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Abstract

We prove that if Cay(G;S) is a connected Cayley graph with n vertices, and the prime
factorization of n is very small, then Cay(G;S) has a hamiltonian cycle. More precisely, if p, q,

and r are distinct primes, then n can be of the form kp with 24 6= k < 32, or of the form kpq with
k ≤ 5, or of the form pqr, or of the form kp2 with k ≤ 4, or of the form kp3 with k ≤ 2.
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1 Introduction

Definition 1.1. Let S be a subset of a finite group G. The Cayley graph Cay(G;S) is the graph
whose vertices are the elements of G, with an edge joining g and gs, for every g ∈ G and s ∈ S.
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It was conjectured in the early 1970’s that every connected Cayley graph has a hamiltonian cycle,
but we are still nowhere near a resolution of this problem. (See the surveys [6, 21, 26] for discussions
of the progress that has been made.) One of the purposes of this paper is to provide some evidence
for the conjecture, by establishing that all Cayley graphs on groups of small order have hamiltonian
cycles. Our results are summarized in the following theorem:

Theorem 1.2. Let G be a finite group. Every connected Cayley graph on G has a hamiltonian cycle
if |G| has any of the following forms (where p, q, and r are distinct primes):

1. kp, where 1 ≤ k < 32, with k 6= 24,

2. kpq, where 1 ≤ k ≤ 5,

3. pqr,

4. kp2, where 1 ≤ k ≤ 4,

5. kp3, where 1 ≤ k ≤ 2.

Remark 1.3 ([25]). It is also known that Cayley graphs with pk vertices all have hamiltonian cycles.

This work began in the 1980’s as an undergraduate research project by D. Jungreis and E. Friedman
at the University of Minnesota, Duluth, under the supervision of J. A. Gallian, but their results [14]
were never published. (This paper is a revision and extension of the students’ work; we include
statements and proofs of their main results.) We consider only Cayley graphs in this paper; see [17]
for references to analogous work on hamiltonian cycles in more general vertex-transitive graphs with
a small number of vertices.

It was originally expected that the numerous available methods would easily prove that every
Cayley graph on any group of order less than, say, 100 has a hamiltonian cycle. Unfortunately, a
major lesson of this work is that such an expectation is wildly incorrect. Namely, although the results
here were not obtained easily, they do not even include all of the orders up to 75. More precisely,
as can be seen from Fig. 1, combining Theorem 1.2 with Remark 1.3 deals with all orders less than
120, except:

• 72 = 23 · 32 = 8p2 or 24p,

• 96 = 25 · 3 = 32p,

• 108 = 22 · 33 = 36p or 4p3,

• 120 = 23 · 3 · 5 = 24p.

In fact, the situation is even worse than this list would seem to indicate, because the cases k = 16,
k = 27, and k = 30 of Theorem 1.2(1) are not proved here: they were treated in the separate papers
[7, 9, 10] after a preprint of this paper was released.

Outline of the paper.

Most of the cases of Theorem 1.2 are known (including all of the cases where k = 1). For example,
C. C. Chen and N. Quimpo [5] proved that Cayley graphs of order pq are hamiltonian (in fact, edge-
hamiltonian), and D. Li [18] proved that Cayley graphs of order pqr are hamiltonian. (However,
the latter result is in Chinese, so we provide a proof.) The following list of the paper’s sections
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1 21 = 3p 41 = p 61 = p 81 = pk 101 = p

2 = p 22 = 2p 42 = 6p 62 = 2p 82 = 2p 102 = 6p

3 = p 23 = p 43 = p 63 = 9p 83 = p 103 = p

4 = pk 24 = 8p 44 = 4p 64 = pk 84 = 12p 104 = 8p

5 = p 25 = p2 45 = 9p 65 = 5p 85 = 5p 105 = 15p

6 = 2p 26 = 2p 46 = 2p 66 = 6p 86 = 2p 106 = 2p

7 = p 27 = pk 47 = p 67 = p 87 = 3p 107 = p

8 = pk 28 = 4p 48 = 16p 68 = 4p 88 = 8p 108 = ???

9 = pk 29 = p 49 = pk 69 = 3p 89 = p 109 = p

10 = 2p 30 = 6p 50 = 2p2 70 = 2pq 90 = 18p 110 = 10p

11 = p 31 = p 51 = 3p 71 = p 91 = pq 111 = 3p

12 = 4p 32 = pk 52 = 4p 72 = ??? 92 = 4p 112 = 16p

13 = p 33 = 3p 53 = p 73 = p 93 = 3p 113 = p

14 = 2p 34 = 2p 54 = 2p3 74 = 2p 94 = 2p 114 = 6p

15 = 3p 35 = pq 55 = pq 75 = 3p2 95 = 5p 115 = 5p

16 = pk 36 = 4p2 56 = 8p 76 = 4p 96 = ??? 116 = 4p

17 = p 37 = p 57 = 3p 77 = pq 97 = p 117 = 9p

18 = 2p2 38 = 2p 58 = 2p 78 = 6p 98 = 2p2 118 = 2p

19 = p 39 = 3p 59 = p 79 = p 99 = 9p 119 = 7p

20 = 4p 40 = 8p 60 = 12p 80 = 16p 100 = 4p2 120 = ???

Figure 1: Factorizations of orders up to 120.

enumerates the main cases that need to be considered.

§2 Preliminaries §5 Groups of order 4p2 §8 Groups of order 2p3

§3 Groups of order 8p §6 Groups of order pqr §9 Groups of order 18p

§4 Groups of order 3p2 §7 Groups of order 4pq

2 Preliminaries
2A Outline of the proof of Theorem 1.2:

Here is a description of how the results of this paper combine to prove Theorem 1.2.

(1) If k ∈ {2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31}, then k is either prime or twice a
prime, so kp is of the form pq, 2pq, p2, or 2p2. These cases are treated below, in (2a), (2b),
(4a), and (4b), respectively, so we need only consider the other values of k. Also, we note
that the proofs of (2)–(5) make no use of (1), other than the cases 4p and 8p, so we are free to
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employ any and all other parts of the theorem in establishing the cases of (1) (other than 4p
and 8p).

1p: Groups of prime order are abelian, so Lemma 2.1 applies.
4p: See Corollary 2.17.
8p: See Proposition 3.2.
9p: Corollary 2.3 applies unless p = 2. If p = 2, then |G| is of the form 2p2.

12p: |G| is of the form 8p (if p = 2) or 4p2 (if p = 3) or 4pq (if p > 3).
15p: |G| is of the form 3p2 (if p = 5) or 3pq (otherwise).
16p: See [7].
18p: See Proposition 9.1.
20p: |G| is of the form 4p2 (if p = 5) or 4pq (otherwise).
21p: |G| is of the form 3p2 (if p = 7) or 3pq (otherwise).
25p: Corollary 2.3 applies unless p ∈ {2, 3}. In the exceptional cases, |G| is of the form kp2

with 1 ≤ k ≤ 4.
27p: See [9].
28p: |G| is of the form 4p2 (if p = 7) or 4pq (otherwise).
30p: See [10].

(2) Assume |G| = kpq with 1 ≤ k ≤ 5.

(a) If k = 1, then [G,G] is cyclic of prime order, so Theorem 2.2 applies.
(b) If k = 2, see Proposition 6.1.
(c) If k = 3, see Corollary 6.3.
(d) If k = 4, see Proposition 7.2.
(e) If k = 5, see Corollary 6.4.

(3) Assume |G| = pqr. See Proposition 6.2 (or [18]).

(4) Assume |G| = kp2 with 1 ≤ k ≤ 4.

(a) If k = 1, then |G| = p2, so G is abelian. Hence, Lemma 2.1 applies.
(b) If k = 2, see Corollary 2.24.
(c) If k = 3, see Proposition 4.1.
(d) If k = 4, see Proposition 5.3.

(5) Assume |G| = kp3 with 1 ≤ k ≤ 2.

(a) If k = 1, then |G| = p3 is a prime power, so Remark 1.3 applies.
(b) If k = 2, see Proposition 8.1.

2B Some basic results on Cayley graphs of small order

It is very easy to see that Cayley graphs on abelian groups are hamiltonian (in fact, they are edge-
hamiltonian [5] and are usually hamiltonian connected [4]):

Lemma 2.1 ([4]). IfG is abelian, then every connected Cayley graph onG has a hamiltonian cycle.

The following generalization handles many groups of small order:
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Theorem 2.2 (Keating-Witte [15]). If the commutator subgroup [G,G] of G is a cyclic p-group,
then every connected Cayley graph on G has a hamiltonian cycle.

For ease of reference, we record a well-known (and easy) consequence of this theorem.

Corollary 2.3. If |G| = p2q, where p and q are primes with p2 6≡ 1 (mod q), then every connected
Cayley graph on G has a hamiltonian cycle.

Proof. We may assume p 6= q, for otherwise |G| = p3 is a prime power, so Remark 1.3 applies.
Let Q be a Sylow q-subgroup of G. From Sylow’s Theorem (2.33), we know that Q is normal

in G. The quotient group G/Q, being of order p2, must be abelian. Therefore [G,G] ⊂ Q is cyclic
of order q or 1, so Theorem 2.2 applies.

The proof of Remark 1.3 actually yields the following stronger result:

Corollary 2.4 ([20, Cor. 3.3]). Suppose

• S is a generating set of G,

• N is a normal p-subgroup of G, and

• st−1 ∈ N , for all s, t ∈ S.

Then Cay(G;S) has a hamiltonian cycle.

2C Factor Group Lemma

When proving the various parts of Theorem 1.2, we will implicitly assume, by induction on |G|,
that if N is any nontrivial, normal subgroup of G, then every connected Cayley graph on G/N
has a hamiltonian cycle. (Similarly, we also assume that if H is any proper subgroup of G, then
every connected Cayley graph on H has a hamiltonian cycle.) Thus it is very useful to know when
we can lift hamiltonian cycles from a quotient graph to the original Cayley graph. Here are a few
well-known results of this type.

Notation 2.5. For s1, s2, . . . , sn ∈ S ∪ S−1, we use

(s1, s2, s3, . . . , sn)

to denote the walk in Cay(G;S) that visits (in order) the vertices

e, s1, s1s2, s1s2s3, . . . , s1s2 · · · sn.

Also,

• (s1, s2, s3, . . . , sn)k denotes the walk that is obtained from the concatenation of k copies of
(s1, s2, s3, . . . , sn), and

• (s1, s2, s3, . . . , sn)# denotes the walk (s1, s2, s3, . . . , sn−1) that is obtained by deleting the
last term of the sequence.

The following observation is elementary.
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Lemma 2.6. Suppose

• S is a generating set of G,

• H is a cyclic subgroup of G, with index |G : H| = n,

• s1, s2, . . . , sn is a sequence of n elements of S ∪ S−1, such that

◦ the elements e, s1, s1s2, s1s2s3, . . . , s1s2 · · · sn−1 are all in different right cosets of H ,
and

◦ the product s1s2s3 · · · sn is a generator of H .

Then (s1, . . . , sn)|H| is a hamiltonian cycle in Cay(G;S).

The assumptions on the sequence s1, s2, . . . , sn can also be expressed by saying that a certain
quotient multigraph has a hamiltonian cycle:

Definition 2.7. If H is any subgroup of G, then H\Cay(G;S) denotes the multigraph in which:

• the vertices are the right cosets of H , and

• there is an edge joining Hg1 and Hg2 for each s ∈ S ∪ S−1, such that g1s ∈ Hg2.

Thus, if there are two different elements s1 and s2 of S ∪ S−1, such that g1s1 and g1s2 are both in
Hg2, then the vertices Hg1 and Hg2 are joined by a double edge.

When the cyclic subgroup H is normal, we have the following well-known special case:

Corollary 2.8 (“Factor Group Lemma”). Suppose

• S is a generating set of G,

• N is a cyclic, normal subgroup of G,

• (s1N, . . . , snN) is a hamiltonian cycle in Cay(G/N ;S), and

• the product s1s2 · · · sn generates N .

Then (s1, . . . , sn)|N | is a hamiltonian cycle in Cay(G;S).

When |H| (or |N |) is prime, it is generated by any of its nontrivial elements. So, in order to
know that there is a hamiltonian cycle for which the product s1s2 · · · sn generates H , it suffices to
know that there are two hamiltonian cycles that differ in only one edge:

Corollary 2.9. Suppose

• S is a generating set of G,

• H is a subgroup of G, such that |H| is prime,

• the quotient multigraph H\Cay(G;S) has a hamiltonian cycle C, and

• C uses some double edge of H\Cay(G;S).

Then there is a hamiltonian cycle in Cay(G;S).

Definition 2.10. We say that a generating set S of a group G is minimal if no proper subset of S
generates G.

Corollary 2.11. Suppose
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• N is a normal subgroup of G, such that |N | is prime,

• the image of S in G/N is a minimal generating set of G/N ,

• there is a hamiltonian cycle in Cay(G/N ;S), and

• s ≡ t (modN) for some s, t ∈ S ∪ S−1 with s 6= t.

Then there is a hamiltonian cycle in Cay(G;S).

We will also use the following generalization of Lemma 2.6:

Lemma 2.12 ([25, Lem. 5.1]). Suppose

• K is a normal subgroup of a subgroup H of G,

• (s1, s2, . . . , sn) is a hamiltonian cycle in the quotient H\Cay(G;S), and

• the product s1s2 · · · sn generates H/K.

Then (s1, s2, . . . , sn)|H/K| is a hamiltonian cycle in K\Cay(G;S).

The theory of “voltage graphs” [12, Thm. 2.1.3, p. 63] (or see [2, Thm. 5.2]) provides a method
for applying Lemma 2.6. Here is one example that we will use:

Theorem 2.13 (Locke-Witte, c.f. [19, Prop. 3.3]). Suppose

• Cay(G;S) is connected,

• N is a normal subgroup of G,

• |N | is prime, and

• for some k, Cay(G/N ;S) is isomorphic to either

◦ Cay
(
Z4k; {1, 2k}

)
(a non-bipartite Möbius ladder), or

◦ Cay
(
Z2k × Z2; {(1, 0), (0, 1)}

)
(a bipartite prism), with 2k 6≡ 1 (mod |N |).

Then some hamiltonian cycle in Cay(G/N ;S) lifts to a hamiltonian cycle in Cay(G;S).

2D Applications of Lemma 2.6

For future reference, we record some special cases of Lemma 2.6. Although the hypotheses of these
results are very restrictive (and rather complicated), they will be used many times.

Lemma 2.14 (Jungreis-Friedman [14, Lem. 6.1]). Let {s1, s2} generate the group G. If

• 2|s1| · |[s1, s2]| = |G|,

• s2 /∈ 〈s1〉〈[s1, s2]〉,

• 〈[s1, s2]〉 ∩ 〈s1〉 = {e}, and

• 〈[s1, s2]〉 ∩
(
s−12 〈s1〉s2

)
= {e},

then Cay
(
G; {s1, s2}

)
has a hamiltonian cycle.
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Proof. For convenience, let γ = [s1, s2] = s−11 s−12 s1s2. We claim that

(s
|s1|−1
1 , s−12 , s

−(|s1|−1)
1 , s2)|γ|

is a hamiltonian cycle. This will follow from Lemma 2.6 if we show that the vertices of the walk
(s
|s1|−1
1 , s−12 , s

−(|s1|−1)
1 ) are all in different right cosets of 〈γ〉.

Note that the vertices in this walk are all in 〈s1〉 or s−11 s−12 〈s1〉, and that

〈γ〉s−11 s−12 〈s1〉 = 〈γ〉(s−11 s−12 s1s2)s−12 s−11 〈s1〉 = 〈γ〉s−12 〈s1〉. (2.15)

• Since 〈γ〉 ∩ 〈s1〉 = {e}, we know that all of the elements of 〈s1〉 are in different right cosets.

• Since 〈γ〉 ∩ s−12 〈s1〉s2 = {e}, we know that all of the elements of s−12 〈s1〉 are in different
right cosets. So (2.15) implies that all of the elements of s−11 s−12 〈s1〉 are in different right
cosets.

• Since s−12 /∈ 〈γ〉〈s1〉, we know that

〈γ〉〈s1〉 ∩ 〈γ〉s−12 〈s1〉 = ∅.

