
AUTOMORPHISM GROUPS OF WREATH PRODUCT DIGRAPHS

EDWARD DOBSON AND JOY MORRIS

Abstract. We strengthen a classical result of Sabidussi giving a necessary and
sufficient condition on two graphs, X and Y , for the automorphsim group of the
wreath product of the graphs, Aut(X o Y ) to be the wreath product of the auto-
morphism groups Aut(X) o Aut(Y ). We also generalize this to arrive at a similar
condition on color digraphs.

The main purpose of this paper is to revisit a well-known and important result of
Sabidussi [17] giving a necessary and sufficient condition for the wreath product X oY
(defined below) of two graphs X and Y to have automorphism group Aut(X)oAut(Y ),
the wreath product of the automorphism group of X and the automorphism group
of Y (defined below). We will both strengthen Sabidussi’s result and generalize it.
First, Sabidussi only considered almost locally finite graphs X and finite graphs Y .
(A graph is almost locally finite if the set of vertices of infinite degree is finite.) The
condition that X be almost locally finite is needed for Sabidussi’s proof, but is clearly
not needed in general. Indeed, note that X o Y , the complement of X o Y , has the
same automorphism group as X o Y , X o Y = X̄ o Ȳ , but X̄ is not almost locally
finite if X is infinite and almost locally finite. We will show that no restriction on X
whatsoever is needed. We also weaken the requirement on Y : rather than requiring Y
to be finite, we only require that Y not be isomorphic to a proper induced subgraph
of itself.

Next, since Sabidussi published his original paper, the wreath product of digraphs
and color digraphs have also been considered in various contexts. We will give a
necessary and sufficient condition for Aut(X oY ) = Aut(X)oAut(Y ) for a color digraph
X and a color digraph Y , provided that X does not contain a specific forbidden
digraph (which is infinite), and that Y is not isomorphic to a proper induced color
subdigraph of itself.

We then turn to the case where X is also finite and both X and Y are vertex-
transitive graphs (this is a common context in which Sabidussi’s result is applied),
and show that if X and Y are not both complete or both edgeless, then there exist
vertex-transitive graphs X ′ and Y ′ such that X o Y = X ′ o Y ′ and Aut(X o Y ) =
Aut(X ′) o Aut(Y ′).

Finally, the wreath product of Cayley graphs arises naturally in the study of the
Cayley Isomorphism problem (definitions are provided in the third section, where this
work appears). We show that if X and Y are CI-graphs of abelian groups G1 and G2,

This research was supported in part by the National Science and Engineering Research Council
of Canada.

1



2 EDWARD DOBSON AND JOY MORRIS

respectively, then X oY need not be a CI-graph of G1×G2, and then give a necessary
condition on G1 and G2 that will ensure that X o Y is a CI-graph of G1 ×G2.

The wreath product of two color digraphs C and D is defined to be the graph whose
vertices are the ordered pairs (v, w) for which v is a vertex of C, and w is a vertex of
D. There is an arc of color k from (v, w) to (v′, w′) if either of the following holds:

• v = v′ and there is an arc of color k from w to w′ in D; or
• there is an arc of color k from v to v′ in C.

Another way of describing the wreath product of C and D is that each vertex of C is
replaced by a copy of D, and we include all possible arcs of color k from the copy of
D corresponding to the vertex v of C to the copy of D corresponding to the vertex v′

of C, if and only if there is an arc of color k from v to v′ in C. We denote the wreath
product of C and D by C oD.

The name wreath product was chosen because of the close connection (mentioned
earlier) to the wreath product of automorphism groups.

Suppose we have two permutation groups, Γ and Γ′, acting on the sets Ω and Ω′,
respectively. The wreath product of Γ with Γ′, denoted Γ o Γ′, is defined as follows. It
is the group of all permutations δ acting on Ω × Ω′ for which there exist γ ∈ Γ and
an element γ′v of Γ′ for each v ∈ Ω, such that

δ(v, w) = (γ(v), γ′v(w)) for every (v, w) ∈ Ω× Ω′.

It is always the case that Aut(C) oAut(D) ≤ Aut(C oD), for color digraphs C and
D. This is mentioned as an observation in [17], for example, in the case of graphs,
and color digraphs are equally straightforward.

In fact, it is very often the case that Aut(C)oAut(D) = Aut(C oD). Harary claimed
that this was always the case in [12], but this was corrected by Sabidussi in [17], who
provided a characterization for precisely when Aut(C) oAut(D) = Aut(C oD), where
C is an almost locally finite graph and D is a finite graph.

The first section of this paper will give the strengthening of Sabidussi’s result
explained above. The second section will use results from the first section to consider
the question of what Aut(C o D) can be, if it is not Aut(C) o Aut(D), and will give
the result mentioned previously, on vertex-transitive graphs.

The final section will produce the results that relate to the Cayley Isomorphism
problem for graphs that are wreath products of Cayley graphs on abelian groups.

1. Extending Sabidussi’s Result

Before we can state and prove the appropriate extension of Sabidussi’s characteri-
sation of when Aut(C oD) = Aut(C) oAut(D), we need to introduce some additional
notation and terminology.

In what follows, we state definitions and results in terms of color digraphs; color
graphs can be modelled as color digraphs by replacing each edge of color k by a digon
(arcs in both directions) of color k, for every color k, so all of the definitions and
results also hold for color graphs.
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Definition 1. In any color digraph X, we say that the vertices x and y are a
neighbour-equivalent k-pair of vertices, if x 6= y and the following two conditions
hold:

(1) there are arcs of color k from x to y, and from y to x; and
(2) for any color i, the open out-neighbourhood and in-neighbourhood, of color i

of the vertex x, are equal to the open out-neighbourhood and in-neighbourhood
(respectively), of color i of the vertex y.

That is, a neighbour-equivalent k-pair of vertices is a pair of vertices that are mutually
adjacent via two arcs of color k, and that, with the exception of this mutual adjacency,
have exactly the same in-neighbours and out-neighbours of every color.

It is straightforward to verify that being a neighbour-equivalent k-pair is an equiv-
alence relation, and therefore partitions the vertices of any graph into equivalence
classes. We call these equivalence classes neighbour-equivalent k-classes of vertices.

Suppose that a color digraph X has arcs of r colors, 1 through r. In all that follows
in this section, we assume that all non-arcs of every color digraph have been replaced
by arcs of a new color, color 0. This serves to simplify our notation and some aspects
of the proofs. Thus, for any ordered pair of vertices v1 and v2, there will be an arc of
color k from v1 to v2 for some 0 ≤ k ≤ r.

Definition 2. For any color k (0 ≤ k ≤ r), we say that the k-complement of X
is disconnected if, upon removing all arcs of color k, the underlying graph is discon-
nected.

That is, the k-complement of X is disconnected if X has a pair of vertices x and
y, for which every path between x and y in the underlying graph of X must use an
edge of color k.

Notice that saying that the 0-complement of X is disconnected is equivalent to
saying that X is disconnected.

