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Abstract:
The issue of when two Cayley digraphs on different abelian groups of prime
power order can be isomorphic is examined. This had previously been de-
termined by Anne Joseph for squares of primes; her results are extended.

1 Preliminaries

We begin with some essential definitions. For many of the results in this
paper, the lemmata and proofs used are direct extensions of those in Joseph’s
paper [1]. For background and definitions not provided within the paper,
see [2] or [5]. Although we are dealing with abelian groups, multiplicative
notation will be used.

Let S be a subset of a group G. The Cayley digraph X = X(G;S) is
the directed graph given as follows. The vertices of X are the elements of
the group G. There is an arc between two vertices g and h if and only if
g−1h ∈ S. In other words, for every vertex g ∈ G and element s ∈ S, there
is an arc from g to gs.

Notice that if the identity element 1 of G is in S, then there is a loop at
every vertex, while if 1 6∈ S, the digraph has no loops. For convenience, we
will assume the latter case holds; it makes no difference to the results. Also
notice that since S is a set, it contains no multiple entries and hence there
are no multiple arcs.

A Cayley digraph can be considered to be a Cayley graph if whenever
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s ∈ S, we also have s−1 ∈ S, since in this case every arc is part of a digon,
and we can replace the digons with undirected edges.

The wreath product of two digraphs X and Y , written X o Y , is given
as follows. The vertices of the new digraph are all pairs (x, y) where x is a
vertex of X and y is a vertex of Y . The arcs of X o Y are given by the pairs
{[(x1, y1), (x1, y2)] : [y1, y2] is an arc of Y } together with {[(x1, y1), (x2, y2)] :
[x1, x2] is an arc of X}. In other words, there is a copy of the digraph Y for
every vertex of X, and arcs exist from one copy of Y to another if and only
if there is an arc in the same direction between the corresponding vertices
of X. If any arcs exist from one copy of Y to another, then all arcs exist in
that direction between those copies of Y .

We define a partial order on the set of abelian groups of order pn, as
follows. We say G ≤po H if there is a chain

H1 < H2 < . . . < Hm = H

of subgroups of H, such that H1, H2
H1

, . . . , Hm
Hm−1

are all cyclic, and

G ∼= H1 ×
H2

H1
× . . .× Hm

Hm−1
.

There is an equivalent definition for this partial order that is less group-
theoretic but perhaps more intuitive. We say that a string of integers
i1, . . . , im is a subdivision of the string of integers j1, . . . , jm′ if there is
some permutation δ of {1, . . . ,m} and some strictly increasing sequence
of integers 0 = k0, . . . , kt = m such that iδ(ks+1) + . . . + iδ(ks+1) = js+1,
0 ≤ s ≤ m′− 1. Now, G ≤po H precisely if G ∼= Zpi1 ×Zpi2 × . . .×Zpim and
H ∼= Zpj1 ×Zpj2 × . . .×Z

pjm′ where i1, . . . , im is a subdivision of j1, . . . , jm′ .
Figure 1 illustrates this partial order on abelian groups of order p5.
We are now ready to give the main result, which will be proven in the

succeeding sections.

Theorem 1.1 Let X = X(G;S) be a Cayley digraph on an abelian group
G of order pn, where p is an odd prime. Then the following are equivalent:

1. The digraph X is isomorphic to a Cayley digraph on both Zpn and H,
where H is an abelian group with |H| = pn, say

H = Zpk1 × Zpk2 × . . .× Z
pkm′

where k1 + . . .+ km′ = n.
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Figure 1: The partial order for abelian groups of order p5.
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2. There exist a chain of subgroups G1 ⊂ . . . ⊂ Gm−1 in G such that

(a) G1,
G2
G1
, . . . , G

Gm−1
are cyclic groups;

(b) G1 × G2
G1
× . . .× G

Gm−1
≤po H;

(c) For all s ∈ S \Gi, we have sGi ⊆ S, for i = 1, . . . ,m− 1. (That
is, S \Gi is a union of cosets of Gi.)

3. There exist Cayley digraphs U1, . . . , Um on cyclic p-groups H1, . . . ,Hm

such that H1 × . . .×Hm ≤po H and X ∼= Um o . . . o U1.

These in turn imply:

4. X is isomorphic to Cayley digraphs on every abelian group of order pn

that is greater than H in the partial order.

This theorem provides several conditions for determining whether or not
a given Cayley digraph on an abelian group can be represented as a Cayley
digraph on other abelian groups of the same odd prime power order.

Let us look at some simple examples of the use of this theorem. Let

G = Z9 × Z3 × Z3.

Let
S = {(2, i, j), (5, i, j), (8, i, j), (0, i, 2), (0, 1, 0) : 0 ≤ i, j ≤ 2}.

Then G and S satisfy condition (2) with G1 = 〈(0, 1, 0)〉, G2 = 〈G1, (0, 0, 1)〉,
G3 = 〈G2, (3, 0, 0)〉, and H = Z3 × Z3 × Z3 × Z3. So (due to condition (4))
X(G;S) can be represented as a Cayley digraph on any abelian group of
order 81.

