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It’s hard to think of Brian Alspach these days, without conjuring up a mental
picture of feet in Birkenstocks, and his Australian hat within arm’s reach, if
not perched on his head. Often, a briefcase will be stashed nearby, if he isn’t
actually carrying it.

These outward symbols are accurate reflections of Brian’s character. Although
his outlook is casual and laid-back, his attention rarely strays far from his
passions in life, which include the work that is stored in that briefcase.

Brian’s 65th birthday, on May 29, 2003, was celebrated at the “Graph The-
ory of Brian Alspach” conference, held at Simon Fraser University (SFU) in
Vancouver (where he spent most of his career). This volume of papers forms
the proceedings of the conference.

The conference banquet provided a rare opportunity for Brian’s colleagues,
collaborators, and students, as well as friends and family members to get
together, and to share stories about Brian. The guests were delightfully en-
tertained by the “Brian Alspach Quiz” prepared for the occasion by Brooks
Reid, who served as the Master of Ceremonies. Brooks has graciously allowed
us to include some of his quiz questions in this paper. We are happy to share
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them with you. Answers either appear with the questions, or can be found in
the text.

Brian Alspach has been a tremendous influence in the mathematical commu-
nity. He enjoys meeting young mathematicians, and at conferences, is often to
be found at the center of a very lively group. He is a talented mentor, with
a knack for encouraging young people. Even a brief meeting with him has
proven influential in numerous careers, but Brian has no hesitation in going
far out of his way to provide further encouragement. A substantial amount
of his grant money goes toward supporting students — not only his own —
with funding to attend conferences or to visit other researchers. He has also
regularly provided financial assistance to researchers who want to visit and
work with him. His home is often opened to visitors who are at various stages
of their careers, but particularly to students and to mathematicians who are
still establishing themselves.

Brian’s example and leadership have set the standards for collaborative re-
search, not only among those mathematicians whom he has mentored directly,
but among all of those who work in the areas where his research has been influ-
ential. In general, these areas of research do not have the cut-throat attitude
that is too often seen in the scientific community. Instead, credit for results
is shared generously, and assistance is offered freely. This is certainly Brian’s
own approach. He has collaborated with almost 60 different co-authors.

Brian maintains a keen interest in applications of mathematics, particularly
those in industry, which he feels are an important part of maintaining young
adults’ interest in mathematics. He keeps abreast of research in areas beyond
mathematics, and has published papers about applications of mathematics.
He maintains contacts in industry, has done consulting work, and has led
industry-funded projects. He provided the energy and leadership that recently
led to the foundation of an industrial mathematics program at Simon Fraser
University, as well as having founded and served as the Coordinator for the
related Master’s of Management and Systems Science program for many years.
Brian was also one of the founders of the co-op education program at SFU; his
role included championing the program through resistance at the University
Senate. (In co-operative education, universities work with employers to provide
students with alternating semesters of study and job experience; the program
at SFU is now one of the longest-standing and most respected in Canada.)

It would be remiss to write much about Brian without mentioning ways in
which he combines the passions in his life, and uses his other interests to
popularise mathematics. He enjoys giving talks to the public and to school
groups, and when doing so, he often uses either sports or games to introduce
mathematical problems in an interesting way. He has a great interest in both
football (specifically, the Washington Huskies), and baseball. Besides being
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Question 1. Brian was, at one time,
an avid:

a) fisherman
b) skier
c) horse shoer
d) golfer
e) softball player
f) curler

Question 2. Brian is an ardent fan of:
a) Saskatchewan Roughriders

football
b) U. Washington Husky football
c) San Diego Padres baseball
d) New Westminster Salmonbellies

Box lacrosse
e) New Zealand All-Blacks rugby
f) B.C. Lions football

a fan of the Seattle Mariners baseball team, he played on fast pitch softball
teams in leagues around the Vancouver area for many years. More recently,
his enjoyment of poker has led him to writing regular articles in popular poker
magazines, about the mathematics behind various situations in that game. He
has also done consulting work in the gaming industry.

This paper consists of a brief overview of Brian’s life, followed by discussions
of some of the areas in which he has made significant research contributions.
At the end of this paper is a complete list of his publications.

Brian was born on May 29, 1938, in North Dakota. By the time he was nine
years old, his family had settled in Seattle, Washington. He has one brother,
Neal, and one sister, Diane, both of whom live in the Seattle area, where his
mother also still resides. After finishing his undergraduate degree at the Uni-
versity of Washington in 1961, Brian moved to California, where he undertook
graduate work at the University of California – Santa Barbara. He maintained
a keen interest in the Washington Huskies college football team, and had sea-
son tickets to their home games for years. When living in Vancouver, he would
drive down to Seattle regularly to watch their games, and would occasionally
travel to attend road games.

Brian taught one year (1961-62) of junior high school between his B.A. and
his Ph.D.

Question 3. Before settling into Cayley
graphs, decompositions,
automorphisms, etc. Brian worked in:

a) Ramsey theory
b) enumeration
c) tournaments
d) reconstruction
e) matroids
f) divinity

Question 4. Brian’s earliest published
paper appeared in what year?

a) 1965
b) 1967
c) 1968
d) 1969
e) 1970
f) 1938

Brian’s graduate work was done under the supervision of Paul Kelly, in a de-
partment that was very strong in the area of linear algebra. Kelly is given joint
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credit with Ulam for posing the famous Graph Reconstruction Conjecture, and
established the result for trees. Brian completed his M.A. at UCSB in 1964,
and his Ph.D. in 1966; the title of his thesis was “A Class of Tournaments.”