Notation 1. For any wreath product C oD of color digraphs C and D, and any vertex
v of C, we use D(v) to denote the copy of D in C oD that corresponds to the vertex
v of C.

With that final piece of notation, we are ready to begin our proofs. There are
several lemmata that will be required along the way to our characterisation of when
Aut(C oD) = Aut(C) o Aut(D).

Lemma 1. Suppose that X = C o D = C ′ o D′, where C, D, C ′ and D′ are color
digraphs. For every vertex v of C, every vertex w of C ′ for which D′(w) 6⊂ D(v), and
every vertex v′ 6= v of C for which D′(w) ∩D(v′) 6= ∅, we conclude that

• there is some color k for which every arc from any vertex of D(v) \ D′(w) to
any vertex of D(v) ∩D′(w) has color k. Furthermore, this color k is the color
of the arcs from the vertices of D(v) to the vertices of D(v′).

• Similarly, there is some color k′ for which every arc to any vertex of D(v)\D′(w)

from any vertex of D(v) ∩ D′(w) has color k′. Furthermore, k′ is the color of
the arcs from the vertices of D(v′) to D(v).
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Proof. First, if either D(v) ∩ D′(w) or D(v) \ D′(w) contains no vertices, the result is
vacuously true. So we may assume that each of these sets contains at least one vertex.
Let z1 be any vertex in D(v) ∩D′(w).

Since D′(w) 6⊂ D(v), there must be some vertex, z2 say, in D′(w) \D(v). Let v′ be the
vertex of C for which z2 is a vertex of D(v′). Let k be the color of the arc from z1 to
z2. Since X = C oD, all arcs from vertices in D(v) to vertices in D(v′) have color k.
Therefore, with this fixed choice of z2, any choice for z1 ∈ D(v) ∩D′(w) will have an
arc of color k to z2.

Let z3 be any vertex of X in D(v) \D′(w). Since z3 ∈ D(v), there must be an arc of
color k from z3 to z2. Now, z3 is in some D′(w′) for some vertex w′ of C ′, and since
there is an arc of color k from z3 ∈ D′(w′) to z2 ∈ D′(w) and X = C ′ o D′, we must
have every possible arc of color k from vertices in D′(w′) to vertices in D′(w). Since
z3 ∈ D′(w′) and z1 ∈ D′(w), in particular there is an arc of color k from z3 to z1.

Since the color k is fixed for any choice of z1 ∈ D(v) ∩ D′(w) and for any choice
of z3 ∈ D(v) \ D′(w), this shows that there is an arc of color k from every vertex in
D(v) \D′(w) to every vertex in D(v) ∩D′(w).

Reversing the direction of each arc and replacing k with k′ in the argument above,
completes the proof of the lemma. �

Before stating and proving the next lemma, we must introduce the forbidden sub-
digraph, F .

Definition 3. The color digraph F has a countably infinite number of vertices, and
arcs of two distinct colors. It is characterised by the property that its vertices can be
labelled by the integers in such a way that whenever i < j, the arc from i to j has the
first color, and the arc from j to i has the second color.

Lemma 2. Let C, C ′, D and D′ be color digraphs, where D ∼= D′ and D is not
isomporphic to a proper induced color subdigraph of itself. Suppose that X = C oD =
C ′ o D′, and that no induced subdigraph of C is isomorphic to F (where the arcs of
F may have any two distinct colors). Suppose that there is some vertex v of C for
which D(v) is not a copy of D′. Then

• whenever D(v′) meets some D′(w) that meets D(v), the arcs from D(v′) to D(v)

have the same color as the arcs from D(v) to D(v′); moreover, if this color is
k, then

• the k-complement of D is disconnected.

Proof. Let v be a vertex of C for which D(v) is not a copy of D′. As D ∼= D′ is
not isomorphic to any proper induced color subdigraph of itself, there must be some
vertex w of C ′ such that D′(w) ∩D(v) 6= ∅, D′(w) \D(v) 6= ∅, and D(v) \D′(w) 6= ∅. Let
v′ 6= v be a vertex of C such that D(v′) ∩D′(w) 6= ∅. Since we have replaced non-arcs
by arcs of color 0, and since X = C o D, all arcs from D(v) to D(v′) have the same
color, k, say. Also, all arcs from D(v′) to D(v) have the same color, k′.

If we can establish that k′ = k (the first claim of this lemma), then by Lemma 1,
the arcs from D(v)∩D′(w) to D(v) \D′(w) and the arcs from D(v) \D′(w) to D(v)∩D′(w)
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must all have color k. Since both of these sets are nonempty, the k-complement of D
is disconnected, which establishes the second claim of this lemma.

The remainder of this proof will establish that k′ = k. Now, we can form a chain
forwards and backwards from v1 = v to include v2 = v′, v3, . . .; v0, v−1, . . . of vertices
of C such that for every integer i, there exists some vertex wi of C ′ for which D′(wi)

meets both D(vi) and D(vi+1) in at least one vertex, and vi 6= vi+1, wi 6= wi+1 for any
i. Since D ∼= D′ is not isomorphic to any proper induced subdigraph of itself (note
that this is the only part of the proof that uses this assumption on D), this chain can
never end (in either direction) by having some D(vi+1) completely contained in D′(wi),
or by having some D′(wi) completely contained in D(vi).

We show that in any such chain, if b > a and vb 6= va, then all arcs from D(va) to
D(vb) have color k, and all arcs from D(vb) to D(va) have color k′. Inductively, assume
that all arcs from D(va) to D(va+1) have color k (the base case of this, with a = 1, has
been established, and this makes sense, since va 6= va+1). Then since D′(wa) meets
D(va) in at least one vertex, and D′(wa+1) meets D(va+1) in at least one vertex, all arcs
from D′(wa) to D′(wa+1) must have color k (since these two copies of D′ are distinct).
Now, since D(va+1) meets D′(wa) in at least one vertex, and D(va+2) meets D′(wa+1) in at
least one vertex, all arcs from D(va+1) to D(va+2) must have color k. This establishes
that all arcs from D(va) to D(va+1) have color k for any a, which will form the base
case for our next induction.

Fix a, and inductively suppose that either all arcs from D(va) to D(vb) have color k,
or vb = va, where b > a. If vb = va then since all arcs from D(vb) to D(vb+1) have color
k (by our last inductive argument), so do all arcs from D(va) to D(vb+1), completing
the induction. Otherwise, Since D′(wa) meets D(va) in at least one vertex, and D′(wb)

meets D(vb) in at least one vertex, all arcs from D′(wa) to D′(wb) must have color k
if wa 6= wb. And since D(va) meets D′(wa) in at least one vertex, and D(vb+1) meets
D′(wb) in at least one vertex, all arcs from D(va) to D(vb+1) must have color k. On the
other hand, if wa = wb, then wa 6= wb+1, but D(vb) meets D′(wa) = D′(wb) in at least
one vertex and D(vb+1) meets D′(wb+1) in at least one vertex, so since all arcs from
D(vb) to D(vb+1) have color k (by our last inductive argument), so must all arcs from
D′(wa) to D′(wb+1). Since D(va) also meets D′(wa) in at least one vertex, all arcs from
D(va) to D(vb+1) must also have color k. This completes the proof that all arcs from
D(va) to D(vb) have color k whenever b > a, if vb 6= va. Reversing the direction of the
arcs and replacing k by k′ throughout the two inductive arguments that we have just
concluded, will prove that all arcs from D(vb) to D(va) have color k′ whenever b > a,
if vb 6= va.

