
STITCHING IMAGES BACK TOGETHER

FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN

SEYFFARTH

1. Introduction

When a large visual is scanned into a computer in pieces, or printed

out across multiple sheets of paper, distortions are often introduced in the

scanning or printing process that make it impossible to fully reconstruct

the original visual ideally. For clarity, we refer to the pieces of the visual

as images, and the whole visual as the picture.

Typically, either scanning or printing is done with some overlap between

adjacent images, that makes it possible to �nd very good relative locations

for placing any pair of images that were adjacent. Unfortunately, the dis-

tortion often means that not all of the pairwise relative locations can be

achieved simultaneously.

We present a graph theoretic approach to this problem. This approach

is purely local in the sense that we only use the fact that any given pair of

adjacent images can be stitched together perfectly, i.e., all features match,

due to the o�set data from pairwise correlation. At present, these local

correlations are used for stitching following a certain pattern. We propose

di�erent patterns which should give better global results. To that end,

we formulate the problem in a graph theoretic way and introduce some

error measures. We determine lower bounds for the di�erent measures of

error. We �nd and compare several alternative stitching patterns which

have smaller errors than the one currently used.

1.1. Notation. We assume the images are arranged in a rectangular shape

of m rows and n columns, where m � n: De�ne the graph G by letting each

image correspond to a vertex. Two vertices are joined by an edge if the

corresponding images are adjacent. Hence, G is an m � n grid graph.

We denote by E(G) the edges of G; and for adjacent u; v 2 G we write

uv 2 E(G):

We use the stitching pattern to de�ne a spanning tree T of G; i.e., a

connected subgraph without cycles. An edge of G is an edge of T if the

corresponding images are stitched together perfectly according to the o�set

values. The current method of row-wise stitching corresponds to the row

Joy Morris gratefully acknowledges support from NSERC grant # 40188.

1



2FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH

pattern given by the solid lines in Figure 1. Here, the images are stitched

together row-wise and then the strips are stitched together along a \spine."

Figure 1. 14� 8 Row Pattern, R

We assume that the error between u and v with respect to the true

o�set values increases with the distance between u and v in the tree T . To

quantify this error, we de�ne the following. For each uv 2 E(G),

d
0

T
(u; v) denotes the distance between u and v in the tree T ;

dT (u; v) = d
0

T (u; v)� 1;

S(T ) = �uv2E(G)dT (u; v) (i.e., the sum of all the distances, in T ,

between adjacent vertices of G);

M(T ) = max
uv2E(G)

dT (u; v):

Note that we subtracted 1 from the distance in the tree to get dT because

we assume that pairwise stitching is free of error. We address the following

optimization problems.

(1) Find a spanning tree T of G that minimizes S(T ), the sum of the

distances of the tree.

(2) Find a spanning tree T of G that minimizes M(T ), the maximum

of the distances of the tree.

(3) Find a spanning tree T of G that minimizes S(T ), the sum of the

distances of the tree, subject to M(T ) being as small as possible.

It is worth noting here that the essential concept here of attempting

to somehow preserve distance from a graph to a spanning tree, has been

studied extensively (see, for example, [1] or [2]). A tree t-spanner of a



STITCHING IMAGES BACK TOGETHER 3

graph G is a spanning tree in which the distance between every pair of

vertices is at most t times their distance in G. It is not hard to see with

our de�nitions that any spanning tree T will be a tree M(T ) + 1-spanner

of G. Most studies of tree t-spanners have dealt with arbitrary graphs G,

or at least very large classes of graphs, and have tried to minimize t (in

our case, M(T ) + 1), or more commonly, have considered the complexity

of algorithms that determine whether or not a tree t-spanner exists for a

given input graph. In this paper, by the severe restriction of G to grid

graphs, we �nd the smalles possible value for t, and we also �nd upper

and lower bounds for S(T ), which measures the total di�erence in distance

rather than just looking at the worst case.

2. Lower bounds

By a fairly naive argument, we can construct a lower bound for S(T ).

Since the m�n grid graph G has m(n�1)+n(m�1) = 2mn�m�n edges,

and any spanning tree T of G has mn�1 edges, there are mn�m�n+1 =

(m � 1)(n � 1) edges of G that are not in T . Since G is bipartite, all

paths between adjacent vertices have odd length, so dT (u; v) will always be

even. Hence, for every uv 2 E(G) n E(T ), we have dT (u; v) � 2. Thus,

S(T ) � 2(m� 1)(n� 1).

This lower bound for S(T ) is achieved by the row-stitching pattern when-

ever n � 3.

We have a more interesting lower bound forM(T ), given in the following

theorem.

Theorem 1. Any spanning tree T of an m by n grid, with m � n, has

M(T ) � 2bn
2
c.

Proof. Let T be any spanning tree of the m by n grid. We identify the

vertices of both the grid and T by their positions in terms of the rows

and columns of the grid, from (1; 1) to (m;n). We form a walk W in T

by consecutively traveling the shortest paths between vertices that appear

consecutively along the edge of the grid, in a counterclockwise direction.

