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1 Introduction

Taking any finite group G, let H ⊂ G be such that 1 6∈ H (where 1 represents
the identity element of G) and h ∈ H implies h−1 ∈ H. The Cayley graph
X(G;H) is the graph whose vertices are labelled with the elements of G, in
which there is an edge between two vertices g and gh if and only if h ∈ H.
The exclusion of 1 from H eliminates the possibility of loops in the graph.
The inclusion of the inverse of any element which is itself in H means that
an edge is in the graph regardless of which endvertex is considered.

It has been suggested that Cayley graphs should form good networks and
several papers have been written about their fault tolerance. In particular,
B. Alspach [2] proves certain results about the fault tolerance of a particular
class of Cayley graphs, and isolates one family of graphs with interesting
properties. The purpose of this paper is to exhibit some characteristics of
graphs in this family.

The fault tolerance of a graph is defined to be the largest number of
vertices whose deletion cannot disconnect the graph. The connectivity of
a graph is the smallest number of vertices whose deletion disconnects the
graph. For a graph X, κ(X) denotes its connectivity. It is easy to see that
the connectivity of a non-complete graph is always one more than its fault
tolerance. The term connectivity will be used in this paper.

An automorphism of a graph X is a permutation σ of the vertices of X
with the property that if u and v are vertices of X, then there is an edge
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from u to v if and only if there is an edge from σ(u) to σ(v). In the case of a
Cayley graph X(G;H), left-multiplication by any element of G is clearly an
automorphism. A graph is said to be vertex-transitive if for all vertices u and
v, there is an automorphism which sends u to v. Clearly, Cayley graphs have
this property. Furthermore, any vertex-transitive graph X must be regular,
of degree k, and since removing all vertices adjacent with a particular vertex
disconnects a graph, then κ(X) ≤ k and if κ(X) = k we say X has optimal
connectivity. It is of interest to determine which graphs are optimal in this
respect.

A minimum cutset of a graph X is a set C, |C| = κ(X), of vertices whose
deletion disconnects the graph. If c(Y ) is the size of a smallest component
in the graph Y , then A ⊂ X is an atom of X if |A| = min{c(X − C) : C
is a minimum cutset of X} and there exists a C ⊂ V (X) such that A is a
component of X − C.

M. Watkins obtained the following results regarding cutsets and atoms
in vertex-transitive graphs.

Theorem 1.1 (Watkins, 1968 [5]). In a connected vertex-transitive graph,
distinct atoms are vertex-disjoint.

Theorem 1.2 (Watkins, 1968 [5]). If A1 and A2 are sets of vertices forming
distinct atoms in a vertex-transitive graph, and A1 has associated cutset C1,
then either A2 ⊂ C1, or A2 and C1 are disjoint.

He also proves the following simple corollary to these theorems.

Corollary 1.3 (Watkins, 1968 [5]). The size of the atoms of a vertex-
transitive graph must divide the connectivity of the graph.

2 Quasi-Minimal Generating Sets

Again, let us take G to be a finite group, and H ⊂ G. We take 〈H〉 to be the
subgroup of G generated by H. We say H is a minimal generating set for G
if 〈H〉 = G and every proper subset of H generates a proper subgroup of G.
If H is a minimal generating set for G, then h ∈ H implies h−1 6∈ H. The
definition is therefore modified to accommodate Cayley graphs. A Cayley
set H of the group G is minimal if it generates G, and H \ {h, h−1} is a
proper subgroup of G for all h ∈ H. The following theorem was proved in
1981.
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Theorem 2.1 (Godsil, 1981 [4]). If H is a minimal Cayley set for the finite
group G, then the Cayley graph X(G;H) has optimal connectivity.

The question became, could this result be extended to embrace other
classes of Cayley graphs? As may be deduced from the name, quasi-minimal
generating sets (first defined by Babai [3]) bear some resemblance to minimal
generating sets, and so were a logical class to try.

The set H is said to be a quasi-minimal Cayley set if it generates G, and
if its elements can be ordered in such a way that the following hold.

1. If hi ∈ H, then h−1
i is either hi−1, hi, or hi+1.

2. If Hi denotes the set {h1, h2, . . . , hi}, then for each i such that hi has
order 2, 〈Hi−1〉 is a proper subgroup of 〈Hi〉. For each i such that hi
has order greater than 2, and h−1

i = hi−1, 〈Hi−2〉 is a proper subgroup
of 〈Hi〉.

