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1. Introduction

A (finite) generalised d-gon is a finite point-line geometry whose bipartite incidence graph has diameter
d and girth 2d. Despite its simplicity, this definition includes some of the most fundamental objects studied
in finite geometry, including projective planes (d = 3) and generalised quadrangles (d = 4). Generalised
polygons were introduced by Tits [22] in an attempt to find geometric models for simple groups of Lie
type. In particular, the group PSL(3, q) is admitted by the Desarguesian projective plane PG(2, q), the
groups PSp(4, q), PSU(4, q), PSU(5, q) are admitted by certain generalised quadrangles and G2(q), 3D4(q),
and 2F4(q) arise as automorphism groups of two generalised hexagons (d = 6) and a generalised octagon
(d = 8) respectively. We call these generalised polygons the classical generalised polygons, and observe
that in all these cases, the groups act primitively on both points and lines, and transitively on the flags
(i.e., the incident point-line pairs) of the generalised polygon. The automorphism groups of the classical
generalised polygons also act distance-transitively on the points of these geometries and Buekenhout &
Van Maldeghem [3] showed that this property almost characterises the classical generalised polygons. In
particular, they showed that a generalised quadrangle constructed from a hyperoval in PG(2, 4) (Payne
[15]) is the only non-classical generalised polygon with a group acting distance-transitively on points.

Distance-transitivity is a very strong symmetry condition and various authors have considered the
extent to which weaker (or just different) symmetry conditions characterise the classical generalised
polygons. To exclude trivial cases, we require that the geometry is thick (i.e. each line contains at least
three points and each point lies on at least three lines) in which case there are constants s and t such
that each line contains s+ 1 points, each point lies on t+ 1 lines, and the generalised polygon is said to
have order (s, t). The celebrated theorem of Feit and Higman [7] shows that a thick generalised d-gon
can only exist when d ∈ {2, 3, 4, 6, 8}, and as generalised 2-gons are simply geometries whose incidence
graph is complete bipartite, they can also be regarded as trivial. This leaves four distinct types of
generalised polygon that can be considered separately if necessary. For projective planes, it has long
been conjectured (see Dembowski [5]) that even the mild condition of transitivity on points characterises
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the classical projective plane PG(2, q). However it is not even known whether the much stronger condition
of flag-transitivity is sufficient. Higman and McLaughlin [10] showed that a group acting flag-transitively
on a projective plane acts primitively on both the points and lines of the plane, and Kantor [11] showed
that a group acting primitively on a non-classical projective plane contains a cyclic normal subgroup of
prime order acting regularly on the points. Ultimately this leads to severe numerical restrictions on the
possible size of the projective plane, and Thas & Zagier [21] have shown that these restrictions are not
satisfied by any non-classical projective plane with fewer than 4× 1022 points. Recently, Gill [9] proved
that all minimal normal subgroups of a group acting transitively on a non-classical projective plane are
elementary abelian.

Both Kantor’s results on projective planes and Buekenhout and Van Maldeghem’s characterisation of
the generalised polygons with a group acting distance-transitively on points rely heavily on fundamental
results regarding the structure of primitive permutation groups. While Buekenhout and Van Maldeghem
show that primitivity is a necessary consequence of distance-transitivity, it is not necessarily the case that
a flag-transitive group of automorphisms of a generalised polygon with d > 4 is primitive on either points
or lines. However, by adding primitivity to the symmetry assumptions, Schneider and Van Maldeghem
[19] show that if a group acts flag-transitively, point-primitively, and line-primitively on a generalised
hexagon (d = 6) or generalised octagon (d = 8), then it is an almost simple group of Lie type.

In this paper, we focus on the remaining case of generalised quadrangles, first with only the primitivity
assumptions, and prove the following main result:

Theorem 1.1. A group of automorphisms acting primitively on the points and lines of a finite thick
generalised quadrangle is almost simple.

The proof of this result is based on the O’Nan-Scott theorem which classifies primitive groups into
various types; there are a number of different ways to do this, but we use the classification into 8 types
given by Praeger [17] which is summarised in Table 1. As the hypothesised automorphism group of the
generalised quadrangle acts primitively on both points and lines, we consider the combinations of pairs
of the 8 types according to the action of the group on points and lines respectively and, using a variety
of techniques, eliminate all combinations except when the group is almost simple.

To obtain the analogue of Schneider and Van Maldeghem’s result for generalised hexagons and gener-
alised octagons, we must eliminate the almost simple groups whose socle is a sporadic simple group or an
alternating group. The sporadic case can be ruled out by numerical considerations based on the degrees
of the possible primitive actions, but the latter case causes more problems. The classical generalised
quadrangle of order (2, 2) has the symmetric group S6 acting on it and, although S6 is isomorphic to
PSp(4, 2) and can therefore be viewed as a group of Lie type, the proof must admit this as a special
case. More importantly, we could not exclude the remaining alternating groups without the additional
symmetry hypothesis that the group acts flag-transitively, although we suspect that this is needed only
for the proof and not for the result itself. Using this we obtain the following result as a direct consequence
of Corollary 6.2, Theorem 5.8, Corollary 5.20 and Theorem 5.21:

Theorem 1.2. Let G be a group of automorphisms of a finite thick generalised quadrangle Q.

(a) If G acts primitively on the points and lines of Q, then the socle of G is not a sporadic simple group.

(b) If G acts flag-transitively and point-primitively on Q and the socle of G is an alternating group An
with n > 5, then G 6 S6 and Q is the unique generalised quadrangle of order (2, 2).

Combining our results for generalised quadrangles with the previously mentioned results for other
generalised polygons yields the following unified result.

Corollary 1.3. A group of automorphisms acting primitively on the points and lines, and transitively
on the flags of a finite thick generalised polygon is almost simple of Lie type or, possibly, acting on a
non-classical projective plane with at least 4× 1022 points.

There are two further known generalised quadrangles with a group acting transitively on flags, namely
the generalised quadrangles of order (3, 5) and (15, 17) arising from transitive hyperovals in PG(2, 4) and
PG(2, 16) respectively. The corresponding groups act primitively on points, but imprimitively on lines.
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Our proof of these results proceeds by considering all possible pairs of types of primitive action on
the points and lines respectively. The types and which pairs of types can occur together are described
in Section 2, along with a number of other background results on generalised quadrangles. In Section 3
we eliminate almost all possible pairs of types by using knowledge of the primitive actions, in particular
semiregular elements in these actions. The results of this section lead to the conclusion that either the
action is almost simple on both points and lines (i.e. the case that cannot be eliminated as it covers
the classical examples) or is of type PA (product action) on either points or lines. Section 4 is devoted
to investigating the PA type in detail where, by duality, the points can be identified as elements of a
Cartesian product and the group as a subgroup of a wreath product. Arguments relating collinearity
to the product structure of the point-set and their numerical consequences are used to rule out all the
possible types of primitive action on lines that can be paired with the action on points. By the end of
this section, the only remaining possibility is that the group is almost simple, thus proving Theorem 1.1.
The final two sections of the paper reduce the possibilities to almost simple groups of Lie type, first
eliminating almost simple groups whose socle is an alternating group in Section 5 and then those whose
socle is sporadic in Section 6. The former requires a rather long and intricate argument where a critical
lemma (Lemma 5.2) bounding the size of the group needs the additional hypothesis of flag-transitivity.
By contrast, Section 6 dealing with the sporadic groups is a straightforward, though tedious, analysis
based on comparing the known degrees of the primitive actions of almost simple groups whose socle
is sporadic with the possible numbers of points of a generalised quadrangle. The only possibility that
survives this test is that the Rudvalis group might act primitively on the points and lines of a generalised
quadrangle of order (57, 57) but this is quickly ruled out by consideration of the subdegrees of this action.

2. Background and definitions

2.1. Generalised quadrangles

The requirement that the incidence graph of a generalised quadrangle have diameter 4 and girth 8 is
equivalent to the following definition: (i) every two points lie on at most one line, and (ii) given a point
p and a line L, there is a unique point q on L that is collinear with p. The second condition is equivalent
to there being no triangles in the geometry. If there is a line containing at least three points or if there is
a point on at least three lines, then there are constants s and t such that each line is incident with s+ 1
points, and each point is incident with t + 1 lines. Such a generalised quadrangle is said to have order
(s, t), and hence its point-line dual is a generalised quadrangle of order (t, s). The number of points of a
generalised quadrangle of order (s, t) is (s+ 1)(st+ 1). The collinearity graph of a generalised quadrangle
has the points of the generalised quadrangle as its vertices with two vertices being adjacent if and only
if they are collinear in the generalised quadrangle. The collinearity graph is strongly regular, and the
“Krein parameters” imply the inequality of D. Higman. We also have a divisibility condition arising from
the formula for the multiplicities of the eigenvalues of the collinearity graph.

Lemma 2.1. In a thick generalised quadrangle of order (s, t), we have

(i) (Higman’s inequality): s 6 t2 and t 6 s2, and

(ii) (Divisibility condition): s+ t divides st(s+ 1)(t+ 1).