Brian moved to Vancouver in 1966, where he joined Simon Fraser University’s
Department of Mathematics and Statistics one year after the university was
founded. During his career there, he was influential at a wide variety of levels,
from the local to the international. He sat on editorial boards of journals,
helped to organise international conferences and workshops, and wrote many
Math Reviews.

Question 5. Brian was a host for the
“Cycles in Graphs” 8-week summer
workshop/conference at SFU in:

a) 1982
b) 1980
c) 1978
d) 1986
e) 1984
f) 1988

Question 6. Brian was a problem
editor for

a) Discrete Mathematics
b) Journal of Comb. Theory
c) Journal of Graph Theory
d) Bulletin of the Canadian Math.

Soc.
e) Spectrum
f) Backgammon Today

Answers. The highly successful “Cycles in Graphs” workshop, organised by Brian
and Pavol Hell, took place in 1982. It included very generous time for work and
collaboration. The proceedings were edited by Brian, with Chris Godsil, and ap-
peared as a volume in Annals of Discrete Math. Brian also contributed many open
problems to Discrete Mathematics.

At a regional level, he helped to found, and was the main coordinator for
the West Coast “Combinatorial Potlatches,” from their origins in the 1970s,
until 1997. These one-day gatherings, held once or twice a year, bring together
combinatorial researchers and students from around the Pacific Northwest, to
discuss their research interests and to get to know one another.

Locally, he organised and coordinated seminars, mentored students, and par-
ticipated in many projects to raise awareness of mathematics in the commu-
nity. By the late 1970s, the graduate program in discrete mathematics at SFU
had grown to the point where Brian decided it was worthwhile to institute an
instructional seminar series. This series has been held on a weekly basis during
the academic year, ever since, and has exposed participants to a wide variety
of current-interest topics in discrete mathematics. Brian also played an im-
portant role in attracting other combinatorialists to the department, and was
instrumental in the recruitment and hiring of several, including Pavol Hell,
Chris Godsil, Kathy Heinrich, and Luis Goddyn.

Brian had been married to Linda in 1961. After they split up, Brian met
Kathy Heinrich at the Southeastern International Conference on Combina-
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Question 7. Brian missed a discrete
mathematics conference at UBC, a
conference he organized, because he
took off for:

a) Mississippi
b) Italy
c) Cayman Islands
d) Fiji
e) Singapore
f) Australia

Question 8. Brian’s wife is also a
mathematician who works in:

a) Algebraic Number Theory
b) Logic
c) P.D.E.’s
d) Combinatorics
e) The History of Zero
f) Numerical Analysis

Answers. The answer to Question 7 is Australia, the native country of Brian’s
wife, Kathy Heinrich. She is a combinatorialist who received her Ph.D. from the
University of Newcastle under the supervision of Walter Wallis.

torics, Graph Theory and Computing, in 1977. Brian and Kathy were married
in 1980, in Reno, but kept it very quiet; many members of the department
speculated for years about the status of their relationship. Kathy joined the
Department of Mathematics and Statistics at SFU in 1981.

Frequent visitors passed through Brian and Kathy’s home on the north shore
of Burrard Inlet, from SFU students and colleagues attending a summer bar-
becue, to research collaborators young and old who came for a longer stay.
Many of us have fond memories of summer afternoons when Brian took time
off to cook. A meal might include such favourites as barbecued wild salmon
(sockeye, to be precise — the tastiest kind according to Brian), Brian’s special
fresh spinach salad with grapes and mushrooms (for which the early guests
themselves could help pick tender young spinach leaves in the large vegetable
garden), and Brian’s signature dessert, the inevitable scrumptious blueberry
pie. Brian was a committed gardener, and his produce was always a source of
pride to him. On many other occasions, meals at Brian and Kathy’s home were
prepared cooperatively by several mathematicians (including visitors, locals,
students, and former students). Brian was also known for organising salmon
bakes on the beach at Spanish Banks in Vancouver.

After a dinner at their home, guests might admire Brian’s extensive collec-
tion of jazz and classical music recordings, and be introduced to some of his
favourites. Some would vie for the chance to play a game of pinball on the
legendary machine standing in the basement, dreaming of scoring 100,000
points, and thus winning the coveted honour of having their names inscribed
in Brian’s book. Others might play with Brian and Kathy’s friendly cat if he
happened to be around, and — if they noticed it at all — muse over the small
ancient TV set hidden in a dark faraway corner of the house. These traditions
continued after Brian and Kathy tore down their old home, and built a beau-
tiful new one on the same site, filled with art work they had brought from
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their travels around the world.

Question 9. One of Brian’s students
went on to be a:

a) famous Toronto chef
b) high financier
c) Canadian table tennis senior

champion
d) slum lord
e) fireman
f) Provincial Attorney General

Question 10. Which pair of initials is
not a pair of initials of Brian’s
students:

a) C.Q.Z. and S.M.
b) J.M. and J.L.
c) L.G. and K.H.
d) B.V. and M.S.
e) S.M. and L.V.
f) J.A. and S.Z.

