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Abstract

It has been shown that there is a Hamilton cycle in every connected Cayley graph on any group
G whose commutator subgroup is cyclic of prime-power order. This note considers connected,
vertex-transitive graphs X of order at least 3, such that the automorphism group of X contains a
vertex-transitive subgroup G whose commutator subgroup is cyclic of prime-power order. We show
that of these graphs, only the Petersen graph is not hamiltonian.

1. Introduction

Considerable attention has been devoted to the problem of determining whether or not a connected,

vertex-transitive graph X has a Hamilton cycle [A1], [WG]. The vertex-transitivity implies that some group G

of automorphisms of X acts transitively on V (X). If G can be chosen to be abelian, it is easy to see that

X has a Hamilton cycle, so it is natural to try to prove the same conclusion when G is “almost abelian.”

Thus, recalling that the commutator subgroup of G is the subgroup G′ = 〈x−1y−1xy : x, y ∈ G〉, and that

G is abelian if and only if the commutator subgroup of G is trivial, it is natural to consider the case where

the commutator subgroup of G is “small” in some sense. In this vein, K. Keating and D. Witte [KW] used

a method of D. Marušič [M] to show that there is a Hamilton cycle in every Cayley graph on any group

whose commutator subgroup is cyclic of prime-power order. This note utilizes techniques of B. Alspach,

E. Durnberger, and T. Parsons [AP, ADP, A2] to extend this result to vertex-transitive graphs.

Theorem 1.1. Let X be a connected vertex-transitive graph of order at least 3. If there is a vertex-transitive

group G of automorphisms of X, such that the commutator subgroup of G is cyclic of prime-power order,

then X is the Petersen graph or X is hamiltonian.

Because K2 and the Petersen graph have Hamilton paths, the following corollary is immediate.

Corollary 1.2. Let X be a connected vertex-transitive graph. If there is a vertex-transitive group G of

automorphisms of X, such that the commutator subgroup of G is cyclic of prime-power order, then X has

a Hamilton path.
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2. Assumptions and definitions

Assumption 2.1. Throughout this note, X denotes a connected, vertex-transitive graph, G is a group of

automorphisms of X that acts transitively on the vertex set V (X), and G′ is the commutator subgroup of G.

Furthermore, we assume G′ is cyclic of order pk, where p is a prime, and that X has at least three vertices.

Assumption 2.2. We also assume X is G-minimal. That is, if Y is a connected, spanning subgraph of X,

such that, for all g ∈ G, we have gY = Y , then it must be the case that Y = X. This causes no loss of

generality, because a Hamilton cycle in any such subgraph Y would also be a Hamilton cycle in X, so there

would be no harm in replacing X with Y .

Definition 2.3 (cf. [Sc, p. 255]). The stabilizer Gx of a vertex x ∈ V (X) is {g ∈ G : g(x) = x}. This is a

subgroup of G.

Lemma 2.4 [Sc, 10.1.2, p. 256]. Let x ∈ V (G) and g ∈ G. Then Ggx = g(Gx)g−1.

Corollary 2.5. If H is a normal subgroup of G, then the following are equivalent:

a) HGx is a normal subgroup of G, for some x ∈ V (X);

b) HGx is a normal subgroup of G, for every x ∈ V (X);

c) HGx = HGy, for all x, y ∈ V (X).

Corollary 2.6. For every x ∈ V (X), the stabilizer Gx does not contain any nontrivial, normal subgroup

of G.

Proof. Let H be a normal subgroup of G that is contained in Gx. Lemma 2.4 implies H ⊂ Ggx, for all g ∈ G.

Because G is vertex-transitive, this means H ⊂ Gy, for all y ∈ V (X). Therefore, the identity automorphism

of X is the only element of H.

Definition 2.7 [Sc, p. 255]. Let H be a subgroup of G, and let x ∈ V (X). The H-orbit of x is {hx : h ∈ H}.
(The H-orbits form a partition of V (X).) Note that if H is normal in G, then the subgraphs of X induced

by different H-orbits are isomorphic, because g(Hx) = H(gx) in this case.