We will often refer to [16] for well-known results such as the above.
A proper subquadrangle of a generalised quadrangle Q is a generalised quadrangle Q′ 6= Q whose

points and lines are subsets of the points and lines of Q with incidence being the restricted incidence
relation from Q.

Lemma 2.2 ([16, 2.2.2]). Let Q be a generalised quadrangle of order (s, t); let Q′ be a proper subquad-
rangle of Q of order (s, t′), and let Q′′ be a proper subquadrangle of Q′ of order (s, t′′), where s > 1. Then
t′′ = 1, t′ = s, and t = s2.

Lemma 2.3 ([16, 2.4.1]). Let θ be an automorphism of the generalised quadrangle Q. The substructure
of the fixed points and lines of θ must have one of the following forms:

(i) no lines;
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(ii) no points;

(iii) all of the lines pass through one distinguished point;

(iv) all of the points lie on one distinguished line;

(v) a grid (every point lies at the intersection of exactly two lines);

(vi) a dual grid (every line contains exactly two points); or

(vii) a subquadrangle of order (s′, t′) with s′ > 2 and t′ > 2.

Lemma 2.4 ([16, 2.2.1]). Let Q be a generalised quadrangle of order (s, t), and let Q′ be a proper
subquadrangle of Q of order (s′, t′) (so Q′ 6= Q). Then either s′ = s, or s′t′ 6 s.

The following general calculations will prove useful.

Lemma 2.5. Let Q be a thick generalised quadrangle of order (s, t) that has v points, and let Q′ be a
proper subquadrangle of Q of order (s′, t′) that has v′ points. Then the following hold:

(i) v < (t+ 1)5;

(ii) v < (s+ 1)4;

(iii) v > s5/2; and

(iv) if s′t′ 6 s and s′ 6= s then v/v′ > t.

Proof. Using Higman’s inequality (2.1(i)) we have v = (s + 1)(st + 1) 6 (t2 + 1)(t3 + 1) < (t + 1)5;
similarly, v = (s + 1)(st + 1) 6 (s + 1)(s3 + 1) < (s + 1)4. Also v = (s + 1)(st + 1) > s2

√
s = s5/2. For

(iv), we have v/v′ = (s+ 1)(st+ 1)/((s′ + 1)(s′t′ + 1)) > (st+ 1)/s > st/s = t, since s′t′ 6 s and s′ < s.
�

2.2. Group actions

We will assume the reader is familiar with the basic notions of group actions such as transitivity and
primitivity. Details can be found in [6]. A subdegree of a transitive group is the length of an orbit under
the stabiliser of a point.

Finite primitive permutation groups are characterised by the O’Nan-Scott Theorem. We will follow
the description given in [17] which splits the primitive groups into eight types. The types are distinguished
by the structure and action of the minimal normal subgroups. Table 1 provides a description of each type.
The information given in the third column is sufficient to identify a primitive group of the corresponding
type but is not necessarily a complete account of the known information about such a group. The fact
that k ≥ 6 in the TW case follows from [6, Theorem 4.7B (iv)] and requires the Classification of Finite
Simple Groups.

The socle of a group is the product of all of its minimal normal subgroups. Let N = T k for some
finite nonabelian simple group T and let πi be the projection map from N onto the ith direct factor of
N . A subgroup M of N is called a full strip if M ∼= T and, for each i ∈ {1, . . . , k}, either πi(M) ∼= T
or {1}. The support of a strip is the subset I of all i ∈ {1, . . . , k} such that πi(M) ∼= T . Note that a
nontrivial element g of a strip with support I satisfies πi(g) 6= 1 for all i ∈ I. The length of a strip is
the cardinality of its support and two strips are said to be disjoint if their supports are disjoint. A full
diagonal subgroup of N is a full strip of length k.

In some of the O’Nan-Scott types, the distinguishing features of the type are purely group theoretic
and do not require properties of their actions. This allows us to prove the following lemma about groups
with two different primitive actions.

Lemma 2.6. Let G be a group with faithful primitive actions on the sets Ω1 and Ω2. Then the possible
O’Nan-Scott types of these actions are given by Table 2.
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Abbreviation O’Nan-Scott type Description

HA Affine The unique minimal normal subgroup is elementary
abelian and acts regularly on Ω.

HS Holomorph simple Two minimal normal subgroups: each nonabelian
simple and regular.

HC Holomorph compound Two minimal normal subgroups: each isomorphic to
T k, k > 2 and regular.

AS Almost simple The unique minimal normal subgroup is nonabelian
simple.

TW Twisted wreath The unique minimal normal subgroup is regular and
isomorphic to T k with k > 6.

SD Simple diagonal The unique minimal normal subgroup N is isomor-
phic to T k, with k > 2 and Nα is a full diagonal
subgroup of N . The group G acts primitively on the
set of k simple direct factors of N .

CD Compound diagonal The unique minimal normal subgroup N is isomor-
phic to T k and Nα ∼= T ` is a direct product of ` pair-
wise disjoint full strips of length k/` with `, k/` > 2.
The set of supports of the full strips forms a system
of imprimitivity for the action of G on the set of k
simple direct factors of N .

PA Product action The unique minimal normal subgroup N is isomor-
phic to T k, with k > 2 and Nα ∼= Rk for some proper
nontrivial subgroup R of T .

Table 1: Types of primitive groups G on a set Ω. Here T is a nonabelian simple group and α ∈ Ω.

Primitive type on Ω1 Primitive type on Ω2

HA HA
HS HS
HC HC
AS AS
TW TW, SD, CD PA
SD TW, SD, PA
CD TW, CD, PA
PA TW, SD, CD, PA

Table 2: Two primitive actions

Proof. Suppose that G acts primitively on Ω1 with O’Nan-Scott type HA, HS, HC or AS. Then as each
of these types has a group theoretic structure that uniquely determines its primitive type, the action on
Ω2 must be of the same type. A primitive group of each of the remaining four types has a unique minimal
normal subgroup N , which is isomorphic to T k where T is a nonabelian simple group T and k > 2. If
G is of type SD then it acts primitively on the set of k simple direct factors of N , while a group of type
CD acts imprimitively on this set. Thus G cannot have both a primitive SD action and a primitive CD
action. This completes the last four rows of Table 2. �

3. Some basic deductions from a primitive action on a generalised quadrangle

We begin our analysis by deducing what follows from the simple premise of a group acting on the
points of a generalised quadrangle. Some of these results follow immediately from elementary number
theoretic considerations.
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Lemma 3.1. If Q is a thick generalised quadrangle of order (s, t) with s = t and the number of points is
equal to δk with k ≥ 2, then s = 7, δ = 20 and k = 2.

Proof. Since s = t, the number of points is v = (s+ 1)(st+ 1) = (s+ 1)(s2 + 1) = (s4 − 1)/(s− 1). By
the results of Nagell and Ljunggren (see [13]), if v = δk with k ≥ 2 then s = 7, δ = 20 and k = 2. �

Lemma 3.2. Let (s, t) be the parameters of a thick generalised quadrangle. If s+ 1 divides t+ 1, or t+ 1
divides s+ 1, then s and t are not coprime.

Proof. Suppose that s and t are coprime and, by taking duals if necessary, that s + 1 divides t + 1.
First note that s+ t and st are also coprime and so by Lemma 2.1, s+ t divides st+ 1. Now

st+ 1 = s(s+ t)− s2 + 1,

therefore, s + t divides (s − 1)(s + 1). Since s + 1 divides t + 1, the latter implies that s + t divides
(s− 1)(t+ 1). So s+ t divides (st+ 1)− (s− 1)(t+ 1) = 2 + t− s = 2(t+ 1)− (s+ t), and hence, s+ t
divides 2(t + 1). Now s > 1 and so s + t > t + 1. So s + t = 2(t + 1), and thus s = t + 2. This is a
contradiction (as s+ 1 would divide s− 1). �

Theorem 3.3 (Benson’s Theorem [1]). Let Q be a generalised quadrangle of order (s, t) and let θ be
an automorphism of Q. Let f be the number of fixed points of θ and let g be the number of points x for
which xθ is collinear with x. Then

(1 + t)f + g ≡ st+ 1 (mod s+ t).

The following consequence of Benson’s Theorem is an analogue of Corollaries 5.3 and 6.3 in the paper
of Temmermans, Thas and Van Maldeghem [20], for generalised quadrangles.

Lemma 3.4. Let θ be a fixed-point-free automorphism of a thick generalised quadrangle Q of order (s, t).
Suppose θ has order 2 or 3. If s and t are not coprime, then θ fixes a line of Q.

Proof. Let g denote the number of points collinear with their image under θ. Then by Benson’s Theorem
3.3, g ≡ st + 1 (mod s + t). As s, t are not coprime there is an integer m > 1 dividing both s and t. If
s + t divides st + 1 then m would divide both st and st + 1 which is not possible. Therefore s + t does
not divide st+ 1 and so g is non-zero. Therefore, there is at least one point x where xθ is collinear with
x. If θ has order 2, then θ fixes the line joining x and xθ. If θ has order 3, then x, xθ, xθ

2

are pairwise
collinear, and as Q contains no triangles, the points x, xθ, xθ

2

lie on a common line that is fixed by θ. �

Lemma 3.5. Let Q be a thick generalised quadrangle of order (s, t), and suppose G is a group of auto-
morphisms of Q acting primitively on the points of Q and primitively on the lines of Q. Then either:

(i) one of these two primitive actions is of product action type; or

(ii) G is almost simple.

