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Abstract. It has been shown that Zip is a CI-group for 1 ≤ i ≤ 4,

and is not a CI-group for i ≥ 2p−1+
(2p−1

p

)
; all other values (except

when p = 2 and i = 5, which is CI) are open. The results presented in
this paper are useful in any attempt to prove that Znp is a CI-group.

In fact, they provide complete and elementary proofs that Zp, Z2
p

and Z3
p are CI-groups.

In 1967, Ádám conjectured [1] that two Cayley graphs of Zn are isomor-
phic if and only if they are isomorphic by a group automorphism of Zn.
Although this conjecture was disproven by Elspas and Turner three years
later [8], the problem and its generalizations have subsequently aroused
considerable interest. Much of this interest has been focused on the Cayley
Isomorphism Problem, which asks for necessary and sufficient conditions for
two Cayley graphs on the same group to be isomorphic. Particular atten-
tion has been paid to determining which groups G have the property that
two Cayley graphs of G are isomorphic if and only if they are isomorphic by
a group automorphism of G. Such a group is called a CI-group (CI stands
for Cayley Isomorphism). One major angle from which the Cayley Isomor-
phism problem was considered was the question of which cyclic groups are
in fact CI-groups. The problem raised by Ádám’s conjecture has now been
completely solved by Muzychuk [14] and [15]. He proves that a cyclic group
of order n is a CI-group if and only if n = k, 2k or 4k where k is odd and
square-free. The proof uses Schur rings and is very technical. Many special
cases were obtained independently along the way to this result.

One other major branch of study of the Cayley Isomorphism problem
has focused on elementary abelian groups. In [5], Babai and Frankl asked
whether or not all elementary abelian groups are CI-groups. In 1992, Lewis
Nowitz constructed a Cayley graph on Z6

2 that is not a CI-graph, thus
showing that not all elementary abelian groups are CI-groups. Alspach
provided a simpler proof of the Nowitz result in [2].

From the other side of things, Turner [17] proved that Zp is a CI-group;
Godsil [9] proved that Z2

p is a CI-group, and Dobson [7] provided the first
proof that Z3

p is a CI-group. A more elementary proof that Z3
p is a CI-group

is provided by Alspach and Nowitz in [3], and the results presented here
extend their techniques. Muzychuk’s work was also key to this aspect of
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the problem; with Hirasaka, he proved that Z4
p is a CI-group [11], a result

that was independently proven by the author in her PhD thesis using the
techniques presented here [13]. Most recently, Muzychuk has constructed

graphs on Z
2p−1+(2p−1

p )
p that are not CI-graphs. By use of a computer, it

has been established that Z5
2 is a CI-group, but all other values remain

open.
We would recommend that those readers interested in a survey of the

Cayley Isomorphism Problem see [12].

1. Background Definitions and Theory

The notation used in this paper is something of a hodge-podge from a
variety of sources, based sometimes on personal preferences and sometimes
on the need for consistency with earlier works. For any graph theory lan-
guage that is not defined within this paper, the reader is directed to [6]. In
the case of language or notation relating to permutation groups, the reader
is directed to Wielandt’s authoritative work on permutation group theory
[18], although not all of the notation used by Wielandt is the same as that
employed in this paper. For terminology and notation from abstract group
theory that is not explained within this paper, the reader is referred to [10]
or [16].

Many results for directed graphs have immediate analogues for graphs,
as can be seen by substituting for a graph the directed graph obtained by
replacing each edge of the graph with an arc in each direction between the
two end vertices of the edge. Consequently, although the results of this
paper are proven to be true for all digraphs, the same proofs serve to prove
the results for all graphs.

Although for the sake of simplicity we assume in this paper that directed
graphs are simple, this assumption is not actually required in any of the
proofs that follow. We do allow the digraphs to contain digons.
Notation 1.1. Let V ′ be any orbit of G. Then the restriction of the action
of g ∈ G to the set V ′ is denoted by g|V ′ .

This ignores what the action of g may be within other orbits of G. For
example, g|V ′ = 1 indicates that for every element v′ ∈ V ′, g(v′) = v′, but
tells us nothing about how g′ may act elsewhere.