So (2.15) implies that none of the elements of 〈s1〉 are in the same right coset as any element
of s−11 s−12 〈s1〉.

Lemma 2.14 will be used many times; here is an example.

Corollary 2.16. If G ∼= Z3k n (Z2 × Z2), for some k ∈ Z+, then every connected Cayley graph
on G has a hamiltonian cycle.

Proof. We may assume Z3k acts nontrivially on Z2×Z2, for otherwiseG is abelian, so Theorem 2.2
applies. Then #S = 2, and some element s1 of S generates (a conjugate of) Z3k . The other
element s2 of S is of the form si1y with y ∈ Z2 × Z2, so we have

[s1, s2] = [s1, y] ∈ (Z2 × Z2)− 〈y〉,

so it is easy to verify the hypotheses of Lemma 2.14.

Corollary 2.17. If |G| = 4p, where p is prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Corollary 2.3 applies unless p = 3. However, if p = 3, then either the Sylow 3-subgroup is
normal, so the argument of Corollary 2.3 applies, or G ∼= A4

∼= Z3 n (Z2 × Z2), so Corollary 2.16
applies.

Lemma 2.18 (Jungreis-Friedman [14, Lem. 7.1]). Let S be a minimal generating set for the groupG.
If there exist two distinct generators s1, s2 ∈ S such that:

• |s1s2| = |G|/|〈S − {s1}〉|,
• 〈s1s2〉 ∩ 〈S − {s1}〉 = {e}, and

• there is a hamiltonian cycle in Cay
(
〈S − {s1}〉;S − {s1}

)
,

then there is a hamiltonian cycle in Cay(G;S).
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Proof. Let (ti)
n
i=1 be a hamiltonian cycle in Cay

(
〈S − {s1}〉;S − {s1}

)
. Since S is a minimal

generating set for G, we know that s2 or its inverse must appear somewhere in this cycle, and by
choosing a different starting point if necessary, and reversing the cycle if necessary, we can assume
without loss of generality that tn = s−12 . Then t1t2 . . . tn−1 = s2.

Since 〈s1s2〉 ∩ 〈S − {s1}〉 = {e}, conjugating by s−12 tells us that 〈s2s1〉 ∩ 〈S − {s1}〉 is also
trivial. So the elements of 〈S−{s1}〉 are all in different right cosets of 〈s2s1〉. Therefore Lemma 2.6
tells us that (

(ti)
n−1
i=1 , s1

)|s1s2|
is a hamiltonian cycle in Cay(G;S).

Corollary 2.19. Let S be a minimal generating set for the group G. If there exist two distinct
generators s1, s2 ∈ S, such that

• Cay
(
〈S − {s1}〉;S − {s1}

)
has a hamiltonian cycle, and

• |s1s2| = |G|/|〈S − {s1}〉| is prime,

then there is a hamiltonian cycle in Cay(G;S).

Proof. In order to apply Lemma 2.18, we need only show that 〈s1s2〉∩〈S−{s1}〉 = {e}. Suppose,
to the contrary, that 〈S − {s1}〉 contains a nontrivial element of 〈s1s2〉. Since |s1s2| is prime, this
implies that s1s2 ∈ 〈S − {s1}〉. But, since s1 and s2 are distinct, we also have s2 ∈ 〈S − {s1}〉.
Therefore s1 ∈ 〈S − {s1}〉, contradicting the minimality of S.

2E Groups of dihedral type

Notation 2.20. We use D2n and Q4n to denote the dihedral group of order 2n and the generalized
quaternion group of order 4n, respectively. That is,

D2n = 〈f, x | f2 = xn = e, fxf = x−1〉

and
Q4n = 〈f, x | x2n = e, f2 = xn, f−1xf = x−1〉.

Definition 2.21.

• A group G is of dihedral type if it has

◦ an abelian subgroup A of index 2, and
◦ an element f of order 2 (with f /∈ A),

such that f inverts every element of A (i.e., f−1af = a−1 for all a ∈ A).

• A group G is of quaternion type if it has

◦ an abelian subgroup A of index 2, and
◦ an element f of order 4,

such that f inverts every element of A.

Thus, dihedral groups are the groups of dihedral type in which A is cyclic, while generalized quater-
nion groups are the groups of quaternion type in which A is cyclic.

It is not very difficult to show that Cayley graphs on dihedral groups of small order are hamilto-
nian:



10 Ars Mathematica Contemporanea x (xxxx) 1–x

Lemma 2.22 (Witte [24, Prop. 5.5]). If n has at most three distinct prime factors, then every con-
nected Cayley graph on D2n has a hamiltonian cycle.

A similar argument also yields a result for other groups of dihedral type:

Proposition 2.23 (Jungreis-Friedman [14, Thm. 5.4]). If G = Z2 n A is of dihedral type, and |A|
is the product of at most three primes (not necessarily distinct), then every connected Cayley graph
on G has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G. Since every element of fA inverts A, it is easy to
see that we may assume S ∩A = ∅ (cf. [24, Thm. 5.3]), and that f ∈ S.

• If A is a p-group, then Corollary 2.4 applies.

• If A is cyclic, then G is dihedral, so Lemma 2.22 applies.

Thus, we may assume A = Zp × Zp × Zq , where p and q are distinct primes.
Note that fS − {e} must be a minimal generating set of A.

Case 1. Assume fS contains an element x of order p. Then fS − {x} must generate a subgroup of
order pq (necessarily cyclic), so 〈S − {fx}〉 ∼= D2pq; let (s1, s2, . . . , s2pq) be a Hamiltonian cycle
in Cay

(
D2pq;S − {fx}

)
. We may assume s2pq = f . The vertices of the path (s1, s2, . . . , s2pq)#

are all in different right cosets of 〈x〉, so Lemma 2.6 implies that
(
(s1, s2, . . . , s2pq)#, fx

)p
is a

hamiltonian cycle in Cay(G;S).

Case 2. Assume fS does not contain any element of order p. Then S = {f, f1, f2}, where ff1 and
ff2 both have order pq (and 〈ff1, ff2〉 = A = Zp×Zp×Zq). We may assume p ≥ 3, for otherwise
[G,G] = Zq , so Theorem 2.2 applies. Then, since at least one of any four consecutive integers is rel-
atively prime to pq, there exists k ∈ {0, 1, 2, . . . , p}, such that (f2f)p(ff1)k generates 〈ff1〉. This
means that (f2f)p−k(f2f1)k generates 〈ff1〉, so Corollary 2.8 implies that

(
(f2f)p−k, (f2f1)k

)
is a hamiltonian cycle in Cay

(
A; {f2f, f2f1}

)
. Then it is clear that

(
(f2, f)p−k, (f2, f1)k

)
is a

hamiltonian cycle in Cay
(
G; {f, f1, f2}

)
.

Corollary 2.24. If |G| = 2p2, where p is prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Either [G,G] is cyclic of order p (so Theorem 2.2 applies) or G is of dihedral type, so Propo-
sition 2.23 applies.

Corollary 2.25 (Jungreis-Friedman cf. [14, Thm. 5.1]). If n is the product of at most three primes
(not necessarily distinct), then every connected Cayley graph on any group of quaternion type of
order 4n has a hamiltonian cycle.

Proof. Let Cay(G;S) be such a Cayley graph, and assume, without loss of generality, that S is a
minimal generating set for G. Let A be an abelian subgroup of index 2 in G, and let f ∈ S, with
f /∈ A. Then 〈f2〉 is a normal subgroup of order 2 inG. Furthermore, G/〈f2〉 is of dihedral type, so
Proposition 2.23 implies there is a hamiltonian cycle in Cay

(
G/〈f2〉;S

)
. Therefore, Corollary 2.11

applies with s = f = t−1.

Remark 2.26. IfG is a group of dihedral type, and |G| is divisible by 4, then B. Alspach, C. C. Chen,
and M. Dean [3] have shown that every connected Cayley graph on G has a hamiltonian cycle. In
fact, the Cayley graphs are hamiltonian connected (or hamiltonian laceable when they are bipartite).
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2F Generator in a cyclic, normal subgroup

The following observation is well known.

Lemma 2.27. Let S generate G and let s ∈ S, such that 〈s〉 / G. If

• Cay
(
G/〈s〉;S

)
has a hamiltonian cycle, and

• either

1. s ∈ Z(G), or
2. Z(G) ∩ 〈s〉 = {e}, or
3. |s| is prime,

then Cay(G;S) has a hamiltonian cycle.

Proof. Let (s1, s2, . . . , sn) be a hamiltonian cycle in Cay
(
G/〈s〉;S

)
, and let k = |s1s2 · · · sn|, so

(s1, s2, . . . , sn)k is a cycle in Cay(G;S).
(1) Since s ∈ Z(G), it is easy to see that Cay(G;S) contains a spanning subgraph isomorphic

to the Cartesian product Pn × C|s| of a path with n vertices and a cycle with |s| vertices. Since it is
easy to see that this Cartesian product is hamiltonian [4, Cor. on p. 29], we conclude that Cay(G;S)
has a hamiltonian cycle.

(2) Let m = |G|/(nk). We claim that(
sm−1, s1, s

m−1, s2, s
m−1, . . . , sm−1, sn

)k
is a hamiltonian cycle in Cay(G;S).

Let
gi = (s1s2 · · · si)−1 for 0 ≤ i ≤ n, so gig−1i+1 = si+1,

and note that, since (s1, s2, . . . , sn) is a hamiltonian cycle, we know that

{1, g1, g2, . . . , gn−1} is a complete set of coset representatives for 〈s〉 in G.

Then, for any h ∈ G,

{h, g1h, g2h, . . . , gn−1h} is also a set of coset representatives.

Also, since 〈s〉 is abelian, we know that if x and y are elements in the same coset of 〈s〉, then
sx = sy . Thus, for any t ∈ 〈s〉, we have

{t, tg1 , tg2 , . . . , tgn−1} = {th, tg1h, tg2h, . . . , tgn−1h},

so
ttg1tg2 · · · tgn−1 = thtg1htg2h · · · tgn−1h,

because both products have exactly the same factors (but possibly in a different order). Since the
right-hand product is (ttg1tg2 · · · tgn−1)h, and h is an arbitrary element of G, we conclude that
ttg1tg2 · · · tgn−1 ∈ Z(G). Since Z(G) has trivial intersection with 〈s〉, this implies that

ttg1tg2 · · · tgn−1 = e.
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Therefore

(sm−1)s1(sm−1)s2 · · · (sm−1)sn =
(
(sm−1)(sm−1)g1(sm−1)g2 · · · (sm−1)gn−1

)
g−1n = g−1n .

Therefore (
(sm−1)s1(sm−1)s2 · · · (sm−1)sn

)k
= g−kn = (s1s2 · · · sn)k = e,

so the walk is closed. Furthermore, since m = |〈s〉/〈gn〉|, it is clear that the walk visits every
element of 〈s〉, and it is similarly easy to see that it visits every element of all of the other cosets. So
it visits every element of G.

Since it is also a closed walk of the correct length, we conclude that it is a hamiltonian cycle.
(3) Since |s| is prime, either (1) or (2) must apply.

The following related result is much less obvious.

Theorem 2.28 (Alspach [2, Thm. 3.7]). Suppose

• S is a generating set of G,

• s ∈ S,

• 〈s〉 / G,

• |G : 〈s〉| is odd, and

• Cay
(
G/〈s〉;S

)
has a hamiltonian cycle.

Then Cay(G;S) has a hamiltonian cycle.

A well-known theorem of B. Alspach [1] describes exactly which generalized Petersen graphs
have a hamiltonian cycle. We need only the following consequence of this very precise result.

Theorem 2.29 (B. Alspach [1]). Suppose X is a generalized Petersen graph that is connected, and
has 2n vertices. If n 6≡ 0 (mod 4) and n 6≡ 5 (mod 6), then X has a hamiltonian cycle.

2G A few small groups

For future reference, we record the existence of hamiltonian cycles in every connected Cayley graph
on the groups S4, A4 × Z2, A4 × Z3, and A5. Only a few non-isomorphic Cayley graphs arise on
each group, and a computer search could quickly find a hamiltonian cycle in each of them, so, for
brevity, we omit some details of the proofs.

Lemma 2.30 ([14, Thm. 8.2]). Every connected Cayley graph on the symmetric group S4 has a
hamiltonian cycle.

Proof. Suppose S is a minimal generating set of S4. Note that S must contain an odd permutation;
that is, S contains either a 2-cycle or 4-cycle.

Case 1. Assume #S = 2. Write S = {a, b}.
If a is a 4-cycle, then we may assume

a = (1, 2, 3, 4) and b ∈ {(1, 2), (1, 2, 3), (1, 2, 4, 3)}.

In each case, Lemma 2.14 provides a hamiltonian cycle in Cay(S4;S).
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Now suppose S contains no 4-cycles. Then we may assume a = (1, 2) and b = (2, 3, 4). In this
case, a hamiltonian cycle is given by

(
(a, b2)2, (a, b−2)2

)2
.

Case 2. Assume #S ≥ 3. Since S is minimal, it is easy to see that #S = 3; write S = {a, b, c}.

Subcase 2.1. Assume a = (1, 2)(3, 4). Let N be the normal subgroup of order 4 that contains a.
Then, since 〈S〉 = S4, we have 〈b, c〉N = S4. Furthermore, since the action of S4/N on N is
irreducible, the minimality of S implies 〈b, c〉 ∩ N is trivial. So 〈b, c〉 ∼= S4/N ∼= S3. Then,
conjugating by a power of (1, 3, 2, 4) (which centralizes a), there is no harm in assuming that 〈b, c〉 =
S3. So we may assume {b, c} is either

{(1, 2), (2, 3)} or {(1, 3), (2, 3)} or {(1, 2, 3), (1, 2)} or {(1, 2, 3), (2, 3)}.

If (2, 3) ∈ S, then Lemma 2.18 applies with s1 = (1, 2)(3, 4) and s2 = (2, 3). In the remaining
case, let b = (1, 2, 3) and c = (1, 2), and let L be any hamiltonian path in Cay

(
A4; {a, b}

)
from e

to b. Then (L, c)2 is a hamiltonian cycle in Cay(S4;S).

Subcase 2.2. Assume S does not contain any even permutation of order 2. Then, since S is a
3-element, minimal generating set, it is not difficult to see that S cannot contain a 4-cycle. So S
consists entirely of 2-cycles and 3-cycles. However, it is known that there is a hamiltonian cycle in
Cay(Sn : S) whenever S consists entirely of 2-cycles (see the discussion and references on p. 622
of [22]), so we may assume that S contains at least one 3-cycle. Then, up to automorphism, we have

S = {(1, 2, 3), (1, 2, 4), (1, 2)}.

Let a = (1, 2, 3), b = (1, 2, 4), and c = (1, 2), and let L be any hamiltonian path in Cay
(
A4; {a, b}

)
from e to b. Then (L, c)2 is a hamiltonian cycle in Cay(S4;S).

We actually need only the cases p = 2 and p = 3 of the following result, but the general case is
no more difficult to prove.

Lemma 2.31 (Jungreis-Friedman [14, Thm. 7.4]). If p is prime, then every connected Cayley graph
on A4 × Zp has a hamiltonian cycle.

Proof. Suppose S is a minimal generating set for the group A4 × Zp, and let z be a genera-
tor of Zp. Note that every minimal generating set of A4 is of the form {(1, 2, 3), (1, 2, 4)} or
{(1, 2, 3), (1, 2)(3, 4)} (up to automorphism), so S has either 2 or 3 elements.

Case 1. Assume #S = 2. Write S = {a, b}.

Subcase 1.1. Assume a = (1, 2)(3, 4)z. We may assume p = 2, for otherwise Corollary 2.11
applies with N = Zp. Let b be the second element of S; we may assume b is either (1, 2, 3) or
(1, 2, 3)z.

• If b = (1, 2, 3), then
(
(b2, a)2, (b−2, a)2

)2
is a hamiltonian cycle.

• If b = (1, 2, 3)z, then (b5, a, b−5, a)2 is a hamiltonian cycle.

