) = R̂(Z) = 0, so that the
matrices Q(Z) and R(Z) in (23) are unique.

Finally, we prove the degree bound for Q(Z). For any 1 ≤ i ≤ m, let
Li = {j : γi ≥ βj}. Then for j 6∈ Li we have γi < βj and therefore Q(Z)i,j = 0
because Q(Z) is unique. If j ∈ Li, we have

deg(Q(Z)i,Li
·B(Z)Li,Li

) = deg(A(Z)i,Li
−R(Z)i,Li

) ≤ γi. (35)

Applying the predictable degree property, we have deg(Q(Z)i,Li
·B(Z)Li,Li

) ≥
deg Q(Z)i,j + βj, for all j ∈ Li. �

We can now show the main result in this section which shows the rela-
tionship among all unimodular multipliers. This result is an analogue of [3,
Theorem 3.3].

Theorem 5.2 Let F(Z) ∈ K[Z; σ, δ]m×n with row rank r. Let U(Z) ∈
K[Z; σ, δ]m×m be unimodular such that U(Z) · F(Z) = T(Z), with T(Z) =[

0
T(Z)Jc,∗

]
the unique Popov form of F(Z).
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(a) A unimodular matrix U(Z) is unique up to multiplication on the left
by matrices of the form

W(Z) =

[
W(Z)J,J 0

W(Z)Jc,J Ir

]
, (36)

where W(Z)J,J ∈ K[Z; σ, δ](m−r)×(m−r) is unimodular.

(b) There exists a unique multiplier U(Z) such that U(Z)J,∗ is a minimal
polynomial basis in Popov form for the left nullspace of F(Z) with pivot
set K, and

deg U(Z)j,k < max
`∈J

deg U(Z)`,k (37)

for all k ∈ K, j ∈ Jc.

(c) Under all multipliers mentioned in (a), the sum of the row degrees of
the unique multiplier U(Z) of (b) is minimal.

Proof. To prove (a), let U1(Z) and U2(Z) be two such unimodular
multipliers for the Popov form of F(Z). Then U1(Z)J,∗,U2(Z)J,∗, are bases
of the left nullspace of F(Z). Thus there exists a unimodular multiplier
W(Z)J,J such that

U1(Z)J,∗ = W(Z)J,JU2(Z)J,∗. (38)

By the uniqueness of T(Z)Jc,∗, the rows of U2(Z)Jc,∗ −U1(Z)Jc,∗ are in the
nullspace of F(Z), so there exists a matrix W(Z)Jc,J such that

U2(Z)Jc,∗ = U1(Z)Jc,∗ + W(Z)Jc,JU1(Z)J,∗. (39)

This gives the form of the multipliers as stated in (a).
For (b), assume that U(Z)J,∗ is the unique Popov minimal polynomial

basis for the left nullspace with pivot set K. Given any multiplier U0(Z) we
may divide U0(Z)Jc,K on the right by U(Z)J,K :

U0(Z)Jc,K = W(Z)Jc,JU(Z)J,K + U(Z)Jc,K . (40)

By Lemma 5.1, (37) is satisfied. Since U(Z)Jc,K is the unique matrix such
that (37) is satisfied, the generic form of a multiplier given in (a) implies that

U(Z)Jc,∗ = U0(Z)Jc,∗ −W(Z)Jc,JU(Z)J,∗. (41)
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Thus, the minimal multiplier U(Z) is well defined and unique. This proves
(b).

To prove (c), let U0(Z) be a second unimodular multiplier. From the
general form of the multipliers, the sum of the row degrees of J and Jc

can be minimized independently. Since the degrees in J are minimized by
choosing a minimal polynomial basis, we are only concerned about the rows
in Jc. We want to show that

|rdeg U0(Z)Jc,∗| ≥ |rdeg U(Z)Jc,∗|. (42)

Let ~β = rdeg U(Z)J,∗, ~µ = rdeg U0(Z)Jc,K , and ~γ = rdeg U0(Z)Jc,Kc
. The

degree sum for U0(Z)Jc,∗ is
∑

j max(µj, γj). By Lemma 5.1, we have quotient
W(Z)Jc,J such that

U(Z)Jc,∗ = U0(Z)Jc,∗ −W(Z)Jc,JU(Z)J,∗ (43)

with deg W(Z)i,j ≤ µi − βj. Therefore we have, for 1 ≤ i ≤ m and j ∈ Jc,

deg U(Z)i,j ≤ max(max(µi, γi), µi) = max(µi, γi). (44)

Thus the degree sum of the Jc rows is not increased by the normalizing
division, and gives (c). �

The unique multiplier given in Theorem 5.2 (b) is called the minimal
multiplier.