Proof. Suppose first that G is a primitive group of type HA in its action on the points of Q. Then
by Lemma 2.6, G is also primitive of type HA in its action on lines and so the unique minimal normal
subgroup N of G acts regularly on both points and lines. Thus the number of lines is equal to the number
of points and so s = t. The number of points is equal to |N | = pd for some prime p. Since the number of
points is (s+ 1)(st+ 1), it is not a prime and so d ≥ 2. Lemma 3.1 implies that this case cannot occur.

Next suppose that G is primitive of type HS or HC on points. By Lemma 2.6, G is primitive of the
same type on lines. Moreover, a minimal normal subgroup N of G is regular on both points and lines
and so s = t. Since N ∼= T k, where T is a nonabelian simple group, it follows from the Feit-Thompson
Theorem [8] that N contains an involution g. However, as g fixes no points or lines, this contradicts
Lemma 3.4 and so this case cannot occur.

Next suppose that G is primitive of type TW on points and let N = T k be the unique minimal normal
subgroup of G, where T is a nonabelian simple group. Then N acts regularly on points. Since G acts
primitively on lines, N must act transitively on lines and so the number of lines divides |N |, which is
the number of points. Hence t + 1 divides s + 1, and so by Lemma 3.2, s and t are not coprime. By
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Primitive type on points Primitive type on lines
////HA ////HA
////HS ///HS
////HC ////HC
AS AS
TW /////TW,////SD, ////CD, PA
SD /////TW,////SD, PA
CD /////TW,/////CD, PA
PA TW, SD, CD, PA

Table 3: Possible actions on points and lines

the Feit-Thompson Theorem, T contains an involution g. Then g′ = (g, 1 . . . , 1) is an element of N and
therefore fixed-point-free. Hence by Lemma 3.4, g′ fixes a line. By Table 1, in the TW case the stabiliser
in N of a line is trivial, in the SD case it is a full diagonal subgroup, and in the CD case, it is a product
of ` pairwise disjoint strips of length k/` > 2. Since none of these can contain g′, it follows from Lemma
2.6 that G must be of type PA on lines.

Next suppose that G is primitive of type SD or CD on points and let N ∼= T k be the unique minimal
normal subgroup of G, where T is a nonabelian simple group. Then the number of points is equal to
|T |k−` for some ` > 1. By Lemma 2.6, the action of G on lines is of type TW, SD, CD or PA. Suppose that
the action on lines is not of type PA. Then the number of lines is |T |i for some integer i. Hence either the
number of points divides the number of lines or vice versa. Thus by Lemma 3.2, s and t are not coprime.
By the Feit-Thompson Theorem, T contains an involution g and so the element g′ = (g, 1 . . . , 1) lies in
N . By Table 1, the stabiliser in N of a point is either a full diagonal subgroup (the SD case) or a product
of ` pairwise disjoint strips of length k/` > 2 (the CD case). Thus g′ fixes no points. Also the stabiliser
in N of a line is either trivial (the TW case) or a full diagonal subgroup (the SD case) or a product of `
pairwise disjoint strips of length k/` > 2 (the CD case). Thus g′ also fixes no lines, contradicting Lemma
3.4. Hence G must be of type PA on lines. Thus by Lemma 2.6, the possible combinations of the action
of G on points and lines is given by the uncrossed entries of Table 3 and so the lemma holds. �

4. Product Action type

In this section we consider the case where one of the primitive actions is of PA type; by duality we
can assume that this is the action on points. The argument proceeds by a series of lemmas that all use
common hypotheses and notation, and so we first establish this common setting.

Hypothesis 4.1. Throughout this section, we assume that Q is a thick generalised quadrangle of order
(s, t) with a group G of automorphisms whose action on the points of Q is primitive of type PA. The
group G has a unique minimal normal subgroup N = T k where k > 1 and T is a nonabelian simple
group. From the properties of the PA type, the set of points can be identified with ∆k for some set ∆ with
|∆| = δ. Furthermore, the group G is a subgroup of H wrSk, where H is a primitive group of type AS on
∆ with minimal normal subgroup isomorphic to T .

We first deal with the case s = t.

Lemma 4.2. Under Hypothesis 4.1, the generalised quadrangle Q does not have order (s, s).

Proof. For a contradiction, suppose that Q does have order (s, s). It then follows from Lemma 3.1 that
s = 7, δ = 20 and k = 2. Moreover, G is a subgroup of the wreath product H wrS2 endowed with its
natural product action on ∆2, and H is a primitive group on ∆. There are only four primitive groups of
degree 20: PSL(2, 19), PGL(2, 19) (acting on the 20 points of the projective line), A20 and S20. Thus H
is one of these groups.
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The socle of G is N = T1 × T2 with T1 ∼= T2 ∼= T . By direct inspection, we see that T is either
3-transitive (if T = A20) or the stabiliser Tx1,x2

of two distinct points x1, x2 of ∆ has two orbits of length
9 on ∆ \ {x1, x2} (if T = PSL(2, 19)).

Let α = (x1, x2) and β = (x′1, x
′
2) be two collinear points and let ` be the line through α and β. Now

Nα,β = (T1)x1,x′1
× (T2)x2,x′2

fixes the line `, which has 8 points. In particular, ` is a union of Nα,β-orbits.
Since each non-trivial orbit of (T1)x1,x′1

has length at least 9, we obtain that every Nα,β-orbit has length
at least 9, a contradiction. �

By Lemma 2.6, if G is primitive of type PA on points and primitive on lines then the action on lines
is of type TW, SD, CD or PA. Thus in each of these cases, we can write the line set as Γk

′
for some set

Γ. We let γ = |Γ|.

Lemma 4.3. In addition to Hypothesis 4.1, suppose that G acts primitively of type TW, SD, CD, or PA
on lines and that if the action on lines is of type PA, then there are more lines than points. Then any
two points in a line, viewed as elements of ∆k, are at Hamming distance k. In addition, if the action on
lines is of type TW, SD, or CD and α and β are collinear points, then the subgroup of T that fixes both
the ith entry of α and the ith entry of β is the identity.

Proof. Fix a point α which, by point-transitivity, we can assume is given by α = (x, . . . , x) for some
x ∈ ∆. Let R = Tx be the stabiliser of x in the action of T on the points of ∆ (which is nontrivial under
PA action). Let β be any point that is collinear with α, and let ` be the line through α and β. Let Ri
be the subgroup of N with πj(Ri) = {1} for all j 6= i and πi(Ri) = R.

If the action on the lines is of TW, SD, or CD type, then each Ri is semiregular in its action on lines,
since the stabiliser of a line in N = T k is either trivial (the TW case) or the product of full strips all of
length at least 2. In particular, Ri does not fix `, so cannot fix β. Since the action of Ri affects only the
ith coordinate of β, and R fixes x, the ith entry of β cannot be x. So the Hamming distance between β
and α is k, as claimed.

Furthermore, since Ri is semiregular in its action on lines, no two elements of Ri can take β to the
same point, so if y is the ith entry of β, we have |yR| = |R|. Hence Tx,y = Ry = {1}, as claimed.

Suppose now that the action on the lines is of PA type. Then the line ` is in Γk
′
. Let Si (1 6 i 6 k′)

be the stabiliser of the ith entry of ` in the action of T on the elements of Γ. Then all of the Si have
the same order. As both of the actions are of PA type there are more lines than points, so γ > δ, giving
|T |/δ > |T |/γ; thus |R| > |Si|. Hence for any i, there is some ri ∈ Ri such that `ri 6= `. Again, this
means that ri cannot fix β; the action of ri affects only the ith entry of β and fixes x, so the ith entry of
β cannot be x. So again the Hamming distance between β and α is k. �

Corollary 4.4. In addition to Hypothesis 4.1, suppose that G acts primitively of type TW, SD, CD, or
PA on the lines of Q and that if the action on lines is of type PA, then Q has more lines than points.
Then s+ 1 6 δ.

Proof. By Lemma 4.3, two points on a line ` have different elements of ∆ in any fixed coordinate
position. Therefore there are at most δ values available for any fixed coordinate position, and so at most
δ points on `. �

Corollary 4.5. In addition to Hypothesis 4.1, suppose that G acts primitively of type TW, SD, CD, or
PA on the lines of Q and that if the action on lines is of type PA, then Q has more lines than points.
Then k 6 3.