Subcase 1.2. Assume (1, 2)(3, 4)z /∈ S. We may assume (1, 2, 3)z ∈ S. Then we may assume
p = 3, for otherwise it is not difficult to verify that Lemma 2.14 applies with s1 = (1, 2, 3)z.
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Let a = (1, 2, 3)z, and let b be the other element of S. Since {(1, 2, 3)z, (1, 2)(3, 4)〉 6= A4×Z3,
we must have b = (1, 2, 4)zi for some i. By applying an automorphism, we may assume i = 0.
Then a hamiltonian cycle is given by(

a−2, b−2, a2, b, (a−2, b2)2, a2, b, a−2, b−2, a, b, a2, b−1, a−2, b2, a−2, b, a−1, b
)
.

Case 2. Assume #S = 3. We may assume S∩Zp = ∅, for otherwise Lemma 2.27(1) applies. Then,
from the minimality of S, it is not difficult to see that we must have p = 3 and (after applying an
automorphism) S contains both (1, 2, 3) and (1, 2, 3)z, so Corollary 2.11 applies (with N = Zp).

Our proof [16] of the following result consists of two pages of unilluminating case-by-case anal-
ysis, so we omit it.

Lemma 2.32 ([16]). Every connected Cayley graph on the alternating group A5 has a hamiltonian
cycle.

2H Some facts from group theory

The following well-known consequence of Sylow’s Theorems will be used several times.

Lemma 2.33 ([8, Thm. 25.1]). Suppose G is a finite group, p is a prime number, and P is a Sylow
p-subgroup of G. If 1 is the only divisor k of |G|/|P |, such that k ≡ 1 (mod p), then P is a normal
subgroup of G.

We recall a few basic facts about the Frattini subgroup.

Definition 2.34. The Frattini subgroup of a finite group G is the intersection of all the maximal
subgroups of G. It is denoted Φ(G).

Proposition 2.35 (cf. [11, Thms. 5.1.1 and 5.1.3]). Let S be a minimal generating set of a finite
group G. Then:

1. Φ(G) is a normal subgroup of G.

2. S ∩ Φ(G) = ∅.

3. S is a minimal generating set of G/Φ(G).

4. If G is a p-group, then Φ(G) = [G,G] · 〈gp | g ∈ G〉.

And we also recall some very basic facts about Hall subgroups.

Definition 2.36. A subgroup H of a finite group G is a Hall subgroup if |H| is relatively prime to
|G|/|H|.

Proposition 2.37 ([11, Thm. 6.4.1(i)]). Let

• G be a finite group that is solvable, and

• k be a divisor of |G|, such that k is relatively prime to |G|/k.

Then G has a Hall subgroup whose order is precisely k.



Ars Mathematica Contemporanea x (xxxx) 1–x 15

3 Groups of order 8p

We begin with a special case:

Lemma 3.1. If |G| = 8p, where p is prime, and the Sylow p-subgroups are not normal, then every
connected Cayley graph on G has a hamiltonian cycle.

Proof. Let P be a Sylow p-subgroup of G. Sylow’s Theorem (2.33) implies p is either 3 or 7.

Case 1. Assume p = 3. The normalizer NG(P ) is not all of G, so |G : NG(P )| = 4. Letting G act
on the cosets of NG(P ) by translation yields a homomorphism from G to S4. Then either G = S4

(so Lemma 2.30 applies), or NG(P ) contains a normal subgroup N of G, which must be of order 2,
and thus N ⊆ Z(G).

Since |G/N | = 12, and the Sylow 3-subgroup is not normal, we have G/N ∼= A4. We may
assume G 6∼= A4 × Z2 (otherwise Lemma 2.31 applies), so it is easy to see that G ∼= Z3 n Q8.
Since G/N ∼= A4

∼= Z3 n (Z2 × Z2), the proof of Corollary 2.16 tells us that (s21, s
−1
2 , s−21 , s2)2

is a hamiltonian cycle in Cay(G/N ;S). Its endpoint in G is [s1, s2]2. This generates N (because
the square of any element of Q8 − {±1} is nontrivial), so the Factor Group Lemma (2.8) provides a
hamiltonian cycle in Cay(G;S).

Case 2. Assume p = 7. It is not difficult to see that we must have G = Z7 n (Z2)3. Let x and y
be nontrivial elements of Z7 and (Z2)3, respectively. Then, up to automorphism (and replacing
generators by their inverses), it is clear that every minimal generating is of the form {x, xiy}with i ∈
{0, 1, 2, 4}. Furthermore, since x ≡ (x4y)2 (mod(Z2)3), an automorphism carries the generating
set {x, x4y} to {x, x2y}; so we may assume i 6= 4. Here are hamiltonian cycles for the three
remaining cases.

i = 0:
(
(x6, y)2, (x−6, y)2

)2
,

i = 1: (x6, xy, xy)7,

i = 2:
(

(x6, x2y)2,
(
x−6, (x2y)−1)2

)2
.

Proposition 3.2 (Jungreis-Friedman [14, Thm. 8.5]). If |G| = 8p, where p is prime, then every con-
nected Cayley graph on G has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G. We may assume p > 2, for otherwise |G| = 16 is
a prime power, so Remark 1.3 applies. We may also assume G has a normal Sylow p-subgroup, for
otherwise Lemma 3.1 applies. Hence, G = P2 n Zp where P2 is a Sylow 2-subgroup of G.

We assume the commutator subgroup of G is not cyclic of prime order (otherwise Theorem 2.2
applies). Hence, P2 is nonabelian, and acts nontrivially on Zp. The only nonabelian groups of
order 8 are D8 and Q8.

Case 1. Assume P2
∼= Q8. Since AutZp is cyclic, and the only nontrivial cyclic quotient of Q8

is Z2, it must be the case that the kernel of the action of Q8 on Zp is a subgroup of order 4. The
subgroups of order 4 in Q8 are cyclic, so it is easy to see that G is of quaternion type. Hence,
Corollary 2.25 applies.

Case 2. Assume P2
∼= D8. The argument of the preceding case shows that the kernel of the action

of D8 on Zp is of order 4. If it is cyclic, then G ∼= D8p, which is covered by Lemma 2.22.
Henceforth, we assume the kernel is not cyclic, so

G ∼= {f, x, z | f2 = x4 = zp = 1, xf = x−1, zf = z, zx = z−1}.
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Note that, by Lemma 2.27, we may assume S does not contain any element of 〈z〉.
Note that:

• x2 is an element of order 2 in Z(G), so x2 belongs to every Sylow 2-subgroup, and

• x2 is in the Frattini subgroup of D8
∼= G/〈z〉, so x2 also belongs to every maximal subgroup

that contains 〈z〉.

Since every maximal subgroup of G either is a Sylow 2-subgroup or contains 〈z〉, we conclude that
x2 ∈ Φ(G). Since S is minimal, this tells us that S is a minimal generating set ofG/〈x2〉. Therefore,
we may assume S does not contain any element s such that s2 = x2. (Otherwise, Corollary 2.11
applies with t = s−1.) This means that S does not contain any element of the form x±1zn.

Then, since S must generate G/〈x2, z〉, we conclude that S (or S−1) contains elements of the
form fxz` and fx2mzn. We may assume:

• ` = 0 (conjugating by a power of z),

• m = 0 (because we can conjugate by a power of x and replace x with x−1 if necessary), and

• n = 0 (otherwise, we may apply Corollary 2.11 with N = 〈z〉 and t−1 = s = fzn).

Thus, S contains both f and fx.
Now, in order to generate z, the set S must contain either x2z or fxiz, for some i (up to replacing

z with one of its powers).

Subcase 2.1. Assume x2z in S. We must have S = {f, fx, x2z} and Lemma 2.6 shows that
(fx, f, fx, x2z)2p is a hamiltonian cycle, since fx ·f ·fx ·x2z = fz is of order 2p, and the vertices

e, fx, fx · f = x3, and x3 · fx = fx2

are all in different right cosets of 〈f, z〉.

Subcase 2.2. Assume there is no element of the form x2zi in S. Then fxiz ∈ S. Note that i
must be odd, for otherwise 〈z〉 ⊂ 〈fxiz〉, so 〈fx, fxiz〉 = G, contradicting the minimality of S.
Thus, we have

S = {f, fx, fxz} or S = {f, fx, fx3z}.

In the former case, Corollary 2.11 applies (letting s = fx, t = fxz, and N = 〈z〉).
We may now assume S = {f, fx, fx3z}. Because we have G/Zp ∼= D8, it is easy to check that

(fx, fx3z, fx, f, fx3z, fx, fx3z, f)

is a hamiltonian cycle in Cay(G/Zp;S), and we have

(fx)(fx3z)(fx)(f)(fx3z)(fx)(fx3z)(f) = z3.

If p ≥ 5, this product generates Zp, so the Factor Group Lemma (2.8) tells us there is a hamiltonian
cycle in Cay(G;S).

If p = 3, a hamiltonian cycle is given by(
(f, fx)2, fx3z, f, fx, f, fx3z, (fx, f)2, fx3z, f, fx3z, fx, f, fx3z, f, fx, fx3z, f, fx3z

)
.
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4 Groups of order 3p2

Proposition 4.1. If |G| = 3p2, where p is prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Let S be a minimal generating set of G, and let P be a Sylow p-subgroup of G. We may
assume p ≥ 5, for otherwise either |G| = 12 is of the form 4p, so Corollary 2.17 applies, or |G| = 33

is a prime power, so Remark 1.3 applies. Hence, Sylow’s Theorem (2.33) tells us P / G. Note that
G/P ∼= Z3 is abelian, so [G,G] ⊂ P . So we may assume P ∼= Zp×Zp, for otherwise Theorem 2.2
applies. Thus, we may assume G = Z3 n (Zp × Zp), and [G,G] = Zp × Zp.

Case 1. Assume |S| = 3. Write S = {s, t, u}. We may assume s /∈ Zp × Zp, so |s| = 3. Because S
is minimal, we see that 〈s, t〉 and 〈s, u〉 each have order 3p. LetN be the unique subgroup of order p
in 〈s, t〉, and note that N is normal in G (because it is normalized both by s and by the abelian group
Zp × Zp).

• If t ∈ N , then Theorem 2.28 applies.

• If t /∈ N , then we may assume s ≡ t (modN) (by replacing t with t−1, if necessary). So
Corollary 2.11 applies.

Case 2. Assume |S| = 2. Write S = {s, t}.
If s and t both have order 3, then we may assume s ≡ t (modZp×Zp) (by replacing t with t−1,

if necessary). Then st−1 is contained in the normal p-subgroup Zp × Zp, so Corollary 2.4 applies.
We may now assume |s| = 3 and |t| = p.
Let us determine the action of s on Zp × Zp.

• Define a linear transformation T on Zp × Zp by T (v) = s−1vs,

• let m(x) be the minimal polynomial of T , and

• let u = T (t) = s−1ts.

Note that:

• Because |s| = 3, we know T 3 = I , so m(x) divides x3 − 1 = (x− 1)(x2 + x+ 1).

• Since |[G,G]| = p2, we know that 1 is not an eigenvalue of T .

• Because 〈s, t〉 = G, we know u = T (t) /∈ 〈t〉, so the minimal polynomial of T has degree 2
(and {t, u} is a basis of Zp × Zp).

We conclude that the minimal polynomial of T is x2 + x+ 1. Thus, with respect to the basis {t, u}
of Zp × Zp, we have T (i, j) = (−j, i− j). In other words, s−1(tiuj)s = t−jui−j , so

tiujs = s
(
s−1(tiuj)s

)
= s(t−jui−j) ∈ 〈s〉t−jui−j . (4.2)

The quotient multigraph 〈s〉\Cay(G;S) has the following properties:

• it has p2 vertices;

• it is regular of valency 4;
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• the vertices are the ordered pairs (i, j), where

−p− 1

2
≤ i, j ≤ p− 1

2
;

and

• the vertex (i, j) is adjacent to:

(i+ 1, j); (i− 1, j); (−j, i− j); and (j − i,−i),

where calculations are performed modulo p (see 4.2).

Furthermore, we observe that for any prime p, there are precisely two multiple edges:

• If p = 3k + 1, then, with j = k and i = 2j, we have

(−j, i− j) = (−k, k) = (2k + 1, k) = (i+ 1, j),

and, with j = −k and i = 2j, we have

(−j, i− j) = (k,−k) = (−2k − 1,−k) = (i− 1, j).

• If p = 3k + 2, then, with j = k + 1 and i = 2j, we have

(−j, i− j) = (−k − 1, k + 1) = (2k + 1, k + 1) = (i− 1, j),

and, with j = −(k + 1) and i = 2j, we have

(−j, i− j) = (k + 1,−(k + 1)) = (−2k − 1,−(k + 1)) = (i+ 1, j).

We now construct a hamiltonian cycle in the multigraph. Beginning at the vertex (1, 1), we
proceed along the following sequence of edges (where {n} denotes the remainder when n is divided
by p, so 0 ≤ {n} < p): ([

(t−1){3j−1}, s−1, t{−3j−1}, s−1
](p−3)/2
j=1

,[
(t−1)(p−5)/2, s−1, t(p+1)/2, s

]
,[

tp−1, s−1
]
,[

t{3j−1}, s, (t−1){−3j−1}, s∗
]−k−1
j=−(p−1)/2,[

(t−1){3j−1}, s−1, t{−3j−1}, s−1
]−2
j=−k,[

(t−1)p−4, s−1, t2, s
])
.

Here s∗ indicates s unless j = −k − 1 and p = 3k + 1, in which case it indicates s−1.
We make a few observations that will aid the reader in verifying that this is indeed a hamiltonian

cycle. We will see that each portion enclosed within square brackets traverses all of the vertices in
some row of the multigraph, and passes on to the next row; the parameter j represents the row being
traversed. For convenience, we will use n to denote the integer congruent to n modulo p that is
between −(p− 1)/2 and (p− 1)/2 (inclusive).
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Figure 2: The s-edges in the multigraph when p = 5. The t-edges (not drawn) are horizontal. Thus,
there are two double edges (dashed, at top left and bottom right) in the multigraph.

In the first portion enclosed within square brackets, we begin each row at a vertex of the form
(2j − 1, j). The t−1 edges cover every vertex between this and (−j, j), moving leftwards; s−1 takes
us to the vertex (2j, j), and the t edges cover every vertex between this and (−j − 1, j), completing
the row. The s−1 edge then takes us to (2j + 1, j + 1), which has the required form to continue this
pattern. In this way, we cover all of the vertices from rows 1 through (p− 3)/2.

Then, the second portion enclosed within square brackets covers the vertices of row (p − 1)/2
in the same way, except that it ends with an s-edge, taking us from

(
(p − 1)/2, (p − 1)/2

)
to(

−(p− 1)/2, 0
)
.

The third portion enclosed within square brackets takes us through the vertices of row 0, ending
at
(
(p− 1)/2, 0

)
, and to vertex

(
−(p− 1)/2,−(p− 1)/2

)
, which has the form (−j + 1, j).

In the fourth portion enclosed within square brackets, we use the same pattern on rows−(p−1)/2
through −k − 1 that we used on rows k + 1 through (p− 1)/2, rotated by 180 degrees. So in each
row we begin at a vertex of the form (−j + 1, j), move right until we reach (2j, j), then jump to
(−j, j), move left to the vertex (2j + 1, j) (completing the row), and pass to vertex (−j, j + 1) in
the next row, which again has the required form to continue. The s∗ edge ends this portion at the
vertex (k + 1,−k) if p = 3k + 2, and at (k, 2k + 1) if p = 3k + 1; both of these are equal to
(−2k − 1,−k). This has the form (2j − 1, j) again.

Now the fifth portion uses the same pattern we began with, to cover the vertices in rows −k
through −2.

The final portion covers row −1, using the same pattern, finishing at the vertex (0,−1). Now
edge s takes us to (1, 1), completing the hamiltonian cycle.

Notice that in each row (except row 0), this cycle traversed the unique s-edge whose endpoints
were both in that row. In particular, this cycle traversed each of the multi-edges noted above. So
Corollary 2.9 implies there is a hamiltonian cycle in Cay(G;S).
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5 Groups of order 4p2

We begin with a special case.

