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Abstract

A balanced graph is a bipartite graph with no induced circuit of length 2 (mod 4).
These graphs arise in linear programming. We focus on graph-algebraic properties
of balanced graphs to prove a complete classification of balanced Cayley graphs on
abelian groups. Moreover, in Section 5 of this paper, we prove that there is no cubic
balanced planar graph. Finally, some remarkable conjectures for balanced regular
graphs are also presented.
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1 Introduction

A {0, 1}-matrix is balanced if the sum of the entries of every submatrix that is
minimal with respect to the property of containing 2 nonzero entries per row
and per column, is congruent to 0 (mod 4). Balanced matrices were introduced
by Berge [3] in the context of hypergraphs, and they arise naturally in linear
programming [10].

There has been considerable study of balanced matrices; the reader might
check [5] or [6] for a survey on the main results and horizons on balanced
matrices.
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Every {0, 1}-matrix is also the bipartite adjacency matrix of a bipartite graph.
Specifically, if X is a bipartite graph with vertex bipartition (U, V ), then the
bipartite adjacency matrix for X is the {0, 1}-matrix A with Au,v = 1 if
and only if u ∈ U, v ∈ V and {u, v} ∈ E(X). So, it is natural to consider
which bipartite graphs have balanced adjacency matrices. Equivalently, which
bipartite graphs have no induced circuits of length 2 (mod 4). We refer to such
graphs as balanced graphs. Most results on balanced graphs are restricted to
some subclass. For instance, balanced graphs in which every induced circuit
has length 4 have been characterised in [9]. It is our aim in this paper to
provide some insight into the structure of some additional classes of balanced
graphs.

All graphs in this paper are connected, so, by abuse of terminology we use the
term “graph” to mean “connected graph”.

We will present three main results in this paper, together with a number of
conjectures. In two of our results, we restrict our attention to a significant
family of balanced graphs, and characterise all of the graphs in that family.
First, we characterise balanced Cayley graphs on abelian groups. Then we
prove that there are no cubic balanced planar graphs. In the remaining result,
we provide a condition on the number of vertices of a k-regular balanced graph.

Before we can state our characterisation of balanced Cayley graphs on abelian
groups, a number of definitions will be required.

Let G be a group and S a subset of G such that S is closed under taking
inverses, i.e. S = S−1. The Cayley graph of G with connection set S, denoted
Cay(G, S), is the graph with vertex set G and edge set {{g, h} | gh−1 ∈ S}.
If X and Y are graphs, the lexicographic product of X with Y is the graph
with vertices V (X) × V (Y ), where (x, y) and (x′, y′) are adjacent if and only
if either {x, x′} ∈ E(X), or x = x′ and {y, y′} ∈ E(Y ). We denote by Kt the
complement of the complete graph Kt, i.e. Kt has t vertices and no edges.
Further, we denote by Cl the cycle of length l and C2 = K2 for the degenerate
case. The following terminology will be used in our characterisation.

Definition 1.1 Let l, t be in Z+, with l = 2 or l ≡ 0 (mod 4) and l ≥ 8. The

lexicographic product of Cl with Kt is called an (l, t)-cycle.

Fig. 1.1. (8, 3)-cycle

Figure 1.1 shows the example of an (8, 3)-cycle.
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We recall that the circuits of a Cayley graph X are well studied and the
problem of “understanding” the lengths of the circuits of X has attracted
considerable attention, see [1] and [11]. For example, it is known that if X
is a bipartite Cayley graph on an abelian group, then X has circuits of any
even length, i.e. 4, 6, . . . , |X|, see [4]. Unfortunately, not much is known about
the induced circuits of X. So, in this paper, we focus only on induced circuits.
Since it seems hard to get general results on induced circuits of Cayley graphs,
we restrict our interest to balanced Cayley graphs. Specifically, in Section 2
and Section 3, we study balanced Cayley graphs on abelian groups. We will
show that this class of graphs is very restricted. Indeed, we get the following
result.

Theorem 1.2 If G is an abelian group and S ⊆ G, then the graph Cay(G, S)
is balanced if and only if it is isomorphic to an (l, t)-cycle.

In Section 4, we use a theorem of Berge [3] and Fulkerson, Hoffman, and
Oppenheim [7] to prove the following result.

Theorem 1.3 If X is a k-regular balanced graph, then the number of vertices

of X is divisible by 2k.