Proof. By Corollary 4.4, we have s+ 1 6 δ. We also have the number of points is δk = (s+ 1)(st+ 1).
So st + 1 > δk−1. Hence t > (δk−1 − 1)/s > (δk−1 − 1)/(δ − 1). From Higman’s inequality (2.1(i)), we
also have s2 > t, so s2 > δk−2, so s > δ(k−2)/2. Comparing this with s < δ forces (k− 2)/2 < 1 so k < 4,
as claimed. �

Corollary 4.6. Under Hypothesis 4.1, the action of G on the lines of Q is not primitive of type TW or
CD.
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Proof. In a group of TW type, we have k > 6 (note that this requires the Classification of Finite
Simple Groups). In a group of CD type, k is the product of `, k/` > 2 and so k > 4. These contradict
Corollary 4.5. �

Lemma 4.7. Under Hypothesis 4.1, the action of G on the lines of Q is not primitive of type SD.

Proof. By the properties of primitive groups of type SD, the line set can be written as Γk−1 where
Γ can be identified with T . Moreover, a subgroup T k−1 of the socle N = T k of G acts regularly on
the set of lines. Let α be a point incident with a line `. Then the intersection Rk−1 of T k−1 with Nα
acts semiregularly on lines through α. Hence no two elements of Rk−1 can take ` to the same line, so

|`Rk−1 | = |Rk−1|. Hence |Rk−1| divides the number of lines through α, but the number of lines through
α is t+ 1. So we have t+ 1 > |Rk−1|. Now |R| = |T |/δ, and so t+ 1 > (|T |/δ)k−1.

Now, (t + 1)(st + 1) = |T |k−1. Combining this with t + 1 > (|T |/δ)k−1 gives st + 1 6 δk−1. Recall
that (s+ 1)(st+ 1) = δk, and so s+ 1 > δ. Thus by Corollary 4.4, we have s+ 1 = δ.

Now since the line ` contains δ points, pairwise at Hamming distance k from one another (by
Lemma 4.3), every element of ∆ must appear as the first entry of some point on `. Now the second
part of the statement of Lemma 4.3 tells us that Tx,x′ = 1 for every pair x 6= x′ ∈ ∆. Furthermore
T cannot be regular in its action (a property of PA groups). So by definition, T is a Frobenius group.
However, the Structure Theorem of Frobenius groups (see [6, p 86]), implies that no finite simple group
is a Frobenius group. �

We can therefore assume that the action on both points and lines is of PA type, and that k 6 3.

Lemma 4.8. In addition to Hypothesis 4.1, assume that G acts primitively of type PA on the lines of Q
and that Q has more lines than points. Then the stabiliser N` of any line ` fixes every point in that line.
Furthermore s+ 1 divides t+ 1.

Proof. Since ` ∈ Γk
′

and k′ = k when we have two actions of PA type of the same group, we have
` = (y1, . . . , yk) for some y1, . . . , yk ∈ Γ. Let Si = Tyi for 1 6 i 6 k, and let Si be the subgroup of N with
πj(Si) = {1} for all j 6= i and πi(Si) = Si. Let α be any point of `. Then since Si fixes `, we must have
αsi ∈ ` for any si ∈ Si, and si changes only the ith entry of α. By Lemma 4.3, no other point in ` has any
entries in common with α, certainly not k − 1 entries in common, so it must be the case that for every
si ∈ Si, αsi = α. Thus, for every i, we have shown that Si fixes α. This means that N` = S1 × . . .× Sk
also fixes α. Since α is an arbitrary point of `, this completes the proof of the first statement.

In fact, this shows that S1 < R1 where R1 is the subgroup of T that fixes the first coordinate of α.
So |S1| divides |R1|, meaning δ | γ (since δ = |T |/|R1| and γ = |T |/|S1|). Then we have (t+ 1)/(s+ 1) =
(γ/δ)k, and so s+ 1 divides t+ 1. �

The following result yields a generalised subquadrangle of the generalised quadrangle Q.

Lemma 4.9. In addition to Hypothesis 4.1, assume that G acts primitively of type PA on the lines of
Q and that Q has more lines than points. Let ` be an arbitrary line of Q, and let S be any subgroup
of N` that contains Ty × 1k−1, where y ∈ Γ is the first entry of `. Then the incidence substructure QS
consisting of the points and lines that are fixed by every element of S is described by one of the following:

(i) there are exactly two lines of QS through every point of QS, and QS is an s+ 1 by s+ 1 grid; or

(ii) QS is a proper thick subquadrangle of order (s, t′) with 2 6 t′ < t.

Proof. Since S is a subgroup of N`, we have at least one line, `, in QS . By Lemma 4.8, every point of `
is fixed by S, so QS has at least s+ 1 points. In fact, this lemma tells us that whenever `′ is fixed by S,
so is every point of `′, so every line in QS has s+ 1 points. Since s > 2, there are more than 2 points in
every line of QS . Hence QS is not a dual grid. Moreover, since Ty 6= 1 (a property of actions of type PA
given in Table 1), S acts nontrivially on the points of Q and so Q 6= QS . Thus by Lemma 2.3, it remains
to show that all points do not lie on a distinguished line and all lines do not pass through a distinguished
point.

Suppose that α1 = (x1,1, . . . , x1,k), . . . , αs+1 = (xs+1,1, . . . , xs+1,k) are the points of `. Then by
Lemma 4.3 xi,j 6= xi′,j for any j and any i 6= i′, and every point of the form (xi1,1, . . . , xik,k) where
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i1, . . . , ik ∈ {1, . . . , s + 1} is fixed by N` and hence by S, so there are at least (s + 1)k points in QS . In
particular, the points of QS do not lie on a distinguished line. Thus let α be a point of QS not on ` and let
`′ be the unique line of Q passing through α and meeting `. Let β be the point of intersection of ` and `′.
Since S fixes all points on `, it fixes β and hence S also fixes `′. Thus `′ ∈ QS . Since (s+ 1)k > s+ 1 + s,
we can find a third point α′ fixed by S and on neither ` nor `′. Since the points of ` and `′ differ from
β in all coordinates (Lemma 4.3), α′ can be chosen to have the first entry in common with β. Let `′′ be
the unique line of Q through α′ and meeting `, and let β′ be the point of intersection. By Lemma 4.3,
β 6= β′. Since S fixes β′ and α′′, it also fixes `′′ and so `′′ ∈ QS . Thus `, `′, `′′ are three lines of QS that
do not pass through a common point. Thus not all lines of QS pass through a distinguished point and
the result follows. �

Lemma 4.10. Under Hypothesis 4.1, the group G does not act primitively of type PA on the lines of Q.

Proof. By Lemma 4.2 and taking duals if necessary, we may suppose that Q has more lines than points.
Let y ∈ Γ, and let ` be the line (y, . . . , y). Consider the substructure Q′ of fixed points and lines of
T k−1y × 1 and the substructure Q′′ of fixed points and lines of T ky . Both groups are subgroups of N` that

contain Ty × 1k−1, so by Lemma 4.9, the structures Q′ and Q′′ are each either an s+ 1 by s+ 1 grid, or
a proper thick subquadrangle. Now, Ty 6= 1 because of the properties of primitive groups of type PA, so
the set of points of Q′′ is a proper subset of the set of points of Q′, which is a proper subset of the set
of points of Q. So t > t′ > t′′ > 1, and hence t′ > 2. Therefore Q′ is a proper subquadrangle of order
(s, t′) where t′ > 2, and Q′′ is a proper subquadrangle of order (s, t′′) where t′′ > 1 (where if t′′ = 1,
Q′′ is a grid). Now we can apply Lemma 2.2 to obtain t = s2. By Lemma 4.8, we have s + 1 divides
t+ 1 = s2 + 1 = s(s+ 1) + 1− s, so s+ 1 divides s− 1, a contradiction since s > 1. �

We can now prove Theorem 1.1.

Proof. By Lemma 3.5, if G is not almost simple, then the action of G is of PA type on either the points
or the lines of the generalised quadrangle. By duality, we can assume that the action of G is of PA type
on the points. Lemma 2.6 shows that the action of G on the lines must be of TW, CD, SD, or PA type
on the lines. The first three of these possibilities are ruled out by Corollary 4.6 and Lemma 4.7 and
Lemma 4.10 rules out the PA case, thereby completing the proof. �

5. The Alternating Groups

Our goal in this section is to prove Theorem 1.2 when the socle of G is an alternating group. Note
that the automorphism group of the unique generalised quadrangle of order (2, 2) is isomorphic to S6.
An almost simple group with socle An must be An or Sn, or n = 6 and it is one of A6, S6, M10, PGL(2, 9)
or PΓL(2, 9). First we deal with these exceptional cases.

Lemma 5.1. The groups M10, PGL(2, 9) and PΓL(2, 9) do not act primitively on the points of a thick
generalised quadrangle.

Proof. Each group has exactly three maximal subgroups with index greater than 2, and their indices
are precisely 45, 36 and 10. The only one of these three of the form (s+1)(st+1) is 45, whereby s = 4 and
t = 2. By [16, 5.3.2(ii)], there is a unique generalised quadrangle of order (4, 2) and its full automorphism
group is PΓU(4, 2). It is not difficult to check that M10, PGL(2, 9) and PΓL(2, 9) are not subgroups of
PΓU(4, 2). �

We can adapt the following two results from similar statements proven in [19]:

Lemma 5.2. Let Q be a thick generalised quadrangle of order (s, t) and let G be a point-transitive group
of automorphisms of Q. If α is a point of Q, then |G|/|Gα| < (1 + t)5. If G acts transitively on flags,
then |G| < |Gα|6.