Definition 2.8. Let H be a subgroup of G. The quotient graph X/H is that graph whose vertices are the

H-orbits, and two such vertices Hx and Hy are adjacent in X/H if and only if there is an edge in X joining

a vertex of Hx to a vertex of Hy. Note that if H is normal in G, then X/H is vertex-transitive: the action

of G on V (X) factors through to a transitive action of G/H on V (X/H), by automorphisms of X/H.

Lemma 2.9. If H is a normal subgroup of G, then every path in X/H lifts to a path in X.

Proof. It suffices to show that if Hx is adjacent to Hy in X/H, then x is adjacent to some vertex in Hy.

By definition of X/H, we know that some x̃ ∈ Hx is adjacent to some ỹ ∈ Hy. There exists h ∈ H with

x = hx̃, so x is adjacent to hỹ ∈ Hy.
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Definition 2.10 [B, Defn. 16.1, p. 123]. Let S be a subset of G, and assume s−1 ∈ S, for all s ∈ S. The

Cayley graph Cay(G;S) is the graph whose vertices are the elements of G, and such that there is an edge

from g to h iff gs = h, for some s ∈ S. It is clear that G acts transitively on the vertices of Cay(G;S) by left

multiplication, so Cay(G;S) is vertex transitive. The Cayley graph is connected iff S generates G, in which

case, it is G-minimal iff no proper, symmetric subset of S generates G.

Recall that G′ is a normal subgroup of G and the quotient group G/G′ is abelian [Sc, Thms. 3.4.11 and

3.4.10, p. 59]. Since G/G′ is abelian and transitive on V (X/G′), it follows from the following basic fact that

X/G′ is a Cayley graph on the abelian group G/(GxG′), for any x ∈ V (X).

Lemma 2.11 (Sabidussi [Sa], [B, Lem. 16.3, p. 124]). If Gx = e, for some x ∈ V (X), then X is (isomorphic

to) a Cayley graph on G.

3. Preliminaries on the Frattini subgroup

Assumptions 2.1 and 2.2 are in effect. The main result of this section is Lemma 3.6.

Definition 3.1 [Sc, 7.3.1 and 7.3.2, p. 159]. An element g of G is a nongenerator if, for every subset S

of G, such that 〈S, x〉 = G, we have 〈S〉 = G. The Frattini subgroup of G, denoted Φ(G), is the set of all

nongenerators of G; it is a subgroup of G.

Lemma 3.2. If H is any subgroup of G′, then H is normal in G, and Hp ⊂ Φ(G), where Hp = 〈hp : h ∈ H〉.

Proof. Because G′ is a cyclic normal subgroup of G, we know that every subgroup of G′ is a normal subgroup

of G [G, Thm. 1.3.1(i), p. 9, and Thm. 2.1.2(ii), p. 16]. Therefore H is normal in G, so Φ(H) ⊂ Φ(G) [Sc,

7.3.17, p. 162]. Because H is a cyclic p-group, it is not difficult to see that Φ(H) = Hp [Sc, 7.3.7, p. 160].

Lemma 3.3. If H is a normal subgroup of G, and H ⊂ Φ(G), then X/H is G-minimal.

Proof. Let Y be a connected, spanning subgraph of X/H, such that, for all g ∈ G, we have gY = Y . Choose

x ∈ V (X), and let
S = {s ∈ G : sx is adjacent to x in X}, and

T = {t ∈ G : Htx is adjacent to Hx in X/H}.

It is straightforward to verify that GxSGx = S and HGxTGx = T . Furthermore, because Y is connected,

we see that T generates G.

Since Y is a subgraph of X/H, we must have T ⊂ HS, so, because HT = T , this implies T = H(S∩T ).

Then, because T generates G, and H ⊂ Φ(G), we conclude that S ∩ T generates G. Therefore, letting Z be

the spanning subgraph of X whose edge set is

E(Z) = {[gtx, gx] | g ∈ G, t ∈ S ∩ T},

we see that Z is connected. So the G-minimality of X implies that S∩T = S. Therefore HS = H(S∩T ) = T ,

so X/H = Y .