Lemma 5.1 (Jungreis-Friedman [14, Thm. 7.3]). If p is prime, then every connected Cayley graph
on D2p ×D2p has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G = D2p × D2p, where p is prime. We may assume
p ≥ 3, for otherwise |G| = 16 is a power of 2, so Remark 1.3 applies.

Notice that the elements of S cannot consist exclusively of pairs of nontrivial reflections, together
with pairs of (possibly trivial) rotations, since such a set cannot generate the element (f, e) of D2p×
D2p (for any reflection f ). This is because getting f in the first coordinate requires taking the product
of an odd number of elements that are pairs of nontrivial reflections, while getting e in the second
coordinate requires taking the product of an even number of such elements. Therefore, as S must
contain an element with a reflection in its first coordinate, we may assume that either (f, e) ∈ S or
(f, x′) ∈ S, for some reflection f and some nontrivial rotation x′.

Case 1. Assume |S| = 2. In order to generate the entire group, S must include either two reflections,
or a reflection and a rotation, within each of the dihedral factors. Up to automorphism, there are only
two generating sets that satisfy this condition: {(x, f ′), (f, x′)}, or {(f1, x′), (f2, f ′)}, where x, x′

are nontrivial rotations and f, f ′, f1, f2 are reflections and f1 6= f2.
We now verify that each of the above generating sets satisfies the conditions of Lemma 2.14, so

that by that lemma, Cay(G;S) does indeed have a hamiltonian cycle.

Subcase 1.1. Assume s1 = (x, f ′) and s2 = (f, x′). Letting γ = [s1, s2], we have

γ =
(
x−1fxf, f ′(x′)−1f ′x′

)
=
(
x−2, (x′)2

)
.

So

• 2|s1||γ| = 2(2p)(p) = 4p2 = |G|.
• 〈s1〉〈γ〉 =

{ (
xix−2j , (f ′)i(x′)2j

) ∣∣ i, j ∈ Z
}

, which never has f in the first coordinate, so
s2 is not in this set.

• If γi = sj1 for some i, j, then (x′)2i = (f ′)j , so we must have (x′)2i = (f ′)j = e, so
i ≡ 0 (mod p). But then x−2i = e, so γi = (e, e). Therefore, 〈γ〉 ∩ 〈s1〉 = {e}.

• If γi = s−12 sj1s2 for some i, j, then (x′)2i = (x′)−1(f ′)jx′, so (x′)2i = e = (f ′)j , so
i ≡ 0 (mod p). But then x−2i = e, so γi = (e, e). Therefore, 〈γ〉 ∩ (s−12 〈s1〉s2) = {e}.

Subcase 1.2. Assume s1 = (f1, x
′) and s2 = (f2, f

′), with f1 6= f2. We may assume f2 = f1x.
Then with γ = [s1, s2], we have

γ =
(
f1(f1x)f1(f1x), (x′)−1f ′x′f ′

)
=
(
x2, (x′)−2

)
.

So

• 2|s1||γ| = 2(2p)(p) = 4p2 = |G|;
• 〈s1〉〈γ〉 =

{ (
f i1x

2j , (x′)i(x′)−2j)
∣∣ i, j ∈ Z

}
, which never has f ′ in the second coordinate,

so s2 is not in this set.

• If γi = sj1 for some i, j, then x2i = f j1 , so we must have x2i = e, so i ≡ 0 (mod p). But then
(x′)−2i = e, so γi = (e, e). Therefore, 〈γ〉 ∩ 〈s1〉 = {e}.
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• If γi = s−12 sj1s2 for some i, j, then x2i = f2f
j
1f2, so x2i = e, so i ≡ 0 (mod p). But then

(x′)−2i = e, so γi = (e, e). Therefore, 〈γ〉 ∩ (s−12 〈s1〉s2) = {e}.

Case 2. Assume |S| = 3. In what follows, we will be applying Corollary 2.19 repeatedly. We will
verify some of its conditions here, so that only one condition will need to be checked each time we
use it below. Namely, we already know that S is minimal and |S| ≥ 3. Furthermore, we assume, by
induction on |G|, that Cay

(
〈S − {s1}〉;S − {s1}

)
has a hamiltonian cycle, for any s1 ∈ S. Thus,

in order to apply the corollary, all that remains is to verify that there exist two distinct generators
s1, s2 ∈ S such that |s1s2| = |G|/|〈S − {s1}〉| is prime.

Subcase 2.1. Assume S is disjoint from D2p × {e} and {e} × D2p. The discussion preceding
Case 1 implies that we may assume s = (f, x′) ∈ S, for some reflection f and some nontrivial
rotation x′.

The generating set S must also be an element whose second coordinate is a reflection. By the
assumption of this subcase, the first coordinate cannot be trivial. And it also cannot be a nontrivial
rotation (because S is minimal and |S| = 3). Therefore, it is a reflection. From the minimality of S,
we conclude that it is f : that is, s1 = (f, f ′) ∈ S, for some reflection f ′.

Now, let s2 = (y, y′) be the third element of S. To generate G, we must have y 6= f . (And y′ is
nontrivial, from the assumption of this subcase.) Note that if y is a reflection, then either 〈s2, s〉 = G
or 〈s2, s1〉 = G, depending on whether y′ is a rotation or a reflection. Thus, the minimality of S
implies that y is a rotation x . Then, since 〈s, (x, f ′′)〉 = G for any rotation f ′′, the minimality of S
implies that y′ is a rotation. Thus, s2 = (x, x′′) ∈ S, for some nontrivial rotations x and x′′. Then
|s1s2| = |(fx, f ′x′′)| = 2 and 〈S − {s1}〉 = D2p × Zp has index 2, so Corollary 2.19 provides a
hamiltonian cycle in Cay(G;S).

Subcase 2.2. Assume (f, e) ∈ S. As there must be a reflection in the second coordinate of some
element of S, we have either (x, f ′) ∈ S, or (e, f ′) ∈ S, or (f1, f

′) ∈ S.

Subsubcase 2.2.1. Assume (x, f ′) ∈ S, with |x| = p. Then (x, f ′) generates a subgroup of
G of order 2p. Let s1 = (f, e). Since

[s1, G] = 〈(x, e)〉 ⊂ 〈(x, f ′)〉 ⊂ 〈S − {s1}〉,

we know that s1 normalizes 〈S−{s1}〉, soG = 〈s1〉〈S−{s1}〉. Furthermore, because S is a minimal
generating set, we know s1 /∈ 〈S−{s1}〉. Since |s1| = 2 is prime, this implies 〈s1〉 ∩ 〈S−{s1}〉 =
{e}, so |G| = |〈s1〉| · |〈S − {s1}〉|. Therefore |G|/|〈S − {s1}〉| = 2. Also, with s2 = (x, f ′), we
have |s1s2| = 2. So Corollary 2.19 tells us that Cay(G;S) is hamiltonian.

Subsubcase 2.2.2. Assume either (e, f ′) ∈ S, or (f, f ′) ∈ S. Let r1 = (f, e) and let r2 be
either (e, f ′) or (f, f ′), the other element that we know to be in S. Note that, because |r1r2| = 2,

if either 〈S − {r1}〉 or 〈S − {r2}〉 has index 2 in G,
then Corollary 2.19 tells us Cay(G;S) is hamiltonian. (5.2)

We claim that we may assume no element of S consists of a nontrivial rotation in one coor-
dinate together with a reflection in the other. To see this, observe, first of all, that we are not in
Subsubcase 2.2.1, so the reflection cannot be in the second coordinate. Thus, we suppose S con-
tains some (f1, x

′). Since S is minimal and contains (f, e), we must have f1 6= f . Therefore
〈(f1, x′), (f, f ′)〉 = G, so combining the minimality of S with the definition of r2 tells us that
r2 = (e, f ′). Thus, Subsubcase 2.2.1 applies, after interchanging the two factors of G.



22 Ars Mathematica Contemporanea x (xxxx) 1–x

If the third element of S is of the form (x, x′), then 〈S − {r2}〉 has index 2 in G, so Cay(G;S)
has a hamiltonian cycle by (5.2). Thus, from the preceding paragraph, we may assume that the third
element of S is of the form (f1, e), (e, f ′1), or (f1, f

′
1). However, only the last of these can generate

all of G when combined with r1 and r2. Therefore

S = {r1, r2, (f1, f ′1)}.

Furthermore, we must have f1 6= f and f ′1 6= f ′.
If r2 = (f, f ′), then |r2(f1, f

′
1)| = p and |〈r1, (f1, f ′1)〉| = 4p, so Corollary 2.19 applies. If

r2 = (e, f ′) then Corollary 2.19 cannot be applied, but we claim that((
(f1, f

′
1), (f, e)

)p
#, (e, f ′)

)2p
is a hamiltonian cycle. To verify this, we first calculate that:

•
(
(f1f)pf−1, (f ′1)pf ′

)
= (f, f ′1f

′),

•
(
(f1f)i, (f ′1)i

)
∈ 〈(f, f ′1f ′)〉 ·

{(
(f1f)i, e

)
if i is even,(

(f1f)i, f ′1
)

if i is odd,

•
(
(f1f)i, (f ′1)i

)
· (f1, f ′1) ∈ 〈(f, f ′1f ′)〉 ·

{(
(f1f)−(i+1), f ′1

)
if i is even,(

(f1f)−(i+1), e
)

if i is odd.

The conclusion that we have a hamiltonian cycle now follows easily from Lemma 2.6.

Subsubcase 2.2.3. Assume (f1, f
′) ∈ S with f1 6= f .

If the third element of S is of the form (f2, f
′
1), then f ′1 6= f ′ (otherwise S would not generateG).

Because |(f2, f ′1)(f1, f
′)| = p and |〈(f, e), (f1, f ′)〉| = 4p, the conditions of Corollary 2.19 are

satisfied with s1 = (f2, f
′
1).

If the third element of S is of the form (f2, x
′), then x′ must be nontrivial (or else S would

not generate G), so f2 = f1; otherwise, (f, e) is redundant. Then, since |(f1, x′)(f, e)| = p and
|〈(f, e), (f1, f ′)〉| = 4p, the conditions of Corollary 2.19 are satisfied.

If the third element of S is of the form (e, x′), then, since |x′| = p, Lemma 2.27 provides a
hamiltonian cycle in Cay(G;S).

Finally, since we are not in Subsubcase 2.2.1 or 2.2.2, we may now assume the third element
of S is of the form (x, x′), with x and x′ nontrivial. Let s1 = (f, e) and s2 = (f1, f

′). We have
|s1s2| = 2p, and |〈(x, x′), (f1, f ′)〉| = 2p. Furthermore, 〈s1s2〉 = 〈(x, e), (e, f ′)〉. The intersection
of this group with 〈(x, x′), (f1, f ′)〉 is clearly trivial, so Lemma 2.18 applies.

Case 3. Assume |S| = 4. Because S generates G/(Zp × Zp), we know that it contains an element
of the form (f, e) or (e, f ′). Let us assume (f, e) ∈ S.

Subcase 3.1. Assume S ∩ (Zp × Zp) 6= ∅. Let (x, x′) ∈ S ∩ (Zp × Zp). We may assume
that x and x′ are both nontrivial, for otherwise 〈(x, x′)〉 / G, so Lemma 2.27 applies. But then
〈(f, e), (x, x′)〉 has index 2 in G, which contradicts the fact that |S| = 4.

Subcase 3.2. Assume S ∩ (Zp × Zp) = ∅. We may assume S contains an element of the form
(f1, f

′) with f1 and f ′ nontrivial, for otherwise Cay(G;S) is isomorphic to a Cartesian product
Cay(D2p;S1)× Cay(D2p;S

′
1), and the Cartesian product of hamiltonian graphs is hamiltonian.

We must have f1 = f , for otherwise 〈(f, e), (f1, f ′)〉 has index p in G, contradicting the fact
that |S| = 4. So (f, f ′) ∈ S.
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In order to generate D2p × {e}, S must contain an element whose first coordinate is not f . The
second coordinate must be trivial (for otherwise combining it with (f, e) generates a subgroup of
index p). That is, we have (f2, e) ∈ S, with f2 6= f . But then 〈(f2, e), (f, f ′)〉 generates a subgroup
of index p, contradicting the fact that |S| = 4.

Proposition 5.3. If |G| = 4p2, where p is a prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Let S be a minimal generating set of G. Clearly we can assume that p ≥ 3, for otherwise
|G| is a prime power, so Remark 1.3 applies. Let P denote a Sylow p-subgroup of G, and let P2 be
a Sylow 2-subgroup.

Case 1. Assume P 6/ G. Then by Sylow’s theorem (2.33) we have p = 3 and |G : NG(P )| = 4,
so NG(P ) = P . Since P is Abelian we thus have P = Z

(
NG(P )

)
and Burnside’s theorem on

normal p-complements [11, Thm. 7.4.3] implies that P2 / G. Since [G,G] ≤ P2 we can assume
[G,G] = P2

∼= Z2 × Z2 for otherwise Theorem 2.2 applies. The kernel of the action of P on
Z2 × Z2 is thus of order 3 and the only groups to consider are Z9 n (Z2 × Z2) and A4 × Z3, which
are covered in Corollary 2.16 and Lemma 2.31, respectively.

Case 2. Assume P / G. Since P2 is Abelian we have [G,G] ≤ P and we can assume [G,G] = P ∼=
Zp × Zp for otherwise Theorem 2.2 applies.

If P2
∼= Z2 × Z2 then either there is a nonidentity element of P2 acting trivially on P , in which

case G is of dihedral type and Proposition 2.23 applies, or all three nonidentity elements of P2 act
nontrivially on P and G ∼= D2p ×D2p which is covered by Lemma 5.1.

We can thus assume that P2
∼= Z4. Denote a generator of Z4 by f and the generators of Zp×Zp

by x and y. Note that since [G,G] = P , we know f cannot act trivially on any nonidentity element
of P .

Because S generates G/(Zp×Zp), it has to contain an element of the form fxiyj or its inverse.
Conjugating by an appropriate power of x and y, we can thus assume

f ∈ S.

Also, in order to generate P , the set S must have at least one element of the form f ixjyk, with either
j or k nonzero.

Also, since (f2)2 = e, we know that 1 and −1 are the only possible eigenvalues of the lin-
ear transformation defined by f2 on the vector space Zp × Zp. Thus, by choosing x and y to be
eigenvectors of f2, we may assume xf

2 ∈ {x±1} and yf
2 ∈ {y±1}.

Subcase 2.1. Assume f2 acts trivially on Zp × Zp. This means that f acts by an automorphism
of order 2. Since the automorphism does not fix any nontrivial element of Zp ×Zp, this implies that
gf = g−1 for all g ∈ Zp × Zp. Hence G is of quaternion type, so Corollary 2.25 applies.

Subcase 2.2. Assume |S| = 2 (and f2 is nontrivial on Zp × Zp). Write S = { f, fkz}, with
z ∈ 〈x, y〉. We may assume 0 ≤ k ≤ 2. Note that we must have zf /∈ 〈z〉, because S generates G.

Subsubcase 2.2.1. Assume k = 0. Note that, since [z, f ] is not in 〈z〉 or 〈z〉f ,

• every element of Zp × Zp has a unique representation of the form [z, f ]izj with 0 ≤ i, j <
p− 1, and

• every element of f−1〈z〉 has a unique representation of the form [z, f ]iz−1f−1z−j with 0 ≤
i, j < p− 1.
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Therefore the vertices visited by the path (zp−1, f−1, z−(p−1), f)p# are all in different right cosets
of 〈f−2〉, so Lemma 2.6 tells us that(

(zp−1, f−1, z−(p−1), f)p#, f−1
)2

is a hamiltonian cycle in Cay(G;S).

Subsubcase 2.2.2. Assume k = 1. Note that
(
(f3, fz)p−1, f−3

)
is a hamiltonian path in the

subgraph of Cay
(
G; {f, fz}

)
induced by 〈z〉〈f〉. Letting g = z−1(z−1)f

−1

, we have g /∈ 〈z〉, so
the vertices in the path are all in different right cosets of 〈g〉. Therefore, Lemma 2.6 tells us that(

(f3, fz
)p−1

, f−3, (fz)−1
)p

is a hamiltonian cycle in Cay(G;S).

Subsubcase 2.2.3. Assume k = 2.