Answers. Brian indeed counts a high financier among his former students; however,
Luis Goddyn and Kathy Heinrich, who are hiding behind the initials L. G. and K. H.
in Question 10, are not among them.

Brian spent 32 years at Simon Fraser University before taking early retirement
in September of 1998, at the age of 60. His retirement left him free to move to
Regina, Saskatchewan in August of 1999, when Kathy was offered the position
of Vice-President Academic at the University of Regina. Brian now holds an
adjunct position at the University of Regina. After the move, his remaining
graduate students divided their time between Vancouver and Regina. All of
his Master’s students have since graduated; the last of his 13 Ph.D. students
has successfully defended his thesis, and Brian maintains that he will not
be taking on any more students. He has gradually been divesting himself of
teaching, administrative, and administrative research-related commitments,
over the last few years.

Since moving to Regina, Brian has instituted annual “Prairie Discrete Math
Workshops,” similar in nature to the Combinatorial Potlatches, but covering
the Prairies region and lasting for a weekend.

Question 11. Brian publishes in:
a) The Journal of Improbable

Results
b) Better Homes & Gardens
c) College Math. Journal
d) Poker Magazine
e) Mechanics Illustrated
f) Playboy

Question 12. During the Southeastern
International Conference in Florida,
Brian often frequented:

a) high end shopping malls
b) Little Havana in Miami
c) greyhound racing
d) Greyhound bus station
e) New York Yankee spring baseball
f) Jai Alai

Answers. Jai Alai is another sport that has interested Brian, and he often took
the opportunity of seeing it played professionally in Florida, with bets on outcomes
adding to the excitement.

To some extent, Brian has filled the gap left by his retirement with other
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pursuits. Shortly before retirement, he began to take piano lessons; he par-
ticularly enjoys both classical and jazz music, and has a long-standing ap-
preciation for both opera (he would drive from Vancouver to Seattle for cer-
tain operatic productions, as well as for Husky games) and the symphony.
His interest in poker has intensified, and he writes regular articles about the
mathematics of poker for both the Poker Digest and the Canadian Poker
Player magazine; copies of these articles are available from his web page,
http://www.math.sfu.ca/~alspach.

He tells us that soon, he will have finished shedding other responsibilities, and
will be free to concentrate on some of the research problems that continue to
particularly intrigue him. Another motivation for clearing his plate is to leave
himself free to travel as he pleases.

In addition to his mathematical achievements, Brian is the proud father of
two children (by his marriage to Linda), Alina and Mark; he has four grand-
daughters.

Brian came onto the graph theory scene just as the first books in English on the
subject appeared. Thus, his career has spanned the tremendous development
of the subject, and his work and influence have contributed significantly to
that development. His research has been ground-breaking in a number of areas
within graph theory that have since attracted a great deal of attention and
interest. Summaries of some of Brian’s major contributions to research follow.
A full list of his publications can be found at the end of this paper.

Notation. In all that follows, p and q will be used exclusively to denote
distinct prime numbers; if a number could be composite, another letter, such
as k, m, or n, will be used. The letter G will always denote a group, and X
and Y will always denote graphs.

1 Tournaments and Digraphs

Brian’s thesis, and many of his early papers, dealt with tournaments: simple
digraphs without digons, whose underlying graph is complete. Some of these
results generalise to broader classes of directed graphs. Although Brian grad-
ually moved away from tournaments in his research, his work on tournaments
was fundamental to a number of research topics in this area. In Brian’s first
published paper [1], he proved that regular tournaments are arc-pancyclic:
that is, that for every arc in a regular tournament and every length k between
3 and n, where n is the number of vertices of the tournament, the specified
arc appears in a cycle of length k. This work initiated the major research
direction of Hamilton connectivity in directed graphs, which is now a fruitful
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subject area with hundreds of papers. It also formed the basis and motivation
for many related results about the cycle structure of tournaments.

Several of Brian’s early results deal with symmetries of tournaments, reflect-
ing his developing interest in permutation groups. With Myron Goldberg and
John Moon, he proved an analogue for tournaments of a result of Sabidussi,
determining the automorphism group of the wreath product of two tourna-
ments in terms of the automorphism groups of the two tournaments [2]. He
found a combinatorial proof of a previously-known upper bound on the order
of the automorphism group of any tournament on n vertices [3], and later
improved this by coming up with a recursive formula for the exact value of
the maximum order of such an automorphism group [6], in joint work with
Len Berggren.

A tournament (necessarily of odd order) is called a circulant tournament if
its automorphism group contains a transitive cyclic subgroup. Brian proved
[4] that a circulant tournament is always self-converse: that is, there is a per-
mutation on the vertices that reverses every arc in the tournament. He then
showed that any self-converse vertex-transitive tournament is a circulant tour-
nament, but that vertex-transitivity by itself is not sufficient. Although this
result has not attracted a great deal of attention, it has a strong flavour of
results that he later obtained on circulant graphs, and these have led to much
additional research. Some of Brian’s early results [10,14] involved path decom-
positions of digraphs and tournaments. These were joint work with Norman
Pullman and David Mason. They represent Brian’s first works in the area of
decompositions, where some of his most significant research has been done.

