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Abstract. In this paper, we begin by partitioning the edges (or arcs) of a

circulant (di)graph according to which generator in the connection set leads to
each edge. We then further refine the partition by subdividing any part that

corresponds to an element of order less than n, according to which of the cycles

generated by that element the edge is in. It is known that if the (di)graph is
connected and has no multiple edges, then any automorphism that respects

the first partition and fixes the vertex corresponding to the group identity

must be an automorphism of the group (this is in fact true in the more general
context of Cayley graphs). We show that automorphisms that respect the

second partition and fix 0 must also respect the first partition, so are again

precisely the group automorphisms of Zn.

1. Introduction

In any Cayley digraph, there is a natural partition of the edges according to
the elements of the connection set that define them. If Γ = Cay(G;S) where
S = {s1, . . . , sk}, then this natural partition is defined by

B = {{(g, gsi) : g ∈ G} : 1 ≤ i ≤ k}.

Now, any si ∈ S generates a subgroup of G. Let Gi,1, Gi,2, . . . , Gi,ki
be the ki

distinct cosets of this subgroup (and Gi,1 = 〈si〉). Then we can form a partition C
that is a refinement of B, with

C = {{(g, gsi) : g ∈ Gi,j} : 1 ≤ j ≤ ki, 1 ≤ i ≤ k}.

Notice that each set in C consists of precisely the edges of a cycle all of whose edges
are formed by a single element of S.

In the case of a Cayley graph, we replace each of the ordered pairs above with
the corresponding unordered pair, and eliminate any duplication that may result
(so B and C are sets, not multi-sets).

It is little more than an observation to prove that in a connected Cayley di-
graph, any automorphism that respects the partition B and fixes the vertex 1 is
an automorphism of G. Because the digraph is connected, 〈S〉 = G, and for an
automorphism α to respect the partition B means precisely that for any si, sj ∈ S
we have α(sisj) = α(si)α(sj). Similarly for longer words from 〈S〉. In the case of
graphs, the proof becomes more complicated since preserving the partition means
only that α(sisj) is one of α(si)α(sj), α(si)α(s−1

j ), α(s−1
i )α(sj), or α(s−1

i )α(s−1
j ).

However, the proof of this for circulant graphs is a special case of our main theorem.
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It is our main theorem that in the case of circulant graphs and digraphs (Cayley
graphs on Zn), we can similarly show that only group automorphisms of Zn respect
the partition C while fixing the vertex 0.

This question was suggested by Tomaž Pisanski. It arose in the context of
studying the structure and automorphism groups of GI-graphs, a generalisation of
both the class of generalised Petersen graphs and the Foster census I-graphs (see
[1]). The question seemed to me to be of interest in its own right.

2. Main Theorem and Proof

A Cayley digraph Cay(G;S) for a group G and a subset S ⊂ G with 1 6∈ S, is
the digraph whose vertices correspond to the elements of G, with an arc from g to
gs whenever g ∈ G and s ∈ S. If S is closed under inversion, then we combine the
arcs from g to gs and from gs to gss−1 = g into a single undirected edge, and the
resulting structure is a Cayley graph. A circulant (di)graph Circ(n;S) is a Cayley
(di)graph on the group G = Zn.

We introduce some notation that will be useful in our proof. For this notation,
we assume that Circ(n;S) is fixed, with S = 〈s1, . . . , sc〉. For any k, we will use
Sk to denote 〈s1, . . . , sk〉, and nk = |Sk|. Finally, for any integer r that divides n,
we will use r′ to denote the largest divisor of n for which every prime divisor of r′

also divides r. In other words, if r = pe1
1 . . . pe`

` , and for each 1 ≤ i ≤ ` we have pai
i

is the greatest power of pi that divides n, then r′ = pa1
1 . . . pa`

` . We will then have
gcd(r′, n/r′) = 1.

We present our main theorem. Notice that since the circulant graph is defined
on a cyclic group, we will be using additive notation for this group.

Theorem 2.1. Let Γ = Circ(n;S) be a connected circulant graph. Let α ∈ Aut(Γ)
fix the vertex 0 and respect the partition C, so for any C ∈ C, α(C) ∈ C. Then
α ∈ Aut(Zn).

Proof. We will show that there exist α1, . . . , αt ∈ Aut(Zn) such that αt . . . α1α = 1.
The result follows. For simplicity, we will use the notation βk = αk . . . α1α for any
k.

We proceed inductively. Assume that βk fixes every vertex in Sk. We aim to
show that there exists αk+1 ∈ Aut(Zn) such that αk+1βk fixes every vertex in Sk+1.
This will complete the proof.

In our base case, k = 0 and we require only that α fixes 0; this assumption is
given in our statement.

We first dispose of a trivial case. If sk+1 ∈ Sk, we let αk+1 = 1. Since βk fixes
every vertex in Sk = Sk+1, we have αk+1βk = βk fixes every vertex in Sk+1, as
required.