If all of the vertices vi (where i is an integer) were distinct, then either k′ =
k (completing the proof), or the vertices in this chain would induce a subgraph
isomorphic to F , a contradiction. We now show that even if not all of the vertices
in the chain are distinct, we must have k′ = k, completing the proof. Suppose that
there is some vi such that vi = vj for some j 6= i. Without loss of generality, assume
j < i. Then since vj 6= vj+1 and vi = vj, we must have i ≥ j + 2 > j + 1. Now, by
the conclusion of the previous paragraph, since j + 1 > j and vj 6= vj+1, all arcs from
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vj to vj+1 must have color k. However, since i > j + 1 and vi = vj 6= vj+1, all arcs
from vi to vj+1 must have color k′. Since vi = vj, we must conclude that k′ = k. �

Lemma 3. Let C, C ′, D and D′ be color digraphs. Suppose that X = C oD = C ′ oD′.
Suppose further that there is some vertex v of C for which D(v) is neither a union of
copies of D′, nor contained within a copy of D′.

Whenever there is some color k, 0 ≤ k ≤ r, for which the k-complement of D
is disconnected, then C ′ has a neighbour-equivalent k-pair of vertices, and the k-
complement of D′ is disconnected.

Proof. Let v be a vertex of C for which D(v) is neither a union of copies of D′, nor
contained within a copy of D′. Let w be a vertex of C ′ such that D′(w) ∩ D(v) 6= ∅,
D′(w)\D(v) 6= ∅, andD(v)\D′(w) 6= ∅. Let v′ be a vertex of C such thatD(v′)∩D′(w) 6= ∅.
Since we have replaced non-arcs by arcs of color 0, and since X = C oD, all arcs from
D(v) to D(v′) have the same color, k, say.

By Lemma 1, all arcs from vertices of D(v) \D′(w) to vertices of D(v) ∩D′(w) have
color k also. Notice that this means that the k′-complement of D is connected for
every k′ 6= k, even if k = 0.

Under the assumption that there is some k′, 0 ≤ k′ ≤ r, for which the k′-
complement of D is disconnected, we must have k′ = k, and if the color of the
arcs from D(v) ∩ D′(w) to D(v) \ D′(w)is not k, then the k-complement of D is also
connected, a contradiction. So there are arcs of color k in both directions between
every vertex of D(v) \ D′(w) and every vertex of D(v) ∩ D′(w). In particular, for any
vertex w′ 6= w of C ′ for which D(v) ∩ D′(w′) 6= ∅, there are arcs of color k in both
directions between every vertex of D′(w) and every vertex of D′(w′).

This is enough to allow us to use Lemma 1, with D′(w) and D(v) taking on each
others’ roles, to conclude that all arcs in either direction between vertices of D′(w) ∩
D(v) and vertices of D′(w) \D(v), have color k. Since both of these sets are nonempty,
the k-complement of D′ is disconnected.

Finally, we establish that w and w′ are a neighbour-equivalent k-pair. We have
already shown that the arcs between w and w′ in C ′ have color k. If w′′ is any color
k′ out-neighbour of w, let v′′ be any vertex of C for which D(v′′) ∩D′(w′′) 6= ∅. Then
all arcs from D′(w) to D′(w′′) have color k′, and the various nonempty intersections
establish that this is equivalent to all arcs from D(v) to D(v′′) having color k′, which in
turn is equivalent to all arcs from D′(w′) to D′(w′′) having color k′; that is, w′′ is a color
k′ out-neighbour of w′. An analogous argument can be used to show that w and w′

have the same in-neighbours of any color. Hence w and w′ are a neighbour-equivalent
k-pair of vertices, as claimed. �

We can now characterise when Aut(X o Y ) ∼= Aut(X) o Aut(Y ).

Theorem 4. Let X ∼= C ′ oD′ be a color digraph with r colors, colors 1, . . . , r, where D′

is not isomorphic to a proper induced subdigraph of itself. Suppose that X contains no
induced subdigraph isomorphic to F (where the arcs of F may have any two distinct
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colors). Replace non-arcs by arcs of a new color, color 0. Then

Aut(X) = Aut(C ′) o Aut(D′)
⇔

∀0 ≤ k ≤ r, if C ′ has a neighbour-equivalent k-pair of vertices,
then the k-complement of D′ is connected.

Proof. We first prove that if Aut(X) = Aut(C ′) o Aut(D′), then for every 0 ≤ k ≤ r,
C ′ having a neighbour-equivalent k-pair of vertices implies that the k-complement of
D′ is connected. We use the contrapositive. Suppose that there is some k such that
there exists a neighbour-equivalent k-pair of vertices of C ′, which we will call v0 and
v1, and that the k-complement of D′ is disconnected. Let U be a component of the
k-complement of D′.

Denote every vertex of X in the natural way as a pair (v, w), where v ∈ V (C ′),
w ∈ V (D′). Define ψ : V (X) → V (X) by

ψ((v, w)) =

{
(v, w), if w 6∈ V (U) or if v 6= v0, v1

(v1−i, w), if w ∈ V (U), and either v = v0 or v = v1.

Then it is straightforward to verify that ψ ∈ Aut(X), but ψ 6∈ Aut(C ′) o Aut(D′), so
Aut(X) 6= Aut(C ′) o Aut(D′).

Now we prove the converse, also by contrapositive. Suppose that Aut(X) 6=
Aut(C ′) o Aut(D′). As mentioned earlier in this paper, it is clear that Aut(C ′) o
Aut(D′) ≤ Aut(X), so we must have some automorphism ψ ∈ Aut(X) \ Aut(C ′) o
Aut(D′). We now use Lemma 2, with C ′ and D′ taking their own roles, while the
graphs taking the roles of C and D are obtained by looking at the structure of the
image of C ′ o D′ under ψ. That is, copies of D′ map to copies of D under ψ. Since
ψ 6∈ Aut(C ′) o Aut(D′) and D′ is not isomorphic to a proper induced subdigraph of
itself, there must be some vertices v, v′, v′′ ∈ V (C ′), with v 6= v′ for which ψ(D′(v′′))
meets both D′(v) and D′(v′) nontrivially. So the conditions of the lemma are satisfied,
and we conclude that there is some k for which the k-complement ofD is disconnected.