Proof. Since G acts transitively, the Orbit-Stabiliser Theorem tells us that the number of points of
Q equals |G|/|Gα|. Lemma 2.5(i) gives the first inequality. If G acts flag-transitively, then Gα acts
transitively on the t + 1 lines through α, so the Orbit-Stabiliser Theorem implies |Gα| > 1 + t and the
result follows. �
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Lemma 5.3. Let G = An or Sn act flag-transitively on a thick generalised quadrangle Q with point
stabiliser H. Then one of the following holds:

(i) H is intransitive in its action on {1, . . . , n};
(ii) H is imprimitive in its action on {1, . . . , n}; or

(iii) n 6 47.

Proof. The group H is intransitive, imprimitive or primitive on {1, . . . , n}. If H is primitive, then a
result of Maróti [14] implies that one of the following holds:

• H is a Mathieu group Mn with n = 11, 12, 23, 24;

• H 6 Sm wrSk with n = mk, m > 5 and k > 2; or

• |H| 6 n1+blog2(n)c.

Suppose H 6 Sm wrSk, where n = mk, m > 5 and k > 2. Then |H|6 divides (m!)6k(k!)6. By
Lemma 5.2, we have |H|6 > |G| and so there exists a prime p dividing |H| with p 6 max{m, k} such that
|H|6p > |G|p, where for an integer r, rp denotes the largest power of p that divides r. Therefore,(

(m!)6k(k!)6
)
p
>
(
1
2 (mk)!

)
p
.

By the calculations in the proof of [19, Lemma 5.3],
(
(m!)6k(k!)6

)
p
6 12mk+12k

p , and since p2 6 mk, we

have
(
1
2 (mk)!

)
p
> mk/p. So 12mk + 12k > mk and hence 5 6 m 6 25 and k = 2, or 5 6 m 6 6 and

k = 3. However, the only value for which (m!)6k(k!)6 > 1
2 (mk)! is (m, k) = (5, 2), that is, n = 25.

If |H| 6 n1+blog2(n)c then by [19, Lemma 5.2], we have |H|6 < |H|12 < |G| when n > 107. Calculations
show that we actually have |H|6 < |G| for all n > 48. Hence by Lemma 5.2 it follows that n 6 47. �

The remaining three subsections in this section consider the cases where the action ofH on {1, 2, . . . , n}
is intransitive, imprimitive or primitive with n 6 47. Together, they complete the proof of Theorem 1.2
in the case where soc(G) is an alternating group.

5.1. Intransitive stabiliser

In this subsection we deal with the situation summarised in the following hypothesis, which will be
used in the statements of most of our results.

Hypothesis 5.4. Suppose that G is An or Sn with n ≥ 5, acting primitively on the set of points of a
thick generalised quadrangle Q of order (s, t). Further suppose that the stabiliser of a point is intransitive
in its action on {1, . . . , n}, so that we can identify the points of Q with the subsets of cardinality k from
a set of cardinality n.

The goal of this subsection is to show that this situation cannot occur unless n = 6.

Lemma 5.5. Under Hypothesis 5.4, let α and β be collinear points of Q such that |α ∩ β| = i. Then
whenever |α′ ∩ β′| = i, we have that α′ and β′ are collinear in Q.

Proof. We show this when α′ = α; since G acts transitively on the points, the result will follow. Clearly,
there is some g ∈ Sn such that (α∩ β)g = α∩ β′, (β \ α)g = β′ \ α, and (α \ β)g = α \ β′. Thus g fixes α
and takes β to β′, so α and β′ must be collinear. If g ∈ An, then we are done.

If i > 2 or k− i > 2 or n−3k+ 2i+ i′− j > 2 where i′ = |β∩β′| and j = |α∩β∩β′|, then we can add
another 2-cycle to g if necessary, to get an element of An. Since An is nonabelian simple we have n > 5,
so these conditions are not satisfied only when n = 5, k = 2, i = 1, and i′ = j ∈ {0, 1}. Then without loss
of generality α = {1, 2}, β = {2, 3}, and β′ is either {1, 4} or {2, 4}. In the first case, g = (1 2)(3 4) ∈ A5

and g fixes α and takes β to β′; in the second case, g = (3 4 5) plays this role. �

Lemma 5.6. Under Hypothesis 5.4, if α and β are collinear points of Q with |α ∩ β| = i, then there is
some point β′ such that |α ∩ β′| = i but β′ is not collinear with β.
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Proof. Let ` be the line through α and β. Towards a contradiction, suppose that whenever |α∩β′| = i,
β′ is collinear with β and hence by Lemma 5.5, β′ is on `.

Consider the generalised Johnson graph formed on the k-subsets of {1, . . . , n}, with two vertices
adjacent if and only if their intersection has cardinality i. Clearly, this is a connected graph. We prove
by induction on d, the distance between α and α1 in this graph, that all of the vertices in this graph
must be on `. This will be a contradiction, since not every point of Q is on a single line.

The assumption made in the first paragraph tells us that all of the neighbours of α in this graph
are on `, establishing the base case of d = 1, and since α itself is on `, we have the base case of d = 0
also. Suppose that α1 is at distance d + 1 from α. Then it has a neighbour α2 that is at distance d
from α, so by induction, α2 is on `. Also, α2 has a neighbour α3 that is at distance d − 1 from α, so
by induction, α3 is on `. Now if α1 were not on `, α2 would have two neighbours α1 and α3, for which
|α2 ∩ α1| = |α2 ∩ α3| = i but α1 and α3 are not on the same line, so by vertex-transitivity, the same
would have to be true for α, contradicting our assumption. This completes the induction. �

Lemma 5.7. Under Hypothesis 5.4, n 6 3k−2k1, where k1 is the maximum cardinality of the intersection
of two collinear points.

Proof. Towards a contradiction, suppose that n > 3k − 2k1 + 1.
By Lemma 5.5 every two points whose intersection has cardinality k1 will be collinear. Let α =

{1, . . . , k} and β = {1, . . . , k1, k + 1, . . . , 2k − k1} be two collinear points.
If k1 = k−1 then β = {1, . . . , k−1, k+1} and by Lemma 5.6 there is some β′ such that |α∩β′| = k−1

but β′ is not collinear with β. Now, since β′ is not collinear with β, Lemma 5.5 tells us that |β∩β′| 6= k−1,
so without loss of generality, β′ = {2, . . . , k, k+2}. Now consider the point α′ = {1, . . . , k−1, k+2}. The
cardinality of the intersection of this set with α, β, and β′ is k− 1 = k1 (in each case), so by Lemma 5.5,
α′ is collinear with both α and β so must be on the unique line joining α and β. Now α′ is also collinear
with both α and β′ so must be on the unique line joining α and β′; since these two lines are not the same
and α is their point of intersection, we have a contradiction.

Thus we may assume k1 6 k−2. Now we let β′ = {1, . . . , k1, k+2, . . . , 2k−k1+1}. The cardinality of
α∩β′ is k1, so α and β′ are collinear by Lemma 5.5; the cardinality of β∩β′ is k−1 > k1, so by definition
of k1, β and β′ cannot be collinear. Consider the point α′ = {1, . . . , k1, 2k − k1 + 2, . . . , 3k − 2k1 + 1}.
(Since n > 3k − 2k1 + 1 this set is a point of Q.) The cardinality of the intersection of this set with α,
β, and β′ is k1 (in each case), so by Lemma 5.5, α′ is collinear with α, β, and β′, not all of which are
collinear; as before, this is a contradiction. �

Theorem 5.8. Under Hypothesis 5.4, n = 6 and s = t = 2.

Proof. Taking k to be the smaller of k and n−k, we can assume without loss of generality that n > 2k.
As before, let k1 be the maximum cardinality of the intersection of two collinear points. By Lemma 5.7,
we have n 6 3k − 2k1. Combining this with n > 2k yields k1 6 k/2.

By Lemma 5.5 every two points whose intersection has cardinality k1 will be collinear. Let α =
{1, . . . , k} and β = {1, . . . , k1, k+ 1, . . . , 2k−k1} be two collinear points. Now, since Q is thick, there are
at least three points on each line. Each point is a set of k elements, and their pairwise intersections are
at most k1, so by inclusion-exclusion, the total number of elements is at least 3k− 3k1. That is, we have
n > 3k−3k1. Thus, as in the second part of the proof of Lemma 5.7, β′ = {1, . . . , k1, k+2, . . . , 2k−k1+1}
is a point of Q. Observe that α is collinear with both β and β′, but β and β′ are not collinear.