Alternatively, consider the same group G with

S = {(2, i, j), (5, i, j), (8, i, j), (0, 1, 1), (0, 1, 2) : 0 ≤ i, j ≤ 2}.

There is no cyclic subgroup G1 of G that will satisfy condition (2c), so the
digraph X(G;S) cannot be represented as a Cayley digraph on the cyclic
group of order 81.

Condition (3) is more of a visual condition, stating that the digraph X is
a Cayley digraph on both the cyclic group and some other abelian group of
order pn, if and only if it can be drawn as the wreath product of a sequence
of Cayley digraphs on smaller cyclic groups.

The next two sections, which prove 3 ⇒ 1, 4 and 2 ⇒ 3, are based
very closely on Joseph’s paper. In Section 4, which proves that 1 ⇒ 2, the
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proof follows the same outline as Joseph’s (although some of the methods
required are slightly different), through Lemma 4.4. From that point on,
the lemmata and proofs diverge significantly from those in her paper. These
three sections complete the proof of Theorem 1.1. Section 5 deals with the
case where p = 2, and section 6 gives a slightly weaker result following from
the same proof, for the case where G is not abelian. Section 7 considers the
possibility of further extensions of these results.

2 Proof of 3⇒ 1, 4

Throughout the proof of the main result, we will generally be using induc-
tion. The base case is n = 1, and is trivially true. Again, we begin this
section with some necessary preliminaries.

Theorem 2.1 (See [3], Lemma 4.) Let X be a digraph and G be a group.
The automorphism group Aut(X) has a subgroup isomorphic to G that
acts regularly on V (X) if and only if X is isomorphic to a Cayley digraph
X(G;S) for some subset S of G.

Although the proof in Sabidussi’s paper is given for graphs rather than
digraphs, it works for both structures.

We also require the notion of wreath product of permutation groups.
(See [4], pg. 693.) Let U and V be sets, H and K groups of permutations
of U and V respectively. The wreath product H o K is the group of all
permutations f of U × V for which there exist h ∈ H and an element ku of
K for each u ∈ U such that

f((u, v)) = (h(u), kh(u)(v))

for all (u, v) ∈ U × V .

Lemma 2.2 (See [4], pg. 694.) Let U and V be digraphs. Then the group
Aut(U)oAut(V ) is contained in the group Aut(U o V ).

(This follows immediately from the definition of wreath product of per-
mutation groups, and is mentioned only as an aside in Sabidussi’s paper and
in the context of graphs. It is equally straightforward for digraphs.)

Once we have noted that the wreath product of permutation groups is
associative, we are ready to proceed with our proof.

Proof of 3 ⇒ 1, 4. Let us define vj (1 ≤ j ≤ m) to be the number
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of vertices in Uj (which is a power of p). We may assume that the digraph
Uj has vertices labeled with 0, 1, . . . , vj − 1 in such a way that the permu-
tation σ defined by σ(x) = x + 1 (mod vj) is an automorphism of the
digraph. It is sufficient, by Theorem 2.1 above, to find a regular subgroup
of Aut(X) that is isomorphic to the group

Zvivj ×H1 × . . .×Hi−1 ×Hi+1 × . . .×Hj−1 ×Hj+1 × . . .×Hm,

for each pair (i, j) satisfying 1 ≤ i < j ≤ m. This is because every abelian
group of order pn that is greater than H1 × H2 × . . . × Hm in the partial
order, can be obtained by repeating the step of combining two elements in
the direct product, with appropriate choices of i and j. Since H is greater
than or equal to H1 × H2 × . . . × Hm, the result will be achieved if such
regular subgroups of Aut(X) are shown to exist.

Now, by repeated use of Lemma 2.2 above, we see that

Aut(U1) oAut(U2) o . . . oAut(Um) ⊆ Aut(U1 o U2 o . . . o Um) = Aut(X),

so if we can find the required regular subgroups in

Aut(U1) oAut(U2) o . . . oAut(Um),

we will be done. We will do this by finding independent cycles of lengths

vivj , v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vm.

The cycle of length vk will affect only the vertices of Uk (1 ≤ k ≤ m, k 6= i, j).
The cycle is defined as follows. It is not hard to see that the map

fk((u1, . . . , uk, . . . , um)) = (u1, . . . , uk + 1, . . . , um)

(where addition is done modulo vj) is in the group

Aut(U1) oAut(U2) o . . . oAut(Um).

These are clearly independent cycles. Now we will replace the cycles fi and
fj by a single cycle gi,j of length vivj which is also in Aut(X). Let f ′i be the
restriction of fi to U1 o. . .oUj−1, and f ′′j be the restriction of fj to Uj o. . .oUm.
Define f ′j,ui to be equal to f ′′j if the given value ui is equal to vi − 1, and to
be the identity otherwise. Then define

gi,j(u1, . . . , um) = (f ′i(u1, . . . , uj−1), f ′j,ui(uj , . . . , um)).