In Section 5, we narrow our focus to cubic balanced planar graphs and we
prove the following theorem.

Theorem 1.4 There is no cubic balanced planar graph.

Finally, two conjectures for balanced regular graphs are presented in Sec-
tion 6. These conjectures are based on the results for balanced Cayley graphs
on abelian groups, on Theorem 1.4 and on some exhaustive computer compu-
tations.

2 Balanced circulant graphs

It seems to the authors that the statements and the proofs in Section 2 and 3
are neater using a multiplicative notation. So, all groups in the following two
sections will be written using multiplicative notation. As usual, if G is a group
and a ∈ G, the symbol 〈a〉 denotes the subgroup of G generated by a, and 1G

denotes the identity element in G.

Let An denote a cyclic group of order n, generated by a, and let S ⊆ An\{1An
}

be closed under taking inverses. The graph Cay(An, S) is said to be a circulant

graph of order n. Recall that Cay(An, S) is bipartite if and only if n is even
and S ⊆ {ai | i odd}.

3



Lemma 2.1 If X = Cay(An, S) is balanced and a, a3 ∈ S, then X is Kn/2,n/2.

Proof. We prove, by induction on l, that a2l+1 lies in S for every l. If
l = 0 or 1, then there is nothing to prove, by hypothesis a, a3 lie in S. Now,
assume that the claim is true for every index i such that i ≤ l − 1, and
so, {a, a3, . . . , a2l−1} ⊆ S. Since S = S−1, if S = {a, a3, . . . , a2l−1}, then
S = {ai | i odd} and there is nothing to prove. Assume {a, a3, . . . , a2l−1} $ S.
Let m = 2l − 1 and let t > 0 be minimum with am+t ∈ S. Set t = qm + r
where q and r are non-negative integers with 0 ≤ r < m. We show that q = 0
and r = 2 and thus a2l+1 ∈ S. Note that since S−1 = S, we may assume that
m < n/2.

Suppose instead that q ≥ 1. The following table lists the vertices of an induced
circuit C in X with length 2 (mod 4). In reading the table, the following
remarks may be useful. Since t is even and m is odd, q and r have the same
parity. Each cycle ends with the vertex a(q+1)m+r = am+t. Now, we leave to
the reader the straightforward work of checking that every given circuit is
induced, since all differences between non-consecutive vertices are either even,
or strictly between m and m + t. Since X is balanced, it follows that q = 0.

q (mod 4) r C

0 0 (1, am, a2m, . . . , a(q+1)m)

0 2 (1, a, a2, am+2, am+3, am+4, a2m+4, a3m+4, . . . , aqm+4, a(q+1)m+r)

0 ≥ 4 (1, a, a2, am+2, a2m+2, . . . , a(q+1)m+2, a(q+1)m+r−1, a(q+1)m+r)

1 ≥ 1 (1, a, a2, am+2, a2m+2, a3m+2, . . . , aqm+2, a(q+1)m, a(q+1)m+r)

2 0 (1, a, a2, am+2, a2m+2, . . . , aqm+2, a(q+1)m)

2 ≥ 2 (1, am, a2m, . . . , a(q+1)m, a(q+1)m+r−1, a(q+1)m+r)

3 ≥ 1 (1, am, a2m, . . . , a(q+1)m, a(q+1)m+r)

Since q = 0, we have r is even. If r ≥ 4, then (1, a, a2, am+2, am+3, am+r) is an
induced circuit of length 6. Thus r = 2 and the induction is complete.

We have proved that S = An\〈a
2〉 and so X is a complete bipartite graph. 2

Next we consider the case that a3 6∈ S.

Lemma 2.2 Let X = Cay(An, S) be balanced with a ∈ S, |S| > 1 and a3 6∈ S.

If l > 2 is minimum such that al−1 ∈ S, then l ≡ 0 (mod 4), l ≥ 8, l divides

n and S = {ail±1 | 0 ≤ i ≤ (n/l) − 1}.

Proof. The circuit (1, a, a2, . . . , al−1) is induced in X, therefore l ≡ 0 (mod 4).
Moreover, since a3 /∈ S, we have l ≥ 8. We use induction on k to prove the
following claim, from which Lemma 2.2 would follow.
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Claim 2.2.1 If k ∈ Z+, then S∩{aj | −1 ≤ j ≤ kl+1} = {ail±1 | 0 ≤ i ≤ k}.