Subsubsubcase 2.2.3.1. Assume f2 does not invert Zp×Zp. We may assume xf
2

= x−1,
yf

2

= y, and z = xy. Corollary 2.11 applies, because (f2xy)2 = y2 ∈ 〈y〉 / G.

Subsubsubcase 2.2.3.2. Assume f2 inverts Zp × Zp. We claim that((
(f2z, f−1)2, (f2z, f)2

)(p−1)/2
, f2z, f−1, f2z, f

)p
is a hamiltonian cycle.

To see this, we first calculate the product((
(f2z)(f−1)

)2(
(f2z)(f)

)2)(p−1)/2
(f2z)(f−1)(f2z)(f) = z−1.

Now, we calculate the vertices (g0, g1, g2, . . . , g4p−1) visited by the walk((
(f2z, f−1)2, (f2z, f)2

)(p−1)/2
, f2z, f−1, f2z

)
in the quotient graph 〈z〉\Cay(G;S). Letting y = zf , and noting that each vertex of the quotient
has a unique representative in 〈y〉〈f〉, we calculate that if

• 0 ≤ i < (p− 1)/2 and 0 ≤ j < 8, or

• i = (p− 1)/2 and 0 ≤ j < 4,

then

g8i+j = 〈z〉 y2i ·



e if j = 0,

f2 if j = 1,

f if j = 2,

yf3 if j = 3,

yf2 if j = 4,

y if j = 5,

yf if j = 6,

y2f3 if j = 7.
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All of these are distinct, so Lemma 2.6 tells us we have a hamiltonian cycle.

Subcase 2.3. Assume |S| = 3 (and f2 is nontrivial on Zp × Zp).

Subsubcase 2.3.1. Assume xf
2

= x−1 and yf
2

= y. Since f obviously commutes with
f2, it must preserve the eigenspaces of f2. So xf ∈ 〈x〉 and yf ∈ 〈y〉. So xf = xr, where
r2 ≡ −1 (mod p), and yf = y−1. Since |S| = 3, we know that S does not contain any element of
the form f `xiyj with i and j both nonzero, so we can clearly assume that S = {f, f `1x, f `2y}. We
may also assume 0 ≤ `1, `2 ≤ 2 (after replacing generators by their inverses, if necessary).

• If `2 = 0, then Lemma 2.27 applies since 〈y〉 / G.

• If `2 = 1, then Corollary 2.11 applies since fy ≡ f (mod〈y〉) and 〈y〉 / G.

• If `2 = 2, then Corollary 2.11 applies since (f2y)2 = y2 and 〈y2〉 = 〈y〉 / G.

Subsubcase 2.3.2. Assume xf
2

= x−1 and yf
2

= y−1. We may assume S = {f, f `1x, f `2y}.
Since |S| = 3, we must have xf ∈ 〈x〉 and yt ∈ 〈y〉. Therefore xf = xa and yf = yb, where a
and b are square roots of −1 in the field Zp.

If either `1 or `2 is equal to 0, 1, or 3, then we may apply Lemma 2.27 or Corollary 2.11,
because 〈x〉 and 〈y〉 are both normal subgroups of G. We are therefore left with S = {f, f2x, f2y}.
Take s1 = f2x and s2 = f2y. Then s1s2 = x−1y is of order p and since |〈f, f2y〉| = 4p and
s1s2 /∈ 〈f, f2y〉, we see that Lemma 2.18 applies.

6 Groups of order pqr

Proposition 6.1. If |G| = 2pq, where p and q are prime, then every connected Cayley graph on G
has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G.
We may assume p and q are distinct, for otherwise |G| = 2p2, so Corollary 2.24 applies. Thus,

there is no harm in assuming that p < q. We may also assume that p, q ≥ 3, for otherwise |G| is of
the form 4p, so Corollary 2.17 applies.

Let Q be a Sylow q-subgroup of G. Because |G| = 2pq = 2× odd, it is well known that G has
a (unique) normal subgroup of order pq [23, Thm. 4.6]. Since p < q, Sylow’s Theorem (2.33) tells
us that Q is normal in this subgroup. Then, being characteristic, Q is normal in G.

The quotient group G/Q is of order 2p. We may assume it is nonabelian, for otherwise [G,G] =
Q is cyclic of prime order, so Theorem 2.2 applies. Therefore G ∼= D2p n Q. Because AutQ ∼=
(Zq)× is abelian, we know that the commutator subgroup of D2p centralizes Q. Hence G ∼= Z2 n
(Zp × Zq). Then either G ∼= D2pq is dihedral (so Lemma 2.22 applies) or [G,G] has prime order
(so Theorem 2.2 applies).

Proposition 6.2 (D. Li [18]). If |G| = pqr, where p, q, and r are distinct primes, then every con-
nected Cayley graph on G has a hamiltonian cycle.

Proof. The case where |G| = 2pq has been discussed in Proposition 6.1, so let us assume |G| is odd.
Also assume p is the smallest of p, q and r. Because |G| is square-free, it is well known (and

not difficult to prove) that [G,G] must be cyclic of some order dividing |G|/p [13, Cor. 9.4.1]. (In
particular, G is solvable.) We may assume |[G,G]| is not prime, so we conclude that

[G,G] ∼= Zqr.
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Thus, G is a semidirect product: up to isomorphism, we have

G = Zp n (Zq × Zr),

where Zp acts nontrivially on both Zq and Zr.
Now, let S be a minimal generating set of G. Since (Zq × Zr) ∩ Z(G) = ∅, Lemma 2.27 tells

us that we may assume S ∩ (Zq × Zr) = ∅. Thus, every element of S has order p.

Case 1. Assume |S| = 2. We may write S = {s, t}. We have t = xsk for some generator x of
Zq × Zr) and some integer k with 1 ≤ k < p. Then

ts−(k−1)tsp−k−1 = xsxs−1

is a generator of Zq × Zr (because s, being of odd order, cannot invert either Zq or Zr). So Corol-
lary 2.8 tells us that

(t, s−(k−1), t, sp−k−1)qr

is a hamiltonian cycle in Cay(G;S).

Case 2. Assume |S| = 3. We may write S = {s, t, u}. The minimality of S, together with the fact
that S ∩ (Zq × Zr) = ∅, implies t = six and u = sjy, where x and y are generators of Zq and Zr,
respectively, and 1 ≤ i, j < p. Then 〈t, u〉 = G, which contradicts the fact that the generating set S
is minimal.

Corollary 6.3. If |G| = 3pq, where p and q are prime, then every connected Cayley graph on G
has a hamiltonian cycle.

Proof. Note that:

• We may assume p, q ≥ 3, for otherwise |G| is of the form 2pq or 2p2 so Proposition 6.1 or
Corollary 2.24 applies.

• We may assume p 6= q, for otherwise |G| = 3p2, so Proposition 4.1 applies.

• We may assume p, q > 3, for otherwise |G| is of the form p2q with p 6≡ 1 (mod q), so
Corollary 2.3 applies.

Thus, |G| is the product of three distinct primes, so Proposition 6.2 applies.

Corollary 6.4. If |G| = 5pq, where p and q are distinct primes, then every connected Cayley graph
on G has a hamiltonian cycle.

Proof. Note that:

• We may assume p, q ≥ 5, for otherwise |G| is of the form 2pq or 2p2 or 3pq or 3p2, so
Proposition 6.1 or Corollary 2.24 or Corollary 6.3 or Proposition 4.1 applies.

• Then we may assume p, q 6= 5, for otherwise |G| is of the form p3 or p2q with p2 6≡ 1 (mod q),
so Remark 1.3 or Corollary 2.3 applies.

Thus, |G| is the product of three distinct primes, so Proposition 6.2 applies.
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7 Groups of order 4pq

We start by considering a special case.

Proposition 7.1. If G = P2 n Zpq is a semidirect product of a group P2 of order 4 and a cyclic
group Zpq of order pq, where p and q are distinct odd primes, then every connected Cayley graph
on G has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G. We may assume [G,G] = Zpq (otherwise Theo-
rem 2.2 applies).

Case 1. Assume P2
∼= Z4, so G ∼= Z4 n Zpq . We can view G as Z4 n (Zp × Zq). Let f be a

generator of Z4 and let x and y be generators of Zp and Zq , respectively. There exists r ∈ Z, such
that xf = xr and yf = yr. We have r4 ≡ 1 (mod pq), because |f | = 4.

Note that in view of Lemma 2.27 and the fact that Z(G)∩ (Zp×Zq) = {e}, we can assume that
no element of the form xjyk is in S.

Since S clearly contains at least one element of the form f ixjyk, where i ∈ {1, 3}, we can
assume f ∈ S.

Subcase 1.1. Assume the action of Z4 on Zpq is not faithful. Then r2 ≡ 1 (mod pq). Since
[G,G] = Zpq , this implies r ≡ −1 (mod pq) and thus f inverts every element of Zp ×Zq . But then
G ∼= Q4pq is of quaternion type, so Corollary 2.25 applies.

Subcase 1.2. Assume the action of Z4 on Zpq is faithful. This means r2 6≡ 1 (mod pq), so we
may assume r2 6≡ 1 (mod p) (by interchanging p and q if necessary). Therefore r2 ≡ −1 (mod p).

Subsubcase 1.2.1. Assume S contains an element s of the form fxjyk or f2xjyk, where
both j and k are nonzero. Now if s = fxjyk, then clearly f3s = xjyk is of order pq and thus
Corollary 2.8 tells us that

(
f3, s

)pq
is a hamiltonian cycle in Cay(G;S). On the other hand, if

s = f2xjyk, then
f−1s−1fs = f−1(xjyk)−1f(xjyk) = [f, xjyk]

generates [G,G] = Zpq . Thus, it is easy to see from Corollary 2.8 that (f, s, f−1, s−1)pq is a
hamiltonian cycle in Cay(G;S).

Subsubcase 1.2.2. Assume all elements of S − {f} are of the form f ixjyk where i ∈ {1, 2}
and precisely one of j, k is nonzero. Clearly, S = {f, f ix, f jy} (perhaps after replacing x and y
by their powers). Since (fx)−1fy = x−1y, we see that 〈fx, fy〉 = G. Similarly, [fx, f2y] =
x−2[f, y] generates [G,G], and thus 〈fx, f2y〉 = G. Since S is minimal, there are thus only two
possibilities for S. First if s1 = f2x, s2 = fy ∈ S, then s1f−1s1s2 = xr−1y is of order pq and thus
Corollary 2.8 tells us (s1, f

−1, s1, s2)pq is a hamiltonian cycle in Cay(G;S). Finally, if s1 = f2x
and s2 = f2y, then fs1f−1s2 = xry is of order pq, so Corollary 2.8 tells us (f, s1, f

−1, s2)pq is a
hamiltonian cycle in Cay(G;S).

Case 2. Assume P2
∼= Z2 × Z2, so G ∼= (Z2 × Z2) n Zpq .

Subcase 2.1. Assume some involution in Z2 × Z2 centralizes Zpq . (That is, Z2 × Z2 is not
faithful on Zpq .) Then G ∼= Z2 n Z2pq

∼= D4pq is dihedral, so Lemma 2.22 applies.

Subcase 2.2. Assume no involution in Z2 × Z2 centralizes Zpq . (That is, Z2 × Z2 is faithful on
Zpq .) Then G ∼= D2p ×D2q .

If S contains an element s of Zpq , then 〈s〉 / G. Also, since [G,G] = Zp × Zq , we see that
Z(G) ∩ (Zp × Zq) = {e}. Thus Lemma 2.27 applies.
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Henceforth, we assume S ∩ Zpq = ∅. Also, we consider G to be D2p ×D2q .
Let us consider the possibility that fx′ ∈ S, where f is a reflection in D2p, and x′ is a nontrivial

rotation in D2q (so x′ generates Zq). We may assume that S − {fx′} generates G/Zq (otherwise,
Corollary 2.11 applies with N = Zq). Furthermore, it is easy to see that the only proper subgroups
of G that properly contain fx′ are D2p × Zq and 〈f〉 ×D2q . It is therefore not difficult to see that
(up to isomorphism) the only possible Cayley graph is:

Cay
(
D2p ×D2q; {fx′, ff ′, fx}

)
where f, x ∈ D2p and f ′, x′ ∈ D2q.

Note that (fx, fx′) is obviously a hamiltonian cycle in

Cay

(
〈f, x, x′〉
〈x, x′〉

; {fx, fx′}
)
∼= Cay

(
〈f〉; {f}

)
,

so, since (fx)(fx′) = x−1x′ generates 〈x, x′〉, Corollary 2.8 implies that(
(fx, fx′)pq#

)
is a hamiltonian path in Cay

(
〈f, x, x′〉; {fx, fx′}

)
. Therefore, all of the vertices of this path are in

different right cosets of 〈f ′x′〉. So Lemma 2.6 tells us that(
(fx, fx′)pq#, ff ′

)2
is a hamiltonian cycle in Cay(G;S).

We may now assume there is no double edge in Cay(G/Zp;S) or Cay(G/Zq;S). (That is, if
s ∈ S, and s represents an element of order 2 in G/Zp or G/Zq , then s has order 2 in G.) This
implies that S consists entirely of elements of order 2.

If S has four (or more) elements, it is clear from the minimality of S that S has the form S =
{f, fx, f ′, f ′x′} (with 〈f, x〉 = D2p × {e} and 〈f ′, x′〉 = {e} ×D2q . This means that Cay(G;S)
is isomorphic to the Cartesian product C2p × C2q of two cycles, which obviously has a hamiltonian
cycle [4, Cor. on p. 29].

We now assume that S = {s, t, u} consists of precisely three elements of order 2.

Subsubcase 2.2.1. Assume S ∩D2p = ∅ and S ∩D2q = ∅. Then s ≡ t ≡ u (modZpq).
This is impossible, because G/Zpq ∼= Z2 × Z2 is not cyclic.

Subsubcase 2.2.2. Assume s ∈ S ∩D2p and t ∈ S ∩D2q . Then s ∈ Z(G/Zp) andG/Zp ∼=
D4q . Since {t, u} generatesG/Zp, and Cay

(
G/Zp; {t, u}

)
is a 4q-cycle, we see that Cay(G/Zp;S)

is isomorphic to Cay
(
Z4q; {1, 2q}

)
. So Theorem 2.13 implies that some hamiltonian cycle in

Cay(G/Zp;S) lifts to a hamiltonian cycle in Cay(G;S).

Subsubcase 2.2.3. Assume s ∈ S ∩D2p and S ∩D2q = ∅. Each element ofG = D2p×D2q

is an ordered pair. Also, since {t, u} generates G/D2p, we know that neither t nor u belongs to D2p

(and, by assumption, they do not belong to D2q), so t ≡ u (modZpq). Therefore, we may write

t = (f, f ′), s = (fx, e), u = (fxk, f ′x′),

where f and f ′ are reflections, x and x′ are nontrivial rotations, and k ∈ Z.

Subsubsubcase 2.2.3.1. Assume k 6≡ 2 (mod p). Since (s, t, s, u) is a hamiltonian cycle
in Cay

(
G/(Zp × Zq);S

)
, and

stsu = (fx · f · fx · fxk, e · f ′ · e · f ′x′) =
(
xk−2, x′

)
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generates Zp×Zq (because k 6≡ 2 (mod p)), Corollary 2.8 implies that (s, t, s, u)pq is a hamiltonian
cycle in Cay(G;S).

Subsubsubcase 2.2.3.2. Assume k ≡ 2 (mod p). We claim that Cay(G;S) is a general-
ized Petersen graph. To see this, begin by letting

x2i = (ut)i and x2i+1 = (ut)iu for 0 ≤ i < pq

and
yj = sxj for 0 ≤ j < 2pq.

Then every vertex of Cay
(
G; {t, u}

)
is in the union of the two disjoint 2pq-cycles

(x0, x1, x2, . . . , x2pq−1, x2pq) and (y0, y1, y2, . . . , y2pq−1, y2pq).