It is clear from the definition of wreath products of groups that this will be
in Aut(X), and it is not hard to see that it is indeed a cycle of the required
length which is independent of the other cycles we have created.

The group generated by these cycles is certainly regular on the digraph
X, so the result follows.
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3 Proof of 2⇒ 3

Let Y be a subset of V (X), where X is a digraph. We denote the induced
subdigraph of X on the vertices in the set Y by X[Y ].

We copy a very nice lemma from the Joseph paper.

Lemma 3.1 (See [1], Lemma 3.11.) Let X and X be digraphs. Let φ :
V (X) → V (X) be a surjective map. Assume the following conditions are
satisfied:

1. For every v and w in V (X), the induced subdigraph X[φ−1(v)] is iso-
morphic to the induced subdigraph X[φ−1(w)].

2. For every x and y in V (X) with φ(x) 6= φ(y), the vertex x is adjacent
to the vertex y in X if and only if φ(x) is adjacent to φ(y) in X.

Then X ∼= X oX[φ−1(v0)] for every v0 ∈ V (X).

The proof of this result is a simple matter of defining an isomorphism, to-
gether with induction.

Proof of 2⇒ 3. Define a digraph X on the cosets of Gm−1 by

V (X) = {Gm−1x : x ∈ G}

and the arcs of the digraph are

A(X) = {[Gm−1x,Gm−1y] : x−1y ∈ S \Gm−1}.

Since S \Gm−1 is a union of cosets of Gm−1, these arcs are well-defined. It
is not hard to see from this definition that X (which we will call Um) is a
Cayley digraph on G

Gm−1
.

Now define the map φ : V (X) → V (X) by φ(x) = Gm−1x. The con-
ditions in Lemma 3.1 above are satisfied, so we have X ∼= X oX[Gm−1]. Now
the induced subdigraphX[Gm−1] is just the Cayley digraphX(Gm−1;S

⋂
Gm−1).

With the subgroups G1, . . . , Gm−2, this second Cayley digraph satisfies con-
dition (2) of Theorem 1.1, but has |Gm−1| vertices. By induction, we can
assume that this digraph X[Gm−1] is the wreath product of Cayley digraphs
Um−1, . . . , U1 on the groups Gm−1

Gm−2
, . . . , G1 respectively.

Now
X ∼= X oX[Gm−1] ∼= Um o Um−1 o . . . o U1

is as required.
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4 Proof of 1⇒ 2

We are now assuming that condition (1) of the main result holds.

Lemma 4.1 The Sylow p-subgroups of Aut(X) contain regular subgroups
Q and R that are isomorphic to Zpn and H, respectively. Thus the Sylow
p-subgroups have order at least pn+1.

Proof. Since X is a Cayley digraph on both Zpn and H, the group Aut(X)
contains regular subgroups that are isomorphic to Zpn , and others isomor-
phic to H. These are certainly contained in Sylow p-subgroups, and since
all Sylow p-subgroups are conjugate, each Sylow p-subgroup must contain
at least one subgroup isomorphic to each of Zpn and H. We call these Q
and R.

Since both of these groups are in a Sylow p-subgroup, and they are
nonisomorphic, the Sylow p-subgroup must have order at least pn+1.

The Sylow p-subgroup under examination, which contains subgroups
Q ∼= Zpn and R ∼= H, will be denoted P .

In a set X under the action of a group G, a subset B is called a G-block
if for each g ∈ G, either g(B) = B or g(B)

⋂
B = ∅. If furthermore |B| > 1

and B is a proper subset of X, then the G-block B is called nontrivial.
The group G is imprimitive in its action on the set X if nontrivial G-

blocks exist.
Notice that when G is transitive, the elements of X can be partitioned

into blocks of a single size, by taking all of the images under G of a fixed
block.

Notice that the action of Q on X produces unique partitions of the
elements of X into blocks of any size pm, 1 ≤ m ≤ n − 1. If the vertices of
X are labeled with 0, 1, . . . , pn − 1 in such a way that addition modulo pn

has the same action on X as Q has, then the blocks of size pm are precisely
the congruence classes modulo pn−m.

Theorem 4.2 (See [5], pg. 13) If the transitive group P contains an in-
transitive normal subgroup N different from 1, then P is imprimitive. The
orbits of N are P -blocks.

Lemma 4.3 Every Q-block is a P -block, and vice versa.

Proof. Clearly since Q ⊆ P , every P -block is a Q-block. We will use
induction, and show that if P has blocks of size pi−1 that are the orbits
of a normal subgroup of order pi−1 in P , then P has blocks of size pi that
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are orbits of a normal subgroup of order pi in P , where i < n. Then since
there are P -blocks of every possible size, and since these P -blocks are also
Q-blocks, and since the Q blocks of any given size are unique, every Q-block
must be a P -block.