Let k = 1. In this case, by hypothesis on a and on l, we have only to show
that al+1 lies in S. The circuit C = (1, a, a2, al+1, al+2, al+3, a4, a5, a6, . . . , al−1)
has length l + 2 and thus is not induced. Using the hypothesis that l > 2 is
minimum with al−1 ∈ S, it is easy to check that {1, al+1}, {1, al+3}, {a, al+2},
{a2, al+3} are the only possible chords for C; hence al+1 ∈ S or al+3 ∈ S. If
al+3 ∈ S and al+1 /∈ S, then (1, al−1, al, al+1, al+2, al+3) is an induced circuit
of length 6 in X, a contradiction. Thus al+1 ∈ S and the claim holds when
k = 1.

Assume that S ∩ {aj | −1 ≤ j ≤ kl + 1} = {ail±1 | 0 ≤ i ≤ k} for some k ≥ 1.
Let t > 0 be minimal such that akl+t+1 ∈ S. We have to prove that t = l − 2.
If t ≡ 0 (mod 4) and t ≤ l − 3, then (1, akl+1, akl+2, . . . , akl+t+1) is an induced
circuit of length t + 2 in X, a contradiction. Similarly, if t ≡ 2 (mod 4) and
t ≤ l − 3, then (1, akl+t+1, at+2, at+3, . . . , al−1) is an induced circuit of length
l − t, a contradiction. This yields t ≥ l − 2.

Consider the circuit C = (1, akl−1, a(k+1)l, a(k+1)l+1, al+2, a) of X. Clearly, C
must have a chord, so, a(k−1)l−3 ∈ S, or a(k+1)l−1 ∈ S or a(k+1)l+1 ∈ S.
Since (k − 1)l − 3 ≤ kl + 1 and (k − 1)l − 3 6≡ ±1 (mod l), by induc-
tion hypothesis, we have a(k−1)l−3 /∈ S. This says that either a(k+1)l−1 ∈
S or a(k+1)l+1 ∈ S. If a(k+1)l+1 ∈ S and a(k+1)l−1 /∈ S, then the circuit
(1, a, a2, . . . , al−2, a(k+1)l−1, a(k+1)l, a(k+1)l+1)) is induced of length l + 2, a con-
tradiction. Thus a(k+1)l−1 ∈ S.

Now, to conclude the inductive argument, it remains to prove that a(k+1)l+1 is
in S. Let t > 0 be minimal such that a(k+1)l−1+t ∈ S. If t > 4, then

(1, a, a2, a(k+1)l+1, a(k+1)l+2, a(k+1)l+3, akl+4, akl+5, akl+6, . . . , a(k+1)l−1)

is an induced circuit of length l + 2. Similarly, if t = 4, then the circuit
(1, a(k+1)l−1, a(k+1)l, a(k+1)l+1, a(k+1)l+2, a(k+1)l+3) is induced of length 6. This
yields t = 2, and thus a(k+1)l+1 ∈ S. Claim 2.2.1 follows. �

Now, we are ready to conclude the proof of Lemma 2.2. Since S is closed under
taking inverses, Claim 2.2.1 and l 6= 4 imply that n− (l− 1) = kl +1 for some
integer k. Thus l divides n and the lemma follows. 2

If X is a graph and u ∈ V (X), then the neighbours of u, denoted N(u), are
the elements of N(u) = {v ∈ V (X) | {u, v} ∈ E(X)}. Vertices u, v of X are
twins if N(u) = N(v). Being twins is an equivalence relation on V (X). We say
that two vertices u, v of X are non-trivial twins if u 6= v and u, v are twins. If
u ∈ V (X) then we denote by X\u the induced subgraph of X on V (X) \ {u}.

Lemma 2.3 If X is a bipartite graph with non-trivial twins u and v, then X
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is balanced if and only if X\u is balanced.

Proof. Induced subgraphs of balanced graphs are balanced, and thus X\u
is balanced whenever X is balanced. Conversely, suppose X\u is balanced. In
particular, as N(u) = N(v), we have that X\v is also balanced. Let C be an
induced circuit in X. If u 6∈ V (C), or if v 6∈ V (C), then C is isomorphic to an
induced circuit in X\u, or X\v (respectively), and thus |V (C)| ≡ 0 (mod 4).
If u, v ∈ V (C) then, since C is induced and N(u) = N(v), we have |V (C)| = 4.
In either case every induced circuit of X has length 0 (mod 4), therefore X is
balanced. 2

Note that the complete bipartite graph Kt,t is a (2, t)-cycle. In the following
lemma, we prove that (l, t)-cycles are circulant graphs.