Sometimes the action of a permutation group G will break down nicely
according to its action on certain subsets of the set V . Certainly, this
happens when G is intransitive, with the orbits of G being the subsets.
However, it can also occur in other situations.
Definition 1.2. The subset B ⊆ V is a G-block if for every g ∈ G, either
g(B) = B, or g(B) ∩B = ∅.

In some cases, the group G is clear from the context and we simply refer
to B as a block. It is a simple matter to realise that if B is a G-block, then
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for any g ∈ G, g(B) will also be a G-block. Also, intersections of G-blocks
are themselves G-blocks.
Definition 1.3. Let G be a transitive permutation group, and let B be a
G-block. Then, as noted above, {g(B) : g ∈ G} is a set of blocks that (since
G is transitive) partition the set V . We call this set the complete block
system of G generated by the block B.

Some of the basic language of blocks will be required in this paper.
Notice that any singleton in V , and the entire set V , are always G-blocks.
These are called trivial blocks.
Definition 1.4. The stabiliser subgroup in G of the set V ′ is the sub-
group of G consisting of all g ∈ G such that g fixes V ′ pointwise. This is
denoted by StabG(V ′), or sometimes, particularly if V ′ = {v} contains only
one element, simply by GV ′ , or Gv.

In some cases, we allow the set V ′ to be a set of subsets of V (where V
is the set upon which G acts) rather than a set of elements of V . In this
case, the requirement is that every element of StabG(V ′) fix every set in V ′

setwise. For example, if B is a complete block system of G, then StabG(B)
is the subgroup of G that consists of all elements of G that fix every block
in B setwise.
Definition 1.5. Let S be a subset of a group G. The Cayley digraph
~X = ~X(G;S) is the directed graph given as follows. The vertices of X are
the elements of the group G. If g, h ∈ G, there is an arc from the vertex g
to the vertex h if and only if g−1h ∈ S. In other words, for every vertex
g ∈ G and element s ∈ S, there is an arc from g to gs.

Notice that if the identity element 1 ∈ G is in S, then the Cayley digraph
will have a directed loop at every vertex, while if 1 6∈ S, the digraph will
have no loops. For convenience, we may assume that the latter case holds;
it is immaterial to the results. Notice also that since S is a set, it contains
no multiple entries and hence there are no multiple arcs. Finally, notice
that if the inverse of every element in S is itself in S, then the digraph is
equivalent to a graph, since every arc can be paired with an arc going in
the opposite direction between the same two vertices.

Definition 1.6. The Cayley colour digraph ~X = ~X(G;S) is very simi-
lar to a Cayley digraph, except that each entry of S has a colour associated
with it, and for any s ∈ S and any g ∈ G, the arc in ~X from the vertex g
to the vertex gs is assigned the colour that has been associated with s.

All of the results of this paper also hold for Cayley colour digraphs.
This is not always made explicit, but is a simple matter to verify without
changing any of the proofs used.

Definition 1.7. The set S of ~X(G;S) is called the connection set of the
Cayley digraph ~X.
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Definition 1.8. The automorphism group of the digraph ~X is the per-
mutation group that is formed of all possible automorphisms of the digraph.
This group is denoted by Aut( ~X).

We now define some terms that classify the types of problems being
studied in this paper.
Definition 1.9. The digraph ~X is a CI-digraph on the group G if ~X =
~X(G;S) is a Cayley digraph on the group G and for any isomorphism of ~X
to another Cayley digraph ~Y = ~Y (G;S′) on the group G, there is a group
automorphism φ of G that maps ~X to ~Y . That is, φ(S) = S′.

If ~X is a CI-digraph on the group G, we will be able to use that fact
together with the known automorphisms of G to determine all Cayley di-
graphs on G that are isomorphic to ~X.

One of the most useful approaches to proving whether or not a given
Cayley digraph is a CI-digraph has been the following theorem by Babai.
This theorem has been used in the vast majority of results to date on the
Cayley Isomorphism problem.
Theorem 1.10. (Babai, see [4]) Let ~X be a Cayley digraph on the group
G. Then ~X is a CI-digraph if and only if all regular subgroups of Aut( ~X)
isomorphic to G are conjugate to each other in Aut( ~X).

2. The Results

2.1. Using the Sylow p-subgroups. Notice that the Sylow p-subgroups
of Spn have the form Zp o Zp . . . o Zp (n copies of Zp). So every Sylow p-
subgroup of Spn has a unique complete block system of size pi for any i.
Furthermore, any permutation of order pj that respects these blocks is in
this Sylow p-subgroup of Spn .