We will be using Theorem 4.2 heavily, so it is useful to point out that
P is indeed transitive, and due to size alone, the normal subgroups we will
consider must be intransitive. In the base case i = 1, this is straightforward:
P itself is a non-trivial p-group, so has a non-trivial center by a well-known
result, which is itself a p-group and so must have an element of order p.
This element generates a subgroup of order p within the center of P , which
is certainly normal in P . By Theorem 4.2, the orbits of this group are
P -blocks.

We will denote the normal subgroup of order pi−1 by P (i−1). We look
at the group P/P (i−1). This is a non-trivial p-group since i < n, so by a
well-known result, it has a non-trivial center. The center is a p-group, so
certainly has an element of order p, g (say). Now look at 〈P (i−1), g〉. First,
this is normal in P since if

h ∈ aP (i−1) ⊆ G,

then
h−1gh ∈ P (i−1)a−1gaP (i−1)

and since g is in the center of P/P (i−1), this means

h−1gh ∈ gP (i−1) ⊆ 〈P (i−1), g〉.

Also, the orbits have length pi since the action of g combines sets of p orbits
of P (i−1), each of which had length pi−1 by assumption. Hence 〈P (i−1), g〉 is
an intransitive, normal, non-trivial subgroup of P , whence by Theorem 4.2,
each of its orbits is a P -block.

As these are P -blocks of size pi, they must also be Q-blocks, and hence
be the unique Q-blocks of size pi already described. Since this has shown
that P has blocks of every order pi (1 ≤ i ≤ n− 1), every Q-block is indeed
a P -block.

We will denote the P -block of size pi that contains the vertex x by Bx,i.
In the permutation group G acting on the set X, the stabilizer subgroup

of the element x ∈ X is the subgroup of G containing all group elements
that fix the element x. It is generally denoted by StabG(x), or more simply,
Gx.

Lemma 4.4 If x and y are two vertices in the same P -block of size p (that
is, y ∈ Bx,1), then Px = Py.
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Proof. Since the group Px fixes the vertex x, it must fix the block Bx,1
setwise. Since Px is a p-group, all orbits must have length a power of p, so
each of the other p−1 elements of Bx,1, including y, must be fixed pointwise
by Px. Hence, Px ≤ Py. But since P is transitive, the groups Px and Py are
conjugate, so they must be equal.

The following rather nice lemma was pointed out to me by David Witte,
when he was trying to understand my original proof.

Lemma 4.5 If a group G acts on a set X, and x ∈ X, then

B = {y ∈ X : Gx = Gy}

is a G-block.

Proof. Suppose y ∈ B
⋂
gB, for some g ∈ G. Since y ∈ gB, there exists

v ∈ B such that y = gv, and so

Gy = gGvg
−1 = gGxg

−1.

Because y ∈ B, this means that Gx = gGxg
−1. Suppose z ∈ gB. Then, as

was true for y,
Gz = gGxg

−1 = Gx.

Hence z ∈ B, and since z was arbitrary, gB ⊆ B. Therefore gB = B, and
B is a G-block.

Let K be a permutation group on a set X, with complete block systems
based on blocks of two different sizes j and j′, j′ < j. Let X ′ be the set of
blocks of size j′ within a fixed block of size j. We examine those elements of
K which fix each block of size j′ setwise. If the permutation group formed
by the action of these elements on the set X ′ is isomorphic to the group L,
then we say that K acts as L on the blocks of size j′ within the blocks of
size j.

Lemma 4.6 Suppose x and y are elements of the set V (X) that are in
different P -blocks of size pi, and R acts as Zp×Zp on the blocks of size pi−1

within the blocks of size pi+1, where i ≥ 1. Then the Px-orbit of y is not a
subset of By,i−1.

Proof. We examine the group PBx,i−1 , consisting of all automorphisms in P
that fix Bx,i−1 setwise. (In particular, this contains Px.) Now, suppose there
is an element β of this group that moves y from By,i−1; that is, β ∈ PBx,i−1
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and β(y) 6∈ By,i−1. Because β(x) ∈ Bx,i−1, there is some σ ∈ QBx,i−1 , such
that σ(β(x)) = x; that is, σβ ∈ Px. Because QBx,i−1 fixes every block of
size pi−1 setwise, we see that σβ(y) 6∈ By,i−1, which yields the result. So we
may assume that every element of PBx,i−1 fixes By,i−1 setwise.