If there is an arc from u to v in an asymmetric digraph, then a directed
path of length k from u to v is called a k-bypass. An asymmetric digraph D
that is not totally disconnected is said to have the 2-bypass property, if for
every arc (u, v) of D, there is a 2-bypass from u to v. Brian, Brooks Reid and
David Roselle showed [9] that for every n ≥ 7, there is a strongly connected
asymmetric digraph of order n with the 2-bypass property. Furthermore, if the
k-bypass property is defined analogously, then any asymmetric digraph with
the 2-bypass property also has the 3-, 4-, 5-, and 6-bypass properties. Finally,
of all labelled asymmetric digraphs on n vertices, the proportion that have
the 2-bypass property tends to 1 as n tends to infinity. These results led to a
great deal of work on connectivity properties of tournaments.

The number of vertices in a tournament having a particular score is called
the frequency of that score. The set of frequencies of scores of a tournament
is called the (score) frequency set of the tournament. Brian and Brooks Reid
[18] proved that each nonempty set of positive integers is the frequency set of
some tournament, and they determined the smallest possible order for such a
tournament. They also gave a similar result for digraphs.
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2 Permutation Groups and Their Actions on Graphs

Brian has been working on problems regarding the interactions of graphs with
permutation groups for many years. He is widely regarded as an expert in
this area, and particularly on the topic of Cayley graphs. The class of Cay-
ley (di)graphs is a restriction of the class of vertex-transitive (di)graphs, to
the case where the automorphism group of such a graph contains a regu-
lar subgroup. (A permutation group action on a set Ω is regular if for any
u, v ∈ Ω, there is a unique element g of the group, for which g(u) = v.) If G
is a regular subgroup of Aut(X), we say that X is a Cayley (di)graph on G.
This restriction from vertex-transitive graphs to Cayley graphs makes many
problems easier to solve, and eliminates the need to consider some pesky recur-
ring counter-examples, such as the Petersen graph. Brian has written chapters
about Cayley graphs for several books, including the Handbook of Graph The-
ory [76], and Topics in Algebraic Graph Theory [77]. Some of his work in this
area is outlined below.

2.1 Automorphism groups of graphs

In a 1967 paper, Turner [J. Combinatorial Theory 3 (1967), 136–145] showed
that any vertex-transitive graph on p vertices is a circulant graph (that is, a
Cayley graph on a cyclic group). This paper was a major influence on Brian;
it was the first source of his lasting interest in automorphisms of graphs. In
1973, Brian determined the automorphism group for such a graph or digraph.
In fact, he gave an explicit method for determining the automorphism group,
from the standard representation for such a circulant (di)graph. He also used
this to enumerate the number of circulant (di)graphs of order p that have a
fixed automorphism group [5,7]. This work leads easily to a polynomial-time
algorithm for determining the full automorphism group of a circulant (di)graph
on p vertices. Subsequently, other authors built on this work to produce con-
siderably more complicated structural results about the automorphism groups
of circulant (di)graphs on n vertices, in the cases where n is either a prime
power, or square-free.

One way of learning about the automorphism group of a graph, is to determine
its transitivity properties. This was an approach that interested Brian, and he
had several results in this area. In 1973, Brian gave a new proof [8] of a result
characterising finite permutation groups G whose action is 2-homogeneous
(i.e., transitive on unordered pairs but not 2-transitive). This was closely re-
lated to his later work on 1/2-transitive graphs: that is, graphs whose auto-
morphism group acts transitively on the vertices and on the edges, but not
on the arcs. These graphs were first considered by Bouwer in 1970, but were
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almost completely neglected until Brian’s paper [59] with Dragan Marušič
and Lewis Nowitz, in which the first infinite family of 1/2-transitive (metacir-
culant) graphs of a fixed degree (namely, 4) was constructed. Soon followed
another paper [61], this time with Ming-Yao Xu, in which Brian determined all
1/2-transitive graphs on 3p vertices, where p 6= 2. The subject quickly gained
in popularity and has since been generating a number of papers every year.
Brian’s results have been used by other researchers studying 1/2-transitive,
as well as 1-regular graphs (that is, graphs whose automorphism group acts
regularly on the arcs).

Brian, working with Marston Conder, Dragan Marušič, and Ming-Yao Xu, was
also able to determine precisely which circulant graphs are k-arc-transitive for
k ≥ 2: that is, have automorphism groups that act transitively on the directed
walks of length at least 2 that do not double back on themselves [65]. Their
characterisation shows that very few classes of circulant graphs are highly
symmetric in this sense. There have been a number of subsequent papers
that extend their result towards a characterisation of circulant graphs whose
automorphism groups act transitively on the arcs.

In 1974, Brian posed the following problem about automorphism groups [11]:
for each subgroup of the symmetric group Sn, determine whether or not it is
the automorphism group of some graph whose vertex set is {1, . . . , n}. At the
time, he was able to solve the problem for n ≤ 7. Like the Graphical Regular
Representation (GRR) question, this question hit on an important problem
with Frucht’s 1938 construction, for any abstract group G, of a graph whose
isomorphism group is abstractly isomorphic to G. Although there are many
partial solutions, in its full generality this problem of Brian’s remains open.

