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Abstract—This paper focuses on the use of machine learning
techniques for the analysis of computer programs in order to
acquire information about an author’s gender. There are few
existing studies that address the relationship between linguistics
and programming; however, in many areas where language is
analyzed it is possible to mine important information about
the users of that language associated with set of attribute or
coding style. In this work we use open source implementations of
machine learning algorithms, specifically, nearest neighbor (K*),
decision tree (J48), and Bayes classifier (Naive Bayes). These
algorithms were applied to C++ programs which were associated
with sociolinguistic information about the program authors. Our
goal was to classify the programs according to the gender of
the author. As indicated by our initial results we have been able
to achieve precision of 72.3%, recall of 72%, and f-measure of
71.9% which demonstrates that we can predict the gender of the
authors of C++ programs.

I. INTRODUCTION AND MOTIVATION

N the field of sociolinguistics it is known that individual

differences in the use of a language within a society can
affect or reflect social factors. Linguistic variables correlate
with social variables such as age, socio-economic status,
gender, ethnicity, and region to create sociolinguistic variation
[1]. However, very few researchers have applied this analysis
to the field of computer programming. We are thus interested
in answering the following question: do social factors impact
the development of C++ programs? To begin to answer this
question here we report on our efforts to categorize C++
programs based on the gender of the programmers.

Coding is a “deliberate action across cultural and techno-
logical fields” [2]. While the syntax of a computer program
is quite strictly determined by the programming language,
choices left up to the programmer include the use of different
numbers and types of loops, datatypes, keywords, operators,
and comments. Everything in software can affect compre-
hension, including the code, documentation, comments, and
structure [3]. Thus examining the language use at this micro
level can offer insight into how concepts are communicated in
all of these components. Many data analysis problems may
be posed as machine learning problems [4], [5]. For this
reason, we propose to use the machine-learning techniques
that are part of the WEKA tool suite [6] to perform supervised
learning (or classification) of documents written in the C++
programming language. In doing so we treat C++ programs
as text documents and convert these programs into a numerical
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representation using tf-idf [7]. To classify these programs
according to the gender of the author, we use techniques
such as nearest neighbor, decision tree, and Naive Bayes (NB)
classification models that may be reused to categorize future
data.

This research moves towards an improved understanding
of different coding styles and their relationships with so-
ciolinguistic variables. Different patterns may be identified
and analyzed on the basis of differences in usage of various
features (or attributes). These features include comments,
keywords, loops, and operators. As a possible outcome of
this work, new integrated development environments (IDEs)
could be developed to aid in communication between program-
mers between different sociolinguistic groups. For instance,
miscommunication could involve missing, extra, or incorrect
information, which could be facilitated and/or minimized by
the IDE design [8]. Another contribution could be in detecting
plagiarism of programs within groups of programmers [9].

This paper is composed of the following sections: Section
IT provides the background of this study including a brief
overview of sociolinguistics, software linguistics, and machine
learning; section III addresses the literature discussing gender
differences in text documents and authorship analysis of
computer programs; section IV discusses our methodology;
and sections V,VI, and VII discuss our results, limitations,
and conclusions.

II. BACKGROUND
A. Sociolinguistics

The field of sociolinguistics focuses in part on the identi-
fication of different social factors and their correlation with
variants in the use of natural language within a society [1].
The social factors include age, gender, degree of education,
experience, ethnicity, and socio-economic status (SES). Thus,
the area of sociolinguistics provides a way to analyze whether
linguistic variability correlates with social variability. In a
society people belonging to different social classes or age
groups are distinguishable based on features of their accent
and grammar use. For example, people from North America,
Britain, and USA are distinguishable based on their varying
use of different English words in terms of their pronunciations.

To identify sociolinguistic differences within a society based
on the use of a natural language, first the society is identified
by its contribution toward the knowledge of a particular



issue or language [10]. People from this society who are
willing to provide their expertise, that is, information on their
knowledge of the language, are then selected. Data is collected
from participants in order to investigate variability in the
usage of the linguistic features (variables) under investigation.
The data is analyzed to determine the range of variants for
each linguistic variable and the ways in which this linguistic
variability correlates with social variability. In the area of
sociolinguistics text documents written in various natural lan-
guages have been analyzed by different researchers [4], [11],
[12]. In particular, the interpretation of gender differences have
been investigated using various techniques including machine
learning and statistical analysis, as well as a combination of
these approaches.

B. Machine Learning

In recent years approaches such as statistical analysis,
machine learning, and pattern recognition have been used in
the analysis of different kinds of data ranging from textual data
(documents) [5] to molecular data (genes or proteins) [13].
Machine learning algorithms learn what trends are present in
the given data and then can be used to make decisions for the
analysis of future data.

There are various types of machine learning algorithms
[14], [15]. The assignment of datasets based on pre-defined
class labels is called supervised learning (or classification). For
example, values such as male and female may represent two
different classes, and then the data instances that are present
in the datasets are associated with these class labels. Here we
have carried out supervised learning using the gender of the
authors of C++ programs(as our data instances) as pre-defined
class labels.

Supervised learning algorithms require a particular data
format [16] to carry out the task of analyzing data in order to
extract useful information. Term Frequency-Inverse Document
Frequency (tf-idf) is one of the techniques used in the area
of automatic text retrieval [7] to convert text documents to
an appropriate data format that can be used to analyze text
documents. Using tf-idf the dataset is transformed to a form
of numerical representation of documents on the basis of
identified features. The tf-idf is a “vector-space model which
represents an object as a vector of weighted indexing term,
and define object similarity in terms of those vectors.” [17].
The tf-idf vector is composed of the tf part and the idf part.
Term Frequency (tf) deals with a single sample and counts the
occurrences of a specific feature. Inverse Document Frequency
(idf) counts the occurrences of the same feature within the
entire dataset [17]. The product of tf and idf gives the tf-idf
score of a feature.