This gives us the conditions of Lemma 3, so we can use that lemma to conclude
that C ′ has a neighbour-equivalent k-pair of vertices, and the k-complement of D′ is
disconnected. This completes the proof. �

Remark. It is necessary to forbid the subdigraph F in this result. Suppose that
the colors of the arcs of F are 0 and 1. If we define the color digraph D on two vertices
x and y to have an arc of color 0 from x to y and an arc of color 1 from y to x, then
F o D ∼= F . Label the vertices of this digraph with the integers as in the definition
of F . Now, the map that takes i to i + 1 for every integer i, is an automorphism
of F o D, but each copy of D from F o D has one vertex mapped within this copy
of D, and the other vertex mapped to a different copy of D. Since copies of D are
not preserved, this automorphism is not an element of Aut(F ) o Aut(D), and hence
Aut(F oD) 6= Aut(F ) o Aut(D).

Now that we have a characterisation of when Aut(C oD) = Aut(C) o Aut(D), but
on the surface of it, this gives us little information about what Aut(C oD) might look
like, if it is not Aut(C) oAut(D). This is the question we consider in the next section.
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2. What else could Aut(C oD) be?

Quite often, it is the case that even if Aut(C o D) 6= Aut(C) o Aut(D), there are
nontrivial color digraphs C ′ and D′ for which C ′ o D′ ∼= C o D and Aut(C o D) =
Aut(C ′) o Aut(D′). Later in this section, we will determine precisely which color
digraphs have this property. Before doing so, however, we will provide a result that
gives the form of Aut(C oD) in some generality. We will assume that D is finite.

Notation 2. In the next few results, it will prove convenient to have a special notation
for the colour digraph on n vertices that has an arc of color k from every vertex to
every other vertex (that is, the complete digraph on n vertices, all of whose arcs have
color k). We denote this by Kk

n.

Let Γ be a permutation group acting on the set Ω. Then for any partition P of the
elements of Ω, we let fixΓ(P) denote the subgroup of Γ that fixes every set P ∈ P
setwise.

By Theorem 4, if we have Aut(C oD) 6= Aut(C) oAut(D), we must have some color
k for which C has a neighbour-equivalent k-pair of vertices, and the k-complement
of D is disconnected. Suppose that the k-complement of D is disconnected, and let
U be a connected component of the k-complement of D. Then we must have arcs of
color k in both directions between every vertex of U and every vertex of D that is
not in U , and therefore the k′-complement of D is connected for every k′ 6= k, even
if k = 0. This has shown that if Aut(C oD) 6= Aut(C) o Aut(D), then the color k for
which C has a neighbour-equivalent k-pair of vertices and the k-complement of D is
disconnected, is unique. Henceforth, k will be used exclusively to denote this color.

With this fixed k, we consider the neighbour-equivalent k-classes of C. These form
a partition of the vertices of C. We denote this partition by P .

Let B be the set of connected components of the k-complement of D; we partition
B into subsets B1, . . . ,Bm where all of the components in Bi are isomorphic for every
1 ≤ i ≤ m, and m is the number of nonisomorphic components of the k-complement
of D. For each 1 ≤ i ≤ m, let Bi ∈ Bi be any one copy of the component in this set
of isomorphic components. Then it is straightforward to see that

Aut(D) = ×
1≤i≤m

(SBi
o Aut(Bi)) ,

a direct product of wreath products. (Here, and throughout, SΩ denotes the sym-
metric group acting on the elements of the set Ω.)

We are now ready to give the form of Aut(C oD).

Theorem 5. For any color digraphs C and D, where D is finite and C oD contains no
induced subdigraph isomorphic to F (where the arcs of F may have any two distinct
colors),

Aut(C oD) =
(
Aut(C) o 1Aut(D)

) [×
1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
,

where 1Aut(D) denotes the identity element of Aut(D).
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Before proving this theorem, some comments are appropriate.

There is some redundancy in the group
(
Aut(C) o 1Aut(D)

) [×
1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
.

To see this, we clarify how the group
(
Aut(C) o 1Aut(D)

) [×
1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
acts on the vertices of C o D. For each of the m nonisomorphic connected com-
ponents Bi of the k-complement of D, let B′

i denote the induced subgraph of D
with the same vertices as Bi, so B′

i is isomorphic to the k-complement of Bi. Then

×
P∈P

SBi×P oAut(Bi) takes all of the vertices of C in each of the neighbour-equivalent

k-classes of C in turn, and permutes all components isomorphic to B′
i in each copy

of D that corresponds to these vertices of C. Since this is done to each of the m
nonisomorphic connected components independently, this produces all of the direct
products of wreath products. We then have Aut(C) o 1Aut(D) acting as usual on the
vertices of C oD. The redundancy occurs because each of the m nonisomorphic com-
ponents of the k-complement of D has been permuted independently within each
neighbour-equivalent k-class of C, and then each copy of D is permuted as a set by
the action of Aut(C) o 1Aut(D).

It is possible to remove this redundancy. Notice that every neighbour-equivalent k-
class of C consists of a Kk

i , and if we delete the edges of this Kk
i , each of the vertices in

this equivalence class has exactly the same in-neighbours and out-neighbours of every
color, as every other vertex in the equivalence class. Therefore we have fixAut(C)(P) =

×
P∈P

SP .

We could therefore write Aut(C oD) as

(Aut0(C) o 1Aut(D))

[
×

1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
,

where Aut0(C) is a permutation group for which Aut(C) = Aut0(C) n fixAut(C)(P).
This notation has the advantage that it can be written as a semi-direct product: this
group is in fact

(Aut0(C) o 1Aut(D)) n

[
×

1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
,

since

[
×

1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
/ Aut(C) o Aut(D) (this will be shown in our

proof) and the redundancy has been eliminated. However, difficulties in choosing
the precise action of Aut0(C) make this method of eliminating redundancy seem
somewhat artificial, so we have left in the redundancy.

With these comments in mind, we proceed with the proof of the theorem.
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Proof. Let Q be a partition of the vertices of D into sets of vertices, each of which
induces a connected component of the k-complement of D. Then we let Q′ be a
partition of the vertices of C oD, where for each Q ∈ Q, and for each v ∈ V (C), there
is a set Q′

v ∈ Q′, namely Q′
v = {(v, w) : w ∈ Q}. We claim that the partition Q′ is

preserved by every element of Aut(C oD), by which we mean that if g ∈ Aut(C oD),
(v, w) ∈ Q′

v, and g((v, w)) ∈ Q′′ ∈ Q′, then g((v, w′)) ∈ Q′′ for every (v, w′) ∈ Q′
v.