Throughout all that follows, all calculations are taken modulo p, and the
range of all variable subscripts of vertices and blocks is within {0, 1, . . . , p−
1}, in addition to any other restrictions given.

Let ~X = ~X(Znp ;S) be a Cayley digraph on the group Znp . Suppose that
σ(Znp )Lσ−1 ≤ Aut( ~X) for some σ ∈ SZnp . We want to show that (Znp )L and
σ(Znp )Lσ−1 are conjugate in Aut( ~X).

By taking a conjugate of σ(Znp )Lσ−1 if necessary, we may assume that
(Znp )L and σ(Znp )Lσ−1 are in the same Sylow p-subgroup P of Aut ( ~X).
The group P is contained in some Sylow p-subgroup P ∗ of SZnp , that has
unique imprimitive blocks of length pi for any i. Let the blocks of length 1
be

Bi1,...,in = {xi1,...,in}, 0 ≤ i1, . . . , in ≤ p− 1.
Now, we let the blocks of length pn−j be labelled inductively as follows:

Bi1,...,ij = Bi1,...,ij ,0 ∪Bi1,...,ij ,1 ∪ . . . ∪Bi1,...,ij ,p−1
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We use some important properties involving regular permutation groups
several times in what follows. First, if a permutation group G is transitive
and abelian then it is regular. Second, if G is transitive, abelian and im-
primitive, then any permutation in G that fixes some block setwise must
fix all blocks setwise. This follows because the action of G on the set of
blocks is also transitive and abelian, and consequently regular. This will
be used in the next paragraph.

Let the permutation

θi1,...,in−1 = (xi1,...,in−1,0 xi1,...,in−1,1 . . . xi1,...,in−1,p−1)

for 0 ≤ i1, . . . , in−1 ≤ p− 1. Since both (Znp )L and σ(Znp )Lσ−1 are abelian
and transitive on the sets of blocks of each size, they are regular in their
action on these sets of blocks. Without loss of generality, assume that the
blocks are coordinatized so that

τj(xi1,...,ij ,...,in) = xi1,...,ij+1,...,in for all 0 ≤ i1, . . . , in ≤ p− 1,

are all elements of the group (Znp )L. Note that τn = Π0≤i1,...,in≤p−1θi1,...,in
and (Znp )L = 〈τ1, . . . , τn〉.

Notice also that in any p-group P1, if g, g′ ∈ P1, 〈g, g′〉 fixes the block B
of length p setwise, and g|B 6= 1, then g′|B = gi|B for some i.
Definition 2.1. Two sets of vertices V1 and V2 are said to be wreathed if
for each possible colour c that an arc can be, the existence of an arc of colour
c from some vertex in V1 to some vertex in V2 implies the existence of an
arc of colour c from each vertex of V1 to each vertex of V2, and furthermore
if (symmetrically) the existence of an arc of colour c from some vertex in
V2 to some vertex in V1 implies the existence of an arc of colour c from
each vertex of V2 to each vertex of V1.

Sometimes we say (alternatively) that V1 is wreathed with V2 if the above
conditions hold.

The following lemma is useful in determining whether or not two blocks
are wreathed.
Lemma 2.2. Let G be a transitive subgroup of Aut( ~X), and let B1 and B2

be G-blocks in the complete block system B. If StabG(B) is transitive on
each block B ∈ B, x ∈ B1 , and the orbit of StabG(B)x containing y ∈ B2

in fact contains all of B2, then B1 and B2 are wreathed.

Proof. We begin by assuming that there is a red arc from x′ ∈ B1 to
y′ ∈ B2, and prove that there must be a red arc from x′′ ∈ B1 to y′′ ∈ B2.
This will be sufficient.

Since StabG(B) is transitive on B1, there exists some φ ∈ StabG(B)
such that φ(x′) = x. Likewise, there exists some δ ∈ StabG(B) such that
δ(x) = x′′. Clearly, φ(y′) ∈ B2 and δ−1(y′′) ∈ B2. Since the orbit of
StabG(B)x containing y ∈ B2 in fact contains all of B2, there exists some
ψ ∈ StabG(B)x such that ψ(φ(y′)) = δ−1(y′′).
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Thus, δψφ(y′) = y′′, and δψφ(x′) = x′′. Since δ, ψ and φ were all
automorphisms of ~X, there must be a red arc from x′′ to y′′, and the proof
is complete. �

We use the δi function defined by δi(i) = 1 and δi(j) = 0 for any j 6= i.