Theorem 5.3 Let U(Z) ∈ K[Z; σ, δ]m×m be the minimal multiplier for F(Z) ∈
K[Z; σ, δ]m×n as in Theorem 5.2. Then

deg U(Z) ≤ |~µ| −min
j
{µj}

where ~µ = rdeg F(Z).

Proof. Let T(Z), J , and K be defined as in Theorem 5.2. We first note

that if ~β is the row degree of the minimal polynomial basis, we have

deg U(Z)j,k ≤

{
βj if j ∈ J ,

βj − 1 if j ∈ Jc and k ∈ K.
(45)

Since βi ≤ |~µ| −minj{µj}, it remains to obtain a bound for deg U(Z)Jc,Kc
.
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Let V(Z) = U(Z)−1 with row degree ~γ. Then we have F(Z) = V(Z) ·
T(Z), or

F(Z) = V(Z)∗,Jc
·T(Z)Jc,∗ (46)

because T(Z)J,∗ = 0. Our goal is to first obtain a degree bound for V(Z)
and relate it to the degree bound of U(Z).

Since T(Z)Jc,∗ is in Popov form and hence row-reduced, we can apply the
predictable degree property to obtain a degree bound on V(Z)∗,Jc

:

deg V(Z)i,j ≤ µi − γj ≤ µi (47)

for all 1 ≤ i ≤ m, j ∈ Jc.
Let r = rank F(Z). Since V(Z) ·U(Z) = I, we have

Im−r −V(Z)K,Jc
·U(Z)Jc,K = V(Z)K,J ·U(Z)J,K (48)

−V(Z)Kc,Jc
·U(Z)Jc,K = V(Z)Kc,J ·U(Z)J,K . (49)

In each of the above equations, the degree bound of row i on the left-hand side
is at most µi + |~µ| −minj{µj}. On the right-hand side, U(Z)J,K is in Popov
form and hence row-reduced. Applying the predictable degree property again
gives

µi + |~µ| −min
j
{µj} ≥ deg V(Z)i,j + |~µ| −min

j
{µj}, (50)

or
V(Z)i,j ≤ µi (51)

for all 1 ≤ i ≤ m and j ∈ J . Combining with the above, we see that
rdeg V(Z) ≤ ~µ.

To obtain a degree bound for U(Z), we observe that the row-reduced
form of V(Z) is the identity matrix and U(Z) is the unique unimodular
transformation matrix for V(Z). Applying Theorem 2.5 gives

rdeg U(Z) ≤ (|~µ| −min
j
{µj}) · ~e, (52)

and the theorem follows. � �

Remark 5.4 The degree bound obtained this way is not as accurate as the
one in the commutative case in [3]. However, our proofs are simpler and our
bounds are not worse than those obtained in [3, Corollary 5.5] in the worst
case when the rank of the input matrix is not known in advance.
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Thus, the same value of b is sufficient even when the input matrix does
not have full row rank. In particular, we do not need to know the rank of
the input matrix in advance.

Theorem 5.5 Suppose that F(Z) ∈ K[Z; σ, δ]m×n has row degree ~µ. Let
b > |~µ| −minj{µj}, and suppose

[
U(Z) R(Z)

]
is a basis in Popov form of

the left nullspace of

[
F(Z) · Zb

−In

]
. Let T(Z) = R(Z) · Z−b. Then

(a) U(Z) is unimodular;

(b) T(Z) = U(Z) · F(Z) ∈ K[Z; σ, δ]m×n;

(c) T(Z) is in Popov form.

6 Conclusion

We have given a bound on the minimal multiplier, which in turn allows
us to reduce the problem of computing the Popov form and the associated
unimodular transformation as a left nullspace computation. Thus, nullspace
algorithms which control coefficient growth can be applied.

In practice, the bound on the minimal multiplier may be too pessimistic.
Because the complexity of the nullspace algorithms depend on the degree of
the input matrix [1, 5, 6], having a bound that is too large will decrease the
performance of these algorithms. An alternate approach is suggested in [4]
in which (9) is solved with a small starting value of b. The value of b is
increased if the matrix T(Z) obtained from the nullspace is not in Popov
form. In the cases where the degree bound on the minimal multiplier is very
pessimistic this will provide a faster algorithm.

For the case in which the input matrix does not have full row rank,
our proofs are simpler than those in previous work while maintaining the
same worst case bound. The main difficulty in improving the bound is that
in the case of polynomial matrices, the proofs use the notions of inverse,
determinants, and adjoints of matrices [3]. These notions are not available
to us because the matrix entries are non-commutative. Some proofs also rely
on results on matrix fractions. We believe that some of the results can be
generalized by studying formal left fractions of Ore polynomials, but there
will be difficulties generalizing notions such as determinants and adjoints.
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