Because a G-minimal graph has no loops, we have the following corollary.
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Corollary 3.4. If H is a normal subgroup of G, and H ⊂ Φ(G), then the subgraph of X induced by each

H-orbit has no edges.

We now recall (in a weak form) the fundamental work of C. C. Chen and N. F. Quimpo [CQ].

Theorem 3.5 (Chen-Quimpo [CQ]). Let Y be a connected Cayley graph on an abelian group of order at

least three. Then each edge of Y (except any loop) is contained in some Hamilton cycle of Y .

The following helpful result is the main conclusion obtained from our discussion of G-minimality and

Frattini subgroups. (It also relies on the Chen-Quimpo Theorem.)

Lemma 3.6. If H is a subgroup of G′, such that X/H has a Hamilton cycle, then each edge of X/H (except

any loop) is contained in some Hamilton cycle of X/H.

Proof. If H = G′, then G/H is abelian, so the desired conclusion follows from the Chen-Quimpo Theorem

(3.5).

We may now assume H 6= G′, which implies H ⊂ (G′)p. So H ⊂ Φ(G) (see 3.2); therefore X/H is G-

minimal (see 3.3). Let C be any Hamilton cycle in X/H, and let Y = ∪g∈GgC. Because X/H is G-minimal,

we must have Y = X/H, so every edge of X/H is contained in some Hamilton cycle gC.

4. Proof of Theorem 1.1

Assumptions 2.1 and 2.2 are in effect. The main conclusions of this section are the two propositions.

Together, they constitute a proof of Theorem 1.1.

Let us begin by disposing of a trivial case: suppose that X/G′ has only one vertex. Then G′ is transitive

on V (X), so there is no harm in replacing G with G′; hence G is cyclic and thus G is abelian. So Theorem 3.5

implies that X has a Hamilton cycle unless X has less than three vertices.

Lemma 4.1. Suppose H is a subgroup of G′. If there is a path

Hpx1,H
px2, . . . ,H

pxn,H
pxn+1

in X/Hp, with Hpx1 6= Hpxn+1, such that the image Hx1,Hx2, . . . ,Hxn,Hxn+1 of this path in X/H is a

Hamilton cycle (or, if X/H ∼= K2, such that n = 2 and Hx1 = Hx3 6= Hx2), then X has a Hamilton cycle.

Proof. We can lift the path Hpx1,H
px2, . . . ,H

pxn,H
pxn+1 to a path in X (see 2.9), so we may assume

x1, x2, . . . , xn+1 is a path in X. Because Hx1 = Hxn+1, there exists γ ∈ H such that γ(x1) = xn+1. Now,

because xn+1 6∈ Hpx1, we know γ 6∈ Hp, which implies that γ generates H. Let P be the path x1, x2, . . . , xn.

Then the trail P, γ(P ), . . . γ|H|−1(P ), x1 is a Hamilton cycle in X.

The analysis now breaks into two cases, depending on whether or not the subgraphs induced by each

G′-orbit are empty. Note that all of these subgraphs are isomorphic (because G′ is a normal subgroup), so

either all are empty, or none are.

Proposition 4.2. If the subgraph induced by each G′-orbit has no edges, then X has a Hamilton cycle.

Proof (cf. [AP, ADP, A2]). Let x1 ∈ V (X). Because G/G′ is abelian, we know that G′Gx1 is a normal

subgroup of G. Hence, there is a subgroup H of G′, such that HGx1 is normal in G, but KGx1 is not normal
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in G, for any proper subgroup K of H. (It may be the case that H = G′ or H = e.) Since X/H is a

connected Cayley graph on the group G/(HGx) (see 2.11), and the commutator subgroup of any quotient

of G is cyclic, we know that X/H has a Hamilton cycle (or X/H ∼= K2) [KW].