Proposition 2.3. Let σ(Znp )Lσ−1 be any conjugate of (Znp )L with the prop-
erty that σ(Znp )Lσ−1 ≤ P , where P is a fixed Sylow p-subgroup of Aut( ~X)
that contains (Znp )L. Let τ ′i be the element of σ(Znp )Lσ−1 that maps x0,...,0

to x0+δi(1),...,0+δi(n). Then τ ′i takes Ba1,...,ai to Ba1+δi(1),...,ai+δi(i) for every
a1, . . . , ai.

Proof. We know that σ(Znp )Lσ−1 acts regularly on the vertices and the
blocks of ~X. By its definition and the definition of a block, the auto-
morphism τ ′i clearly fixes Bδi(1),...,δi(i−1) setwise. Consequently, τ ′i must
fix every block Ba1,...,ai−1 setwise. Let B = Ba1,...,ai−1 for some fixed
a1, . . . , ai−1. Since τ ′i ∈ P , and τ ′i fixes B setwise, the action of τ ′i on the p
blocks Ba1,...,ai−1,0, . . . , Ba1,...,ai−1,p−1 in B must be the same as the action
of τ ji for some j, and therefore must take Ba1,...,ai−1,ai to Ba1,...,ai−1,ai+j

for every ai (j does not depend on ai).
Let xa1,...,an ∈ B, and let τ ′ ∈ σ(Znp )Lσ−1 be the element that maps

xa1,...,an to x0,...,0. Then τa1
1 . . . τann τ ′ ∈ P fixes xa1,...,an , so fixes Ba1,...,ai

setwise, and thus fixes Ba1,...,ai−1,c setwise for every c. Now, τ ′i and τ ′

commute, so we have

τ ′i(xa1,...,an) = (τ ′)−1τ ′iτ
′(xa1,...,an)

= (τ ′)−1τ ′i(x0,...,0)

= (τ ′)−1(xδi(1),...,δi(4))

∈ τ ′i(Bδi(1),...,δi(i))

and we know that (τ ′)−1(xδi(1),...,δi(4)) is in the same block of length n− i,
τ ′i(Ba1,...,ai), as

τa1
1 . . . τann τ ′(τ ′)−1(xδi(1),...,δi(n)) = xa1+δi(1),...,an+δi(n),

which is in Ba1+δi(1),...,ai+δi(i). This completes the proof. �

In particular, this has shown that τ ′n = τn.

2.2. Conjugating τ ′1. Working from the other end of things, suppose that
we have already performed conjugations so that our conjugated group
σ(Znp )Lσ−1 is generated by τ ′1, τ2, . . . , τn. We now demonstrate that we
can find ψ such that ψσ(Znp )Lσ−1ψ−1 = (Znp )L.

Throughout this section, G is the subgroup of 〈τ ′1, τ1, τ2, . . . , τn〉 that
fixes the vertex x0,...,0.



RESULTS TOWARDS SHOWING Z
n
p IS A CI-GROUP 7

Note that every element of 〈τ ′1, τ1, τ2, . . . , τn〉 commutes with τ2, . . . , τn
since both (Znp )L and σ(Znp )Lσ−1 are abelian, so if φ ∈ 〈τ ′1, τ1, τ2, . . . , τn〉
and φ(xr1,...,rn) = xr1+a1,r2+a2,r1 ,...,rn+an,r1

then

φ(xr1,r′2,...,r′n) = xr1+a1,r′2+a2,r1 ,...,r
′
n+an,r1

.

Lemma 2.4. The orbit of G containing xr1,...,rn is the same as the orbit
of some subgroup of 〈τ2, . . . , τn〉 containing xr1,...,rn .