Lemma 2.4 Let l, t be in Z+ with l = 2 or l ≡ 0 (mod 4) and l ≥ 8, Alt be a

cyclic group of order lt with generator a and S = {ail±1 | 0 ≤ i ≤ t − 1}. The

circulant graph Cay(Alt, S) is isomorphic to an (l, t)-cycle.

Proof. We leave it to the reader to check that, for each j ∈ {0, . . . , l − 1},
the set {ail+j | 0 ≤ i ≤ t − 1} = 〈al〉aj is the twin class of aj in Cay(Alt, S).
Furthermore, the quotient graph through the twin equivalence relation is a
cycle of length l. Now, the result is straightforward. 2

As a corollary of the results we have proved, we get the following theorem.

Theorem 2.5 A circulant bipartite graph X with a generator in its connec-

tion set is balanced if and only if X is an (l, t)-cycle.

Proof. By Lemmas 2.1, 2.2 and 2.4, we have that every balanced circulant
graph X with a generator in its connection set is an (l, t)-cycle. Conversely,
with Lemma 2.3, it is easily verified that (l, t)-cycles are balanced. 2

3 Balanced Cayley graphs on abelian groups

In this section Theorem 2.5 is used to prove Theorem 1.2.

Let G be an abelian group with S ⊆ G such that X = Cay(G, S) is balanced.
Choose a ∈ S. Recall that if U ⊆ V (X), then X[U ] denotes the subgraph of
X induced by U . In particular, we have X[〈a〉] = Cay(〈a〉, S ∩ 〈a〉). Therefore
X[〈a〉] is a circulant graph with a generator in its connection set. By Theo-
rem 2.5, X[〈a〉] is an (l, t)-cycle. Moreover, by Lemmas 2.1 and 2.2, we have
that either l = 2 or l ≡ 0 (mod 4), l ≥ 8, l divides |a| and

S ∩ 〈a〉 = {ail±1 | 0 ≤ i ≤ (|a|/l) − 1}. (1)
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If G = 〈a〉, then Theorem 1.2 follows. Thus we assume G 6= 〈a〉.

For the remainder of Section 3, G, S, X, a and l are fixed, with the meaning
defined in the preceding paragraph. Before going into the proof of Theorem 1.2,
we would like to point out explicitly where the group G being abelian is used.
We recall that Aut(X) contains the right regular representation of G, so, if
e ∈ E(X) and g ∈ G, then eg = ge is an edge of X. Consequently, whenever
H, Hb are two cosets of G and b ∈ S\H, then there are “plenty” of edges
between H and Hb, indeed {h, hb} is an edge for any h ∈ H. In other words,
any edge e from a vertex of H to a vertex of Hb determines a matching
{he | h ∈ H}. Without the hypothesis of G being abelian we could only say
that {eh | h ∈ H} is a family of edges of X and no further “structure” on this
family of edges or where these edges lie could be assumed.

Lemma 3.1 If b ∈ S\〈a〉, then the subgraph of X induced by 〈a〉 ∪ b〈a〉 is an

(l, 2t)-cycle.

Proof. We prove three claims, from which the lemma follows.

Claim 3.1.1 If i ≡ j (mod l) and bai ∈ S, then baj ∈ S.

Assume towards a contradiction that i ≡ j (mod l), bai ∈ S and baj /∈ S.
Consider the subgraph of X induced by the union of {ak | k ≡ 0 (mod l)} and
{bak | k ≡ i (mod l)}. Note that each vertex in this subgraph has degree equal
to |S ∩ {bak | k ≡ i (mod l)}|. In particular, since 1G and ai−j have the same
degree and {1G, bai} is an edge but {ai−j, bai} is not, there exists k ≡ i (mod l)
such that {ai−j, bak} is an edge but {1G, bak} is not. Now, j+1−k ≡ 1 (mod l),
so, by Eq. 1, we have aj+1−k ∈ S. Therefore, (1G, bai, baj+1, bak, ai−j, a) is an
induced circuit in X and it has length 6, a contradiction. Claim 3.1.1 follows. �

Suppose l = 2, i.e. X[〈a〉] is a complete bipartite graph. Then X[〈a〉] is a
(2, t)-cycle where 2t = |a|, and ai ∈ S for all odd i. Since b ∈ S, Claim 3.1.1
yields baj ∈ S for all even j. This yields

S ∩ (〈a〉 ∪ b〈a〉) = {ai, baj | i ≡ 1 (mod 2), j ≡ 0 (mod 2)}. (2)

We leave it to the reader to prove that Eq. 2 yields X[〈a〉 ∪ b〈a〉] is a (2, 2t)-
cycle.