Now, write (x2, e) = (ut)r with 1 ≤ r < pq. Then

sts = (fx2, f ′) = t(ut)r and sus = (fx2−k, f ′x′) = (f, f ′x′) = (ut)ru

so, by induction on i, we see that

xis = s x(2r+1)i = y(2r+1)i,

which means there is an s-edge from xi to y(2r+1)i. Therefore, Cay
(
G; {s, t, u}

)
is a generalized

Petersen graph, as claimed.
Now, if we let n = 2pq, then:

• The number of vertices of Cay(G;S) is 2n.

• Since pq is odd, we know that n = 2pq 6≡ 0 (mod 4).

• Since 2pq is even, we know n = 2pq 6≡ 5 (mod 6).

Therefore Theorem 2.29 tells us that Cay(G;S) has a hamiltonian cycle.

Proposition 7.2. If |G| = 4pq, where p and q are prime, then every connected Cayley graph on G
has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G. We may assume p and q are distinct (for otherwise
|G| = 4p2, so Proposition 5.3 applies). Furthermore, we may assume p, q ≥ 3, for otherwise |G|
is of the form 8p, so Proposition 3.2 applies. We also assume G 6∼= A5 (since Cayley graphs on
that group are covered in Lemma 2.32). It then follows easily from Burnside’s Theorem on normal
p-complements that G is solvable.

Let P2 be a Sylow 2-subgroup of G. Because G is solvable, Proposition 2.37 tells us there are
Hall subgroups Hpq and H4q of order pq and 4q, respectively.

There is no harm in assuming that p > q (so p ≥ 5). This implies the Sylow p-subgroup Zp is
normal in Hpq . So

|G : NG(Zp)| ≤ |G : Hpq| = 4 < p+ 1.

Therefore Zp / G. So G = H4q n Zp.

Case 1. Assume H4q has a normal Sylow q-subgroup. We may assume H4q is not abelian (oth-
erwise Theorem 2.2 applies). This implies the commutator subgroup of H4q must be a Sylow q-
subgroup Zq . Because Aut(Zp) is abelian, this implies that Zq centralizes Zp. So G = P2 n (Zp ×
Zq) ∼= P2 n Zpq . Therefore Proposition 7.1 applies.

Case 2. Assume the Sylow q-subgroups of H4q are not normal. Since H4q is of order 4q, Sylow’s
Theorem (2.33) tells us there is a divisor of 4 that is congruent to 1 modulo q. Clearly, we must have
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q = 3. Thus, H4q is a group of order 4 · 3 = 12, in which the Sylow 3-subgroups are not normal.
The only such group is A4. So G ∼= A4 n Zp.

We have G ∼= Z3 n
(
(Z2×Z2)×Zp

)
. We may assume S ∩Zp = ∅, for otherwise Lemma 2.27

applies.
We let f be a generator of Z3, x and y be generators of Z2×Z2 and z be a generator of Zp where

xf = xy, yf = x and zf = zr for some r ∈ Z such that r3 ≡ 1 (mod p).

Subcase 2.1. Assume Z3 acts nontrivially on Zp. Since S must contain an element of G −
〈x, y, z〉, and all of these elements have order 3, we can assume f ∈ S.

Subsubcase 2.1.1. Assume |S| = 2. Let S = {f, s}.

Subsubsubcase 2.1.1.1. Assume s ∈ (Z2 × Z2)× Zp. The generator s gives a double
edge in G/Zp (and {f, s} is a minimal generating set of G/Zp), so Corollary 2.11 applies.

Subsubsubcase 2.1.1.2. Assume s ∈ f
(
(Z2 × Z2)× Zp

)
. Write s = fxiyjzk. Since S

generates G, we cannot have i = j = 0 or k = 0, so we can assume s = fxz.
We show that f and s satisfy the conditions of Lemma 2.14. We have

[f, s] = f−1(fxz)−1f(fxz) = f−1z−1x−1f−1f2xz = yz1−r.

Since f acts nontrivially on Zp, we know r 6≡ 1 (mod p), so |[f, s]| = 2p. Also, we have

s = fxz /∈ 〈f〉〈[f, s]〉.

The other two conditions are clearly satisfied.

Subsubcase 2.1.2. Assume |S| = 3. We may assume S = {f, f ix, f jz}, and i, j ∈ {0, 1}.
Since S ∩ Zp = ∅, we have j = 1, for otherwise Lemma 2.27 applies. But then {f, fz} gives a
double edge in Cay(G/Zp;S) (and S−{fz} is a minimal generating set ofG/Zp), so Corollary 2.11
applies.

Subcase 2.2. Assume Z3 centralizes Zp. This means r = 1, and we have G ∼= A4 × Zp.
Recalling that S ∩ Zp = ∅, we know that no element of S has order p.

Let s be an element of S whose order is divisible by p. Note that 〈s〉 contains a nontrivial
subgroup of G/Zp ∼= Z3 n (Z2 × Z2). Either this subgroup is maximal (of order 3) or we have
〈s, t〉 = G for any t ∈ S with 3 | |t|. Therefore |S| = 2, so we may write S = {s, t}.

We may assume s /∈ (Z2×Z2)×Zp, for otherwise {s, s−1} gives a double edge in Cay(G/Zp;S),
so Corollary 2.11 applies. Therefore, we may assume s = fz.

We show that fz and t satisfy the conditions of Lemma 2.14. Since 〈fz, t〉 = G, we may assume
t = f `xzk for some `, k ∈ Z. Then

[fz, t] = [fz, f `xzk] = y.

Since all nonidentity elements of 〈fz〉 are in 〈f〉〈z〉, we see that t /∈ 〈fz〉〈[s, t]〉, and the remaining
conditions are also clearly satisfied.

8 Groups of order 2p3
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Proposition 8.1. If |G| = 2p3, where p is prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Let S be a minimal generating set of G.
We may assume p ≥ 3. (Otherwise, |G| = 24 is a prime power, so Remark 1.3 applies.) Let P

be a Sylow p-subgroup of G, so G = Z2 n P , and let f be a generator of Z2.
We may assume S 6⊂ fP (for otherwise Corollary 2.4 applies). Thus, there exists s ∈ S ∩ P .

Case 1. Assume 〈s〉 / G. Note that if |s| = p, then Lemma 2.27 applies. Also, if |s| = p3, then
〈s〉 = P ⊃ [G,G], so [G,G] is cyclic of p-power order, so Theorem 2.2 applies. Thus, we may
assume |s| = p2.

Also, we may assume 〈s〉 ∩ Z(G) is nontrivial (else Lemma 2.27 applies), so it is clear that f
does not invert 〈s〉. Since |f | = 2, we conclude that f centralizes s. Since we may assume that
|[G,G]| 6= p (else Theorem 2.2 applies), this implies that we may assume P is nonabelian.

Now, for any x ∈ P , we have 〈[x, s]〉 ⊂ 〈s〉 (because 〈s〉 / G), so f centralizes [s, x]. Therefore

[xf , s] = [xf , sf ] = [x, s]f = [x, s],

so f centralizes x, modulo CP (s) = 〈s〉. Thus, f centralizes both P/〈s〉 and 〈s〉. Since |f | = 2
is relatively prime to |P |, this implies that f centralizes P (see [11, Thm. 5.3.2]). Therefore G =
Z2 × P , so [G,G] = [P, P ] is cyclic of order p, so Theorem 2.2 applies.

Case 2. Assume 〈s〉 6/ G. There is an element a of S with |a| even.

Subcase 2.1. Assume G = Z2 × P . Then [G,G] is cyclic of order 1 or p, so Theorem 2.2
applies.

Subcase 2.2. Assume P is abelian (but G is nonabelian). We may assume G is not of dihedral
type (else Proposition 2.23 applies). So |[G,G]| ≤ p2. We may also assume [G,G] is not cyclic (for
otherwise Theorem 2.2 applies). Therefore P = (Zp)3, and

G =
(
Z2 n (Zp × Zp)

)
× Zp =

〈
f, x, y, z

∣∣∣∣∣ f2 = xp = yp = zp = e,
xf = x−1, yf = y−1, zf = z,

〈x, y, z〉 is abelian

〉

is the direct product of a group of dihedral type with a cyclic group of order p. Also note that,
because a2 is in the elementary abelian group P , we have |a2| ∈ {1, p}.

Since any two elements of order 2 always generate a dihedral group, it is easy to see thatG/Z(G)
has no 2-element generating set. Therefore |S| ≥ 3.

Subsubcase 2.2.1. Assume a2 6= e. We know a2 is in Z(G) (because it is centralized by
both a and the abelian group P ), so we conclude that 〈a2〉 = Z(G) is normal in G. Also, since 〈a〉
has index p2 in G, we know that |S| ≤ 3. Then, since G/Z(G) has no 2-element generating set, we
conclude that S is a minimal generating set of G/〈a2〉. Thus, Corollary 2.11 (with N = 〈a2〉 and
s = a = t−1) provides a hamiltonian cycle in Cay(G;S).

Subsubcase 2.2.2. Assume a2 = e. We may assume f ∈ S. Since 〈s〉 6/ G, we must have
|〈f, s〉| > 2p. Therefore, the minimality of S implies |S| ≤ 3. Since we already have the opposite
inequality, we conclude that |S| = 3; write S = {f, s, t}.
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• Suppose t /∈ P . Then we may assume t2 = e (otherwise Subsubcase 2.2.1 applies), so ft is
inverted by f , so it generates a normal subgroup ofG. Since f ≡ t (mod〈ft〉), the multigraph
Cay

(
G/〈ft〉;S

)
has double edges, and it is clear that all of its hamiltonian cycles use at least

one of these double edges (since 〈ft, s〉 6= G). Therefore Corollary 2.9 applies.

• Suppose t ∈ P (and 〈t〉 6/ G, so Case 1 does not apply). We may assume s = xz and t = yzk

for some k 6≡ 0 (mod p) (because 〈s〉 and 〈t〉 are not normal). We have (t−1f)2 = z−2k ∈
Z(G). Since 〈s, t〉 ∩Z(G) = {e}, it is therefore clear that 〈s, t〉 ∩ 〈t−1f〉 = {e}, so all of the
elements of 〈s, t〉 are in different right cosets of 〈t−1f〉. Since (sp−1, t)p# is a hamiltonian
path in Cay

(
〈s, t〉; {s, t}

)
, this implies that all of the vertices in this path are in different right

cosets of 〈t−1f〉.

Then, since |t−1f | = 2p = |G|/|〈s, t〉|, Lemma 2.6 tells us that
(
(sp−1, t)p#, f

)2p
is a

hamiltonian cycle in Cay(G;S).

Subcase 2.3. Assume P is nonabelian of exponent p2. We have

P =
〈
x, y | xp

2

= yp = e, [x, y] = xp is central
〉
.

Since 〈[P, P ], y〉 is the unique elementary abelian subgroup of order p2 in G, it must be normalized
by f . Thus, 〈y〉 must be in an eigenspace of the action of f on P/[P, P ], so we may assume
yf ∈ {y±1}. Also, by choosing 〈x〉 to also be in an eigenspace, we may assume xf ∈ 〈x〉.

Since Aut
(
〈x〉
)

is abelian, and y acts nontrivially on 〈x〉, we know that y is not in the commu-
tator subgroup of 〈f, y〉. So f cannot invert y. Therefore f centralizes y. Thus, [G,G] ⊂ 〈x〉, so
[G,G] is cyclic of prime-power order, so Theorem 2.2 applies.

Subcase 2.4. Assume P is nonabelian of exponent p. We have

P =
〈
x, y, z | xp = yp = zp = e, z = [x, y] is central

〉
.

We may assume S ∩ 〈z〉 = ∅, for otherwise Lemma 2.27 applies.

Subsubcase 2.4.1. Assume |S| = 2. We have S = {a, s}.

Subsubsubcase 2.4.1.1. Assume a2 6= e. We may assume a2 /∈ [P, P ] (otherwise
Corollary 2.11 applies), so there is no harm in assuming a2 = y2 (and a obviously centralizes
〈a2〉 = 〈y〉).

Note that, since a ∈ fP , the elements a and f have the same action on P/[P, P ], and they have
the same action on Z(P ).

Since f acts as an automorphism of order 2 on P/[P, P ], and does not centralize P , it must
act nontrivially on P/[P, P ], so −1 must be an eigenvalue of this action. Thus, we may assume
xf ∈ x−1[P, P ]. Then, since [x−1, y] = [x, y]−1 (because [x, y] ∈ Z(P )), we have

zf = [x, y]f = [xf , yf ] = [x−1, y] = [x, y]−1 = z−1, (8.2)

so f inverts 〈z〉. Since xf ∈ x−1〈z〉 (and 〈x, z〉 is abelian), this implies that

f inverts 〈x, z〉.

(So xf = x−1, yf = y, and zf = z−1.) Therefore, replacing a by an appropriate conjugate, we may
assume a = fy.
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• If sa ∈ s−1[P, P ], then we may assume s = x. Also, since [x, y] = z ∈ Z(P ), we see that

xxa = xxfy = x(x−1)y = [x−1, y] = [x, y]−1 = z−1

generates 〈z〉. Hence, the path (
x−(p−1), a−1, x−(p−1), a

)p
#

visits all of the elements of 〈x, z〉∪a−1〈x, z〉, so all of the vertices in this path are in different
right cosets of 〈y〉. Then, since a−2 = y−1 generates 〈y〉, Lemma 2.6 tells us that((

x−(p−1), a−1, x−(p−1), a
)p

#, a−1
)p

is a hamiltonian cycle in Cay(G;S).

• If sa /∈ s−1[P, P ], then we may write s = xy` with ` 6≡ 0 (mod p), and we may assume
` 6≡ 1 (mod p), by replacing a and y with their inverses if necessary.

Since s ≡ x (mod〈y, z〉), and a inverts x (mod〈y, z〉), it is clear that (sp−1, a)2 is a hamil-
tonian cycle in Cay

(
G/〈y, z〉;S

)
. Then, since the product (sp−1a)2 = y2−2`z`−1 gener-

ates 〈y, z〉/〈y〉, Lemma 2.12 tells us that (sp−1, a)2p is a hamiltonian cycle in the quotient
〈y〉\Cay(G;S). But

a−1 = a−2a = y−2a ∈ 〈y〉a,

so the final edge of this hamiltonian cycle is a multiple edge in the quotient. Thus, Corol-
lary 2.9 provides a hamiltonian cycle in Cay(G;S).

Subsubsubcase 2.4.1.2. Assume a2 = e. We may assume a = f . Since 〈s, sf , [P, P ]〉 /
G, we have

G = 〈f, s〉 = 〈f〉〈s, sf , [P, P ]〉,

so {s, sf} must generate P/[P, P ]. So sf /∈ 〈s〉[P, P ], which implies that the action of f on
P/[P, P ] has two distinct eigenvalues (both 1 and−1), and that s is not in either of these eigenspaces.
Thus, we may assume s = xy with xf = x−1 and yf = y. Note that, from the calculation of (8.2),
we also know zf = z−1.

We claim that (
(sp−1, f)2p−2, (s−(p−1), f)2

)p
is a hamiltonian cycle in Cay(G;S). This walk is obviously of the correct length, and is closed
(because P has exponent p), so we need only show that it visits all of the elements of G.

We have

(sp−1f)2p−2(s−(p−1)f)2 = (s−1f)−2(sf)2 = y4,

(sp−1f)2 = (s−1f)2 = y−2z,

s = xy,

so the walk visits all vertices of the form (y4)i(y−2z)j(xy)k. That is, it visits all of the vertices in P .
Also, note that the first vertex of fP visited is sp−1f , and we have

(sp−1f)2p−3(s−(p−1)f)2(sp−1f) = (s−1f)−3(sf)2(s−1f) = y4z−4,
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so the walk visits all vertices of the form

(sp−1f) · (y4z−4)i(y−2z)j(xy)k (8.3)

with 0 ≤ j ≤ p− 2. In addition, since

(sp−1f)2p−3(s−(p−10f) = (s−1f)−3(sf)

= y4x−2z−4

= (y4z−4)(y−2z)−1(xy)−2

∈ 〈y4z−4〉(y−2z)p−1〈xy〉,

it also visits the vertices of the form (8.3) with j = p− 1. Thus, the walk visits all of the vertices in
fP .

So the walk visits all of the vertices in P ∪ fP = G, as claimed.