We may assume H 6= e, for otherwise X = X/H has a Hamilton cycle, so we are done. Then Hp 6= H,

so the choice of H implies HpGx1 is not normal. Therefore, since X is connected and vertex-transitive,

it follows from Cor. 2.5 that x1 is adjacent to some vertex u, such that HpGx1 6= HpGu, which implies

that there exists γ ∈ Gx1 such that γ(u) 6∈ Hpu. However, because HGx1 = HGu (see 2.5), we have

γ(u) ∈ Gx1u ⊂ HGuu = Hu.

Since the subgraph induced by Hx1 is contained in the subgraph induced by G′x1, which has no edges,

and x1 is adjacent to u, it follows that u 6∈ Hx1, and thus the edge [Hx1,Hu] is not a loop in X/H. Therefore,

there exists a Hamilton path from Hx1 to Hu in X/H (see 3.6). This lifts to an n-path x1, x2, x3, . . . , xn,

where xn ∈ Hu (see 2.9). Because not both of

Hpu,Hpx1,H
px2, . . . ,H

pxn and Hpγ(u),Hpx1,H
px2, . . . ,H

pxn

can be a cycle, Lemma 4.1 implies there is a Hamilton cycle in X, as desired.

We now consider the case where the G′-orbits do not induce empty graphs. Let us begin with some

preliminary observations.

Lemma 4.3. If the subgraph induced by each G′-orbit has some edges, then these subgraphs are connected,

and p is odd.

Proof. Suppose the subgraph induced by G′x is not connected. Because G′ is cyclic, this subgraph is

circulant, so any connected component must be induced by the orbit of some proper subgroup H of G′. But

H ⊂ (G′)p, and (G′)p ⊂ Φ(G) (see 3.2), so Corollary 3.4 asserts that the subgraph induced by any H-orbit

has no edges. This contradicts the fact that the connected components of the subgraph induced by G′x do

have edges.

We now show p is odd; suppose, to the contrary, that p = 2. Let Ḡ = G/(G′)2. The commutator

subgroup of Ḡ is G′/(G′)2, which has order 2. Because a group of order 2 has no nontrivial automorphisms,

this implies that the commutator subgroup of Ḡ is contained in the center of Ḡ; therefore Ḡ is nilpotent (of

class 2) [G, p. 21]. Because (G′)2 ⊂ Φ(G) (see 3.2), this implies that G/Φ(G) is nilpotent. Hence G itself

is nilpotent [Sc, 7.4.10, p. 168], so G′ ⊂ Φ(G) [Sc, Thm. 7.3.4, p. 160]. Therefore the subgraph induced by

each G′-orbit has no edges (see 3.4). This contradicts our hypothesis.

We can now concisely state several important results of B. Alspach [A2, A3].

Theorem 4.4 (Alspach). Assume the subgraph induced by each G′-orbit has some edges. Then X has a

Hamilton cycle if any of the following are true:

a) the subgraph induced by a G′-orbit does not have valence two [A3, Thm. 2.4]; or

b) X/G′ has only two vertices, and X is not the Petersen graph [A2, Thm. 2]; or

c) the number of vertices of X/G′ is odd [A3, Thm. 3.7(ii)]; or

5



d) there is a Hamilton cycle in X/G′ that can be lifted to a cycle in X [A3, Thm. 3.9].

Lemma 4.5. Let x ∈ V (X). If Gx = Gy for all y ∈ G′x, then X has a Hamilton cycle.

Proof. This is essentially the same as the proof of Proposition 4.2; the assumption that the subgraph induced

by G′x has no edges was used only to show that u 6∈ Hx1, and this follows from the assumption that Gx = Gy

for all y ∈ G′x (and, hence, for all y ∈ Hx).

The following lemma shows that we may assume all the vertices in each G′-orbit have different stabilizers.

The proof is mainly group-theoretic. The key is the observation that the automorphism group of a cycle is a

dihedral group. Therefore, if a group of automorphisms acts transitively on the vertices of an odd cycle, then

either all vertices have different stabilizers or all vertices have the same stabilizer, depending on whether or

not the group contains any reflections.