Consider the point α′ = {k1 + 1, . . . , 2k1, k+ 1, . . . , k+ k1, 2k− k1 + 1, . . . , 3k− 3k1}. Since k1 6 k/2,
this is a set of k1 +k1 + (k− 2k1) = k distinct elements from {1, . . . , n}, so is a point of Q. If k1 > 1 then
the cardinality of the intersection of this set with α, β, and β′ is k1 (in each case), so by Lemma 5.5,
α′ is collinear with α, β, and β′, not all of which are collinear; as in the proof of Lemma 5.7, this is a
contradiction. On the other hand, if k1 = 0 then 3k − 3k1 6 n 6 3k − 2k1 implies n = 3k. In this case,
there can be only 3 points on any line since there are only 3 pairwise disjoint sets of cardinality k in a
set of cardinality 3k, so s = 2, forcing (by Higman’s inequality, Lemma 2.1(i)) t 6 4. Hence the number
of points in Q is at most 27. We also know that the number of points is

(
n
k

)
=
(
n
n/3

)
. Since

(
9
3

)
> 27 and

Q is thick, we obtain n = 6, which gives t = 2 as claimed. �
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5.2. Imprimitive stabiliser

In this subsection we deal with the possibility that G is An or Sn, acts primitively on the set of
points of the generalised quadrangle Q, and the stabiliser of a point of the generalised quadrangle is
imprimitive in its action on {1, . . . , n}. In this case we can identify the points of Q with partitions of a
set of cardinality n into b parts of cardinality a, where ab = n and a, b > 1.

We first show that we can assume b > 3, since b = 2 reduces to the intransitive case dealt with in the
previous subsection.

Lemma 5.9. Suppose that G = An or Sn acts primitively on the set of points of a thick generalised
quadrangle and Gα is the stabiliser of a partition of {1, . . . , n} into b parts. Then b 6= 2.

Proof. Towards a contradiction, suppose that b = 2. Then n is even, and a = n/2. Since Gα is
imprimitive in its action on {1, . . . , n}, it acts transitively on {1, . . . , n}, so G = G1Gα. Hence G1 acts
transitively on the points of Q.

Now, G1 ∩Gα = (Sn/2−1 × Sn/2) ∩G, which is maximal in G1, so G1 acts primitively on the points
of Q, and soc(G1) is An−1. Furthermore, in this action, the point stabiliser G1 ∩ Gα is intransitive on
{2, . . . , n}. Theorem 5.8 then implies that n− 1 = 6, contradicting n being even. �

We summarise in the following hypothesis the situation that will be assumed in almost all of the
results within this subsection.

Hypothesis 5.10. Suppose that G = An or Sn, G acts primitively on the points of a thick generalised
quadrangle Q of order (s, t), α is a point of Q, and the action of Gα on {1, . . . , n} is imprimitive, so the
points of Q are identified with partitions of {1, . . . , n} into b parts of cardinality a with b > 3.

Our approach will be to use Lemma 2.3 to produce a substructure of Q, or in some cases, two
nested substructures. First we must show that the substructures produced are in fact thick generalised
quadrangles rather than any of the degenerate cases. Then we will use Lemma 2.2 and Lemma 2.4 to
produce bounds on n. This will reduce the problem to a finite one, and we will use various means to
eliminate the remaining possibilities.

Notation 5.11. Through the rest of this subsection, we will be using two permutations, θ1 and θ2. If
a > 3 then θ1 = (1 2 3), and if a > 4 then θ2 = (1 2 4) while if a = 3, θ2 = (4 5 6). If a = 2
then θ1 = (1 2)(3 4) and θ2 = (1 2)(5 6). So we always have θ1, θ2 ∈ An 6 G. Starting with the
generalised quadrangle Q, we let Q′ denote the substructure of elements of Q that are fixed by θ1, and
Q′′ the substructure of elements of Q that are fixed by both θ1 and θ2. We use v, v′, and v′′ to denote
the number of points of Q, Q′, and Q′′ (respectively).

With this notation in place, we are ready to begin showing that the degenerate cases do not arise in
the situations that interest us. First we examine some parameters of the substructures and the groups
that act on them.

Lemma 5.12. Under Hypothesis 5.10 and using Notation 5.11, the values for v′′, v/v′ and v′/v′′ are
given by Table 4. Table 5 records information about the actions of certain subgroups of G acting on Q′
and Q′′ when n > 15 that will be needed later.

a v′′ v/v′ v′/v′′

> 4 (n−4)!
(a−4)!(a!)b−1(b−1)!

(n−1)(n−2)
(a−1)(a−2)

n−3
a−3

3 (n−6)!
6n/3−2(n/3−2)!

(n−1)(n−2)
2

(n−4)(n−5)
2

2 (n−6)!
2n/2−3(n/2−3)!

(n−1)(n−3)
3 3(n− 5)

Table 4: Values of v, v′ and v′′
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a Q′ Q′′
> 4 An−3 (transitive) An−4 (transitive)
3 An−3 (primitive) An−6 (primitive)
2 (S4 × Sn−4) ∩An (transitive) An−6 (primitive)
2 An−4 (3 orbits of equal length)

Table 5: Certain subgroups of G and their actions on Q′ and Q′′ when n > 15.

Proof. First note that v = n!
(a!)bb!

. For a > 3, the points of Q′ are the partitions of {1, . . . , n} that have

{1, 2, 3} together in one part. The group Sym({4, 5, . . . , n}) acts transitively on the set of these partitions

with the stabiliser of one such partition isomorphic to Sa−3 × (Sa wrSb−1). Thus v′ = (n−3)!
(a−3)!(a!)b−1(b−1)! .

Furthermore, Sym({4, 5, . . . , n}) ∩ soc(G) is isomorphic to An−3 and still acts transitively on the set of
partitions, as listed in the first row of Table 5. Furthermore, if a = 3, this action is primitive (see for
example [12]). For a > 4, the points of Q′′ are the partitions of {1, . . . , n} that have {1, 2, 3, 4} together
in one part, and so v′ is as given in the first row of Table 4. The values for v/v′ and v′/v′′ follow. The
subgroup of soc(G) that fixes 1, 2, 3, and 4 is isomorphic to An−4 and acts transitively on the points of
Q′′.

If a = 3 then the points of Q′′ are the partitions of {1, . . . , n} that have {1, 2, 3} as one part and
{4, 5, 6} as another. The group Sym({7, 8, . . . , n}) acts transitively on the set of such partitions with the
stabiliser of one such partition isomorphic to S3 wrSb−2. Thus v′′ is as given in the second row of Table
4 and the values of v/v′ and v′/v′′ follow. Also, Sym({7, 8, . . . , n}) ∩ soc(G) is isomorphic to An−6 and
(similar to the action on Q′ discussed above) acts primitively on these partitions.

Finally, when a = 2, the points of Q′ are the partitions of {1, . . . , n} that have two parts contained in
{1, 2, 3, 4}. The group Sym({1, 2, 3, 4})×Sym({5, 6, . . . , n}) acts transitively on the set of such partitions

with the stabiliser of one such partition isomorphic to D8 × (S2 wrSb−2). Thus v′ = 3(n−4)!
2b−2b!

. It is
straightforward to see that An−4 (acting on {5, . . . , n}) has 3 orbits of equal length on the points of Q′,
consisting of all partitions that have 1 and 2 in the same part; those that have 1 and 3 in the same part;
and those that have 1 and 4 in the same part. Since (Sym({1, 2, 3, 4}) × Sym({5, 6, . . . , n})) ∩ soc(G)
permutes these orbits, it acts transitively on the points of Q′.

Also when a = 2, the points of Q′′ are the partitions of {1, . . . , n} that include {1, 2}, {3, 4} and
{5, 6}. The group Sym({7, 8, . . . , n}) acts transitively on such partitions with stabiliser isomorphic to
S2 wrSb−3 and so v′′ is as given in the third row of Table 4. The values of v/v′ and v/v′′ follow. The
action of Sym({7, 8, . . . , n})∩ soc(G) on the points of Q′′ is analogous to the action of An−6 on the points
of Q′′ when a = 3. This action is primitive since b− 3 6= 4 [12], as n > 15. �

For some of the results to come in this subsection, the following bound will prove useful.

Lemma 5.13. When a > 4 and b > 3 and n > 16 we have n!
(a!)bb!

> (2.2)n.

Proof. Stirling’s formula [18] gives us that for every n > 1,

√
2πn e1/(12n+1)(n/e)n 6 n! 6

√
2πn e1/(12n)(n/e)n.

First suppose that b > 5. Let r = 4/(241/4) < 2. It is straightforward to check that a! 6 (a/r)a since
a > 4 and the two are equal when a = 4. Hence we have (using Stirling’s formula to get n! > (n/e)n and
the upper bound we have just calculated for a!)

n!

(a!)bb!
>

(n/e)n

(a/r)nb!
=

(br/e)n

b!
> (r/e)nbn−b >

(
rb3/4

e

)n
since a > 4 implies b 6 n/4, so n− b 6 3n/4. Since b > 5, it is easy to check that b3/4r/e > 2.2, yielding
the desired result.
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If b = 4 then a = n/4 and we use Stirling’s formula on n and a to obtain

n!

(a!)bb!
>

√
2πn e1/(12n+1)(n/e)n√

(2πn)/4
4
e4/(3n)(n/4e)n4!

=
2e1/(12n+1)

3
√

2πn
3
e4/(3n)

4n

and it can be verified computationally that this is at least (2.2)n since a > 4 implies n > 16.
If b = 3 then a = n/3 and we use Stirling’s formula on n and a to obtain

n!