Using results achieved by M. Watkins [5], B. Alspach was able to prove the
following theorem regarding Cayley graphs with quasi-minimal generating
sets.

Theorem 2.2 (Alspach, 1992 [2]). If H is a quasi-minimal Cayley gener-
ating set of the finite group G, then the Cayley graph X = X(G;H) has
connectivity |H|, or connectivity |H| − 1 and atoms of size 2.

Let F be the family of all Cayley graphs X = X(G;H) where H is a
quasi-minimal generating set for G, κ(X) = |H|−1, and X has atoms of size
2. From Theorem 2.2 and Corollary 1.3, it follows clearly that any graph
X(G;H) ∈ F has odd degree; that is, |H| = 2n+1 for some natural number
n. The proof of Theorem 2.2, which is by induction, further shows that any
graph in this family of degree 2n+ 1 must be composed of copies of a graph
X ′(G′;H ′) ∈ F , which has degree 2n − 1, together with edges connecting
them.

It was also shown in [2] that graphs in F must have degree at least 5,
and that the only graphs of degree 5 in F are of the form C2k oK2, where C2k

denotes the cycle of length 2k, and o denotes the wreath (or lexicographic)
product, as defined in [2]. In fact, we may generalize the result as follows.

Theorem 2.3 If X ∈ F has degree 2n+ 1, n ≥ 2, then X is isomorphic to
Y oK2 where Y is vertex-transitive and the degree of Y is n.
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Proof. From Theorem 2.2, every atom contains 2 vertices, both of which
have degree 2n + 1 and the connectivity of the graph is 2n. Thus for each
atom there are precisely 2n vertices adjacent to both vertices of the atom,
and the atom is K2. Since X is vertex-transitive, every vertex must be part
of some atom, and from Theorems 1.1 and 1.2, the 2n vertices which form
the cutset for an atom must themselves fully comprise n disjoint atoms.
This shows that X is isomorphic to Y oK2 for some graph Y with degree n.
Since any atom must be sent to another atom under any automorphism of
the graph X and X is vertex-transitive, the result follows.

It was further shown in [2] that the generating sets for graphs in F must
be of the form H = {h1, h2, h

−1
2 , . . . , hn+1, h

−1
n+1}, where h1 has order 2, and

h2 = h1 for all h ∈ H \ {h1} The edges of the atom arise from h1, and hj
and h−1

j result in edges joining pairs of atoms (and thus yielding K4s). Thus
each new pair of elements joins together at least two disjoint subgraphs of
degree 2i − 1 to form subgraphs of degree 2i + 1. Graphs in F are in fact
precisely those Cayley graphs with a quasi-minimal generating set of this
sort.

What remained to be determined, after the work done in [2], was whether
or not the form in which edges connect the graphs in F of degree 2n − 1
referred to previously, could be determined. The object of this paper is to
exhibit some results along these lines which indicate that such a characteri-
zation is by no means a simple one. Even for graphs in F which have degree
7, no simple characterization exists.

3 The Quotient Graph

There is a slightly simpler way of looking at graphs in F . In Theorem 2.3,
it was shown that every graph X(G;H) in F is of the form Y oK2, for some
vertex-transitive graph Y with degree |H|−1

2 . We define this Y to be the
quotient graph of X.

Notice that the element h1 commutes with every element in the group
G. Therefore, {1, h1} is a normal subgroup of G. Now consider the group
G′ = G/{1, h1}, together with the subset H ′ = {hi{1, h1}}, 2 ≤ i ≤ |H|+1

2 .
Construct the graph X(G′;H ′) which is easily seen to be Y . The elements
of H ′ with ordering inherited in the obvious way from H are all of order 2,
and must form a quasi-minimal (and perhaps even a minimal) generating
set for G′. Thus, the quotient graph for any graph in F is itself a Cayley
graph with a minimal or quasi-minimal generating set, composed entirely of
elements of order 2.
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Theorem 3.1 Given a Cayley graph Y = X(G′;H ′) of degree d, where H ′

is a minimal or quasi-minimal generating set for G′, and h2 = 1 for all
h ∈ H ′, Y is the quotient graph for some graph X(G;H) ∈ F . In other
words, Y oK2 ∈ F .

