[14] 1. Find the centroid of the region bounded by the curves $y=x^{2}, y=0, y=\frac{1}{x^{3}}, x=2$.
[8] 2. The curve $y=\frac{x^{2}-1}{2}, 0 \leq x \leq 1$ is rotated around the line $x=-1$. Set up, but do not evaluate, an integral for the surface area generated.
[15] 3. Evaluate the following integral by using partial fraction method:

$$
\int \frac{x^{2}+10 x-6}{(x-1)^{2}\left(x^{2}+4\right)} d x
$$

[14] 4. Determine if the integral $\int_{0}^{1} \frac{\ln x}{\sqrt[4]{x}} d x$ is convergent or divergent and evaluate it if it is convergent.
[15] 5. Evaluate the following integral by using trigonometric subsitution:

$$
\int \frac{x^{2}}{\sqrt{2 x-x^{2}}} d x
$$

[13] 6. Evaluate the following integral:

$$
\int \frac{2 \tan x+3}{3+2 \sin 2 x} d x
$$

7. Show that the improper integral $\int_{1}^{\infty} \frac{\sqrt{x^{4}+1}}{x^{3}} d x$ is divergent and deduce that the area of the surface obtained by revolving the curve $y=\frac{1}{x}, 1 \leq x$ around the x-axis is infinite.
[8] 8. A torus is formed by rotating a circle of radius r about a line in the plane of the circle that is a distance $d(d>r)$ from the centre of the circle. Find the volume of the torus (use theorem of Pappus).