Hence we assume that l ≥ 8, i.e. X[〈a〉] is not a complete bipartite graph.

Claim 3.1.2 If bai ∈ S, then bai+2 ∈ S or bai−2 ∈ S.

We argue by contradiction, so, assume bai−2, bai+2 /∈ S. The circuit C =
(1G, a, a2, bai+2, bai+3, . . . , bai+l−1, bai) has length l + 2. So C is not induced.
Using Eq. 1 to study the possible chords in C and applying Claim 3.1.1, we
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get that either bai−2 ∈ S or bai+m ∈ S for some 2 ≤ m ≤ l − 4. Since
bai−2, bai+2 /∈ S, we have bai+m ∈ S for some 4 ≤ m ≤ l − 4. Let m > 0 be
minimum with bai+m ∈ S. The circuit (1G, bai, bai+1, . . . , bai+m) is induced in
X of length m + 2. Therefore m ≡ 2 (mod 4). Hence 6 ≤ m ≤ l − 6. The
10 - cycle (1G, bai, bai+1, bai+2, bai+3, a3, bai+m+3, bai+m+2, bai+m+1, bai+m) has
only one possible chord, namely {1G, bai+m+2}. Since X is balanced, we have
bai+m+2 ∈ S. Now, the circuit (1, bai+m+2, a2, bai+2, bai+1, bai) is induced in X
and has length 6, a contradiction. �

Since b ∈ S, Claim 3.1.2 says that either ba2 ∈ S or ba−2 ∈ S. Since the roles
of a and a−1 are interchangeable in our arguments, we assume, throughout
the rest of Lemma 3.1, that ba2 ∈ S.

Claim 3.1.3 If bai ∈ S, then i ≡ 0 (mod l) or i ≡ 2 (mod l).

We argue by contradiction. So, let i ≥ 0 such that bai ∈ S and i 6≡ 0, 2
(mod l), in particular, pick such an i as small as possible. Claim 3.1.1 yields
4 ≤ i ≤ l − 2. Write i = m + 2, so, 2 ≤ m ≤ l − 4. Since the circuit
(1G, ba2, ba3, . . . , ba2+m) is induced, we have m ≡ 2 (mod 4), and thus 2 ≤
m ≤ l − 6.

The circuit C = (1G, ba2+m, ba3+m, . . . , bal−1, b) of X has length l − m ≡
2 (mod 4). Therefore, C has a chord. It follows that there exists m′ with
ba2+m+m′

∈ S and 4 + m ≤ 2 + m + m′ ≤ l − 2. Pick m′ minimal with these
properties.

By Claim 3.1.2, either bam+m′

∈ S or ba4+m+m′

∈ S. If bam+m′

∈ S, then m′ =
2 by minimality of m′. However, when m′ = 2, the circuit (1G, ba2, ba3, a3, ba5+m,
ba4+m) is induced. This contradiction implies that ba4+m+m′

∈ S and m′ > 2.

Claim 3.1.2 with i = 2 + m implies that either bam ∈ S or ba4+m ∈ S. Since
m′ > 2, the minimality of m′ implies that ba4+m 6∈ S. Thus bam ∈ S. If m > 2,
this contradicts the minimality of i, so m = 2. In particular, ba6+m′

∈ S.

Consider the circuit C = (1G, ba2, ba3, a3, ba7+m′

, ba6+m′

). Since m = 2, we
have 2 ≤ m′ ≤ l − 6. By Eq. 1, the only possible chord in C is {ba2, ba7+m′

}
and thus am′+5 ∈ S. Since m′ + 5 ≤ l − 1, Eq. 1 implies that m′ + 5 = l − 1.
Since ba2+m+m′

∈ S, we have bal−2 ∈ S. By Claim 3.1.1, ba−2 ∈ S and thus
the circuit (1, ba2, ba, a3, ba5, ba4) is induced in X. This contradiction finally
implies Claim 3.1.3. �

Since b, ba2 ∈ S, Claims 3.1.1 and 3.1.3 show that bai ∈ S if and only if i ≡ 0, 2
(mod l). Thus

S ∩ (〈a〉 ∪ b〈a〉) = {ai, baj | i ≡ ±1 (mod l), j ≡ 0, 2 (mod l)}. (3)

We leave it to the reader to check that Eq. 3 yields that X[〈a〉 ∪ b〈a〉] is an
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(l, 2t)-cycle (show that ai and baj are twins in X[〈a〉 ∪ b〈a〉] if and only if
j ≡ i + 1 (mod l)). The proof of Lemma 3.1 is complete. 2

Proof of Theorem 1.2. Let X̂ denote the quotient graph X/〈a〉. That
is, X̂ has a vertex for each coset of 〈a〉, and the vertices b1〈a〉 and b2〈a〉 are
adjacent in X̂ if and only if b1〈a〉 ∩ b2〈a〉 = ∅ and there exists u1 ∈ b1〈a〉 and
u2 ∈ b2〈a〉 with {u1, u2} ∈ E(X).

Case 1: l = 2, i.e. X[〈a〉] is a complete bipartite graph.

Let (α1, α2, . . . , αk) be an induced circuit in X̂. Note that by Lemma 3.1,
X[αi ∪ αi+1] is a complete bipartite graph (indices mod k). If k ≥ 4 then it
is straightforward to exhibit an induced circuit of X of length 2 (mod 4). For
instance, if k ≡ 0 (mod 4) then pick a path of length 2 in X[α1] and a path of
length 2 in X[αk−1] and extend it to an induced circuit of X using a unique
vertex from each X[αi], where i 6= 1, k − 1.

α1 α2 α3 αk−2 αk−1 αk

All other cases are fairly similar. This proves that every induced circuit in X̂
has length 3, and thus X̂ is complete. Now, it is easy to check, using Lemma 3.1
and the fact that X̂ is complete, that X is isomorphic to a (2, t|G|/|a|)-cycle.

Case 2: l ≥ 8.

We first prove a claim.

Claim 3.1.4 The graph X̂ is complete. Further, let α1, α2, α3 be three distinct

vertices of X̂. If x2 ∈ V (X[α2]) has twins x1 ∈ V (X[α1]) in X[α1 ∪ α2] and

x3 ∈ V (X[α3]) in X[α2 ∪ α3], then x1 and x3 are twins in X[α1 ∪ α3].

Let (α1, α2, α3) be a path of length 3 in X̂. For i ∈ {1, 2, 3}, choose xi ∈
V (X[αi]) such that x1 and x2 are twins in X[α1 ∪α2] and x2 and x3 are twins
in X[α2∪α3] (this is feasible because, by Lemma 3.1, the graphs X[α1∪α2] and
X[α2∪α3] are (l, 2t)-cycles). Since the multiplication on the right by an element
of 〈a〉 is an automorphism of X[α1∪α2], we have that x1a

j and x2a
j are twins

in X[α1 ∪α2] for any j. Similarly, x2a
j and x3a

j are twins in X[α2 ∪α3]. This
yields that (x1, x1a, x2a

2, x3a, x3, x2a
−1) is a circuit of length 6 in X, therefore

it has a chord. Since l ≥ 8, we have that {x2a
2, x2a

−1} 6∈ E(X), therefore
either {x1, x3a} or {x1a, x3} is an edge of X. Without loss of generality, we
may assume that {x1, x3a} is an edge (the role of a and a−1 is interchangeable).
In particular, {α1, α3} ∈ E(X̂), and thus X̂ is complete.

9



Now, it remains to prove that x1 and x3 are twins in X[α1 ∪ α3]. Since
X̂ is complete, Lemma 3.1 yields that X[α1 ∪ α3] is an (l, 2t)-cycle. More-
over, since {x1, x3a} ∈ E(X), we have that either x1 is a twin with x3

in X[α1 ∪ α3] or x1 is a twin with x3a
2 in X[α1 ∪ α3]. In the latter case,

(x1, x1a, x1a
2, . . . , x1a

l−5, x3a
l−2, x2a

l−1) is an induced circuit of length l − 2,
and by this contradiction, x1 and x3 are twins in X[α1 ∪ α3]. The claim is
proved. �

Now, we leave it to the reader to check that Lemma 3.1 and Claim 3.1.4 yield
that X is a (l, t|G|/|a|)-cycle. The proof of Theorem 1.2 is complete. 2

4 The number of vertices in a regular balanced graph

The graph X = Cay(G, S) is regular with degree |S|. Theorem 1.2 implies
that if X is balanced and G is abelian, then |G| is divisible by 2|S|. We prove
Theorem 1.3, which states that this divisibility criterion holds for all regular
balanced graphs. To do this we need first some terminology and a well-known
result in linear programming on balanced matrices.