Towards a contradiction, suppose that there were some g ∈ Aut(C oD) that did not
preserve the partition Q′. Then there must be some Q′

v ∈ Q′ for which there exist
Q′, Q′′ ∈ Q′ with Q′ 6= Q′′, such that g(Q′

v)∩Q′ 6= ∅, and g(Q′
v)∩Q′′ 6= ∅. Recall that

each element of Q′ is a set of vertices of C oD in some copy of D that corresponds to
the vertices of a connected component of the k-complement of D. Therefore, there
exists some vertex v′ of C for which Q′ ⊂ V (D(v′)). If g(Q′

v) ⊂ V (D(v′)), then since
the vertices of Q′ form a connected component of the k-complement of D, C o D
must have every possible arc of color k in both directions between g(Q′

v) ∩ Q′ and
g(Q′

v)\Q′. Since both of these sets are nonempty, this leads to the contradiction that
g(Q′

v) induces a disconnected subgraph of the k-complement of D.
If, on the other hand, g(Q′

v) 6⊂ V (D(v′)), we may assume Q′′ ⊂ V (D(v′′)) for some
v′′ 6= v′. We let D(v′), D(v′′), and g(D(v)) take the roles of D(v), D(v′), and D′(w),
respectively, in Lemma 2. Then since k is the only color for which the k-complement
of D is disconnected, the lemma tells us that every arc in both directions between
D(v′) and D(v′′) has color k. In particular, C o D must have every possible arc of
color k in both directions between g(Q′

v) ∩ D(v′) and g(Q′
v) \ D(v′). Since both of

these sets are nonempty, this again leads to the contradiction that g(Q′
v) induces a

disconnected subgraph of the k-complement of D. We conclude that the partition Q′

is indeed preserved by every element of Aut(C oD).
With this fact in hand, it is straightforward to verify that[

×
1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
= fixAut(CoD)(P).

Since fixAut(CoD)(P) is the kernel of the projection of Aut(C o D) onto the partition
P , this group is in fact normal in Aut(C oD), as we claimed in the observations that
preceded this proof.

Since fixAut(CoD)(P)/Aut(CoD), every automorphism in Aut(CoD) can be formed by
combining an automorphism in fixAut(CoD)(P) with an automorphism that permutes
sets of the partition P according to some automorphism of C; as mentioned in our
observations, Aut0(C) o1Aut(D) would provide a semi-direct product since redundancy
would be eliminated, but we certainly have

Aut(C oD) ≤ (Aut(C) o 1Aut(D))

[
×

1≤i≤m

(
×
P∈P

SBi×P o Aut(Bi)

)]
.

Since both of the groups that make up the product on the right have been shown to
be subgroups of Aut(C oD), we have the desired equality. �
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Although it is of interest to have determined this exact form of the automorphism
group of any wreath product color digraph, the expression at which we have arrived is
not always as enlightening as it could be. For many wreath products of color digraphs
CoD, it turns out that if Aut(CoD) 6= Sn for some n then it is possible to find nontrivial
color digraphs C ′ and D′ for which C ′ oD′ ∼= C oD, and Aut(C oD) = Aut(C ′ oD′) =
Aut(C ′)oAut(D′). That is to say, that in these cases, if Aut(C oD) 6= Aut(C)oAut(D),
it merely means that we have made the wrong choices for C and D, the factors of our
wreath product.

The next result characterises precisely which finite color digraphs C and D have
the property that, if Aut(C oD) 6= Aut(C)oAut(D), either C oD ∼= Kk

n for some color k
and some n, or there are nontrivial color digraphs C ′ and D′ for which C ′ oD′ ∼= C oD,
and Aut(C ′ oD′) = Aut(C ′) o Aut(D′).

Proposition 6. Let C and D be finite color digraphs, C having n1 vertices, and D
having n2 vertices, with n1n2 = n, and X = C oD. The conditions on C and D that
follow are both necessary and sufficient to ensure that

Aut(X) 6= Aut(C) o Aut(D) ⇒
(Aut(X) = Sn, or ∃ nontrivial C ′, D′ such that C ′ oD′ ∼= X and Aut(X) = Aut(C ′) o Aut(D′))

The conditions are: For any color k for which C has a neighbour-equivalent k-pair
of vertices and the k-complement of D is not connected, at least one of the following
must hold:

(1) D ∼= Kk
n2

and C ∼= Kk
n1

; or
(2) D ∼= D′′ o D′ for some nontrivial D′′ and D′, Aut(D) = Aut(D′′) o Aut(D′),

and: if there is some k′ for which C has a neighbour-equivalent k′-pair of
vertices and there is some vertex v of D′′ that forms a singleton component of
the k′-complement of D′′, then the k′-complement of D′ is connected; or

(3) C ∼= C ′ oC ′′ for some nontrivial C ′ and C ′′, and Aut(C) = Aut(C ′) oAut(C ′′).

Proof. We begin by showing that the conditions are sufficient.
Suppose that the conditions hold, and that Aut(X) 6= Aut(C) o Aut(D). Then by

Theorem 4, there is some k for which C has a neighbour-equivalent k-pair of vertices
and the k-complement of D is not connected. We break the proof down into cases,
according to which of the three conditions holds.

Case 1. D ∼= Kk
n2

and C ∼= Kk
n1

. Then X = C o D ∼= Kk
n, so Aut(X) = Sn,

completing the proof in this case.

Case 2. D ∼= D′′ oD′ for some nontrivial D′′ and D′, Aut(D) = Aut(D′′) oAut(D′),
and: if there is some k′ for which C has a neighbour-equivalent k′-pair of vertices and
there is some vertex v of D′′ that forms a singleton component of the k′-complement
of D′′, then the k′-complement of D′ is connected.

We claim that Aut(X) = Aut(C oD′′)oAut(D′). SinceD′′ andD′ are nontrivial, so is
C ′ where C ′ = C oD′′, and (since wreath products are associative) clearly X ∼= C ′ oD′,
so establishing our claim will be sufficient to complete the proof in this case. Again,
we will use the conditions in Theorem 4 to establish our claim.
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Suppose that for some color k′, C ′ has a neighbour-equivalent k′-pair of vertices,
which we will call v0 and v1. Recall that C ′ = C o D′′. If v0 and v1 are in the
same copy of D′′ within C ′, then choosing corresponding vertices v′0 and v′1 in D′′,
we must have v′0 and v′1 being a neighbour-equivalent k′-pair of vertices, so D′′ has
a neighbour-equivalent k′-pair of vertices. Now, since Aut(D) = Aut(D′′) o Aut(D′),
Theorem 4 forces the k′-complement of D′ to be connected.

If, on the other hand, v0 and v1 are in different copies of D′′ within C ′, then the
vertices v′0 and v′1 of C corresponding to these copies of D′′ must have the property
that v′0 and v′1 are a neighbour-equivalent k′-pair, so C has a neighbour-equivalent
k′-pair of vertices. Furthermore, since there are arcs of color k′ in both directions
between v0 and the copy of D′′ in C ′ that contains v1, there must be arcs in both
directions between v1 and every other vertex in this copy of D′′. So the vertex in D′′

corresponding to v1 will be the special vertex v described in this case, and we may
therefore assume that the k′-complement of D′ is connected.

We have shown that C ′ having a neighbour-equivalent k′-pair of vertices forces the
k′-complement of D′ to be connected, so by Theorem 4, Aut(X) = Aut(C ′) oAut(D′)
and we are done.

Case 3. C ∼= C ′oC ′′ for some nontrivial C ′ and C ′′, and Aut(C) = Aut(C ′)oAut(C ′′).
We claim that Aut(X) = Aut(C ′)oAut(C ′′ oD). Since C ′ and C ′′ are nontrivial, so is

D′ where D′ = C ′′ oD, and (since wreath products are associative) clearly X ∼= C ′ oD′,
so establishing our claim will be sufficient to complete the proof in this case. Again,
we will use the conditions in Theorem 4 to establish our claim.