Proof. Notice first that G fixes B0 setwise, and therefore fixes Br1 setwise
for any r1. It therefore suffices to show that if xr1,...,rn , xr1,r′2,...,r′n and
xr1,r2+a2,...,rn+an are in the same orbit, then so is xr1,r′2+a2,...,r′n+an . Since
there is some g ∈ G such that g(xr1,...,rn) = xr1,r2+a2,...,rn+an , and g com-
mutes with τ2, . . . , τn, it is clear that g(xr1,r′2,...,r′n) = xr1,r′2+a2,...,r′n+an . �

Lemma 2.5. Suppose i 6= 0, and the orbit of G containing xi,0,...,0 is the
same as the orbit of the subgroup of 〈τ2, . . . , τn〉 generated by φ1, . . . , φk
containing xi,0,...,0. Then the orbit of G containing xri,0,...,0 is also the
same as the orbit of 〈φ1, . . . , φk〉 containing xri,0,...,0.

Proof. We can assume without loss of generality that no subset of the set
{φ1, . . . , φk} generates 〈φ1, . . . , φk〉, so |〈φ1, . . . , φk〉| = pk. Now we prove
the result by induction on k.

The base case is given by k = 0, so the orbit is a singleton. In this
case, we have G = τ i1Gτ

−i
1 , so G = τ ri1 Gτ

−ri
1 for any r, and the result is

apparent.
We now assume that the lemma holds for any orbit of length pj where

j ≤ k, and demonstrate that it must hold for orbits of length pk+1. Inside
the induction on k, we induct on r. Here the base case is r = 1, which is
the vacuous statement that the orbit of xi,0,...,0 is equal to itself. Assuming
that the orbit of xri,0,...,0 is as given (with length pk+1), we proceed to
demonstrate that the orbit of x(r+1)i,0,...,0 is as given, with length pk+1.

First we show that the orbit of x(r+1)i,0,...,0 must be contained in the
given set. Let g be any element of G. Then by our induction hypothesis
on r, g(xri,0,...,0) = φ(xri,0,...,0) for some φ in 〈φ1, . . . , φk+1〉. Furthermore,
φ−1g fixes xri,0,...,0 and is therefore an element of the group τ ri1 Gτ

−ri
1 .

Since we know the orbit of G containing xi,0,...,0, we also know the orbit of
τ ri1 Gτ

−ri
1 containing x(r+1)i,0,...,0. This tells us that φ−1g(x(r+1)i,0,...,0) =

φ′(x(r+1)i,0,...,0) for some φ′ ∈ 〈φ1, . . . , φk+1〉. Hence g(x(r+1)i,0,...,0) =
φφ′(x(r+1)i,0,...,0) for some φφ′ ∈ 〈φ1, . . . , φk+1〉. This has shown the claim
that began this paragraph.

Towards a contradiction, suppose that the orbit of x(r+1)i,0,...,0 under G
were a strict subset of the orbit of x(r+1)i,0,...,0 under 〈φ1, . . . , φk+1〉. By
Lemma 2.4, the orbit of x(r+1)i,0,...,0 under G must therefore be the orbit
of x(r+1)i,0,...,0 under a strict subgroup of 〈φ1, . . . , φk+1〉, which has order
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at most pk. By the induction hypothesis on k, since i ≡ s(r + 1)i(mod p)
for some s, the orbit of xi,0,...,0 also has length at most pk, a contradiction.
This completes the proof. �

Corollary 2.6. The orbit of G containing xi,0,...,0 is τ i−j1 (Oj), where Oj
is the orbit of G containing xj,0,...,0, if i, j 6= 0.

Proof. Lemma 2.4 tells us that both orbits are orbits of subgroups of the
group 〈τ2, . . . , τn〉, and Lemma 2.5 tells us that both subgroups are the
same, since (i, p) = 1 = (j, p). The result follows immediately. �

Proposition 2.7. Let σ(Znp )Lσ−1 be any conjugate of (Znp )L with the prop-
erty that σ(Znp )Lσ−1 ≤ P , where P is a fixed Sylow p-subgroup of Aut( ~X)
that contains (Znp )L, and τ2, . . . , τn ∈ σ(Znp )Lσ−1. Then there exists some
ψ ∈ P such that ψσ(Znp )Lσ−1ψ−1 contains τ1, . . . τn−1 and τn.