2.2 The CI-problem

Another area in which Brian produced seminal research is known as the CI-
problem, which is the problem of determining which graphs and which groups
have the CI-property (defined shortly). The main significance of this property
is two-fold: it greatly simplifies the problem of testing for isomorphisms be-
tween graphs, and it also makes enumeration of non-isomorphic Cayley graphs
on a group with the CI-property much more feasible. Brian made the first real
progress on the latter problem, when he and Marni Mishna determined the
number of non-isomorphic Cayley graphs (and digraphs) on every cyclic group
that has the CI-property, as well as certain other classes of Cayley (di)graphs
that have the CI-property [73]. Both of these problems (isomorphism testing
and enumeration of isomorphism classes) are extremely difficult in general,
and finding solutions for Cayley graphs in particular is important, because of
their extensive use in network theory. A Cayley graph X on the group G has
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the CI-property if, whenever Y is isomorphic to X, there is a group automor-
phism of G that induces a graph isomorphism from X to Y in a natural way. A
group G has the CI-property if every Cayley graph on G has the CI-property.
Although much work has been done on the CI-problem and many significant
partial results have been obtained (the groups for which the problem remains
open are in a quite limited list), the problem remains unsolved.

Brian’s results on this problem include a proof that the cyclic group of order pq
has the CI-property, and a determination of precisely which circulant graphs
of order p2 have the CI-property [19]; these results were obtained in joint work
with Tory Parsons. After many subsequent partial results, cyclic groups were
eventually classified according to which have the CI-property, but [19] was the
first significant step in this effort. In the same paper, they also observed that
if there is a connected Cayley graph on the group G that does not have the
CI-property, then for any group G′ for which G ≤ G′, there is a connected
Cayley graph on G′ that does not have the CI-property.

For elementary abelian groups, Brian and Lewis Nowitz found elementary
proofs that Z2

p and Z3
p have the CI-property [70]. Although these results were

previously known, there is some hope that their technique can be extended,
at least to the first unknown case, Z5

p. It is currently known that Zn
p does not

have the CI-property for n sufficiently large, but the only prime for which all
elementary abelian groups have been characterised according to which have
the CI-property, is p = 2.

2.3 Other work on permutation groups acting on graphs

In a very important 1982 paper, Brian and Tory Parsons introduced “metacir-
culant” graphs [31], an infinite family of vertex-transitive graphs that includes
the Petersen graph. All of these graphs contain a vertex-transitive metacyclic
group in their automorphism groups. Partly because they include the Pe-
tersen graph, these graphs are a very important and natural family of vertex-
transitive graphs, and numerous researchers have studied them in relation
to a variety of problems about vertex-transitive graphs. In some sense, they
are the simplest infinite family of vertex-transitive graphs that involve non-
abelian group actions. They are a rich source of many interesting families of
graphs, such as vertex-transitive graphs that are not Cayley graphs, and 1/2-
transitive graphs. Metacirculant graphs are a generalisation of the concept of
“2-circulant” graphs, introduced in an earlier paper of Brian’s [20] that was
written with Richard Sutcliffe.

Brian has also produced noteworthy results on 3-edge-colourability of Cayley
graphs together with Yi-Ping Liu and C.Q. Zhang [66], and has written a
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paper applying Cayley graphs to a problem in computer science [57].

3 Decompositions and Factorisations

Brian’s interest in graph decompositions and factorisations has spanned more
than three decades, and seems to have grown only stronger over the years. It
started, as mentioned earlier, with two papers [10,14] on path decompositions
of digraphs, and has since encompassed topics such as cycle and hamiltonian
decompositions, orthogonal factorisations, 1-factorisations, and more. Out of
all of his work in this area, two items have been particularly outstanding. First,
he made one of the most significant contributions to the complete solution of
the Oberwolfach problem for equal cycle lengths, a problem that had attracted
much interest for almost 20 years before Brian began to work on it. Second,
more recently, he developed powerful techniques that have led to the complete
solution of the old problem of decomposing complete and nearly complete
graphs into cycles of a fixed length. This problem goes back more than a
century, and has been spun off into many related areas of research, but Brian’s
work on it represented an enormous break-through that cracked the problem
wide open.

A graph will be called nearly complete, and denoted by Kn − I, if it is ob-
tained from the complete graph Kn of even order n by removing the edges of a
1-factor. A decomposition of a graph X into its subgraphs X1, . . . , Xk is a par-
tition of the edge set of X into the edge sets of X1, . . . , Xk. A Y -decomposition
of a graph X is a decomposition of X into subgraphs isomorphic to Y .

3.1 Cycle decompositions of complete and nearly complete graphs

It is easy to determine the following necessary conditions for Kn to admit a
decomposition into cycles of length m: the degree n− 1 of the graph must be
even and the cycle length m must divide the number of edges n(n−1)/2. The
conjecture that these necessary conditions are also sufficient shares its origins
with the first results on the existence of Steiner triple systems in the mid-
nineteenth century. The first positive results of a general type (in particular,
for m even and n ≡ 1 (mod m)) were obtained in the 1960s, and over the
following decades, a concerted effort was invested into this problem by many
mathematicians. Brian’s first contribution was a 1980 paper [25] with Badri
Varma, where the conjecture is shown to be true for cycle length twice a
prime power. A good decade later, he extended the conjecture to include
nearly complete graphs, thus claiming that Kn with n odd, and Kn − I with
n even, can be decomposed into cycles of length m if and only if m divides

12



n(n−1)/2 and n(n−2)/2, respectively. In a paper with Susan Marshall [62] he
showed that the conjecture is true if n is divisible by 4 and congruent modulo
m to some k with m/2 ≤ k < m. By 1989, Hoffman, Lindner, and Rodger [J.
Graph Theory 13 (1989), 417–426] had developed the so-called reduction step,
showing that in the case with m and n both odd, it is sufficient to prove the
conjecture for n in the interval [m, 3m). Relying on this result and working
with Heather Gavlas, Brian discovered a new approach for constructing m-
cycle decompositions of complete graphs of order n in the case where m and
n are both odd, and nearly complete graphs of order n in the case where
m and n are both even, thus completely solving the problem for these two
of the four cases in [72]. Further extending Brian’s powerful techniques, one
of his students, Mateja Šajna, completed the proof of the conjecture for the
remaining two cases with m and n of opposite parity.