(So we begin with the shortest path from (1; 1) to (2; 1) and end with the

shortest path from (1; 2) to (1; 1).) SinceW is a closed walk in a tree, every

edge in T must appear an even number of times in W .

Towards a contradiction, suppose that M(T ) < 2bn
2
c. Since M(T ) is

always even (the grid is bipartite), this means M(T ) � 2bn�2
2
c, so each

of the shortest paths used in the construction of W has length at most

M(T ) + 1; that is, at most 2bn�2
2
c+ 1.

Consider the edges in W that pass between row i and row i+ 1 for any

bn
2
c � i � m � bn

2
c. Since i > bn�2

2
c, if a path from vertex (1; j + 1)

to vertex (1; j) contains an edge that passes between row i and row i + 1

then the length of this path must be at least 2i+ 1 > 2bn�2
2
c+ 1, so it is



4FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH

certainly not a shortest path and therefore was not used in the construction

of W . Similarly, since m� i � bn
2
c, if a path from vertex (m; j) to vertex

(m; j + 1) contains an edge that passes between row i and row i + 1 then

the length of this path must be at least 2bn
2
c + 1, so again it is certainly

not a shortest path and therefore was not used in the construction of W .

Hence, any edge in W that passes between row i and row i + 1 comes

from a shortest path between either a pair (j; 1) and (j + 1; 1) of vertices,

or a pair (j + 1; n) and (j; n) of vertices, for some values of j. We count

the number of edges in W that pass between rows i and i + 1 in columns

1; : : : ; bn
2
c, counting multiplicity. Again, since W is a closed walk in a tree,

this number must be even.

Now, since M(T ) < 2bn
2
c, any shortest path between vertex (j + 1; n)

and vertex (j; n) has length at most 2bn
2
c � 1 = 2bn�2

2
c + 1. Hence, such

a path cannot use any vertical edge that lies in any column to the left

of column n � bn�2
2
c. Since column bn

2
c is strictly to the left of column

n� bn�2
2
c, none of these paths contribute any edges to our count.

Similarly, since M(T ) < 2bn
2
c, any shortest path between vertex (j; 1)

and vertex (j + 1; 1) has length at most 2bn
2
c � 1 = 2bn�2

2
c + 1. Hence,

such a path cannot use any vertical edge that lies in any column to the

right of column bn�2
2
c+ 1 = bn

2
. So any edge between row i and row i+ 1

in such a path must be included in our count. If j 6= i, then the shortest

path must contribute an even number of edges to our count; if j = i, the

shortest path must contribute an odd number of edges to our count, so the

total count is odd, a contradiction. �

Notice that this result immediately allows a very modest improvement

to our lower bound for S(T ) when n � 4. That is, when n � 4, M(T ) �

2bn
2
c = 4, so for some uv 2 E(G), dT (u; v) � 4. Thus, S(T ) � 2[(m �

1)(n � 1) � 1] + 4 = 2(m � 1)(n � 1) + 2. Although this is an insignif-

icant improvement to the lower bound, it serves to show that the lower

bound calculated above for S(T ) is never achieved when n � 4. The same

argument can be extended in general to show that

S(T ) � 2
h
(m� 1)(n� 1)� 1 + b

n

2
c
i
:

More careful calculations using the arguments in the proof of the lower

bound for M(T ) (speci�cally, the variety of choices available for the row i

that is considered) may be able to achieve an improvement in the constants

for this lower bound, but no success in improving the order of magnitude

of the bound has been achieved.

3. Upper bounds based on constructions

We calculate the total distance S(R) and the maximum distance M(R)

for the row pattern R (Figure 1) of an m � n grid. It is optimal to centre



STITCHING IMAGES BACK TOGETHER 5

the \spine" in the long direction. In this case M(R) = 2bn
2
c is as small as

possible (as proven in the previous section), and the total sum is given by:

S(R) =

�
(m� 1)(n2)=2 if n is even

(m� 1)(n� 1)(n+ 1)=2 if n is odd
:

While the row pattern minimizes the maximum distance it does not

minimize the total distance. In fact, one can replace a single edge of the

tree R with a nearby edge and decrease the total sum. A pattern that

reduces the total sum in the case of large grids is the Comb Pattern,

shown in Figure 2. This pattern is similar to the row pattern in that it has

a long \spine", but it di�ers in that instead of long \lines" attached to the

spine, it has \combs". It is again optimal in terms of S(C) and M(C) to

Figure 2. 14 � 8 Comb Pattern, C

centre the \spine" in the longest direction, as above. Then the maximum is

M(C) = 2bn
2
c+4 > M(R), but S(C) < S(R) when n and m are suÆciently

large. The values of S(C) depend on the modulus of the parameters m and

n, mod 3 and mod 2, respectively. Thus, there are six cases to consider;

they are:

m mod 3 n odd n even

m � 0
(m�3)(n�1)(n+17)

6
+ 4(n� 1)

(m�3)(n2+16n�16)