Proof. We consider τ ′1. As previously noted, since τ ′1 commutes with each
of τ2, . . . , τn, the action of τ ′1 is completely determined by the p triples

(a2,0, . . . , an,0) = (0, . . . , 0), (a2,1, . . . , an,1) . . . , (a2,p−1, . . . , an,p−1),

where τ ′1(xi1,0,...,0) = xi1+1,a2,i1 ,...,an,i1
.

Define the function ψ as follows:

ψ commutes with τ2, . . . , τn; and

ψ−1(xi,0,...,0) = (τ ′1)i(x0,...,0)

for any i, where (τ ′1)0 is considered to be the identity.
First we show that ψτ ′1ψ

−1 = τ1. For any i1, . . . , in, we have

ψτ ′1ψ
−1(xi1,...,in) = ψ(τ ′1)i1+1τ−i11 (xi1,...,in)

= τ i1+1
1 (τ ′1)−i1−1(τ ′1)i1+1τ−i11 (xi1,...,in)

= τ1(xi1,...,in),

as required.
There is an alternative and perhaps more intuitive way of showing this.

Notice that the disjoint cycle notation for τ ′1 consists of pn−1 cycles of the
form

(x0,i2,...,in x1,i2,...,in x2,i2+a2,1,...,in+an,1 . . .

xp−1,i2+a2,1+...+a2,p−2,...,in+an,1+...+an,p−2).

Also,
ψ(xi1,i2+a2,1+...+a2,i−1,...,in+an,1+...+an,i−1) = xi1,...,in

for any i1 > 1, while ψ(x1,i2,...,in) = x1,i2,...,in and ψ(x0,i2,...,in) = x0,i2,...,in .
From this, it is easy to verify that the disjoint cycle notation for ψτ ′1ψ

−1

will consist of pn−1 cycles of the form

(x0,i2,...,in x1,i2,...,in . . . xp−1,i2,...,in),
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which is precisely the form of τ1.
Now we must show that ψ is an automorphism of ~X. Suppose that there

is a red arc from the vertex xi1,...,in to the vertex xi′1,...,i′n . Then showing
that there must be a red arc from ψ−1(xi1,...,in) to ψ−1(xi′1,...,i′n) will be
sufficient to complete the proof.

If i1 = i′1, then since ψ commutes with τ2, τ3 and τ4, it is immediately
apparent that the appropriate red arc will exist. So we assume i1 6= i′1.
Now,

ψ−1(xi1,...,in) = (τ ′1)i1(x0,i2,...,in)
= xi1,i2+a2,0+...+a2,i1−1,...,in+an,0+...+an,i1−1 , and

ψ−1(xi′1,...,i′n) = (τ ′1)i
′
1(x0,i′2,...,i

′
n
)

= xi′1,i′2+a2,0+...+a2,i′1−1,...,i
′
n+an,0+...+an,i′1−1

.

Let Br be any pn−1-block of Aut( ~X), with r 6= 0. We show that the orbit
of xr,0,...,0 under G contains the set

{xr,b0a2,0+...+bp−1a2,p−1,...,b0an,0+...+bp−1an,p−1 : 0 ≤ b0, . . . , bp−1 ≤ p− 1}.

To show this, we need only show that if xr,c2,...,cn is in the orbit, then so is
xr,c2+a2,s,...,cn+an,s for any s.

If s = 0 then ai,s = 0 for every i, so the result is trivial. Otherwise, notice
that τ−1

1 τ ′1(xs,0,...,0) = xs,a2,s,...,an,s , and τ−1
1 τ ′1 ∈ G, so by Corollary 2.6,

there exists some g ∈ G such that g(xr,0,...,0) = xr,a2,s,...,an,s . Now, since g
commutes with τ2, . . . , τn, we have g(xr,c2,...,cn) = xr,c2+a2,s,...,cn+an,s .

In particular, we have shown that the orbit of xi′1−i1,0,...,0 under G con-
tains the vertex xi′1−i1,a2,i1+...+a2,i′1−1,...,an,i1 ,...,an,i′1−1

. Since every element
of G commutes with τ2, . . . , τn, this means that the orbit of the vertex
xi′1−i1,i′2−i2,...,i′n−in under G contains the vertex

xi′1−i1,i′2−i2+a2,i1+...+a2,i′1−1,...,i
′
n−in+an,i1 ,...,an,i′1−1

.