Proof. If H ′ = {h2, h3, . . . , hd+1}, then take an element h1 6∈ G′, define
h2

1 = 1, and let H = {h1, h2, h1h2, . . . , hd+1, h1hd+1}, where h2
i = h1, 2 ≤

i ≤ d + 1 and all other relations are inherited from G′. Define G = 〈H〉.
One clearly sees that G is the union of G′ and h1G

′. Then H as ordered is
a quasi-minimal Cayley generating set for G (note that h−1

i = h1hi). Also,
X(G;H) ∈ F since H has the required form as mentioned earlier. Finally,
as {1, h1} is normal in G, G/{1, h1} is isomorphic to G′ and hence Y is the
quotient graph of X(G;H).

In the case of a graph X in F with degree 5, finding an appropriate
quotient graph from which to build X means finding a group with a 2-
element quasi-minimal generating set in which both elements have order 2.
The corresponding Cayley graphs are precisely the cycles of even length and
the group is dihedral. In the case of a graph X in F with degree 7, the
problem of finding an appropriate quotient graph is that of finding a group
with a 3-element quasi-minimal generating set in which all three elements
have order 2.

These conditions are both necessary and sufficient to find a graph in F
(every graph in F has a quotient graph based on such a group, and every
such group forms the quotient graph for a graph in F).

4 Graphs in F with Degree 7

Certain necessary conditions for a graph X(G;H) of degree 7 to belong to
F are obvious. We know that atoms have size 2 and the local subgraph
around any atom must be as shown in Figure 1.

The underlying graph, Y , of X(G;H) ∈ F is defined as follows: Y is the
unique graph obtained from X(G;H) by replacing each of the disjoint C2k o
K2s isomorphic to X(G;H \{h4, h

−1
4 }), with a single vertex, and joining two

vertices of Y if and only if the corresponding C2k oK2s had edges connecting
them in X. Note that Y may be an underlying graph for infinitely many
distinct graphs in F , simply by varying k. Further, left-multiplication by any
element of G clearly moves these C2k oK2s as blocks. Since left-multiplication
by some element of G will send any one of these blocks to any other, Y is
vertex-transitive.
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Figure 1: The local subgraph around an atom

Note that Y need not be a Cayley graph. The following example has the
Petersen graph as its underlying graph, yet has a quasi-minimal generating
set of the required form. Let H = {h1, h2, h

−1
2 , h3, h

−1
3 , h4, h

−1
4 }, where

h2
1 = h4

2 = h4
3 = h4

4 = 1, and h2
2 = h2

3 = h2
4 = h1. Let G = 〈H〉 as

usual. Also, assume (h2h3)3 = 1, (h2h4)5 = (h3h4)5 = 1, (h2h3h2h4)2 = 1,
and (hihjhk)5 = 1, {i, j, k} = {2, 3, 4}. Factoring out h1 for simplicity,
and feeding these relations into the “grelgroup” function on Maple, yields
confirmation that the factor group has order 60, so G has order 120. The
graph X(G;H) defined by this group is in F , yet the Petersen graph, which
underlies X, has been proven to be non-Cayley. The corresponding quotient
graph is shown in Figure 2. Vertex-transitivity is not a sufficient condition
for a graph Y to be the underlying graph of a graph of degree 7 in F . For
example, the graph corresponding to the edges of the prism (see Figure 3),
underlies no graph of degree 7 in F . A stronger necessary property, which
this graph lacks, will now be established.

Theorem 4.1 Let Y be the underlying graph of X(G;H) ∈ F , where |H| =
7. Then Y has the property that, for any vertex v with neighbours u and w,
there is an automorphism σ ∈ Aut(Y ) such that σ(v) = v, and σ(u) = w.