Let B be the set of blocks of size pi−1 that are contained in Bx,i+1. The
preceding paragraph implies that PBy,i−1 = PBx,i−1 . Now by Lemma 4.5,
the union of all blocks of size pi−1 which have the same setwise stabilizers
is a P -block B containing both By,i−1 and Bx,i−1. But we know precisely
what the P -blocks are, and since x and y are not in the same block of
size pi, B must contain Bx,i+1 at the very least. Hence every point in B
has the same (setwise) stabilizer (namely PBx,i−1), so

PBx,i+1

PBx,i−1
is a regular

permutation group on the set B.
Note, however, that the image of QBx,i+1 in

PBx,i+1

PBx,i−1
is cyclic, whereas the

image of RBx,i+1 is isomorphic to Zp×Zp, by assumption. This means that
PBx,i+1

PBx,i−1
contains two nonisomorphic transitive subgroups, which contradicts

the regularity.
The proof of the next lemma is intricate, but not particularly deep. It

is the only part of the proof of Theorem 1.1 that requires the assumption
that p be odd.

Lemma 4.7 Suppose x and y are elements of the set V (X) that are in
different P -blocks of size pi. Then if the length of the Px-orbit of y is at
least pj, then the entire block By,j must be contained in this orbit.

Proof. The proof is by induction on j. The base case, j = 0, is trivial.
Now we suppose that the orbit has length at least pj , where 1 ≤ j.

By the induction hypothesis, the orbit must contain By,j−1. Since Px is a
p-group, and By,j is a block of P and therefore of Px, the intersection of
the Px-orbit of y with By,j must have length a power of p, so the length
is either pj−1 or pj . If it is pj then we are done, so we assume that it is
pj−1. Now, the rest of this orbit (which by assumption has length at least
pj) must consist of at least p − 1 other blocks of size pj−1 within distinct
blocks of size pj . Since these are in the orbit of y, there is a β ∈ Px that
takes y into one of these other blocks. Choose β in such a way that the size
of the smallest block containing both y and β(y) is minimized, while still
being larger that pj .

Let By,l be the smallest P -block that contains both y and β(y). Note
that

l ≥ j + 1. (1)
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Let σ ∈ Q be such that 〈σ〉 = Q. Now, there exists a number a such that

σa(x) = y. (2)

Also, since β(y) ∈ By,l, there must be some number b such that

σb ∈ QBy,l (3)

and σb(y) = β(y). (4)
Hence, σ−a−bβσa ∈ Px. (5)

(Recall also that QBy,l fixes every P -block of size pl setwise.)
We will show (through long calculation) that

βp(y) ∈ Bσpb(y),l−2 ⊆ By,l−1.

Then the choice of β to minimize l will force

βp(y) ∈ By,j−1,

so we must have
By,j−1 ⊆ Bσpb(y),l−2

since the intersection of these sets is nonempty and by (1). But this tells us
that σpb fixes By,l−2 setwise, so σpb ∈ QBx,l−2

. Clearly then, σb ∈ QBx,l−1
.

But this means that
σb(y) = β(y) ∈ By,l−1,

contradicting the definition of l.
The only possibility remaining will be the truth of this lemma. Now to

the calculations.
The smallest P -block containing both x = σ−a(y) and

σb(x) = σb−a(y) (by (2))
= σ−aβ(y) (by (4))

must be σ−a(By,l) = Bx,l, (by (2))

so the Px-orbit of σb(x) is contained in Bσb(x),l−1. Thus there exist numbers
c and d such that

σc, σd ∈ QBx,l−1
(6)

and β(σb(x)) = σc(σb(x)) (7)
and σ−a−bβσa(σb(x)) = σd(σb(x)) (using (5)). (8)
Let γ = σ−b−cβσb; (9)
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then γ ∈ Px (using (7)).
By (2) and (4), we have

β2(y) = βσa+b(x)
= σa+b(σ−a−bβσa)σb(x)
= σa+b+d+b(x) (using (8)). (10)

Hence, γ(y) = σ−b−cβσb(y) (by (9))
= σ−b−cβ2(y) (by (4))
= σ−b−cσa+2b+d(x) (by (10))
= σa+b−c+d(x). (11)

Now, by (6) and (11), we have that

γ(y) ∈ Bσa+b(x),l−1

= Bβ(y),l−1 (by (2), (4)).

Hence Bγ(y),l−1 = Bβ(y),l−1, so γ−1β(y) is in the block By,l−1. Our choice of
β to minimize l forces γ−1β(y) ∈ By,j−1. Hence we must have

γ(y) ∈ Bβ(y),j−1 (12)

and so σa+b−c+d(x) ∈ Bσa+b(x),j−1 (by (11), (2), (4)),

so σd−c ∈ QBx,j−1 , (13)

whence β2(y) = σa+2b+d(x) (by (10))
∈ Bσa+2b+c(x),j−1 (by (13)). (14)

By induction on k, we will now show that

γk(y) ∈ Bβk(y),j−1 (15)

and βk+1(y) ∈ B
σa+(k+1)b+

k(k+1)
2 c(x),l−2

. (16)

The base case for (15) is (12). We require two base cases for (16); the case
for k = 0 is clear from (2) and (4), and the case k = 1 is clear from (14) and
(1).