We recall that if A is an n×m {0, 1}-matrix, then the set partitioning polytope
defined by A is the set R(A) = {x ∈ Rm | Ax = 1n, 0m ≤ x ≤ 1m}, where 1n,
respectively 1m, denotes a column vector of length n, respectively m, whose
entries are all equal to 1 and 0m denotes the zero vector of length m. Note that
R(A) is a convex polytope. A set partitioning polytope is said to be integral

if all its vertices (i.e. extremal points) have only integer-valued components.

The following characterization of balanced matrices is due to Berge [3] and
Fulkerson, Hoffman, and Oppenheim [7].

Theorem 4.1 (Berge [3], Fulkerson, Hoffman, and Oppenheim [7]) If

A is a balanced matrix, then R(A) is integral.

We note that a proof of Theorem 4.1 is also in [5] (see Theorem 2.1), where a
more general result is proved. Now, Theorem 1.3 is a corollary of Theorem 4.1.

Proof of Theorem 1.3. Let X be a k-regular balanced graph and A be
the bipartite adjacency matrix of X. Since X is regular, A is a square matrix
of size n = 1

2
|V (X)|. Since the vector 1

k
1n lies in the set partitioning polytope

R(A), we have R(A) 6= ∅. Thus, by Theorem 4.1, there exists a vertex x of
R(A) with integer-valued components. As x lies in R(A), we have 0n ≤ x ≤ 1n,
so, x has components in {0, 1}. Set t =

∑n
i=1 xi. The equation Ax = 1n and

the fact that X is k-regular yield tk = n = 1/2|V (X)|. The theorem follows. 2

10



5 Cubic balanced planar graphs

In this section we deal with cubic planar graphs and we prove Theorem 1.4.

Batagelj [2] proved that all 3-connected cubic bipartite planar graphs can be
obtained from the cube by a succession of two elementary operations. The first
operation is called diamond inflation of a vertex and it replaces a vertex with
a “diamond”, see Figure 5.1(a). The second operation is called A1 subdivision

and it applies to a pair of non-adjacent edges {u, v}, {w, z}, see Figure 5.1(b).

(a) (b)
u v

w z

a

a

b c b c

u

w

v

z

Fig. 5.1. (a) diamond inflation, (b) A1 subdivision

We state Batagelj’s theorem precisely.

Theorem 5.1 (Batagelj [2]) Every 3-connected cubic bipartite planar graph

can be obtained from the cube by a succession of diamond inflations and A1

subdivisions. The operations can be chosen such that the intermediate graphs

are planar and bipartite.

Lemma 5.2 Let X be a cubic bipartite planar graph with connectivity κ(X) =
2. There exists a 2-vertex cut {u, v} such that X\{u, v} has a component Y
with the following property: there exist two nonadjacent vertices a, b in Y such

that Y = (V (Y ), E(Y ) ∪ {ab}) is a cubic 3-connected bipartite planar graph.

Proof. Choose a 2-vertex cut-set {a, b} so as to minimise the order of one of
the resulting components, C. If a has a single neighbour a′ in C, then {a′, b} is
a 2-vertex cut-set that contradicts the minimality of C; similarly for b. So each
of a and b has two neighbours in C. A counting argument, using the regularity
and the bipartition of the graph X, forces a and b to have opposite colours, so
the neighbours of a and b are all distinct. Further, a and b are not adjacent,
since there must be another component to which at least one of them is joined
by an edge, and each has only three neighbours.