Since Aut(C) = Aut(C ′) o Aut(C ′′), we have that for any color k′, C ′ having a
neighbour-equivalent k′-pair of vertices implies that the k′-complement of C ′′ is con-
nected. But if the k′-complement of C ′′ is connected, then the k′-complement of C ′′oD,
which is the same as the k′-complement of D′, will also certainly be connected, so
Theorem 4 again tells us that Aut(X) = Aut(C ′) o Aut(D′) and we are done.

Now we show that the conditions are necessary. We consider all of the ways in
which the assumption

Aut(X) 6= Aut(C) o Aut(D) ⇒
(Aut(X) = Sn, or ∃ nontrivial C ′, D′ such that C ′ oD′ ∼= X and Aut(X) = Aut(C ′) o Aut(D′))

can be satisfied, and show that for each, the conditions must hold.
First, if Aut(X) = Aut(C) o Aut(D), then by Theorem 4, for every color k, C

having a neighbour-equivalent k-pair of vertices implies that the k-complement of
D is connected, so the premise of the conditions never occurs, and therefore the
conditions are vacuously satisfied.

If Aut(X) = Sn, then there must be some color k for which X ∼= Kk
n. Hence we

must have C ∼= Kk
n1

and D ∼= Kk
n2

. Notice that C has no neighbour-equivalent k′-pair
of vertices for any k′ 6= k, so the premise of our conditions can only be satisfied by
the color k. We have shown that in this case, condition (1) is satisfied whenever the
premise holds.

Finally, if there exist nontrivial C ′ and D′ such that X ∼= C o D = C ′ o D′ and
Aut(X) ∼= Aut(C ′) oAut(D′), then since Aut(X) 6∼= Aut(C) oAut(D), Theorem 4 tells
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us that there must be some color k for which the k-complement of D is disconnected.
So by Lemma 3, if there were a copy of D that were neither a union of copies of
D′, nor contained within a copy of D′, then C ′ has a neighbour-equivalent k-pair
of vertices and the k-complement of D′ is disconnected, but by Theorem 4, this is
a contradiction. Hence any copy of D must either be a union of copies of D′, or
contained within a copy of D′.

Suppose first that every copy of D is a union of copies of D′ (size constraints make
it impossible to have some copies of D being unions of copies of D′, while others are
contained in a copy of D′). Since Aut(X) = Aut(C ′) o Aut(D′) 6= Aut(C) o Aut(D),
the union must be nontrivial. Then since C o D ∼= C ′ o D′, we must in fact have
D ∼= D′′ oD′ for some nontrivial D′′ (we already have D′ nontrivial, by assumption).
So C ′ ∼= C oD′′.

Now, using Theorem 4, Aut(X) = Aut(C ′) o Aut(D′) is equivalent to for any k′,
C ′ having a neighbour-equivalent k′-pair of vertices implies that the k′-complement
of D′ is connected. Notice that D′′ having a neighbour-equivalent k′-pair of vertices
forces C ′ to have a neighbour-equivalent k′-pair of vertices, and therefore the k′-
complement of D′ is connected. But this is the same (by Theorem 4) as saying that
Aut(D) = Aut(D′′) o Aut(D′), the first part of condition (2).

Suppose that there is some k′ for which C has a neighbour-equivalent k′-pair of
vertices and some vertex v of D′′ that has arcs of color k′ to and from every other
vertex of D′′. Then in C ′, take the copies of v in two copies of D corresponding
to vertices in C that are a neighbour-equivalent k′-pair; these two vertices will be
a neighbour-equivalent k′-pair in C ′. So C ′ has a neighbour-equivalent k′-pair of
vertices, and again the k′-complement of D′ is connected. This is precisely what
remained to be shown of condition (2).

Finally, we suppose that every copy of D is contained within a copy of D′, so every
copy of D′ is a union of copies of D, and again since Aut(X) = Aut(C ′) o Aut(D′) 6=
Aut(C) oAut(D), the union must be nontrivial. Then since C oD ∼= C ′ oD′, we must
in fact have D′ ∼= C ′′ oD for some nontrivial C ′′, and C ∼= C ′ o C ′′ (we already have
C ′ nontrivial, by assumption).

Now, using Theorem 4, Aut(X) = Aut(C ′) o Aut(D′) is equivalent to for any k′,
C ′ having a neighbour-equivalent k′-pair of vertices implies that the k′-complement
of D′ is connected. Notice that the k′-complement of D′ being connected forces the
k′-complement of C ′′ to be connected, since D′ ∼= C ′′ oD′. But this has shown (using
Theorem 4) that Aut(C) = Aut(C ′) o Aut(C ′′), and so condition (3) holds. �

It may not be easy to see precisely which color digraphs satisfy the condition given
in Proposition 6. In fact, although it is possible to show that vertex-transitive color
digraphs satisfy this condition, a direct proof of a stronger result turns out to be
shorter.

Theorem 7. For any finite vertex-transitive color digraph X ∼= C oD, if Aut(X) 6=
Aut(C) o Aut(D) then there are some natural numbers r > 1 and s > 1, and some
color k, for which C ∼= C ′ oKk

r , D ∼= Kk
s oD′, and Aut(X) = Aut(C ′) o (Srs oAut(D′)).
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Proof. By Theorem 4, since Aut(X) 6= Aut(C) o Aut(D), there is some color k for
which C has a neighbour-equivalent k-pair of vertices and the k-complement of D is
disconnected.

SinceX (and therefore C) is vertex-transitive and finite, every neighbour-equivalent
k-class of C has the same size, r, and since C has a neighbour-equivalent k-pair of
vertices, we have r > 1. Therefore, every neighbour-equivalent k-class of C induces a
sub-color-digraph of C that is isomorphic to Kk

r . Since each vertex in an equivalence
class has exactly the same neighbours as any other vertex in that equivalence class,
we have C ∼= C ′ oKk

r for some vertex-transitive color digraph C ′.
Since D is also vertex-transitive, every connected component of the k-complement

of D is isomorphic. If we give the name D′ to the induced sub-color-digraph of D
that corresponds to the vertices in a connected component of the k-complement of
D, we have D ∼= Kk

s o D′, where s is the number of connected components of the
k-complement of D (greater than 1, since the k-complement of D is disconnected).

Hence X ∼= C ′ oKk
r oKk

s oD′ ∼= C ′ oKk
rs oD′.

Notice that k is the only color for which the k-complement ofKk
rsoD′ is disconnected,

and since each Kk
r was a neighbour-equivalent k-class of C, we have C ′ having no

neighbour-equivalent k-pairs of vertices. Hence by Theorem 4, Aut(X) = Aut(C ′) o
Aut(Kk

rs oD′).
Now, the only color k′ for which Kk

rs has a neighbour-equivalent k′-pair of vertices,
is k′ = k, and since each D′ corresponded to the vertices of a connected component
of the k-complement of D, we must have the k-complement of D′ connected. Hence
by Theorem 4, Aut(Kk

rs oD′) = Aut(Kk
rs) o Aut(D′) = Srs o Aut(D′).