Following these break-through results, the focus of research in this area shifted
to other problems, including decompositions of complete and nearly complete
graphs into cycles of unequal length. To this problem Brian contributed a
profound conjecture [Research Problem 3, Discrete Math. 36 (1981), 333–334]
as early as 1981; namely, that Kn for n odd, and Kn − I for n even, can
be decomposed into cycles of lengths m1, m2, . . . ,mk if and only if the sum
m1 + m2 + . . . + mk of the cycle lengths equals the total number of edges.
This conjecture remains wide open to this day, although it has been proved
in many special cases and no counterexamples have been found.

Recently, working with Heather Gavlas, Mateja Šajna, and Helen Verrall,
Brian was able to extend his pioneering techniques for constructing cycle de-
compositions of complete and nearly complete graphs to complete symmetric
digraphs [74], thus proving a conjecture of Bermond and Faber, which had
been open since 1976. This conjecture claimed that the complete symmetric
digraph on n vertices (with one arc in each direction between each pair of
vertices) can be decomposed into directed cycles of length m if and only if
the obvious necessary condition that the cycle length m divide the number
of arcs n(n − 1) is satisfied, except in the case that the pair (m,n) is one of
(3, 6), (4, 4), and (6, 6), in which case such a decomposition does not exist.
Despite much effort invested into proving this conjecture over the years, only
partial results had been known before Brian tackled the problem. The paper
[74] received high acclaim, and was for a while featured on the JCTA web
page as one of the most downloaded articles.

3.2 The Oberwolfach problem

The Oberwolfach problem asks if it is possible to decompose the complete
or nearly complete graph into isomorphic 2-factors, each a disjoint union of
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cycles of specified lengths. More precisely, OP (m1, . . . ,mk) asks if, for n =
m1 + . . . + mk, it is possible to decompose Kn for n odd, and Kn − I for
n even, into isomorphic 2-factors, each consisting of one cycle of each of the
lengths m1, . . . ,mk. If m1 = . . . = mk = m, the notation OP (k; m) is used.
The problem was first posed by Ringel in 1967 for complete graphs, and in 1979
for nearly complete graphs. Since then, a positive answer has been obtained
in many special cases, and a negative answer in a few cases that are widely
believed to be the only exceptions, but the complete solution of the problem
has been stubbornly alluding the researchers, and the problem seems to be
only gaining in notoriety.

Brian’s first contribution [38] in this area, with Roland Häggkvist, was the
solution of OP (k; m) for all even m. In other words, they established that if
m is even and divides n, then Kn− I can be decomposed into 2-factors whose
components are cycles of length m. A few years later, Brian teamed up with
Paul Schellenberg, Doug Stinson, and David Wagner to attack OP (k; m) with
m odd, and in a single paper [43] they solved the problem for all cases but
k = 4. Thus, they proved that if m is an odd divisor of n and n 6= 4m, then Kn

for n odd, or Kn − I for n > 6 even, can be decomposed into 2-factors whose
components are cycles of length m. The case k = 4 was settled by Hoffman
and Schellenberg a couple of years later [Discrete Math. 97 (1991), 243–250].
Brian’s work was thus of crucial importance in the complete solution of the
Oberwolfach problem for fixed cycle length. He is also the author of a survey
paper [67] on the Oberwolfach problem.

3.3 Other work on factorisations and decompositions

With his strong interest in Hamilton cycles as well as cycle decompositions,
Brian had a special fondness for hamiltonian decompositions: that is, decom-
positions into Hamilton cycles and possibly one 1-factor. He showed [24] that a
connected vertex-transitive graph of order 2p admits a hamiltonian decomposi-
tion if p ≡ 3 (mod 4), and with Moshe Rosenfeld [40], he investigated hamil-
tonian decompositions of graphs arising from simple 4-dimensional polytopes.
In particular, they established necessary and sufficient conditions for prisms
over simple 3-polytopes to admit a hamiltonian decomposition, and showed
that duals of cyclic 4-polytopes always admit such a decomposition. Brian also
wrote a survey [47] on hamiltonian decompositions with Jean-Claude Bermond
and Dominique Sotteau.

Related to the above is Brian’s work on 1-factorisations. With John George
[49], he determined some sufficient conditions for the tensor product X×Y of
graphs X and Y to have a 1-factorisation. One of these sufficient conditions
is that X be k-regular, and Y have a decomposition into Hamilton cycles
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or be complete of prime power order k. In an earlier solo paper [34], Brian
determined that a line graph of a complete graph admits a 1-factorisation if
and only if it has an even number of vertices.