Proof. Let H = {h1, h2, h
−1
2 , h3, h

−1
3 , h4, h

−1
4 }. Since the C2k o K2s in

X(G,H \ {h4, h
−1
4 }) are blocks of imprimitivity of G acting on X by left-

multiplication, every such automorphism of X induces an automorphism of
Y . Consider vertices u, v and w in Y , where v is adjacent to both u and
w, and their corresponding blocks are Bu, Bv and Bw in X. Let A1 be
an atom in Bv which is connected to Bu. We may assume that one of the
vertices in this atom is the identity element 1 since X is vertex-transitive.
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Figure 2: The quotient graph of a graph in F with the Petersen graph
underlying
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Figure 3: A vertex-transitive graph which is not arc-transitive

The other element must then be h1. Now consider an atom A2 in Bv which
is connected to Bw. Let one of the vertices in A2 be labelled g, g ∈ G.
Then left-multiplication by g is an automorphism sending A1 to A2. Under
this automorphism Bv is fixed and Bu is mapped to Bw. This induces an
automorphism σ on Y which fulfils the required conditions.

This leads immediately to

Corollary 4.2 The underlying graph Y of a graph in F is arc-transitive.

Proof. Simply use Theorem 4.1 and the fact that Y is vertex-transitive.

The fact that a graph is arc-transitive, however, is still not sufficient to
show that it underlies a graph of degree 7 in F . We will now demonstrate
that K5 underlies no graph of degree 7 in F .

Suppose it did, and let X = X(G;H) be the quotient graph of some
such graph in F . Since K5 is the underlying graph, there are five C2k oK2s
in the original graph, corresponding to five C2ks in X. Call these cycles
B1, . . . , B5. Now, Bi is connected to each of the other cycles by an edge
since the underlying graph is K5. By the argument of Theorem 4.1, any
pair of these cycles can be moved via an automorphism to any other pair,
so Bi must have some constant number j edges connecting it to each of the
other cycles, meaning that Bi is in fact a C4j for some j ≥ 1.

We first deal with the case j = 1. Now, H = {h2, h3, h4}, h2
2 = h2

3 =
h2

4 = 1 and G is generated by H. The elements h2 and h3 together generate
a 4-cycle since j = 1, and the element h4 interconnects the 4-cycles. Since
the underlying graph is K5, there are five of the 4-cycles, which we may
denote B1, B2, B3, B4, B5 where B1 contains the identity element. Again,
since the underlying graph is K5, we may assume without loss of generality
that B2 contains h4, B3 contains h2h4, B4 contains h2h3h4 = h3h2h4, and
B5 contains h3h4. Now we consider the order of h2h4. Since G has order 20,
h2h4 must have order 2, 4, 5 or 10 (since X has only 10 edges corresponding
to right-multiplication by h4, the longest cycle in X consisting of edges
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corresponding to h2 and h4 alternately, cannot have more than 20 edges,
meaning the order of h2h4 is at most 10). If h2h4 has order 2, then h2h4h2 =
h4 must be in both B2 and B3 since h2h4 is in B3, a contradiction. Suppose
then that the order of h2h4 is 4. Consider the 8-cycles generated by right-
multiplying alternately by h2 and h4 from any starting point. These are
clearly disjoint and include all edges corresponding to h4, but there are 10
such edges and 4 are in each such cycle, a contradiction. Now suppose h2h4

has order 10. Then the edges corresponding to h2 and h4 must form a single
cycle of length 20. Since each Bi contains two edges corresponding to h2, if
we follow this cycle from any element, there is a first point at which we return
to some Bi which we have already visited, and this first point must occur
after no more than 5 steps (by h2h4) since there are only 5 blocks. Due to
transitivity, we may assume without loss of generality that the first repeated
block is B1 and that we first visited the identity, so we obtain (h2h4)k = h3

or (h2h4)k = h2h3 for some k ≤ 5. Now multiply by h2h4 again. We end up
in either B4 or B5 by definition; however, beginning from h2h4 in B3 and
multiplying by (h2h4)k, we get that the same element, (h2h4)k+1 must be
either h2h4h3 or h2h4h2h3, each of which is in B3, a contradiction. Precisely
the same arguments can be carried out interchanging the roles of h2 and h3,
so we are left with the only remaining case, that h2h4 and h3h4 both have
order 5. It can be quickly verified that there is no way of connecting the
blocks so that this is the case.