Subsubcase 2.4.2. Assume |S| = 3. Because S is minimal, we must have a2 ∈ [P, P ], so
〈a2〉 / G. So we may assume a2 = e (otherwise Corollary 2.11 applies). Thus, we may assume
a = f . We may also assume s = x, so we write S = {f, x, t}.

Subsubsubcase 2.4.2.1. Assume t ∈ P . We may assume S = {f, x, y}.

• Suppose xf ∈ {x±1}. From Remark 1.3, we know there is a hamiltonian cycle (si)
p3

i=1 in
Cay

(
P ; {x, y}

)
. We may assume sp3 = x−1. There is also a hamiltonian cycle (ti)

p3

i=1 in
Cay

(
P ; {x, y}

)
, such that tp3 = xf . Then(

(si)
p3

i=1#, f, (ti)
p3

i=1#, f
)

is a hamiltonian cycle in Cay(G;S), because it traverses all the vertices in P , then all of the
vertices in fP , and the final vertex is

(s1s2 · · · sp3)(s−1p3 f)(t1t2 · · · tp3)(t−1p3 f) = (e)(x−1f)(e)(xff) = e.

• Suppose xf /∈ {x±1} and yf /∈ {y±1}. Because S is minimal, we know that xf ∈ 〈x, [P, P ]〉
and yf ∈ 〈y, [P, P ]〉. Since 1 cannot be the only eigenvalue of f on P/[P, P ], this means we
may assume xf ∈ x−1[P, P ] (by interchanging x and y if necessary).

We claim that f inverts P/[P, P ]. If not, then f centralizes y (mod[P, P ]), so, from the
calculation of (8.2), we see that f inverts [P, P ]. This implies that f does not centralize any
element of 〈x, z〉, so it must invert all of these elements. This contradicts the assumption that
xf /∈ {x±1}.
The above claim implies that 〈yx−1, z〉 / G, and that (xp−1, f)2 is a hamiltonian cycle in
Cay

(
G/〈yx−1, z〉; {f, x}

)
. Also note that (xp−1f)2 ∈ [P, P ], and we have

xyxp−3fxp−1f =
(
xyx−2

)
(xp−1f)2 =

(
(yx−1)[yx−1, x−1]

)
(xp−1f)2.

Thus, either xyxp−3fxp−1f or (xp−1f)2 generates 〈yx−1, [P, P ]〉/〈yx−1〉, depending on
whether (xp−1f)2 is trivial or not. Hence, Lemma 2.12 tells us that either(

x, y, xp−3, f, xp−1, f
)p

or (xp−1, f)2p
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is a hamiltonian cycle in 〈yx−1〉\Cay(G;S). Then, since y ∈ 〈yx−1〉x, the first edge of the
hamiltonian cycle is doubled in the quotient multigraph, so Corollary 2.9 provides a hamilto-
nian cycle in Cay(G;S).

Subsubsubcase 2.4.2.2. Assume t /∈ P . This is very similar to the preceding argument.
Write t = fy, so S = {f, fy, x}.

From the argument at the start of Subsubcase 2.4.2, we see that we may assume (fy)2 = e.
Therefore f inverts y, so 〈y, [P, P ]〉 / G.

Also, since the minimality of S tells us 〈f, x〉 6= G, we know xf ∈ 〈x, [P, P ]〉, so there exists ε ∈
{±1} such that xf ∈ xε[P, P ]. Then it is easy to see that (f, x−(p−1), f, xε(p−1)) is a hamiltonian
cycle in Cay

(
G/〈y, z〉; {f, x}

)
. For

z1 = (f)(x−(p−1))(f)(xε(p−1)) = fxfx−ε ∈ [P, P ],

we have

f(x−(p−1))(fy)(xε(p−1)) = fx(fy)x−ε = fxfx−εy[y, x−ε] = z1y[y, x−ε].

Thus, either (f)(x−(p−1))(fy)(xε(p−1)) or (f)(x−(p−1))(f)(xε(p−1)) generates 〈y, [P, P ]〉/〈y〉, de-
pending on whether z1 is trivial or not. Hence, either(

f, x−(p−1), fy, xε(p−1)
)p

or
(
f, x−(p−1), f, xε(p−1)

)p
is a hamiltonian cycle in 〈y〉\Cay

(
G; {f, fy, x}

)
. Then, since fy ∈ 〈y〉f (recall that f inverts y),

the first edge of the hamiltonian cycle is doubled in the quotient multigraph, so Corollary 2.9 pro-
vides a hamiltonian cycle in Cay(G;S).

9 Groups of order 18p

Proposition 9.1. If |G| = 18p, where p is prime, then every connected Cayley graph on G has a
hamiltonian cycle.

Proof. Let S be a minimal generating set of G. We may assume p ≥ 5. (Otherwise either |G| =
36 = 4 · 32, so Proposition 5.3 applies, or |G| = 54 = 2 · 33, so Proposition 8.1 applies.)

Note that G is solvable (for example, this follows from the fact that |G| = 2 × odd, but can be
proved quite easily), so Proposition 2.37 tells us G has a Hall subgroup H18 of order 18, and also
has a Hall subgroup H9p of order 9p. Now H9p, being of index two, is normal in G. Also, from
Sylow’s Theorem (2.33), we see that the Sylow p-subgroup Zp is normal (hence, characteristic) in
H9p. So Zp is normal in G. Therefore G = H18 n Zp.

We may assume H18 is nonabelian (otherwise Theorem 2.2 applies), so H18 is either D18, Z2 n
(Z3 × Z3) (dihedral type), or D6 × Z3.

Case 1. Assume H18
∼= D18. Then either [G,G] = Z9 (so Theorem 2.2 applies) or G ∼= D18p (so

Lemma 2.22 applies).

Case 2. Assume H18 = Z2 n (Z3 × Z3) is of dihedral type. We may assume G is not of dihedral
type (otherwise Proposition 2.23 applies), so G = H18 × Zp. Let s be an element of S whose order
is divisible by p.

Subcase 2.1. Assume |s| = p. Then s ∈ Zp = Z(G), so Lemma 2.27 applies.

Subcase 2.2. Assume |s| = 2p. Since |G| is the product of only four primes, and |s| is divisible
by two of them, it is clear that |S| ≤ 3. On the other hand, it is clear that G/Zp ∼= H18 has
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no 2-element generating set (because two elements of order 2 always generate a dihedral group).
Therefore S is a minimal generating set of G/Zp. Then, since s and s−1 give a double edge in
Cay(G/Zp;S), Corollary 2.11 applies.

Subcase 2.3. Assume |s| = 3p. Let f be a generator of Z2, x and y be generators of Z3×Z3 and
z be a generator of Zp. We may assume S does not contain any elements of order p or 2p (otherwise,
a preceding case applies). We may also assume S does not contain any elements of order 3 (else
Lemma 2.27 applies with N = Zp). Thus, each element of S has order 2 or 3p, so there are only
two cases to consider:

Subsubcase 2.3.1. Assume S = {f, fx, yz}. Since e, yz and (yz)2 are in different right
cosets of 〈(yz)2f〉 = 〈fy, z〉, Lemma 2.6 tells us that(

(yz)2, f
)2p

#

is a hamiltonian path in the subgraph induced by 〈fy, z〉. Therefore, all of the vertices of this path
are in different right cosets of 〈x〉. So Lemma 2.6 tells us that((

(yz)2, f
)2p

#, fx
)3

is a hamiltonian cycle in Cay(G;S).

Subsubcase 2.3.2. Assume S =
{
f, yz, xzk

}
, with k 6≡ 0 (mod p). We may assume

k 6≡ 3 (mod p) (by replacing xzk with its inverse, if necessary). Since G/〈xy−1, z〉 ∼= D6, it is easy
to see that (

xzk, yz, f, (yz)2, f
)

is a hamiltonian cycle in Cay
(
G/〈xy−1, z〉;S

)
. Then, since

(xzk)(yz)(f)(yz)2(f) = xy−1zk+3

generates 〈xy−1, z〉, Corollary 2.8 tells us that(
xzk, yz, f, (yz)2, f

)3p
is a hamiltonian cycle in Cay(G;S).

Case 3. Assume H18 = D6 × Z3. We let f and x generate D6, where f2 = x3 = e and xf = x−1.
We let y generate Z3 and we let z generate Zp. Note that yf = yx = y, and that zx = z (since
x is in the commutator subgroup of H). We may assume H18 does not centralize Zp (otherwise
Theorem 2.2 applies). This implies that CG(Zp)/[G,G] is a proper subgroup of G/[G,G] ∼= Z2 ×
Z3, so there are three possibilities for G:

• G = D6p × Z3, or

• G = D6 × (Z3 n Zp), or

• G = (D6 × Z3) n Zp), where D6 and Z3 both act nontrivially on Zp.

In each case, since Z(G) ∩ 〈x, z〉 = {e}, we may assume

S ∩ 〈x, z〉 = ∅
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(else Lemma 2.27 applies).

Subcase 3.1. Assume G = D6p × Z3. This implies zf = z−1 and zy = z. There exists an
element of the form fxiyjzk in S.

Subsubcase 3.1.1. Assume there exists an element of the form fxiyzk in S. Conjugating
by powers of x and z, we can assume fy ∈ S. Now (fy)2 = y2 and thus, since 〈y〉 / G, either
Corollary 2.11 applies or S − {fy} generates G/〈y〉. Assume the latter. This clearly implies that
another element of the form fxiyjzk is in S and that |S| ≥ 3. Since the index of 〈fy〉 is 3p,
which has only two prime factors, we conclude that |S| = 3. Thus, the minimality of S implies that
precisely one of i and k must be zero.

Since the minimality of S implies no element of the form xyj
′
z is in S, and since neither

{fxyj′ , yj′′z} nor {fyj′z, xyj′′} generates G/〈y〉, it follows that S = {fy, fxyj , fyj′z}. But
since S is minimal, we must have j = j′ = 0. Thus S = {fy, fx, fz}. Now

• (fz, fx)3p# is a hamiltonian path in Cay
(
〈f, x, z〉; {fz, fx}

)
, so all the vertices in this path

are obviously in different right cosets of 〈x−1y〉, and

•
(
(fz)(fx)

)3p
(fx)−1(fy) = x−1y obviously generates 〈x−1y〉,

so Lemma 2.6 implies that (
(fz, fx)3p#, fy

)3
is a hamiltonian cycle in Cay(G;S).

Subsubcase 3.1.2. Assume that S does not contain any element of the form fxiyjzk with
j 6≡ 0 (mod 3). Then we can assume f ∈ S. There must be an element of the form xiyzk in S.
Note that we can assume that at least one of i and k is nonzero for otherwise Lemma 2.27 applies.

Subsubsubcase 3.1.2.1. Assume i and k are both nonzero. Then we can assume S =
{f, xyz}. Since (xyz)3p−1 is a hamiltonian path in Cay

(
〈xy, z〉; {xyz}

)
, it is clear that all of the

vertices in this path are in different right cosets of 〈fxz, y〉 = 〈(xyz)3p−1f〉. So Corollary 2.8 tells
us that

(
(xyz)3p−1, f

)6
is a hamiltonian cycle in Cay(G;S).

Subsubsubcase 3.1.2.2. Assume i 6= 0 and k = 0. We can assume xy ∈ S. Then, since
S ∩ 〈x, z〉 = ∅, the only candidates for the third element of S are yz and fxiz.

• Suppose yz ∈ S. Note that every element of the abelian group 〈x, y, z〉 can be written uniquely
in the form (yz)i(xy)−j , where 0 ≤ i < 3p and 0 ≤ j < 3, so it is easy to see that(

(yz)3p−1, (xy)−1, (yz)−(3p−1), (xy)−1, (yz)3p−1
)

is a hamiltonian path in Cay
(
〈x, y, z〉; {xy, yz}

)
. Thus, letting

g = (yz)3p−1(xy)−1(yz)−(3p−1)(xy)−1(yz)3p−1f = xz−1f,

it is clear that all of the vertices of this path are in different right cosets of 〈g〉 (since |g| = 2).
Therefore Lemma 2.6 tells us that(

(yz)3p−1, (xy)−1, (yz)−(3p−1), (xy)−1, (yz)3p−1, f
)2

is a hamiltonian cycle in Cay(G;S).
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• Suppose fxiz ∈ S. We may assume i 6≡ 0 (mod 3), for otherwise f ≡ fxiz (mod〈z〉), so
Corollary 2.11 applies with N = 〈z〉. Then we may assume i = 1 (by replacing x and xy by
their inverses, if necessary). So S = {f, fxz, xy}. Now, (xy)2f(xy)−2fxz = x2z, which
generates the normal cyclic subgroup 〈x, z〉 = 〈xz〉. Then, since

1, xy, x2y2, fxy2, fy, fx2

lie in different cosets of the subgroup 〈xz〉, Corollary 2.8 implies that ((xy)2, f, (xy)−2, fxz)3p

is a hamiltonian cycle in Cay(G;S).

Subsubsubcase 3.1.2.3. Assume i = 0 and k 6= 0. This means yz ∈ S. We may assume
the third element of S does not belong to 〈x, y, z〉 (otherwise a previous subsubsubcase applies,
since S ∩ 〈x, z〉 = ∅). Then the third element of S must be of the form fxzk. It is easy to see that(

(yz)2, f, (yz)−2, fxzk
)

and
(
(yz)−2, f, (yz)2, fxzk

)
are hamiltonian cycles in Cay

(
G/〈x, z〉;S

)
. Since one or the other of

(yz)2f(yz)−2(fxzk) = xzk+4 and (yz)−2f(yz)2(fxzk) = xzk−4

generates 〈x, z〉 , we see from Corollary 2.8 that either(
(yz)2, f, (yz)−2, fxzk

)3p
or

(
(yz)−2, f, (yz)2, fxzk

)3p
is a hamiltonian cycle in Cay(G;S).

Subcase 3.2. Assume G = D6 × (Z3 n Zp). Note that this implies zf = z and zy = zr, where
r3 ≡ 1 (mod p) and r 6= 1. (We must have p ≡ 1 (mod 3).)

Suppose there exists s ∈ S whose projection to the second factor is a nontrivial element of Zp.
We may assume the first component is a reflection (otherwise it generates a normal subgroup 〈xiz〉
which clearly has a trivial intersection with the center of G, so Lemma 2.27 applies). That is,
s = fxiz. Clearly we can assume s = fz ∈ S (conjugate by a power of x). Then s yields a
double edge in G/Zp, so, by Corollary 2.11, we may assume S − {s} generates G/Zp. From the
minimality of S, we know 〈S − {s}〉 6= G, so we conclude that 〈S − {s}〉 = D6 × Z3 (or a
conjugate). Furthermore, since |G| is the product of only four primes, and |s| is divisible by two of
them, we know |S| ≤ 3. Therefore, some element t of S − {s1} must project nontrivially to both
D6 and 〈y〉. Since 〈s, t〉 6= G, the projection of t to D6 must be f , so we may assume t = fy. Then
the final element of S must be of the form fxi, with i 6≡ 0 (mod 3). Therefore, we may assume
S = {fz, fy, fx}. In this case, Lemma 2.18 applies with s1 = fy and s2 = fz, because s1s2 = yz
has order 3, and 〈S − {s1}〉 = 〈f, x, z〉 has order 6p.

We may now assume that

the projection of a generator to the second factor is never a nontrivial element of Zp. (9.2)

Subsubcase 3.2.1. Assume |S| = 2. The generating set of Z3 n Zp must be of the form
{y, yz}, and the generating set of D6 is either two reflections or a rotation and a reflection. We now
discuss each of the possibilities individually:

Subsubsubcase 3.2.1.1. Assume S = {fy, fxyz}. Since fy generates the cyclic group
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G/〈xz〉, it is obvious that
(
(fy)5, fxyz

)
is a hamiltonian cycle in Cay

(
G/〈xz〉;S

)
. Then, since

(fy)5(fxyz) = xz, Corollary 2.8 tells us that
(
(fy)5, fxyz

)3p
is a hamiltonian cycle in Cay(G;S).