In addition to the papers on path decompositions of directed graphs and the
very recent paper on directed cycle decompositions of complete symmetric di-
graphs, two other early papers of Brian’s dealt with decompositions of directed
graphs. In [22], written with Kathy Heinrich and Badri Varma, he studied de-
compositions of the complete directed graph into oriented pentagons, and in
[29], certain decompositions into oriented cycles of length one less than the
order of the graph; this was joint work with Kathy Heinrich and Moshe Rosen-
feld. The decomposition into so-called antidirected cycles, discussed in [29] has
the interesting property that for each pair of cycles in the family, there exists
an arc that lies in the first cycle while its reversal lies in the second cycle. This
is reminiscent of orthogonal factorisations, our next topic.

Let X be a graph, F = {F1, . . . , Fk} a factorisation of X, and Y a subgraph
of X. Then Y is said to be orthogonal to the factorisation F if each edge of
Y lies in exactly one factor of F . Brian, Guizhen Liu, and Kathy Heinrich
studied matchings and [a, b]-subgraphs (subgraphs with the degree of each
vertex in the interval [a, b]) that are orthogonal to certain factorisations in
[55]. The same team also wrote a survey [56] on orthogonal factorisations.
This survey poses some interesting problems, including the following: for a
2k-regular graph X and a given 2-factorisation F of X, is it true that there
always exists a matching of X orthogonal to F? Several researchers have
become interested in this problem and have shown that the answer is positive
if k is sufficiently small relative to the order of the graph. Some asymptotic
results are known as well; however, the general problem appears very difficult
and remains open to date.

Another result of Brian’s, jointly with Joy Morris and V. Vilfred, was the
precise characterisation of those values of n for which a self-complementary
circulant graph of order n exists, using simple algebraic techniques [69]. This
was conjectured in 1963 by Sachs, and was also proven by Fronček, Rosa and
Siran using graph-theoretic methods. Several researchers have since begun to
study various generalisations of this problem.

4 Hamilton and Other Cycles

The problem of finding Hamilton cycles in graphs is a difficult one that has
attracted much interest. Brian has obtained results on this problem for a
variety of families of graphs. His most significant contributions in this area
have come in two forms: his classification of which generalised Petersen graphs
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have Hamilton cycles, and his work on finding Hamilton cycles in vertex-
transitive graphs. His work on generalised Petersen graphs is very well-known
and respected. His work on Hamilton cycles in vertex-transitive graphs was
foundational, and his techniques have been widely employed by others. Brian
wrote a highly influential survey on the problem of finding Hamilton cycles in
vertex-transitive graphs [30].

It has been conjectured that all but a finite number of connected vertex-
transitive graphs (the Petersen graph being one exception) have a Hamilton
cycle, and that all connected Cayley graphs on at least 3 vertices are hamil-
tonian. Brian has made some of the most significant progress towards proving
these conjectures. Brian’s first result in this area was to prove [23] that all
connected vertex-transitive graphs on p vertices are not only hamiltonian, but
Hamilton-connected: that is, that there is a Hamilton path between any two
vertices in such a graph. Using this, he showed that the Petersen graph is the
only non-hamiltonian, connected, vertex-transitive graph on 2p vertices. This
work spurred on a number of other researchers, who were gradually able to
prove related results for values such as 4p and pq, sometimes obtaining only
a Hamilton path, and sometimes requiring the stronger hypothesis that the
graph be a Cayley graph in order to guarantee the existence of a Hamilton
cycle.

Brian also proved [28,37] that all of the generalised Petersen graphs GP(n, k)
(k < n/2) are hamiltonian, except for the case in which they were already
known not to be, GP(n, 2) where n ≡ 5(mod 6). In the first paper, he worked
with Peter Robinson and Moshe Rosenfeld to prove that for any n, all but
finitely many of the generalised Petersen graphs are hamiltonian. The paper
that completed the classification was a solo effort. As mentioned above, this
work gained him wide recognition.

In a series of three papers, Brian was able to prove that every connected
metacirculant graph for which the cardinality of each block is a prime power
has a Hamilton cycle, except the Petersen graph [32,39,42]. The first two
papers dealt with blocks of prime cardinality, and were joint work with Tory
Parsons; Erich Durnberger joined them on the second paper. The extension
to prime powers was written by Brian alone. This is the best result known for
this family of graphs.

If X is a graph and Aut(X) contains a semiregular element α, then the quotient
graph X/α has as its vertices the orbits of 〈α〉; two such vertices are adjacent
if and only if there is an edge in X joining a vertex of one corresponding orbit
to a vertex in the other corresponding orbit. Brian developed three methods
of obtaining a Hamilton cycle in X from a Hamilton cycle in X/α. He used
these methods to show that if G is metacyclic (with more than 2 elements),
and X is the Cayley graph on G with the standard generating set, then X has
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a Hamilton cycle [44]. The techniques that he developed were later employed
in many of the other results on Hamilton cycles in vertex-transitive graphs.
In fact, this notion of the quotient graph that he developed has been used far
more broadly, in structural results about vertex-transitive graphs.

In joint work with C.Q. Zhang, Brian proved that every cubic Cayley graph
on a dihedral group has a Hamilton cycle [46]. He later extended this — now
working with C.C. Chen and Kevin McAvaney [64] — to show that some
families of these are in fact Hamilton-laceable (this is the best possible result
for bipartite graphs: that there is a Hamilton path connecting any two vertices
that are an odd distance apart). Whether or not all Cayley graphs on dihedral
groups are hamiltonian remains an open problem, despite the considerable
interest that it has attracted.