Since σb and σc ∈ QBx,l ((3), (5)) and σ−a−bβσa ∈ Px (6), we must have
some number e such that

σe ∈ QBx,l−1
(17)

and σ−a−bβσaσkb+
k(k−1)

2
c(x) = σeσkb+

k(k−1)
2

c(x). (18)
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Now, by induction,

βk+1(y) ∈ B
βσa+kb+

k(k−1)
2 c(x),l−2

(by (16)),

= B
σa+b+e+kb+

k(k−1)
2 c(x),l−2

(by (18))

= B
σa+(k+1)b+

k(k−1)
2 c+e(x),l−2

. (19)

Also, since σc ∈ QBx,l−1
(6) and since β ∈ Px, there must exist some

number f such that

σf ∈ QBx,l−2
(20)

and σfβσ(1−k)c(x) = σ(1−k)c(x).
Let ψ = σ(k−1)c+fβσ(1−k)c, (21)

so ψ ∈ Px.
By (9), we have

γk(y) = σ−b−cβσbγk−1(y)
∈ B

σ−b−cβσbσa+(k−1)b+
(k−1)(k−2)

2 c(x),l−2
(by (15), (16) and (1))

= B
σ−b−cβσ(1−k)cσa+kb+

k(k−1)
2 c(x),l−2

= Bσ−b−cβσ(1−k)cβk(y),l−2 (by induction (16).)
= Bσ−b−c−f+(1−k)cψβk(y),l−2 (by (21))
= Bσ−b−kcψβk(y),l−2 (by (20)). (22)

Now we use (21) and the fact that σc and σf are in QBx,l−1
((6) and (20))

to note that
ψβk(y) ∈ Bβk+1(y),l−1.

So the choice of β minimizing l again intervenes to force

ψβk(y) ∈ Bβk+1(y),j−1. (23)

Using (1), (22) and (23), we see that

γk(y) ∈ Bσ−b−kcβk+1(y),l−2

= B
σ−b−kcσa+(k+1)b+

k(k−1)
2 c+e(x),l−2

(by (19))

= B
σa+kb+(

k(k−1)
2 −k)c+e(x),l−2

. (24)
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Since σc and σe are in QBx,l−1
((6) and (17)), we see that the vertex

σa+kb+(
k(k−1)

2
−k)c+e(x) ∈ B

σa+kb+
k(k−1)

2 c(x),l−1
= Bβk(y),l−1 (by (16)),

so γk(y) ∈ Bβk(y),l−1.

The choice of β to minimize l forces

γk(y) ∈ Bβk(y),j−1, (25)

the first of the desired inductive conclusions (15).
Combining (25), (24) and (1) with the inductive assumption from (16)

that
βk(y) ∈ B

σa+kb+
k(k−1)

2 c(x),l−2
,

we see that

σ−kc+e ∈ QBx,l−2
. (26)

Hence

βk+1(y) ∈ B
σa+(k+1)b+

k(k−1)
2 c+e(x),l−2

(by (19))

= B
σa+(k+1)b+

k(k+1)
2 c(x),l−2

(by (26)),

which concludes the induction on k.
In particular, for k = p− 1, we now have that

βp(y) ∈ B
σa+pb+

p(p−1)
2 c(x),l−2

(by (16))

= B
σpb+

p(p−1)
2 c(y),l−2

(by (2)).

Because σb ∈ QBx,l (3) and σc ∈ QBx,l−1
(6) and p divides p(p−1)

2 (this is the
only place in the paper where the assumption of p being odd is necessary),
we have

σpb ∈ QBx,l−1

and
σ
p(p−1)

2
c ∈ QBx,l−2

.

Hence,
βp(y) ∈ Bσpb(y),l−2 ⊆ By,l−1,

and as mentioned earlier, this completes the proof.
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Lemma 4.8 Suppose x and y are elements of the set V (X) that are in
different P -blocks of size pi, and R acts as Zp × Zp on the blocks of size
pi−1 within the blocks of size pi+1. Then the orbit of Px containing y also
contains all of By,j, for 0 ≤ j ≤ i; in particular, By,i is contained in the
orbit.

Proof. The result is by induction on j. The base case of j = 0 is trivial.
In the induction hypothesis, we assume that By,j−1 is contained in the

orbit. Since j − 1 < i, Lemma 4.6 tells us that the orbit is not contained
within By,j−1, so there are other vertices in the orbit. Thus, the length of
the orbit (being a power of p) must be at least pj . Now Lemma 4.7 tells us
that By,j is contained in the orbit, as desired.

Fix a vertex x ∈ V (X). A P -block B containing x is a wreathed block if
for every g, h ∈ P , one of the following holds:

1. gB = hB

2. There is no arc from the vertices in gB to those in hB, or

3. There is an arc from every vertex in gB to every vertex in hB.

Corollary 4.9 Suppose R does not act as Zpj−i on the blocks of size pi

within the blocks of size pj, where 1 ≤ i < j ≤ n. Then Bx,k is a wreathed
block, for some k such that i < k < j.