Let gcd(nk, |sk+1|) = d ≥ 1, and let |sk+1| = r. The first step in our proof will be
to consider the image of sk+1 under βk. We will show that βk(sk+1) = si = jsk+1

where i ≥ k + 1, gcd(j, r) = 1, and j ≡ 1 (mod d).
By our induction hypothesis, βk fixes every point of Sk = 〈n/nk〉; in particular,

it fixes 0, so there must be some i ≥ k + 1 such that βk(sk+1) = si. In fact, since
βk respects C, we must have βk(ask+1) = asi for any a. In particular, |si| = r, so
si ∈ 〈sk+1〉 = 〈n/r〉. Choose j such that si = jsk+1 and ` such that sk+1 = `n/r.
Notice that gcd(r, j) = gcd(r, `) = 1 since each of si, sk+1, and n/r generates the
subgroup of order r in Zn.
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We now show that j ≡ 1 (mod d). Notice that for any a,

a(r/d)sk+1 = a`(r/d)(n/r) ∈ 〈n/d〉 ≤ 〈n/nk〉 = Sk,

so is fixed by βk. Hence

βk(a(r/d)`(n/r)) = a(r/d)si = a(r/d)j`(n/r) = a(r/d)`(n/r).

Since gcd(`, r) = 1, we can choose a such that a` ≡ 1 (mod r), so a`(n/r) ≡ n/r
(mod n). Thus, this gives j(n/d) = n/d. Since our vertices are labelled modulo n,
this means that j ≡ 1 (mod d), as claimed, completing the first step.

For the second step in our proof, we will find an automorphism αk+1 of Zn such
that βk+1 fixes every point of Sk and every point of 〈sk+1〉.

Since gcd(j, r) = 1, there is a multiplicative inverse for j in Zr; call this element
j−1. Since j ≡ 1 (mod d), we also have j−1 ≡ 1 (mod d). Since gcd(nk, r) = d
and each of r, j−1 − 1 and nk is a multiple of d, we can find some t such that
tr ≡ 1 − j−1 (mod nk). Let x = tr + j−1. By our choice of t, we have x ≡ 1
(mod nk); also, xj = trj + 1 ≡ 1 (mod r). Now, gcd(n′k+1, n/n

′
k+1) = 1, and

Zn
∼= Zn′

k+1
× Zn/n′

k+1
. For simplicity, we will abuse notation by writing elements

in Zn as equal to their images in Zn′
k+1
× Zn/n′

k+1
under this isomorphism. In this

representation of Zn, we can see that for any s ∈ Sk+1 = 〈n/nk+1〉, we have |s|
divides nk+1, so gcd(|s|, n/n′k+1) = 1. Hence we must have s = (ŝ, 0) for some
ŝ ∈ Zn′

k+1
. Let αk+1 be the automorphism of Zn determined by multiplying every

element of Zn′
k+1
×Zn/n′

k+1
by (x, 1) (component-wise). Since x ≡ 1 (mod nk) and

xj ≡ 1 (mod r) (which implies that gcd(x, r) = 1), we have gcd(x, nk+1) = 1, so
gcd(x, n′k+1) = 1, and this is indeed an automorphism of Zn.

We claim that βk+1 = αk+1βk fixes every point of Sk = 〈n/nk〉 and every point
of 〈sk+1〉 = 〈n/r〉. Let ŝk+1 be such that sk+1 = (ŝk+1, 0) under the isomorphism
discussed in the previous paragraph. We have

αk+1βk(ask+1) = αk+1(asi) = aαk+1(si)
= aαk+1((jŝk+1, 0))
= a(xjŝk+1, 0)
= axjsk+1

= a`xj(n/r).

Since xj ≡ 1 (mod r), we have xj(n/r) ≡ n/r (mod n), so this is a`(n/r) = ask+1.
Also, let s(n/nk) be an arbitrary element of Sk = 〈n/nk〉, and let ŝ be such that
sn/nk = (ŝ, 0) under the isomorphism discussed in the previous paragraph. Then

αk+1βk(sn/nk) = αk+1(sn/nk) = αk+1((ŝ, 0)) = (xŝ, 0) = x(ŝ, 0) = xsn/nk.

Since x ≡ 1 (mod nk), we have x(n/nk) ≡ n/nk (mod n), so αk+1βk fixes sn/nk.
We have now established the claim with which we started this paragraph, and
completed the second step of our proof.

We will complete our proof by using another inductive argument to show that in
fact, every vertex in Sk+1 is fixed by βk+1. Define T0 = Sk ∪〈sk+1〉, and for m ≥ 1,

Tm = Tm−1∪{s ∈ Sk+1 : s− sk+1 ∈ Tm−1 and s− sy ∈ Tm−1 for some 1 ≤ y ≤ k}.