We claim that the choice of Y to be the induced subgraph on V (C) ∪ {a, b}
(with the neighbours of a and b that are not in C as the 2-vertex cut-set)
satisfies the claims of this lemma. The minimality of C is sufficient to ensure
that Y is 3-connected, and it is clearly cubic, bipartite and planar. 2

Let X be a 3-connected cubic bipartite planar graph, v be a vertex of X and
w1, w2, w3 be the three neighbours of v. Let pi = (wi, wi1, . . . , wini

, wi+1) be
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the path in X from wi to wi+1 (indices mod 3) such that the circuit (v, pi)
is the boundary of a face of X, see Fig. 5.2. Let us denote by Sv the subgraph
of X with vertex set {v, w1, w2, w3, wij | 1 ≤ i ≤ 3, 1 ≤ j ≤ ni} and edge set
{vw1, vw2, vw3, wiwi1, wini

wi+1, wijwi(j+1) | 1 ≤ i ≤ 3, 1 ≤ j ≤ ni − 1}, i.e. Sv

is the graph in Fig. 5.2(a). For instance, the bold edges in Fig. 5.2(b) show
the subgraph Sv for the cube.

Sv

p1p3

p2

w1

w2w3

(a)

v

(b)

v

Fig. 5.2. The subgraph Sv

Claim 5.2.1 Sv is an induced subgraph of X.

Proof. This is true for the cube. Now use Theorem 5.1 and induction. �

Claim 5.2.2 ∩v∈V (X)E(Sv) = ∅.

Proof. This is readily true for the cube. Now use Theorem 5.1 and induction
to conclude. �

If X = (V, E) is a graph and e ∈ E, then we denote by X\e the graph
(V, E\{e}).

Lemma 5.3 Let X be a 3-connected cubic bipartite planar graph. Then X is

unbalanced. If e is an edge of X, then X\e is unbalanced.

Proof. Let v be a vertex of a 3-connected cubic bipartite planar graph X.
We claim that Sv is unbalanced. If the path pi has length 0 (mod 4), for some
i ∈ {1, 2, 3}, then the circuit (v, pi) is induced and has length 2 (mod 4), so Sv

is unbalanced. Finally, if pi has length 2 (mod 4), for every i, then the circuit
(p1, p2, p3) is induced in Sv and has length 2 (mod 4), so Sv is unbalanced.
Thus our claim is proved.

Now, by Claim 5.2.1, Sv is an induced subgraph of X. Therefore, X is unba-
lanced.

Let e be an edge of X. By Claim 5.2.2, there exists v ∈ V (X) such that
e /∈ E(Sv). Now, by Claim 5.2.1, Sv is an induced subgraph of X\e. Therefore,
X\e is unbalanced. 2

Proof of Theorem 1.4. Let X be a cubic bipartite planar graph. We
have to prove that X is unbalanced. By Lemma 5.3, we may assume that
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κ(X) = 2. By Lemma 5.2, there exist nonadjacent a, b in V (X) and Y an
induced subgraph of X such that Y = (V (Y ), E(Y ) ∪ {e}) is a 3-connected
bipartite planar graph, where e = ab. Now, by Lemma 5.3, Y = Y \e is
unbalanced. So, X is unbalanced. The proof of Theorem 1.4 is complete. 2

6 Conjectures

The conjectures presented here are supported by computer searches performed
with the invaluable help of GAP [8], including an exhaustive analysis of the
graphs from Gordon Royle’s web page.

Conjecture 6.1 If X is a connected vertex-transitive balanced graph, then X
is an (l, t)-cycle.

The truth of Conjecture 6.1 would imply that the only connected vertex-
transitive balanced graphs of odd degree are the complete bipartite graphs.

Every cubic balanced graph known to the authors has non-trivial twins. So,
we present the following conjecture which has been verified for all graphs with
fewer than 54 vertices.

Conjecture 6.2 If X is a cubic balanced graph, then X has non-trivial twins.

The truth of Conjecture 6.2 might shed some new light on the graph structure
of a cubic balanced graph. For example the following conjectures, interesting
in their own right, are implied by the validity of Conjecture 6.2.

(i) K3,3 is the only connected vertex-transitive cubic balanced graph;
(ii) every cubic balanced graph has girth four;

(iii) Conforti-Rao conjecture is true for cubic balanced graphs, see [6] page 54.

We leave it as an exercise to the reader to prove that Conjecture 6.2 yields
(i), (ii) and (iii). As a matter of curiosity we point out that the truth of
Conjecture 6.2 would also yield Theorem 1.4. Indeed, it is easy to show that
cubic bipartite graphs with non-trivial twins are not planar graphs.

We conclude by reporting the number of “small” cubic balanced graphs; f(d)
denotes the number of connected cubic balanced graphs on d vertices. 3

d 6 12 18 24 30 36

f(d) 1 1 4 13 74 527

3 for the graphs corresponding to the values of d contact the second author
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