Subsubsubcase 3.2.1.2. Assume S = {fy, xyz}. Much as in the previous paragraph, it
is easy to see that (

(xyz)2, (fy)−1, (xyz)−2, fy
)

is a hamiltonian cycle in Cay
(
G/〈xz〉;S

)
. Therefore, since

(xyz)2(fy)−1(xyz)−2(fy) = x4zr−1

generates 〈xz〉, Corollary 2.8 tells us that(
(xyz)2, (fy)−1, (xyz)−2, fy

)3p
is a hamiltonian cycle in Cay(G;S).

Subsubcase 3.2.2. Assume |S| = 3.

Subsubsubcase 3.2.2.1. Assume S ∩
(
D6 × Zp

)
6= ∅. Then (from (9.2) and the fact that

S ∩ 〈x, z〉 = ∅) we may assume f ∈ S. There must be an element whose projection to both D6 and
Z3 nZp is nontrivial. Since by assumption S does not contain any element of the form f `xizk with
k 6= 0, we are left with two possibilities.

• Assume fxy ∈ S. Because S generates G, the third element of S must be of the form f `xiyz
(or its inverse). Since S is minimal, this element must either be yz or fxyz. Thus, S is either
{f, fxy, yz} or {f, fxy, fxyz}. In either case, taking s1 = f and s2 = fxy we get that
s1s2 = xy is of order 3 and 〈S − {s1}〉 = 〈fx, y, z〉 is of order 6p, so clearly Lemma 2.18
applies.

• Assume xy ∈ S. Since S generates G, the third element of S must be of the form f `xiyz
(or its inverse). Since S is minimal, we must have ` = 0. There are three Cayley graphs to
consider:

◦ Suppose S = {f, xy, yz}. Taking s1 = (xy)−1 = x2y2 and s2 = yz, we see that
s1s2 = x2z is of order 3p and clearly |〈S − {s−11 }〉| = 6. So Lemma 2.18 applies.

◦ Suppose S = {f, xy, xyz}. Taking s1 = (xy)−1 = x2y2 and s2 = xyz, we see that
s1s2 = z is of order p, and 〈S − {s−11 }〉 = 〈f, x, yz〉 has order 18. So Lemma 2.18
applies.

◦ Suppose S = {f, xy, x2yz}. Since G/〈x, z〉 is abelian, it is easy to see that(
f, (xy)−2, f, xy, x2yz

)
is a hamiltonian cycle in Cay

(
G/〈x, z〉;S

)
. Therefore, since

(f)(xy)−2(f)(xy)(x2yz) = x2z

generates 〈xz〉, Corollary 2.8 tells us that(
f, (xy)−2, f, xy, x2yz

)3p
is a hamiltonian cycle in Cay(G;S).
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Subsubsubcase 3.2.2.2. Assume S ∩
(
D6 × Zp

)
= ∅. We must have an element of the

form fxiyzk in S, so we can assume
fy ∈ S.

In order to generate D6, the set S must also contain an element of the form fxyjzk or xyjzk.
Furthermore, the assumption of this paragraph implies j 6= 0, so we may assume j = 1, by passing
to the inverse if necessary.

• Suppose fxyzk ∈ S. Since S is minimal and |S| = 3, we must have k = 0; that is, fxy ∈ S.
Then, because S generates G, the third element of S must be of the form f `xiyz. If i 6= 0,
then 〈fy, f `xiyz〉 = G, while if i = 0 and ` = 1, then 〈fxy, fyz〉 = G. These conclusions
contradict the minimality of S, so there is only one Cayley graph to consider: we have S =
{fy, fxy, yz}. Taking s1 = fxy and s2 = (fy)−1 = fy2, we get that s1s2 = x2 is of order
3, and 〈S − {s1}〉 = 〈f, y, z〉 is clearly of order 6p. So Lemma 2.18 applies.

• Suppose xyzk ∈ S. Since S is minimal and |S| = 3 we must have k = 0, so xy ∈ S. Then,
because S generates G, the third element of S must be of the form f `xiyz. If i 6= 0, then
〈fy, f `xiyz〉 = G, while if i = 0 and ` = 1, then 〈xy, fyz〉 = G. So there is only one Cayley
graph to consider: we have S = {fy, xy, yz}. Taking s1 = fy and s2 = (xy)−1 = x2y2, we
get that s1s2 = fx2 is of order 2 and 〈S − {s1}〉 = 〈x, y, z〉 is of order 9p. So Lemma 2.18
applies.

Subsubcase 3.2.3. Assume |S| = 4. Since |G| = 18p is the product of only four prime
factors, the order of the subgroup generated by any two elements of S must be the product of only
two prime factors. It is easy to see that this implies every element of S belongs to either D6 × {e}
or {e} × (Z3 n Zp). Therefore, Cay(G;S) is isomorphic to

Cay(D6;S1)× Cay(Z3 n Zp;S2).

Since the Cartesian product of hamiltonian graphs is hamiltonian, we conclude that Cay(G;S) has
a hamiltonian cycle.

Subcase 3.3. Assume G = (D6 × Z3) n Zp, where D6 and Z3 both act nontrivially on Zp.
(Note that we must have p ≡ 1 (mod 3).) This implies zf = z−1 and zy = zr where r3 ≡ 1 (mod p)
(but r 6≡ 1 (mod p)).

Subsubcase 3.3.1. Assume |S| = 2.

Subsubsubcase 3.3.1.1. Assume S ∩ 〈f, x, z〉 = ∅. The generating set S must contain
an element of the form fxiyjzk. By assumption, we must have j 6= 0, so we may assume j = 1.
Then, conjugating by an element of 〈x, z〉, we may assume fy ∈ S.

To generate G, the second element of S must be of the form f `xyj
′
z. By assumption, we must

have j′ 6= 0, so we may assume j′ = 1. Therefore, there are only two possibilities, and we discuss
each of them individually:

• Suppose S = {fy, xyz}. Since
(
(fy)−1, (xyz)−2, fy, (xyz)2

)
is a hamiltonian cycle in

Cay
(
G/〈x, z〉;S

)
, and

(fy)−1(xyz)−2(fy)(xyz)2 = xz(r+1)2 generates 〈x, z〉,

Corollary 2.8 tells us
(
(fy)−1, (xyz)−2, fy, (xyz)2

)3p
is a hamiltonian cycle in Cay(G;S).
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• Suppose S = {fy, fxyz}. Since fxyz ≡ fy (mod〈x, z〉), it is obvious that
(
(fy)5, fxyz

)
is a hamiltonian cycle in Cay

(
G/〈x, z〉;S

)
. Then, since (fy)5(fxyz) = xz generates 〈x, z〉,

Corollary 2.8 tells us that
(
(fy)5, fxyz

)3p
is a hamiltonian cycle in Cay(G;S).

Subsubsubcase 3.3.1.2. Assume S ∩ 〈f, x, z〉 6= ∅. Since S ∩ 〈x, z〉 = ∅, we must have
S ∩ f〈x, z〉 6= ∅. Then, conjugating by an element of 〈x, z〉, we may assume f ∈ S. To generate G,
the second element of S must be of the form f `xyz.

• Suppose S = {f, xyz}. Since
(
f, (xyz)−2, f, (xyz)2

)
is a hamiltonian cycle in Cay

(
G/〈x, z〉;S

)
,

and
f(xyz)−2f(xyz)2 = xz2(r+1) generates 〈x, z〉,

Corollary 2.8 tells us that
(
f, (xyz)−2, f, (xyz)2

)3p
is a hamiltonian cycle in Cay(G;S).

• Suppose S = {f, fxyz}. We may assume 4r 6≡ −5 (mod p) (by replacing y with its inverse,
if necessary). Let

(si)
18
i=1 =

(
fxyz, f, (fxyz)−2, f, (fxyz)−3, f, (fxyz)3, f, (fxyz)2, f, (fxyz)−1, f

)
.

Using the fact that r2 + r + 1 ≡ 0 (mod p), we calculate that the vertices of this walk are:

e, fxyz, x2yz−1, fx2z−2r−2, x2y2z−3r−1, fxy2z3r+1, yz−3,

fxz−4r−4, y2z−5r−1, fy2z5r+1, xz4r+6, fyz5−2r, xy2z−7r−1,

fx2y2z7r+1, x2z6r+8, fx2yz7−2r, xyz2r−7, fz−8r−10, z8r+10.

Then, by modding out 〈z〉, we see that this walk visits the vertices of G/Zp ∼= D6×Z3 in the
order

e, fxy, x2y, fx2, x2y2, fxy2, y, fx, y2, fy2, x, fy, xy2, fx2y2, x2, fx2y, xy, f, e,

so it is a hamiltonian cycle in Cay(G/Zp;S). Furthermore, from our assumption that 4r 6≡
−5 (mod p), we see that the final vertex z8r+10 is not trivial in G, so it generates 〈z〉. There-
fore Corollary 2.8 provides a hamiltonian cycle in Cay(G;S).

Subsubcase 3.3.2. Assume |S| = 3.

Subsubsubcase 3.3.2.1. Assume some element of S has order 6. Then S contains fy (or
a conjugate). The only proper subgroups of G that properly contain fy are 〈f〉 × (Z3 n Zp) and
D6 × 〈y〉. Thus, recalling the assumption that S ∩ 〈x, z〉 = ∅:

• the second generator can be assumed to be yz, fz, or fyz, and

• the third generator can be assumed to be fx, fxy, or xy.

We consider each possible choice of the second generator.

a. If yz ∈ S, then any of the possible third generators can be used:

• Suppose S = {fy, yz, fx}. Taking s1 = fy and s2 = fx we get that s1s2 = xy is of
order 3 and since 〈S−{s1}〉 = 〈fx, y, z〉 has order 6p, it is easy to see that Lemma 2.18
applies.
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• Suppose S = {fy, yz, fxy}. Taking s1 = fy and s2 = fxy we get that s1s2 = xy2

is of order 3 and since 〈S − {s1}〉 = 〈fx, y, z〉 has order 6p, it is easy to see that
Lemma 2.18 applies.

• Suppose S = {fy, yz, xy}. Taking s1 = fy and s2 = (xy)−1 we get that s1s2 = fx2 is
of order 2 and since 〈S−{s1}〉 = 〈x, y, z〉 has order 9p, it is easy to see that Lemma 2.18
applies.

b. If fz ∈ S, then, because 〈fz, fxy〉 = G = 〈fz, xy〉, there is only one possibility for the third
generator: we have S = {fy, fz, fx}. Taking s1 = fx and s2 = fy we get that s1s2 = x2y
is of order 3 and since 〈S − {s1}〉 = 〈f, y, z〉 has order 6p, it is easy to see that Lemma 2.18
applies.

c. If fyz ∈ S, then, because 〈fyz, fx〉, 〈fyz, fxy〉, and 〈fyz, xy〉 are all equal to G, none
of the possible third generators yield a minimal generating set of G. So there are no Cayley
graphs to consider in this case.

Subsubsubcase 3.3.2.2. Assume no element of S has order 6. Then S contains f (or a
conjugate). There must be an element of S that does not belong to D6 × Zp (that is, an element of
the form f `xiyzk). Because there is no element of order 6, we must have ` = 0, so the possibilities
are: y, yz, xy, and xyz. However, we eliminate the last option, because 〈f, xyz〉 = G.

We consider each of the remaining possibilities:

a. Suppose y ∈ S. The third generator must involve both x and z. Since 〈f, xyz〉 = G and since
we assumed S ∩ 〈x, z〉 = ∅, there is only one possibility, namely, S = {f, y, fxz}. Taking
s1 = fxz and s2 = f we get that s1s2 = x2z−1 is of order 3p and since 〈S − {s1}〉 = 〈f, y〉
has order 6, it is easy to see that Lemma 2.18 applies.

b. Suppose yz ∈ S. The third generator must involve x. Since S does not contain an element
of order 6, or any element of 〈x, z〉, and 〈f, xyzk〉 = G for k 6= 0, the only possibilities are
fxzk and xy.

• Suppose S = {f, yz, fxzk}. Note that, because

2(r2 + r) + 2(r + 1) = 2(r + 1)2 6≡ 0 (mod p),

it cannot be the case that k+ 2(r2 + r) and k−2(r+ 1) are both 0 modulo p. Therefore,
〈x, z〉 is generated by either

(yz)2(f)(yz)−2(fxzk) = xzk+2(r2+r) or (yz)−2(f)(yz)2(fxzk) = xzk−2(r+1),

so Corollary 2.8 tells us that either(
(yz)2, f, (yz)−2, fxzk

)3p
or
(
(yz)−2, f, (yz)2, fxzk

)3p
is a hamiltonian cycle in Cay(G;S).
• Suppose S = {f, yz, xy}. Since (xy)−2f(yz)2f = xz−(r+1) generates 〈x, z〉, Corol-

lary 2.8 tells us that (
(xy)−2, f, (yz)2, f

)3p
is a hamiltonian cycle in Cay(G;S).
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c. Suppose xy ∈ S. The third generator must involve z. However, 〈xy, fxiyjz〉 = G, and
〈f, xiyz〉 is also equal to G if i 6= 0. Since there is no element of the form xizk in S, this
implies that the only possibility for the third generator is yz, so S = {f, xy, yz}, but this
generating set was already considered in the preceding paragraph.

Subsubcase 3.3.3. Assume |S| = 4. Some 3-element subset S′ of S must generate G/Zp.
Then, because S is minimal, we must have 〈S′〉 = D6 × Z3 (or a conjugate). Since S′ must be
minimal, and S′ ∩ 〈x〉 = ∅, we must have S′ = {f, fx, y}.

Now the final element of S must be of the form f `xiyjz. Since S ∩ 〈x, z〉 = ∅, we know that `
and j cannot both be 0.

• If ` 6= 0, then either 〈fx, y, f `xiyjz〉 = G, or 〈f, y, f `xiyjz〉 = G, depending on whether
i is 0 or not.

• If j 6= 0, then 〈f, fx, f `xiyjz〉 = G.

These conclusions contradict the minimality of S, so there are no Cayley graphs to consider in this
case.
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raziskovalno dejavnost Republike Slovenije, research program P1-0285.

References
[1] B. Alspach: The classification of hamiltonian generalized Petersen graphs, J. Combin. Theory B 34

(1983), 293-312.

[2] B. Alspach: Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989), 25–36.

[3] B. Alspach, C. C. Chen, and M. Dean: Hamilton paths in Cayley graphs on generalized dihedral groups,
Ars Math. Contemp. 3 (2010), no. 1, 29–47.

[4] C. C. Chen and N. Quimpo: On strongly hamiltonian abelian group graphs, in K. L. McAvaney, ed.:
Combinatorial Mathematics VIII (Proceedings, Geelong, Australia 1980), Springer-Verlag, Berlin, 1981,
pp. 23–24.

[5] C. C. Chen and N. Quimpo: Hamiltonian Cayley graphs of order pq, in: Combinatorial mathematics, X
(Adelaide, 1982), Springer, Berlin, 1983, pp. 1–5.

[6] S. J. Curran and J. A. Gallian: Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey,
Discrete Math. 156 (1996) 1–18.

[7] S. J. Curran, J. Morris, and D. W. Morris: Cayley graphs of order 16p are hamiltonian (preprint).
http://arxiv.org/abs/1104.0081

[8] J. A. Gallian: Contemporary Abstract Algebra, 6th edition, Houghton Mifflin, Boston, 2006.

[9] E. Ghaderpour and D. W. Morris: Cayley graphs of order 27p are hamiltonian (preprint).
http://arxiv.org/abs/1101.4322

[10] E. Ghaderpour and D. W. Morris: Cayley graphs of order 30p are hamiltonian (preprint).
http://arxiv.org/abs/1102.5156

http://arxiv.org/abs/1104.0081
http://arxiv.org/abs/1101.4322
http://arxiv.org/abs/1102.5156


44 Ars Mathematica Contemporanea x (xxxx) 1–x

[11] D. Gorenstein: Finite Groups, Chelsea, New York, 1980.

[12] J. L. Gross and T. W. Tucker: Topological Graph Theory, Wiley, New York, 1987.

[13] M. Hall: The Theory of Groups, Macmillan, New York, 1959.

[14] D. Jungreis and E. Friedman: Cayley graphs on groups of low order are hamiltonian (unpublished).

[15] K. Keating and D. Witte: On Hamilton cycles in Cayley graphs with cyclic commutator subgroup. Ann.
Discrete Math. 27 (1985) 89–102.
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