Combining the conclusions of the last two paragraphs, we have Aut(X) = Aut(C ′) o
(Srs o Aut(D′)), as desired. �

3. Isomorphisms of Wreath Products of Cayley Digraphs of Abelian
Groups

In recent years, a great deal of work has been directed towards solving the Cayley
isomorphism problem. That is, given any two isomorphic Cayley (di)graphs Γ and
Γ′ of a group G, is it true that there exists α ∈ Aut(G) such that α(Γ) = Γ′? If
the answer to the preceding question is yes for every Γ′ isomorphic to Γ, then we
say that Γ is a CI-(di)graph of G. If any two isomorphic Cayley (di)graphs of G
are isomorphic by a group automorphism of G, we say that G is a CI-group with
respect to (di)graphs. This problem was first proposed in 1967 by Ádám [1] in a less
general form when he conjectured that Zn was a CI-group with respect to graphs.
The reader is referred to [16] for a recent survey of this problem. Here, we will be
concerned with the isomorphism problem for Cayley digraphs that can be written as
a wreath product. Intuitively, if Γ1 is a CI-(di)graph of G1, and Γ2 is a CI-(di)graph
of G2, then surely Γ1 oΓ2 is a CI-(di)graph G1×G2. This, however, is not true as the
following example shows. Before turning to this example, we will need Babai’s well-
known characterization of the CI property [3] (we remark that Alspach and Parsons
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[2] also obtained this criterion, although in a less general form). If G is a group, then
GL is the left regular representation of G. If H ≤ G, we let H̄L = {gL ∈ GL : g ∈ H}.

Lemma 8. For a Cayley (di)graph Γ of G the following are equivalent:

(1) Γ is a CI-(di)graph,
(2) given a permutation ϕ ∈ SG such that ϕ−1GLϕ ≤ Aut(Γ), GL and ϕ−1GLϕ

are conjugate in Aut(Γ).

Example 9. Let p be a prime. Then there exists a Cayley (di)graph Γ of Zp × Zp2

such that Γ = Γ1 o Γ1, where Γ1 is a CI-(di)graph of Zp and Γ2 is a CI-(di)graph of
Zp2, but Γ is not a CI-(di)graph of Zp × Zp2.

Proof. We first claim that Zp o (Zp oZp) contains regular subgroups R1 and R2 isomor-
phic to Zp × Zp2 that are not conjugate in AGL(1, p) o (AGL(1, p) o AGL(1, p)).

Define τ1, τ2, ρ1, ρ2 : Z3
p → Z3

p by
τ1(i, j, k) = (i+ 1, j + bi, k),
τ2(i, j, k) = (i+ 1, j, k),
ρ1(i, j, k) = (i, j, k + 1), and
ρ2(i, j, k) = (i, j + 1, k + cj),

where bi = 0 if i 6= p − 1 and bp−1 = 1, and cj = 0 if j 6= p − 1 and cp−1 = 1.
It is straightforward to verify that |τ1| = |ρ2| = p2, |τ2| = |ρ1| = p, and R1 =
〈ρ1, τ1〉 ∼= Zp × Zp2

∼= 〈ρ2, τ2〉 = R2. Note that AGL(1, p) o (AGL(1, p) o AGL(1, p))
admits a unique complete block system B consisting of p blocks of size p2 formed
by the orbits of 1Sp o (AGL(1, p) o AGL(1, p)). Furthermore, fixR1(B) = 〈τ p

1 , ρ1〉 and
fixR2(B) = 〈ρ2〉. Let δ ∈ AGL(1, p) o (AGL(1, p) o AGL(1, p)). Then δ(B) = B so that
fixδ−1R2δ(B) is cyclic while fixR1(B) is not cyclic. Hence R1 and R2 are not conjugate
in AGL(1, p) o (AGL(1, p) o AGL(1, p)) as claimed.

It thus only remains to show that there exists Cayley (di)graphs of Zp×Zp2 whose
automorphism groups contain Zp o(Zp oZp) and are contained in AGL(1, p)o(AGL(1, p)o
AGL(1, p)). This though, is easy to accomplish using the literature. First, Alspach
and Parsons [2] have determined necessary and sufficient conditions for a Cayley
(di)graph of Zp2 to be a CI-digraph of Zp2 (including when the full automorphism
groups contains Zp o Zp), and Gu and Li [10] have determined for which values of m
all Cayley graphs of Zp2 that are regular of degree m are CI-graphs. �

Lemma 10. Let G and H be groups and J ≤ SG, K ≤ SH be 2-closed permutation
groups that contain GL and HL respectively. Suppose that any two regular subgroups of
J isomorphic to G are conjugate in J and any two regular subgroups of K isomorphic
to H are conjugate in K. Let ϕ ∈ SG o SH such that ϕ−1(G ×H)Lϕ ≤ J oK. Then
ϕ−1(G×H)Lϕ and (G×H)L are conjugate in J oK. Furthermore, ϕ−1ḠLφ and ḠL

are also conjugate in J oK.

Proof. It is straightforward to verify that (G×H)L = ḠL × H̄L so that (G×H)L ≤
J o K. As ϕ ∈ SG o SH , ϕ(g, h) = (σ(g), ωg(h)), σ ∈ SG, ωg ∈ SH . Let B be the
complete block system of J oK formed by the orbits of 1SG

oK. As any two regular
subgroups of J isomorphic to G are conjugate in J , there exists δ ∈ J oK such that
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δ−1ϕ−1(G×H)Lϕδ/B = (G×H)L/B = ḠL. Replacing ϕδ by ϕ, we assume without
loss of generality that ϕ−1(G × H)Lϕ/B = GL. Hence ϕ(g, h) = (g′Lα(g), ωg(h)) for
some g′ ∈ G and α ∈ Aut(G). Define ψ : G×H → G×H by ψ(g, h) = (α−1(g), h).
Then ψ ∈ Aut(G × H) ∩ (SG o SH). Furthermore, ϕ−1(G × H)Lϕ is conjugate to
(G × H)L in J o K if and only if ψ−1ϕ−1(G × H)Lϕψ is conjugate to (G × H)L in
ψ−1J oKψ = αJα−1 oK. Replacing αJα−1 by J and ϕψ by ϕ, we assume without
loss of generality that α = 1. As ḠL ≤ J oK, we may also assume that g′ = 1. Hence
ϕ(g, h) = (g, ωg(h)).