Proof. Since the action of R is not cyclic, there must be some i′ and j′

with i ≤ i′ < j′ ≤ j such that j′ − i′ = 2, and R acts as Zp × Zp on the
blocks of size pi

′
within the blocks of size pj

′
. By Lemma 4.8 with i = i′+ 1,

if x is adjacent to a vertex y 6∈ Bx,i′+1, then x is adjacent to every vertex in
By,i′+1. Hence Bx,k is a wreathed block, where k = i′ + 1.

Notice that since X is Cayley on the group G, the Sylow p-subgroup P
must contain a subgroup R′ which is conjugate to G in Aut(X). In Lemmata
4.6, 4.7 and 4.8 and Corollary 4.9, no special properties of R were employed;
in fact, these lemmata continue to hold if R is replaced by R′.

Lemma 4.10 There exist a chain of subgroups G1 ⊂ . . . ⊂ Gm−1 in G such
that

1. G1,
G2
G1
, . . . , G

Gm−1
are cyclic groups;

2. G1 × G2
G1
× . . .× G

Gm−1
≤po H;
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3. For any vertices x and y in V (X) with y 6∈ Gix, if there is an arc from
x to y in X then there is an arc from x to v for all vertices v ∈ Giy.

Proof. Fix a vertex x ∈ X. List the wreathed P -blocks containing x in
order:

{x} = B0 ⊂ B1 ⊂ . . . ⊂ Bm = X.

For each i, there is a unique subgroup Gi of G with Bi = Gix. Also,
there is a unique subgroup Hi of H with Bi = Hix.

By the definition of a wreathed block, condition (3) of the Lemma is
immediate.

By Corollary 4.9 and the remark which followed it, the fact that there
are no wreathed blocks between Bi−1 and Bi implies that both Gi

Gi−1
and

Hi
Hi−1

must be cyclic (1 ≤ i ≤ m), fulfilling condition (1).

Finally, since Gi
Gi−1

and Hi
Hi−1

have the same order |Bi|
|Bi−1

, they must be
isomorphic groups. Since G0 = H0 is the identity, Gm = G and Hm = H,
we get

G1 ×
G2

G1
× . . .× G

Gm−1

∼= H1 ×
H2

H1
× . . .× H

Hm−1
≤po H.

Taking the case where x is the identity element of G, it is easy to see
that this result is exactly condition (2) of the main result. This completes
the proof of 1⇒ 2.

5 What happens if p = 2?

As was noted earlier, only one lemma toward the proof of the main theo-
rem required the assumption that p be odd. When p is even, I have not
managed to prove a corresponding lemma, but neither have I found any
counterexamples. Indeed, the following version of Theorem 1.1 is true when
p = 2.

Theorem 5.1 Let X = X(G;S) be a Cayley digraph on an abelian group
G of order 2n. Then the following are equivalent:

1. The digraph X is isomorphic to a Cayley digraph on both Zpn and
H = Z2 × Z2 × . . .× Z2, where this group has order 2n.

2. There exist a chain of subgroups G1 ⊂ . . . ⊂ Gm−1 in G such that

17



(a) G1,
G2
G1
, . . . , G

Gm−1
are cyclic groups;

(b) G1 × G2
G1
× . . .× G

Gm−1
≤po H;

(c) For all s ∈ S \Gi, we have sGi ⊆ S, for i = 1, . . . ,m− 1. (That
is, S \Gi is a union of cosets of Gi.)

3. There exist Cayley digraphs U1, . . . , Um on cyclic p-groups H1, . . . ,Hm

such that H1 × . . .×Hm ≤po H and X ∼= Um o . . . o U1.

These in turn imply:

4. X is isomorphic to Cayley digraphs on every abelian group of order
pn.

The following lemma immediately gives us (1⇒ 2) of Theorem 5.1.

Lemma 5.2 Under the assumptions of (1) of Theorem 5.1, there are sub-
groups

H1 ⊂ . . . ⊂ Hn−1

in G such that |Hi| = pi (1 ≤ i ≤ n− 1) and for any vertices x and y in X
with y 6∈ Hix, if x and y are adjacent in X then x is adjacent to v for all
vertices v ∈ Hiy.

Proof. Label the digraph X according to the group G. Then the P -block
of size pi containing the identity element of G is a subgroup of order pi.
This is true since adding any element of G in this block to every vertex is an
automorphism of X that takes the identity element of G to another element
in this same block, and hence fixes the block setwise. This means that the
elements in this block form a closed set under addition, so are a subgroup.
We call this subgroup Hi.