Lemma 4.6. Assume the subgraph induced by each G′-orbit has some edges, and that there are two vertices

x and y in the same G′-orbit, such that Gx = Gy. Then X has a Hamilton cycle.

Proof. Let Y be the subgraph of X induced by G′x, and let K = ∩v∈G′xGv. (Note that K is a subgroup.)

Because every subgroup of G′ is normal in G (see 3.2), we know G′ ∩Gx = e (see 2.6), so G′ ∩K = e. On

the other hand, since G′ fixes V (Y ) setwise, we see that G′ normalizes K. Therefore, [G′,K] ⊂ G′ ∩K, so

G′ must centralize K.

¿From 4.4(a), we can (and do) assume that Y has valence two. Because Y is connected (see 4.3), this

means that Y is a cycle. (Because p 6= 2 (see 4.3), it is an odd cycle.) Therefore, we see that K is a subgroup

of index at most two in Gv, for each v ∈ V (Y ). In fact, from Lemma 4.5, we may assume that the index is

exactly two.

Let A be a subgroup of Gx of order two. Because A is not normal in G (see 2.6), we know that A

does not centralize G′ (otherwise, it would be the only Sylow 2-subgroup of the normal subgroup AG′, so

it would be normal in G). Because G′ is a cyclic p-group (and p is odd), the automorphism group of G′

is cyclic [Sc, 5.7.12, p. 120], so it has only one element of order 2, namely, inversion. Therefore, the action

of A by conjugation inverts G′. Because G′ has odd order, this means that e is the only element of G′ that

is centralized by A.

On the other hand, A must centralize K (because A ⊂ Gx normalizes K, and K∩G′ = e). Thus, we see

that K is the centralizer of AG′ in KG′. Because AG′ and KG′ are normal, this implies that K is a normal

subgroup of G. Therefore, K = e (see 2.6), so Gx = A has order 2. Hence, because a group of order 2 has no

nontrivial automorphisms, any element of G that normalizes Gx must actually centralize it. In particular,

then the conclusion of the preceding paragraph implies that no nontrivial element of G′ normalizes Gx. This

contradicts the fact that Gx = Gy (see 2.4).

Proposition 4.7. If the subgraph induced by each G′-orbit has some edges, then X has a Hamilton cycle,

unless X is the Petersen graph.

Proof (cf. pf. of 4.2). Let H be the smallest subgroup of G′, such that, whenever x and y are two adjacent

vertices of X that are not in the same G′-orbit, we have HGx = HGy. (It may be the case that H = G′.)

Note that, from 4.4(b), we may assume X/G′ has more than two vertices.
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Assume for the moment that H is nontrivial. Then Hp is properly contained in H, so the minimality

of H implies there are two adjacent vertices x1 and u, such that G′x1 6= G′u, and HpGx1 6= HpGu. Thus,

there exists γ ∈ Gx1 such that γ(u) 6∈ Hpu. Because X/G′ has more than two vertices, we see that X/H

is not the Petersen graph, so, from Lemma 3.6 (and induction on the number of vertices in X), we know

there is a Hamilton path from Hx1 to Hu in X/H. This lifts to an n-path x1, x2, . . . , xn, where xn ∈ Hu
(see 2.9). Because not both of

Hpu,Hpx1,H
px2, . . . ,H

pxn and Hpγ(u),Hpx1,H
px2, . . . ,H

pxn

can be a cycle, Lemma 4.1 implies there is a Hamilton cycle in X, as desired.

We may now assume H = e. Let x1, x2, . . . , xm+1 be a lift to X of some Hamilton cycle in X/G′.

Because H = e, we must have Gxi = Gxi+1 for every i, so Gx1 = Gxm+1 . Therefore, if x1 6= xm+1, then

Lemma 4.6 implies that X has a Hamilton cycle. On the other hand, if x1 = xm+1, then Theorem 4.4(d)

yields the same conclusion.
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