As any two regular subgroups ofK isomorphic toH are conjugate inH, by standard
arguments there exists δ ∈ 1SG

oK such that δ−1ϕ−1H̄Lϕδ|B ≤ H̄L|B for every B ∈ B.
By replacing ϕ with ϕδ, we assume that ϕ−1H̄Lϕ|B ≤ H̄L|B for every B ∈ B, so
that ϕ(g, h) = (g, (h′g)Lαg(h)), h

′
g ∈ H, αg ∈ Aut(H). As HL|B ∈ J o K for every

B ∈ B, we assume that h′g = 1H for every g ∈ G, so that ϕ(g, h) = (g, αg(h)). Define

ι : G×H → G×H by ι(g, h) = (g, α−1
1G

(h)). Then ι ∈ Aut(G×H) ∩ (SG o SH). By
considering ι−1J oKι instead of J oK, we assume that α1G

= 1. Let Γ be an orbital
digraph of J o K. Note that as α1G

= 1, we have that ϕ|B1(Γ[B1]) = Γ[B1], where
B1 ∈ B with 1G ∈ B1. As both Γ and ϕ(Γ) are Cayley digraphs of G×H, we conclude
that ϕ|B(Γ[B]) = Γ[B] for every B ∈ B. Whence ϕ|B ∈ Aut(Γ[B]) for every B ∈ B.
As every orbital digraph of K can be written in the form Γ′[B], where Γ′ is an orbital
digraph of J oK and B ∈ B, we conclude that ϕ|B ∈ K(2) = K̄|B ∼= K. Thus ϕ ∈ J oK,
and ϕϕ−1(G×H)Lϕϕ

−1 = (G×H)L as required. That ḠL and ϕ−1ḠLϕ are conjugate
in J oK follows immediately from the fact that as ϕ ∈ SGoSH and J oK ≤ SGoSH , there
exists δ ∈ J oK such that ϕδ ∈ NSG×H

((G×H)L)∩(SGoSH) = NSG
(GL)×NSH

(HL). �

Theorem 11. Let Γ1 be a CI-digraph of H and Γ2 be a CI-digraph of K, where H
and K are abelian groups such that gcd(|H|, |K|) = r. If whenever p|r is prime, then
every Sylow p-subgroup of H and K is elementary abelian, respectively, then Γ1 o Γ2

is a CI-digraph of G = H ×K.

Proof. It is straightforward to verify that (H × K)L = H̄L × K̄L so that Γ1 o Γ2 is
a Cayley digraph of H × K. Let ϕ ∈ SG be such that ϕ−1GLϕ ≤ Aut(Γ1 o Γ2).
We first show that there exists δ ∈ Aut(Γ1 o Γ2) such that 〈GL, δ

−1ϕ−1GLϕδ〉 ≤
Aut(Γ1) o Aut(Γ2).

If Aut(Γ) = Aut(Γ1) oAut(Γ2), we may take δ = 1. We thus assume that Aut(Γ) 6=
Aut(Γ1) o Aut(Γ2). By Theorem 7 we have that Aut(Γ) = Aut(Γ′1) o (Srs o Aut(Γ′2))
for some r, s > 1, where Γ1 and Γ2 are appropriate wreath products. It is not
then difficult to see that there exists δ ∈ Aut(Γ) such that 〈GL, δ

−1ϕ−1GLϕδ〉 ≤
(Aut(Γ′1) o Sr) o (Ss o Aut(Γ′2). We thus assume without loss of generality (replacing
δϕ by ϕ) that ϕ−1GLϕ ≤ Aut(Γ1) o Aut(Γ2). Note that Aut(Γ1) o Aut(Γ2) admits a
unique complete block system B of |G| blocks of size |H| formed by the orbits of K̄L.

Let r = pa1
1 · · · pam

m be the prime power decomposition of r. Let Pi be a Sylow
pi-subgroup of H and Qi be a Sylow pi subgroup of K, 1 ≤ i ≤ m. Then H =
H ′ × Πm

i=1Pi, and K = K ′ × Πm
i=1Qi, where gcd(|H ′|, r) = 1, gcd(|K ′|, r) = 1, and

gcd(|H ′|, |K ′|) = 1. Note that every Sylow subgroup of G/(H ′ × K ′) is elementary
abelian by hypothesis. Now, as ϕ−1GLϕ ≤ Aut(Γ1) o Aut(Γ2) and G is abelian,
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there exists K̂ ≤ G such that B is formed by the orbits of ϕ−1K̂ϕ. Note that
K ′ ≤ K̂. Let Ĥ ≤ G such that Ĥ × K̂ = G. Similarly, observe that H ′ ≤ Ĥ. Then
ϕ−1ĤLϕ/B ≤ Aut(Γ1) and ϕ−1Ĥ−1

L ϕ/B ∼= ϕ−1ĤLϕ. As every Sylow subgroup of

G/(H ′ ×K ′) is elementary abelian and K ′ ≤ K̂, H ′ ≤ K̂, we have that K̂ ∼= K and

Ĥ ∼= H. It is then easy to see that there exists α ∈ Aut(G) such that α−1K̂α = K

and α−1Ĥα = H. Note that Γ and ϕ(Γ) are isomorphic by a group automorphism of
G if and only if α−1(Γ) and ϕ(Γ) are isomorphic by a group automorphism of G. We

may then, by replacing Γ with α−1(Γ), assume that K̂ = K and Ĥ = H. But then
ϕ ∈ SH oSK so that by Lemma 10 GL and ϕ−1GLϕ are conjugate in Aut(Γ1) oAut(Γ2).
The result follows by Lemma 8. �

The following result is now immediate.

Corollary 12. Let H and K be abelian groups such that every Sylow subgroup of H
and K is elementary abelian. If Γ1 is a CI-(di)graph of H and Γ2 is a CI-(di)graph
of K, then Γ1 o Γ2 is a CI-(di)graph of H ×K.

Corollary 13. Let H and K be abelian groups such that gcd(|H|, |K|) = r. Then
the following are equivalent:

(1) whenever Γ1 is a CI-digraph of H and Γ2 is a CI-digraph of K, then Γ1 o Γ2

is a CI-digraph of H ×K,
(2) if p divides r is prime, then every Sylow p-subgroup of H and K is elementary

abelian.

Proof. That (2) implies (1) follows directly from Theorem 11. To show that (1)
implies (2), suppose that a Sylow p-subgroup of H or K is not elementary abelian
for some prime p|r. Then G must contain a subgroup isomorphic to Zp × Zp2 . By
Example 9, there a Cayley (di)graph Γ of Zp ×Zp2 which can be written as a wreath
product of a Cayley (di)graph of Zp and a Cayley (di)graph of Zp2 and can also be
written as a wreath product of a Cayley (di)graph of Zp2 ×Zp. It is then not difficult
to see that |H| · |K|/p3 disjoint copies of Γ is a Cayley (di)graph of H×K that is not
a CI-(di)graph of H ×K (as Γ is not a CI-digraph of Zp × Zp2), a contradiction. �

It is possible that a stronger result is true. We would like to propose the following
conjecture.

Conjecture 14. Let H and K be abelian groups, Γ1 a Cayley (di)graph of H, and
Γ2 a Cayley (di)graph of K. If Γ1 is not a Cayley (di)graph of an abelian group with
more elementary divisors than H and Γ2 is not a Cayley (di)graph of an abelian group
with more elementary divisors than K, then Γ1 o Γ2 is a CI-(di)graph of H ×K.
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