University of Lethbridge • Department of Mathematics and Computer Science Calculus I • Math 2560 • February 27, 1999 Midterm Examination

Name:	
Date: Saturday February 27, 1999	ID \#:1
Instructor: H. Kharaghani	Time: 10:00-12:00

1. (a) (10) Sketch a (rough) graph of $y=\cos x$ and show that it is not a one-to-one function, but $y=\cos x, 0 \leq x \leq \pi$, is one-to-one. Show that $\left(\cos ^{-1} x\right)^{\prime}=\frac{-1}{\sqrt{1-x^{2}}}$ and sketch a (rough) graph of $y=\cos ^{-1} x$.
(b) (7) Let $y=\sin ^{-1} x+\cos ^{-1} x$. Show that $y^{\prime}=0$ for all x in $(-1,1)$. Conclude that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ for all x in $[-1,1]$.
2. $(5,5,5,5)$ Find y^{\prime} for each of the following functions:
(a) $\quad y=\ln \frac{\left(x^{2}+1\right) \sqrt[5]{x^{4}+x^{2}+1}}{x^{2}(\sin x+5)}$
(b) $y=\cos ^{-1}\left(\frac{\sin x}{3+\sin x}\right)$.
(c) $y=e^{\cos ^{-1}\left(x^{3}\right)}$.
(d) $y=(\sin x+2)^{\cos x}$.
3. $(6,6,6)$ Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$
(b) $\quad \lim _{x \rightarrow 0^{+}}(\cot x)^{\sin x}$
(c) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
4. (9) Assuming that $\alpha>0$, show that $\lim _{x \rightarrow \infty} \frac{x^{\alpha}}{(\ln x)^{3}}=\infty$ and thus conclude that for large values of $x, x^{\alpha} \geq 1000(\ln x)^{3}$.
5. (a) (6) Find the area of the region bounded by the curves $y=x^{3}+x^{2}, y=2 x^{2}$ from $x=-1$ to $x=2$.
(b) (6) Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curves $y=\cos x, y=0, x=0, x=\frac{\pi}{2}$ about $y=2$.
(c) (6) Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curves $x=4-y^{2}, x=8-2 y^{2}$, about $y=5$, using the cylindrical shells method.
(d) (6) A circular swimming pool has a diameter of 20 ft , the sides are 5 ft high and the depth of the water is 4 ft . How much work is required to pump all the water out over to 1 ft above the sides.
6. (a) (6) Evaluate the integral $\int \frac{\sinh x}{1+\cosh x} d x$.
(b) (6) Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\sinh x}{e^{x}}
$$

(c) Bonus (8) Use the definition of the derivative to prove that:

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1
$$