(a!)bb!
>

√
2πn e1/(12n+1)(n/e)n√

2πn/3
3
e3/(4n)(n/3e)n3!

=

√
3e1/(12n+1)

4πne3/(4n)
3n

and it can be verified computationally that this is at least (2.2)n when n > 16. �

We now show that there must always be points and lines fixed by θ1 and by θ2.

Lemma 5.14. Under Hypothesis 5.10 and using Notation 5.11, if n > 10 then both Q′ and Q′′ contain
at least two points. Moreover, if n > 37 then both Q′ and Q′′ have at least one line.

Proof. The three values for v′′ given in Table 4 are at least 2 for n > 10. Also every point of Q′′ is
contained in Q′. Thus for n > 10 both Q′ and Q′′ have at least two points.

Any line fixed by both θ1 and θ2 will be fixed by θ1, so if we show that Q′′ has at least one line, we
will be done.

If there were two collinear points of Q fixed by θ1 and by θ2, then the line containing them would also
be fixed by θ1 and by θ2. So if there are no lines in Q′′, we must have v′′ pairwise non-collinear points
in Q. The number of pairwise non-collinear points in a generalised quadrangle of order (s, t) is at most
st+ 1, so we have st+ 1 > v′′. Thus we have v/(s+ 1) = st+ 1 > v′′.

By Lemma 5.12. the values for r = v/v′′ can be calculated quickly using Table 4. Now v/(s + 1) >
v′′ = v/r implies r > s+ 1 > v1/4 by Lemma 2.5(ii). Calculations using the lower bound for v given by
Lemma 5.13 if a > 4 (we have b > 3 by Lemma 5.9) and the formula for v if a is 2 or 3, show that this
inequality forces n to be less than 50: if a > 4 then n 6 49; if a = 3 then n 6 36; and if a = 2 then
n 6 32. When a > 4, we can evaluate the inequality again using each divisor a of n for n 6 49 and the
corresponding formula for N , to see that we must actually have n 6 24. �

Lemma 5.15. Under Hypothesis 5.10 and using Notation 5.11, if n > 16 then neither Q′ nor Q′′ has
all of its points on one line.

Proof. If all points of Q′′ are on a single line, then there are at most s + 1 such points, so we have
s + 1 > v′′. Since v′ > v′′, if this inequality leads to a contradiction, it will clearly not be possible for
all points of Q′ to be on a single line either. Letting r = v/v′′ it follows that r(s + 1) ≥ v and so by
Lemma 2.5(iii), r(v2/5 + 1) > v. Thus r > v/(v2/5 + 1) > v1/5(v2/5 − 1).

By Lemma 5.12, the values for r can easily be calculated using Table 4. Calculations using the lower
bound for v given by Lemma 5.13 if a > 4 (note that b > 3) and the formula for v if a is 2 or 3, show
that the inequality r > v1/5(v2/5 − 1) forces n to be less than 16: if a > 4 then n 6 13 (so since n = ab
we must have n = 12); if a = 3 then n 6 15; and if a = 2 then n 6 14. �

Corollary 5.16. Under Hypothesis 5.10 and using Notation 5.11, if n > 16, then neither Q′ nor Q′′ has
all of its lines pass through one point.

Proof. By Lemma 5.14, both Q′ and Q′′ have at least 2 points. By Lemma 5.12, both are point-
transitive. Therefore if all of the lines were to pass through one point, all of the lines would have to
pass through every point. Since there is a unique line through any two points, this is only possible if the
incidence structure has at most one line. By Lemma 5.15, this cannot occur. �
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Lemma 5.17. Under Hypothesis 5.10 and using Notation 5.11, if n > 9, then neither Q′ nor Q′′ is a
dual grid.

Proof. Towards a contradiction, suppose that either Q′ or Q′′ is a dual grid. By Lemma 5.12 and
Table 5, except for Q′ in the case a = 2, there is some m > n− 6 such that Am acts transitively on the
points of the substructure, and hence acts transitively on the lines of the dual structure, which is a grid.
The lines in a grid can be (uniquely) partitioned into two sets (think of them as the horizontal lines and
the vertical lines) such that the lines within each set are pairwise non-concurrent, but if one line is chosen
from each set, they must intersect. Since Am acts transitively on the lines, the subgroup of Am that fixes
each of these sets (setwise) is a subgroup of index 2 in Am. Since m > n− 6 > 3, Am does not have an
index 2 subgroup, a contradiction.

In the case of Q′ when a = 2, again by Lemma 5.12, this structure is point-transitive, so the dual
structure, a grid, is line-transitive. Hence the two parts in the unique partition of the lines described
above (horizontal and vertical) have the same cardinality. The action of An−4 on this structure has 3
orbits of equal length on the lines (Lemma 5.12 and Table 5). Since the cardinalities of the two sets of
lines are equal, there must be an element of An−4 that interchanges the two sets. Again, this forces the
subgroup of An−4 that fixes each of these sets of lines (setwise) to be an index 2 subgroup of An−4, a
contradiction. �

Lemma 5.18. Under Hypothesis 5.10 and using Notation 5.11, if n > 15 then neither Q′ nor Q′′ is a
grid.

Proof. Towards a contradiction, suppose that either Q′ or Q′′ is a grid. As in the proof of Lemma 5.17,
the lines can be (uniquely) partitioned into two sets (think of them as the horizontal lines and the vertical
lines) such that the lines within each set are pairwise non-concurrent, but if one line is chosen from each
set, they must intersect. By Lemma 5.12 and Table 5, except for Q′ in the case a = 2, there is some
m > n− 6 such that Am acts transitively on the points of the substructure. If there were an element of
Am that interchanges the two sets of lines, then the subgroup of Am that fixes each set of lines (setwise)
would have index 2, a contradiction. So every element of Am fixes each of the sets of lines. Since Am
acts transitively on the points, it must act transitively on each of the two sets of lines. Thus, each set of
lines forms a system of imprimitivity on the points of the structure. This is clearly impossible when the
action of Am on the points is primitive; by Lemma 5.12 and Table 5, this deals with the case a = 3, and
with Q′′ when a = 2 or a = 4.

If a > 4 and x is a point of the substructure, then the stabiliser of x in Am is (Sa−(n−m) ×
(Sa wrS(n−a)/a))∩Am. Now, by [12], Sa wrS(n−a)/a is a maximal subgroup of Sn−a, so there is a unique
group that lies properly between (Sa−(n−m)×(Sa wrS(n−a)/a))∩Am and Am, namely (Sa−(n−m)×Sn−a)∩
Am. When a = 4 and we are dealing with Q′′, we have a− (n−m) = 0 so this group is actually Am and
the action is primitive, as previously claimed. In every other case, this corresponds to a unique system
of imprimitivity, contradicting the existence of two systems that we proved in the preceding paragraph.

The only remaining substructure that could be a grid is Q′ when a = 2. By Lemma 5.12 and Table 5,
(S4×Sn−4)∩An acts transitively on the points, and the point stabiliser is (D8× (S2 wrS(n−4)/2))∩An.
There are two groups that lie properly between (D8 × (S2 wrS(n−4)/2)) ∩ An and (S4 × Sn−4) ∩ An:
namely, (D8 × Sn−4) ∩ An and (S4 × (S2 wrS(n−4)/2)) ∩ An. These must correspond to the systems
of imprimitivity formed by the two sets of lines. Now, (D8 × Sn−4) ∩ An gives blocks of cardinality

(n−4)!
2(n−4)/2(n−4

2 )!
, while (S4× (S2 wrS(n−4)/2))∩An gives blocks of cardinality 3. Thus, there are lines in Q′

that contain (n−4)!
2(n−4)/2(n−4

2 )!
points, and since Q′ is a substructure of Q, we must have s+1 > (n−4)!

2(n−4)/2(n−4
2 )!

.

Using Lemma 2.5(iii), we get(
n!

2n/2(n/2)!

)2/5

+ 1 > s+ 1 >
(n− 4)!

2(n−4)/2(n−42 )!
.

This is satisfied only when n 6 10. �

We now have bounds on n whenever the substructures are degenerate, so are ready to produce bounds
for n in the non-degenerate cases.
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Lemma 5.19. Under Hypothesis 5.10, we have n 6 36.

Proof. Towards a contradiction, suppose that n > 37. We use Notation 5.11.
Lemma 2.3 tells us that each of these incidence structures falls into one of 7 categories. The first

and second are ruled out by Lemma 5.14. The third is eliminated by Lemma 5.16, and the fourth by
Lemma 5.15. Lemmas 5.18 and 5.17 tell us that the fifth and sixth (respectively) cannot occur. Thus,
both Q and Q′ are subquadrangles of orders (s′, t′) and (s′′, t′′) respectively, and s′, s′′, t′, t′′ > 2. Now,
Lemma 2.2 tells us that if s′′ = s′ = s then t′′ = 1, contradicting t′′ > 2, so this cannot occur.