We may now suppose j > 1 and there is a graph of degree 7 in F with
K5 as its underlying graph. Again we consider only the quotient graph,
X(G;H). Again H is as above, and G is generated by the three involutions
which comprise H. Let G′ denote the group generated by h2 and h3, which
forms the cycles of length 4j in X. Since the underlying graph is K5, the
index of G′ in G is 5. If G′ were normal in G, we would have the order of
G/G′ being 5, but h4G

′ would be an element of order 2, a contradiction.
So G′ is not normal in G. We now mod out the largest normal subgroup
of G which is contained in G′. In the graph, we may have identified some
vertices and so caused multiple edges, but we still have the 5 blocks which
were originally cycles, and since each block still has an edge leading to each
other block, these blocks each have at least 4 distinct elements. Due to this
method of reduction, we may assume without loss of generality that in the
original groups, G′ contains no nontrivial normal subgroups of G. We split
the proof into two cases.

Case 1. G is not solvable.
The action of G on the cosets of G′ determines a nontrivial homomor-

phism from G to S5. Because G′ contains no normal subgroup of G and
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the kernel of the homomorphism is contained in G′ the homomorphism is
faithful, meaning the image of the homomorphism is isomorphic to G. So
the image of the homomorphism must be either S5 or A5 since any group of
order less than 60 is solvable. But neither S5 nor A5 has a dihedral subgroup
of index 5, as G has (G′), so this case cannot occur.

Case 2. G is solvable.
Let N be a minimal normal subgroup of G. Since G is solvable, we know

that N is an elementary abelian p-group for some prime p. Since N 6⊂ G′, we
have G′N is a group which strictly contains G′, but since G′ has index 5 in
G, G′N must be G itself. Hence we must have p = 5. Also, the intersection
of G′ with N is normal in both G′ (clearly) and N (since N is abelian).
Thus this intersection is normal in G′N = G, and being contained in G′

must be the identity. This forces N to be the cyclic group on five elements.
Consider the homomorphism ψ from G to the group of automorphisms of N
defined by ψ(g)(n) = gng−1. Its kernel is {g ∈ G : gn = ng for all n ∈ N}.
The group of automorphisms of N is easily seen to be abelian now that we
know what N is, so if we take any element of the form g−1

1 g−1
2 g1g2 where g1

and g2 are in G′, we find that its image under ψ is the identity since ψ is a
homomorphism and its image is abelian. The group of all such elements in
G′ (the commutator subgroup of G′) is hence normal in G since it is normal
in G′ and commutes with every element of N . But this means that it must
be the identity, and so g1g2 = g2g1 for all g1, g2 ∈ G′. Notice that if h2

were in any normal subgroup G′′ of G which was contained in G′ and hence
reduced to the identity of the quotient group we considered, G′/G′′ would
consist of G′′ and the single coset h3G

′′, a contradiction since we must be
left with a group of order at least 4. Thus, G′ is still generated by two
involutions, and G′ is abelian. The only possibility is that G′ has order 4,
but this is precisely the case we dealt with initially.

Thus, K5 underlies no graph of degree 7 in F , showing that edge-
transitivity is not a sufficient condition for an arbitrary graph to underlie a
graph of degree 7 from F .

Acknowledgements
I am greatly indebted to the help of several people in getting this paper

finished. David Witte of Williams rendered invaluable help on a problem
which had me stymied for quite some time. Brian Alspach, my supervisor
at SFU, was unfailingly patient with me. Finally, my referee exhibited
extraordinary patience and tact in helping get this paper into publishable
form.

10



References

[1] S. B. Akers and B. Krishnamurthy, “On group graphs and their fault
tolerance,” IEEE Trans. Computers Vol. C-36, pp. 885–887, 1987.

[2] B. Alspach, “Cayley graphs with optimal fault tolerance,” IEEE Trans.
Computers Vol. 41, pp. 1337–1339, 1992.

[3] L. Babai, “Chromatic number and subgraphs of Cayley graphs,” in
Theory and Applications of Graphs (eds. Y. Alavi and D. R. Lick), Proc.
International Conf. Theory and Applications of Graphs, Kalamazoo,
1976, Lecture Notes Math. Vol. 642, Springer-Verlag, 1978, pp. 10–22.

[4] C. D. Godsil, “Connectivity of minimal Cayley graphs,” Arch. Math.
Basel Vol. 37, pp. 473–476, 1981.

[5] M. E. Watkins, “Connectivity of transitive graphs,” J. Combin. Theory
Vol. 8, pp. 23–29, 1970.

11