One of the major results in this area, was the proof [Chen and Quimpo, Com-
binatorial mathematics, VIII (Geelong, 1980), 23–34, Lecture Notes in Math.,
884, Springer, Berlin, 1981] that every Cayley graph on an abelian group
is Hamilton-laceable if the graph is bipartite, and Hamilton-connected other-
wise. Brian and Yusheng Qin were able to extend this result to all hamiltonian
groups: that is, finite non-abelian groups in which every subgroup is normal
[71]. Brian also suggested another way of determining the prevalence of Hamil-
ton cycles in graphs, by characterising their Hamilton space. The Hamilton
space of a graph is the subspace of its cycle space that is generated by its
Hamilton cycles. Working with Stephen Locke and Dave Witte, he determined
the Hamilton space for any Cayley graph on an abelian group precisely, and
showed that it is almost always equal to the cycle space [48].

Brian’s results on Hamilton cycles in graphs that are not vertex-transitive
include results on hamiltonian properties of matroid base graphs (where the
bases of the matroid form the vertices of the graph, with adjacencies where the
corresponding bases differ in exactly one element) [45] (with Gui Zhen Liu);
and the block-intersection graphs of certain pairwise-balanced designs [50]
(with Kathy Heinrich and Bojan Mohar) and of certain balanced incomplete
block designs [54] (with Donovan Hare).

With the exception of results dealt with in the section on decompositions, by
far Brian’s most significant result on cycles that are not Hamilton cycles, was
his proof with Luis Goddyn and C.Q. Zhang, that graphs with the circuit cover
property are precisely those graphs that have no subgraph homeomorphic to
the Petersen graph [60]. A graph has the circuit cover property if for any
admissible weight function w on its edges, there exists a list of circuits in the
graph, such that each edge e belongs to precisely w(e) of these circuits. A
weight function is admissible providing that the obvious necessary conditions
hold: the sum of weights of the edges of any edge cut is even and is at least
twice the weight of each edge of the cut. This work extended previous results
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by Seymour and by Brian himself (working with C.Q. Zhang) [58]. It has in
particular two nice consequences for bridgeless graphs that do not contain
any subgraph homeomorphic to the Petersen graph. Firstly, they satisfy the
cycle double cover conjecture, that is, each of them has a family of circuits
such that each edge belongs to exactly two of these circuits. Secondly, for
these graphs the problem of finding the minimum sum of lengths of circuits
for coverings of the edges by circuits is equivalent to the classical Chinese
postman problem. Brian and his co-authors’ fundamental work on this has led
to solutions of several open problems and has important impacts far beyond
the graph decomposition area, in such fields as graph embedding, cycle cover
optimisation, flow problems and graph colourings.

5 Other Work

Brian’s work has spanned a broad variety of research topics, in addition to his
main interests. He has published papers on such topics as infinite binary se-
quences [12] (with Taylor Ollman and Brooks Reid), geometric constructions
of graphs [17] (with Moshe Rosenfeld), magic cubes [27] (with Kathy Heinrich),
so-called “amida” numbers of graphs [52] (with Zhijian Wang), and charac-
terising graphs with a particular adjacency property [53] (with C.C. Chen
and Kathy Heinrich). He has also written papers on Ramsey-type problems
[15,35,41], in joint work with various combinations of Tom Brown, Martin
Gerson, Geňa Hahn, Kathy Heinrich, and Pavol Hell.

His interest in applications has led him to publish papers relating to other
fields. One of his results [16], which appeared in the Canadian Journal of
Chemistry, applies enumeration techniques to a problem about chemical iso-
mers; it was written with Sam Aronoff. In another paper, he worked with
Peter Eades and Gordon Rose on a question that had been posed in Theoret-
ical Computer Science, about the number of productions required to produce
the language Ln = {km : 1 ≤ k,m ≤ n, k 6= m}. An upper bound for this
number had been established; Brian and his collaborators produced a lower
bound [36].

Probably his most important paper to date, outside of his main research in-
terests, was on matching designs, and was written with Kathy Heinrich. Here,
a k-matching is a set of k independent edges in a graph. They considered
the problem of constructing (n, k, λ)-matching designs, i.e. collections of k-
matchings of Kn for which any pair of independent edges of Kn lies in exactly
λ of the k-matchings. This generalised earlier study of hyperfactorisations
(the special case where n is even and k = n/2). They concentrated on the
case k = 3 and gave some constructions for the particularly interesting (and
difficult) case λ = 1 [51]. They also considered the bipartite analogue of these
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matching designs. This paper laid foundations for subsequent constructions of
matching designs by other authors.

A recent research area of Brian’s [78] has been determining the numbers of
pursuers required to find an intruder in a graph, with particular emphasis
on Cayley graphs, whose structural properties can make this problem easier
to solve. For some years, he led a research project on this topic, partially
funded by the Canadian government’s Communications Security Establish-
ment. Other project members have included Anthony Bonato, Nancy Clarke,
Danny Dyer, Geňa Hahn, Denis Hanson, Jeannette Janssen, Xiangwen Li,
Richard Nowakowski and Boting Yang. Brian’s interest in this topic stems
from an old paper by his former collaborator, Tory Parsons, who had been
trying to optimise searching patterns for a lost spelunker in a cave system.
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