Suppose that s′ = s. Then we have just seen that we must have s′′ < s, so by Lemma 2.4, s′′t′′ 6 s′ =
s. Hence r = v′/v′′ > t′ > s1/2 > (v1/4 − 1)1/2 (the last two inequalities come from Higman’s inequality
2.1(i) and Lemma 2.5(ii), while the first is Lemma 2.5(iv) applied to v′ and v′′ rather than to v and v′).
By Lemma 5.12, the values for r are given in Table 4. Calculations using the lower bound for v given
by Lemma 5.13 if a > 4 (we have b > 3 by Lemma 5.9) and the formula for v if a is 2 or 3, show that
this inequality forces n to be less than 36: if a > 4 then n 6 35; if a = 3 then n 6 33; and if a = 2 then
n 6 28. This is a contradiction.

So we must have s′ < s. Thus by Lemma 2.4, s′t′ 6 s. Hence r′ = v/v′ > t > v1/5 − 1 (from parts
(iv) and (i) of Lemma 2.5). By Lemma 5.12, the values for r′ are given in Table 4. Calculations using
the lower bound for v given by Lemma 5.13 if a > 4 (we have b > 3 by Lemma 5.9) and the formula for
v if a is 2 or 3, show that this inequality forces n to be less than 33: if a > 4 then n 6 32; if a = 3 then
n 6 21; and if a = 2 then n 6 22. This is a contradiction. �

Corollary 5.20. Under Hypothesis 5.10, n = 6 and Q is the unique generalised quadrangle of order
(2, 2).

Proof. By Lemma 5.19, we have n 6 36. The following table shows the only instances where the number
v of points of Q satisfies

v =
n!

(a!)bb!
, for some a, b > 1

v = (s+ 1)(st+ 1), for some s, t > 1,
√
t 6 s 6 t2, s+ t divides st(s+ 1)(t+ 1) :

n s t a b
6 2 2 2 3
9 9 3 3 3
10 8 13 2 5
16 76 449 4 4

The first case is the unique generalised quadrangle of order (2, 2) (c.f., [16, 5.2.3]). The last case cannot
occur, since in this event, we would have (by Lemmas 2.3, 5.14, 5.15, 5.16, 5.17 and 5.18) that the
substructure Q′ either has no lines, or is non-degenerate of order (s′, t′) with s′, t′ > 2. Furthermore,
Q′ has v′ = 75075 points. Now, st + 1 = 76(449) + 1 = 34125 < v′ so by the same reasoning used in
Lemma 5.14, Q′ does have lines. However, there are no integers s′, t′ > 2 such that (s′ + 1)(s′t′ + 1) =
75075.

For n = 9, a simple computation shows that G does have a subdegree equal to s(t + 1) = 36, but
while the associated graph (which would be the putative collinearity graph of the generalised quadrangle)
has diameter 2, it is not strongly-regular. For n = 10, there is no union of suborbits yielding a set of
cardinality s(t+ 1) = 112; the nontrivial subdegrees are {20, 60, 80, 160, 240, 384} (in both the symmetric
and alternating cases).

Therefore, by Lemma 5.19, n = 6 is the only possibility that occurs. �
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5.3. Small degree actions of An/Sn, for n 6 47

D10 6 A5 AGL(1, 5) 6 S5 PSL(2, 5) 6 A6 PGL(2, 5) 6 S6

PSL(3, 2) 6 A7 AGL(1, 7) 6 S7 ASL(3, 2) 6 A8 PGL(2, 7) 6 S8

ASL(2, 3) 6 A9 PΓL(2, 8) 6 A9 AGL(2, 3) 6 S9 M10 6 A10

PΓL(2, 9) 6 S10 M11 6 A11 AGL(1, 11) 6 S11 M12 6 A12

PGL(2, 11) 6 S12 13 : 6 6 A13 PSL(3, 3) 6 A13 AGL(1, 13) 6 S13

PSL(2, 13) 6 A14 PGL(2, 13) 6 S14 PSL(4, 2) 6 A15 24.PSL(4, 2) 6 A16

PΓL(2, 24) 6 A17 AGL(1, 17) 6 S17 PSL(2, 17) 6 A18 PGL(2, 17) 6 S18

PSL(2, 19) 6 A20 PGL(2, 19) 6 S20 A7 6 A21 PGL(3, 4) 6 A21

S7 6 S21 PΓL(3, 4) 6 S21 M22 6 A22 M22 : 2 6 S22

M23 6 A23 M24 6 A24 PGL(2, 23) 6 S24 (A5 ×A5) : 22 6 A25

(S5 × S5) : 2 6 S25 PΓL(2, 25) 6 S26 ASL(3, 3) 6 A27 PSp(4, 3) : 2 6 A27

AGL(3, 3) 6 S27 PSp(6, 2) 6 A28 PSL(5, 2) 6 A31 ASL(5, 2) 6 A32

Table 6: The primitive groups H of degree n 6 47 such that |H|6 > n!/2 or |H|6 > n!, depending on whether H 6 An or
not.

Theorem 5.21. Suppose that G = An or Sn and that G acts flag-transitively and point-primitively on
a thick generalised quadrangle Q. Then Gα does not act primitively on {1, . . . , n}.

Proof. Suppose that Gα is primitive on {1, . . . , n}. By Lemma 5.3, we know that n 6 47. By Lemma
5.2, |G| < |Gα|6. The possible pairs (Gα, G) are given in Table 6. The following table lists the only
cases for which there are positive integers s, t > 1 such that |G : Gα| = (s+ 1)(st+ 1),

√
t 6 s 6 t2 and

s+ t | st(s+ 1)(t+ 1).

Gα, G s t s(t+ 1) Nontrivial subdegrees
PSL(3, 2), A7 2 2 6 14
ASL(3, 2), A8 2 2 6 14
M10, A10 11 19 220 10, 10, 45, 90, 90, 90, 144, 240, 360, 720, 720

PΓL(2, 9), S10 11 19 220 20, 45, 90, 144, 180, 240, 360, 720, 720
M11, A11 11 19 220 110, 330, 495, 1584
M12, A12 11 19 220 440, 495, 1584

In each case, no subset of the subdegrees sums to s(t + 1), the cardinality of the neighbourhood of a
point, and hence none of these cases are realised. �

6. Sporadics

From the Atlas of Finite Group Representations [4], we can readily establish the following:

Lemma 6.1. Let G be an almost simple group whose socle is a sporadic simple group and suppose that
G has a maximal subgroup with index (s+ 1)(st+ 1), for some s, t > 2 such that s 6 t2, t 6 s2 and s+ t
divides st(st+ 1). Then G is listed in Table 7.

Proof. For all groups G except the Fischer-Griess ‘Monster’, we use the Atlas [4] for a list of max-
imal subgroups of G and extract the indices satisfying the conditions of the lemma. For the Mon-
ster M , there are 43 known maximal subgroups, and none of them has index of the form required.
We know by [2] that if H is an unknown maximal subgroup of M , then H is almost simple with
soc(H) ∈ {L2(13), U3(4), U3(8), Sz(8)}. Hence we know the possible values for |M : H|, and we find
that none can be the number of points of a thick generalised quadrangle. �

Corollary 6.2. No sporadic almost simple group acts primitively on both the points and lines of a thick
generalised quadrangle.
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G s t (s+ 1)(st+ 1) Gα
Co2 161 159 4147200 M23

Fi ′24 115 23 306936 Fi23
Fi ′24.2 115 23 306936 Fi23 × 2
Fi22 25 95 61776 O+

8 (2).3.2
35 49 61776 O+

8 (2).3.2
39 9 14080 O7(3)

Fi22.2 25 95 61776 O+
8 (2).S3 × 2

35 49 61776 O+
8 (2).S3 × 2

Fi23 2991 689 6165913600 [310].(L3(3)× 2)
HN 149 51 1140000 A12

HN .2 149 51 1140000 S12

J1 21 9 4180 7 : 6
J2 9 3 280 3.A6.22

13 11 2016 52 : D12

J2.2 9 3 280 3.A6.2
2

13 11 2016 52 : (4× S3)
J3 44 22 43605 22+4.(3× S3)
J3.2 44 22 43605 22+4 : (S3 × S3)
M11 4 8 165 2.S4

McL 8 28 2025 M22

O ′N 19 323 122760 L3(7).2
Ru 9 45 4060 2F4(2)

57 57 188500 26 : U3(3) : 2
Suz 41 19 32760 U5(2)

129 191 3203200 32+4 : 2.(22 ×A4).2
Suz .2 41 19 32760 U5(2).2

129 191 3203200 32+4 : 2.(S4 ×D8)

Table 7: Sporadic almost simple groups that might act primitively on a generalised quadrangle of order (s, t).
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Proof. There is only one group for which (s, t) and (t, s) are both listed, namely the Rudvalis group
with s = t = 57. The nontrivial subdegrees for the transitive action of G on the right cosets of Gα are

63, 756, 2016, 2016, 2016, 16128, 16128, 21504, 24192, 48384, 55296

(by computer). In the collinearity graph of a generalised quadrangle of order (57, 57), the cardinality of
a neighbourhood is 57× 58 = 3306. However, there is no partition of 3306 into the subdegrees of G. �
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