6
+ 4(n� 1)

m � 1
(m�4)(n�1)(n+17)

6
+ 8(n� 1)

(m�4)(n2+16n�16)

6
+ 8(n� 1)

m � 2
(m�5)(n�1)(n+17)

6
+ 12(n� 1)

(m�5)(n2+16n�16)

6
+ 12(n� 1)

Another option is to create a breadth-�rst search spanning tree which

leads to what we call the Breadth Pattern, B. Let Ge be an n� n grid



6FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH

graph with n even and Go be an n� (n� 1) grid graph with n odd. De�ne

an \almost square" grid graph to be a graph of the form Ge or Go. We

�rst de�ne the breadth patterns Be and Bo for these graphs. Label each

vertex of the the graph by the shortest distance to the perimeter of the

grid. Figure 3 illustrates the 9 � 8 case. For the graph Go, there are 6

vertices labeled (n � 3)=2 in the centre and for the graph Ge, there are 4

vertices labeled (n�2)=2 in the centre. Begin with a spanning tree of these

centre vertices as indicated in Figure 3.

0

0

0

0

0

0

0

0 1 0

0 0 0 0 0 0 0

0

0

0

0

0

0

1

1

1

1

1

1 2 2 2 2 1

1

1

1

11111

1

2 2 2 2

2

2

2332

2

2 3 3

33

0 0 0 0 0 0 00

1 1 1 1 1

Figure 3. Breadth Pattern Construction

The procedure for growing the tree begins in the centre and radiates

outwards. Suppose the tree has been grown to include all vertices labeled

at least j, where j > 0. Add vertices labeled j � 1 as described below.

� If a vertex x with label j � 1 is adjacent to a vertex y with label j,

then y is unique. Add xy to the tree.

� If a vertex x with label j � 1 is not adjacent to a vertex with label

j, then x has two neighbors labeled j � 1. Arbitrarily choose one

of these, say y, and add xy to the tree.

Figure 3 shows one possible breadth pattern for a 9� 8 grid graph. We

can easily calculate the sum of the distances for Bo and Be in the almost

square cases.

S(Bo) = (n� 1)(n+ 1)(2n� 3)=6;

S(Be) = n(n+ 1)(n� 1)=3:

The breadth pattern, B, for any m� n grid graph is formed by placing

half of the breadth pattern for the almost square grid on the top and bot-

tom, and a row pattern in the middle. See Figure 4 for an example of this

construction.

The maximum distance M(B) = 2bn
2
c again meets the lower bound,

while the total sum is smaller than the row pattern sum. The values of

S(B) for the breadth pattern B of an m� n grid are given below.



STITCHING IMAGES BACK TOGETHER 7

Figure 4. 14 � 8 Breadth Pattern, B

S(B) =

�
(3mn2 � n

3 � 2n)=6 if m is even,

(3mn2 � n
3 � 3m+ n)=6 if m is odd.

Comparing these patterns with the current row pattern, we see that the

comb pattern improves the total sum at the expense of an increase in the

maximum distance while the the breadth pattern improves the total sum

while keeping the maximum distance at a minimum. One might ask if a

combination of these patterns might also be of interest. We call this new

pattern a Combed{Breadth Pattern (Figure 5).

This does result in improvements: S(CB) is the lowest value we have

achieved when n and m are suÆciently large, but since its order of magni-

tude is still mn2 and the formulas are complicated, we omit them.

4. Conclusions

The upper and lower bounds for S(T ) are quite far apart as n and m

get large. It seems as though signi�cant improvement in this direction

should be possible. We are therefore some way from a proven solution to

the �rst optimization problem mentioned, although it is our belief that the

lower bound will admit of considerably more improvement than the upper

bound.

We have solved the second optimization problem presented, and in fact

have shown that the intuitive row-stitching tree provides a solution to this

problem.

The breadth-�rst search tree appears to come fairly close to solving the

third optimization problem presented. An inductive use of the proof of



8FRITHJOF LUTSCHER, JENNY MCNULTY, JOY MORRIS, AND KAREN SEYFFARTH

Figure 5. 14 � 8 Combed{Breadth Pattern, CB

Theorem 1 can be applied to show that the breadth-�rst search tree solves

the problem of minimising the number of paths of each length, in priority

order from longest paths to shortest, with M(T ) minimum. However, it is

possible in larger examples to use an increase in the number of paths whose

length is M(T ) (for example), to decrease S(T ). Hence the breadth-�rst

search tree does not actually solve the third optimization problem.

References

[1] Cai, L., and D. G. Corneil, Tree Spanners: an Overview, Congressus Numerantium

88 (1992), 65-76.

[2] Fekete, S., and J. Kremer, Tree spanners in planar graphs, Discrete Appl. Math. 108

(2001), 85-103.

University of Alberta

E-mail address: flutscher@math.ualberta.ca

The University of Montana

E-mail address: mcnulty@mso.umt.edu

University of Lethbridge

E-mail address: joy@cs.uleth.ca

University of Calgary

E-mail address: kseyffar@math.ucalgary.ca