It is not hard to see that every element of Sk+1 will be in Tm for some m. We have
shown above that every vertex in T0 is fixed by βk+1; this is the base case for our
induction.
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Notice that T0 is a union of cosets of 〈n/d〉. We claim that every Tm is a union
of cosets of 〈n/d〉. We prove this by induction before we begin our proof that
every vertex of Tm is fixed by βk+1, as it will be required in that proof. Suppose
that s ∈ Tm. If s ∈ Tm−1 then by our inductive hypothesis, the coset of 〈n/d〉
that contains s is in Tm−1. If s 6∈ Tm−1 then s − sk+1 ∈ Tm−1 and there is some
1 ≤ y ≤ k such that s− sy ∈ Tm−1. But since Tm−1 is a union of cosets of 〈n/d〉,
this means that s − sk+1 + 〈n/d〉 ⊆ Tm−1 and s − sy + 〈n/d〉 ⊆ Tm−1, so clearly
s+ 〈n/d〉 ⊆ Tm, as desired.

Now we proceed with our main inductive argument, to show that βk+1 fixes
every point of Sk+1. Suppose that every vertex in Tm is fixed by βk+1. Let s be
an arbitrary vertex of Tm+1. If s ∈ Tm then βk+1 fixes s by hypothesis and we are
done. So by the definition of Tm+1, we have s− sy ∈ Tm for some 1 ≤ y ≤ k, and
inductively either s − sy − sk+1 ∈ Tm1 for some m1 ≤ m − 1, or s − sy ∈ T0. If
s− sy ∈ 〈sk+1〉 then s− sy − sk+1 ∈ T0 ⊂ Tm, while if s− sy ∈ Sk then s ∈ Sk is
fixed by βk+1 and we are done. So we may assume that s− sy − sk+1 ∈ Tm, as well
as s− sy ∈ Tm and s− sk−1 ∈ Tm.

Notice that every coset of Sk contains some vertex of 〈sk+1〉, and every coset of
〈sk+1〉 contains some vertex of Sk. So since βk+1 fixes every vertex of T0, we must
have βk+1 fixes (set-wise) every coset of 〈sk+1〉 and every coset of Sk. In fact, this
means that βk+1 must fix (set-wise) every intersection of some coset of Sk with
some coset of 〈sk+1〉. By elementary properties of cyclic groups, these cosets all
have size d, and are in fact precisely the cosets of 〈n/d〉. If d = 1, then these cosets
are all singletons and we immediately see that every vertex of Sk+1 is fixed by βk+1;
in the remainder of this proof we therefore assume that d > 1. Since the cosets of
〈n/d〉 are fixed set-wise, it must be the case that βk+1(s) = s + z(n/d) for some
0 ≤ z ≤ d− 1. Towards a contradiction, let us suppose that z 6= 0. Let p be some
prime such that pa is a divisor of d but pa is not a divisor of z; since 0 < z < d and
d > 1, such a p exists.

Now, since βk+1 fixes s−sk+1 and takes s to s+z(n/d), it must take (s−sk+1)+
ask+1 to (s − sk+1) + a(sk+1 + z(n/d)) for any a. Notice that when a = r/d we
have ask+1 = a`n/r = `n/d ∈ 〈n/d〉, so since Tm is a union of cosets of 〈n/d〉,
we have (s − sk+1) + ask+1 ∈ Tm. So by our induction hypothesis βk+1 fixes
(s − sk+1) + (r/d)sk+1. But then the first sentence of this paragraph shows that
this must be the same as (s− sk+1) + (r/d)(sk+1 + z(n/d)). Hence (r/d)z(n/d) ≡ 0
(mod n). Thus, d divides (r/d)z. In particular, pa divides (r/d)z, and since pa

does not divide z, we must have p | r/d.
Similarly, since βk+1 fixes s−sy and takes s to s+z(n/d), it must take (s−sy)+

asy to (s−sy)+a(sy +z(n/d)) for any a. Since Sk = 〈n/nk〉, we have sy = b(n/nk)
for some b. Notice that when a = nk/d we have asy = ab(n/nk) = bn/d ∈ 〈n/d〉,
so since Tm is a union of cosets of 〈n/d〉, we have (s − sy) + asy ∈ Tm. So by our
induction hypothesis βk+1 fixes (s−sy)+(nk/d)sy. But then the first sentence of this
paragraph shows that this must be the same as (s−sy)+(nk/d)(sy+z(n/d)). Hence
(nk/d)z(n/d) ≡ 0 (mod n). Thus, d divides (nk/d)z. In particular, pa divides
(nk/d)z, and since pa does not divide z, we must have p | nk/d. But combining this
with the fact that p > 1 and the conclusion of the previous paragraph contradicts
the definition of d. We conclude that z = 0, so βk+1 fixes s. Since s was an arbitrary
vertex of Tm+1, this completes our induction and the proof. �
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