This has shown that there must be a red arc from the vertex ψ−1(xi1,...,in)
to the vertex ψ−1(xi′1,...,i′n), as required. So ψ ∈ Aut( ~X). Since ψ respects
all of the standard blocks, it is clear that ψ ∈ P . �

2.3. Completing the proof for Z3
p. The two propositions have shown

that τ ′3 = τ3 and that if we can conjugate τ ′2 to τ2, then we can also
conjugate τ ′1 to τ1, so it only remains to show that we can conjugate τ ′2 to
τ2.

Define the auxiliary graph Y whose vertices are the blocks of size p from
the graph X. Two vertices of Y are adjacent precisely if the corresponding
blocks of X are not wreathed. By Proposition 2.3, we have τ ′2(xi1,i2,i3) =
xi1,i2+1,i3+di1,i2

for every i1, i2, i3, for some di1,i2 and since τ ′2 and τ ′3 = τ3
commute, di1,i2 depends only on i1 and i2.
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Consider the vertices ofX that correspond to some connected component
of Y . We claim that if xi1,i2,i3 and xj1,j2,j3 are both in the same component,
then di1,i2 = dj1,j2 . For suppose this were not the case, and proceed along
a path from Bi1,i2 to Bj1,j2 in Y . There is some first block along this path,
Ba1,a2 , such that da1,a2 6= di1,i2 . But the previous block along this path,
Bb1,b2 does have db1,b2 = di1,i2 . Since Bb1,b2 and Ba1,a2 are adjacent in
Y , these blocks cannot be wreathed, but the action of τ−di1,i23 τ−1

2 τ ′2 fixes
xb1,b2,b3 while moving xa1,a2,a3 in an orbit that consists of the full block
Ba1,a2 . By Lemma 2.2, these two blocks must be wreathed, a contradiction.

Now, d0,0 = 0, so di1,i2 = 0 for any Bi1,i2 in the same connected compo-
nent of Y as B0,0. We may assume that there is some other connected com-
ponent, C ′, containing some vertexBj1,j2 , for which dj1,j2 6= 0, for otherwise
τ ′2 = τ2 and we are done. Notice that B0,0 is wreathed with B0,1. For if τ ′

is the element of σ(Znp )Lσ−1 that takes x0,0,0 to xj1,j2,0, then τ−j11 τ−j22 τ ′

fixes x0,0,0 pointwise. However, τ ′2τ
′(x0,0,k) = τ ′τ ′2(x0,0,k) = τ ′(x0,1,k) =

τ ′2(xj1,j2,k) = xj1,j2+1,k+dj1,j2
, so τ−j11 τ−j22 τ ′(x0,1,k) = x0,1,k+dj1,j2

. Now,
if B0,k were not wreathed with B0,0 for some k, then any automorphism
that fixes x0,0,0 must fix x0,k,0, so must fix x0,sk,0 for any s. But since p is
prime, there is some s such that sk ≡ 1(mod p), which contradicts the fact
that τ−j11 τ−j22 τ ′ fixes x0,0,0 but not x0,1,0. So B0,0 is wreathed with B0,k

for every k, which shows in fact that any two blocks of length p in the same
block of length p2 are wreathed.

The vertices of X that lie in some fixed component of Y must form a
block of X, so there must be p, or p2 such vertices since we have already
eliminated the possibility that Y has just one component. What we have
just shown demonstrates that each component of Y must meet the blocks
of length p2 in X in at most one block of length p, so τ2 and τ ′2 move every
component onto a different component.

Choose one block of length p from each block of length p2 in such a way
that every block in the component of Y that contains B0,0 has been chosen.
Call these blocks the representative blocks. Define φ by φ(xi,j,k) = xi,j,k

if Bi,j is a representative block, and φ(xi,j,k) = θ
di,j′+...+di,j−1

i,j,k (xi,j,k) if the
representative block in Bi is Bi,j′ and j′ 6= j. Notice that φ is some fixed
power of τ3 within any component, and φ fixes every block of length p
setwise, so φ is certainly an automorphism of X. Also, φ−1τ3φ = τ3.

Now,

φ−1τ ′2φ(xi,j,k) = φ−1τ ′2(xi,j,k+di,j′+...+di,j−1)

=φ−1(xi,j+1,k+di,j′+...+di,j ) = xi,j+1,k = τ2(xi,j,k),

for any i, j, k, completing the proof.
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