We will use induction, with trivial base case n = 1. Since the definitions
of the subgroups Hi do not change in the inductive step, we can use the
induction to assume that the result holds within the block Bx,n−1. Now we
have two blocks of size 2n−1, with x in one and y in the other. We will show
that if x and y are adjacent in X, then every arc from Bx,n−1 to By,n−1

exists.
First, notice that since X is a Cayley digraph on (Z2)n, a group of

characteristic 2, the definition of a Cayley digraph tells us that for every arc
from a to b coming from the element b − a = b + a of S, there must be a
corresponding arc from b to a coming from the element a− b = a+ b of S.
So we really have a Cayley graph here. Notice also that any two vertices a
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and b in By,n−1 have an even number of mutual neighbours in Bx,n−1. This
is because for every vertex c in Bx,n−1 that is adjacent to a and b, the vertex
a+ b− c = a+ b+ c is also adjacent to both a and b, and a+ b+ c = c would
imply a+ b = 0 and hence a = b.

Consider X now as a Cayley graph on Z2n , and label it accordingly.
Since the graph is vertex-transitive, we may assume that 0 and x are the
same vertex. If there are no edges from 0 to By,n−1, then it is not difficult
to see that there are no edges between Bx,n−1 and By,n−1, and we are done.
So we may assume that there is an edge between 0 and y = m ≡ 1 (mod 2)
without any loss of generality. Since X is a Cayley graph, the element 2n−m
is also in the symbol set S. Now as mentioned in the last paragraph, the
vertices m and −m must have an even number of mutual neighbours in
Bx,n−1. Suppose a ∈ Bx,n−1 is adjacent to both m and −m. Then −a is
also adjacent to both m and −m. So the only way in which we can have
an even number of mutual neighbours for m and −m, is if the vertex 2n−1

is adjacent to both m and −m. Thus, every vertex that is adjacent to 0 is
also adjacent to 2n−1.

Now, 2n−1 is the only other element in B0,1, and we already know by our
induction hypothesis that 0 and 2n−1 have precisely the same adjacencies
within Bx,n−1. Since this is true for B0,1, and the graph is vertex-transitive,
the same must be true for each P -block of size 2. Hence we can form a new
graph on pn−1 vertices, one corresponding to each of the P -blocks of size
2 in X, with an edge between two vertices if and only if all possible edges
existed between the correspponding blocks in X. Now we use our induction
hypothesis on this graph and carry the conclusion back to the original graph
X, yielding the desired result.

Again, taking the case where x is the identity element of G in this lemma,
yields condition (2) of Theorem 5.1.

6 Non-abelian groups

It is worthy of note that the only way in which the condition that G be
abelian is used in this paper is to work with the richness of structure of the
poset defined on abelian groups and to achieve condition (4) of the main
theorem. So (using H = G in the proof) we have the following theorem.

Theorem 6.1 Let X = X(G;S) be a Cayley digraph on a group G of order
pn, where p is an odd prime. Then the following are equivalent:

1. The digraph X is isomorphic to a Cayley digraph on Zpn .
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2. There exist a chain of subgroups G1 < . . . < Gm−1 in G such that

(a) G1,
G2
G1
, . . . , G

Gm−1
are cyclic groups;

(b) For all s ∈ S \Gi, we have sGi ⊆ S, for i = 1, . . . ,m− 1. (That
is, S \Gi is a union of cosets of Gi.)

3. There exist Cayley digraphs U1, . . . , Um on cyclic p-groups H1, . . . ,Hm

such that there is some chain of subgroups G1 < . . . < Gm−1 in G with

G1 = H1,
G2

G1
= H2, . . . ,

G

Gm−1
= Hm

and X ∼= Um o . . . o U1.

That is, a Cayley digraph on any group of prime power order can be
represented as a Cayley digraph on the cyclic group of the same order if and
only if the digraph is the wreath product of a sequence of Cayley digraphs
on smaller cyclic groups.

7 Further extensions

In the general case where the digraph is on a number of vertices n that is not
a prime power, less can be said immediately. First of all, if n is a product of
distinct primes p1, . . . , pm, then Zp1× . . .×Zpm is actually cyclic, and hence
isomorphic to Zn. So any digraph which is a Cayley digraph on one group
is necessarily Cayley on the other group.

Moreover, this is true if n = n1n2 . . . nm where ni and nj are coprime
for every i and j with 1 ≤ i < j ≤ m, and the groups under consideration
are Zn and Zn1 × . . .× Znm .

If, on the other hand, p divides both ni and nj , and the digraph X
is Cayley on both Zn and Zn1 × . . . × Znm , then we examine the Cayley
digraph X ′ on those vertices of X that correspond to a Sylow p-subgroup of
Zn. Due to the conjugacy of all Sylow p-subgroups of Aut(X), it is not hard
to show that X ′ is also Cayley on a Sylow p-subgroup of Zn1 × . . . × Znm .
We can therefore use Theorem 1.1 of this paper to determine its form as
a wreath product of smaller digraphs. The remainder of the structure of
the digraph X is not so easy to determine in this case, and remains an
interesting problem.

Another question that has been suggested is what happens in the case
of digraphs that can be represented on two different abelian groups, neither
of which is cyclic. The results in this paper rely heavily on properties of
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the cyclic group, and I have not been able to make any significant progress
toward answering this question.
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