C. Classification Algorithms

In this work we used three supervised learning algorithms:
nearest neighbor (K*), decision tree (J48), and Bayes classifier
(Naive Bayes). Each of these are implemented as part of the
open-source WEKA software [6].

K* Algorithm:

The K* algorithm is described in the WEKA software
as finding the “nearest neighbor with generalized distance
function” [15]. This algorithm uses the entropic distance
measure to calculate the distance between similar instances
in the dataset. The distance is computed between new/test
instance x and the existing/training instances y;. The test
instance is labeled with the associated class label on the basis
of the closest k-nearest existing instances, y; [18] as in the
equation:

K*(ylvx) = _1ng*(y7,7x)a

where i € {1,2,...k} and the probability of all possible
paths from (z) to (y;) is represented as P. The number of
important neighbor instances can be found in the “sphere of
influence” [19].

J48 Algorithm:

The J48 algorithm is also available as part of WEKA. Using
J48, a flow chart-like tree structure, which is referred to as
a decision tree, is constructed recursively on the basis of
important attributes that accurately partitions instances into
distinct classes. The tree is composed of a root node, internal
nodes, branches, and leaf nodes. To classify test tuples on the
basis of an associated class label a path is traced from the root
to a leaf node.

The J48 algorithm works on a “divide-and-conquer” tech-
nique [15]. This algorithm computes the probability distri-
bution of instances in the given dataset after learning from
instances and analyzing the distribution of classes among
instances. To determine the “best” attribute, which extracts
the maximum amount of information from a set of instances
to make a prediction, a gain ratio feature selection method is
incorporated.

Naive Bayes Algorithm:

In this study, a simple Bayesian classifier is used, which is
referred to as a Naive Bayes. Bayesian classifiers compute the
probability of a given instance. Naive Bayes (NB) is widely
used to categorize data with two-classes, for instance, assign-
ing a dataset with class labels of male and female is a two-
class problem. This algorithm is implemented as a “standard
probabilistic naive bayes classifier” [15] in WEKA and is
based on the assumption of “class conditional independence”
[20]. This means attributes that are associated with a given
class label are independent of each other. Thus, the probability
of attributes is computed as shown in the following equation:

Plei1x) = PEEENE,

where P(C;|X) is the maximum probability of an instance,
X, among all class labels. P(X|C;) is the probability of X
associated with a specified class. P(C}) is the probability of



instance X belonging to a particular class C;. P(X) is the
probability of an instance X within the dataset, and is often
constant.

D. Cross Validation Technique

In a situation where data is limited, the technique of
cross-validation can be used to reduce the risk of overfitting
[14], [15]. The reason that overfitting can occur is that the
generalization from the given training tuples was not learned
accurately due to the small size of a dataset. Thus, there is
a risk of incorrect predictions being “learned” as correct by
the model [16], [21]. The k-fold cross validation technique is
commonly used to mitigate the risk of overfitting of a dataset.

Cross validation is a technique in which a dataset is parti-
tioned using a fixed number of folds (k) [15]. Leave-one-out
cross validation (LOOCYV) is n-fold cross validation and can
be applied using WEKA, where n=k and # is the total number
of instances that are part of the dataset. There are n turns in
which a single instance is left out of the training dataset and
becomes a test dataset. The remaining instances (tuples) are
used for training the model. After the completion of n turns,
evaluation metrics of all runs (or iterations) can be used as
the final estimates to demonstrate the predictive ability of the
developed model.

E. Evaluation Metrics

The predictive ability of a model (or classifier) is identified
by analyzing the confusion matrix and various evaluation
metrics including precision, recall, and f-measure. A confusion
matrix represents how well a model identifies instances associ-
ated with specific class labels [14]. Using a confusion matrix,
the values of various evaluation metrics can be computed. For
instance, Table I illustrates the confusion matrix resulting from
attempting to classify programs by the author’s gender, where
we have restricted gender to male or female.

TABLE I
2X2 CONFUSION MATRIX.
Gender | Female | Male | Total
Female TP FN P
Male FP TN N
Total P’ N’ P+N

In the above confusion matrix, computer programs from
female programmers are positive instances, while those from
male programmers are negative instances [14]. True positives
(TP) are instances that are correctly labeled as female-written
programs. True negatives (TN) are instances that are correctly
labeled as male-authored programs. False positives (FP) are
instances that are misclassified as female-written. False nega-
tives (FN) are instances that are misclassified as male-written.

In supervised learning of data, precision and recall eval-
uation metrics are widely used. Recall provides the number
of data instances that are correctly labeled as a specific
class label; however, there is no information about data

instances that are mislabeled by the model. Precision gives
the number of data instances that are labeled as a specific
class and actually belonged to that specific class. However,
sometimes a model may acquire more precision then recall.
Thus, some researchers in this area and in information retrieval
areas use another evaluation metric, f-measure [14], [15],
[21]. This metric is appropriate because it represents the
harmonic mean of both precision and recall. F-measure is
the combination of precision and recall, and is calculated as,
(2*Precision*Recall)/(Precision+Recall).

III. RELATED WORK

A. Software Linguistics

In 1982 Misek-Falkoff [8] identified a new domain that she
called “Software Linguistics” as a result of her investigation to
identify the relationship between software and linguistics. She
observed that by using a set of rules for a natural language, a
text written in that language may be analyzed using syntactic
and semantic structures of a language. For example, natural
language analysis may be performed by examining each part
of a word or a sentence. Misek-Falkoff, further suggested that
similar techniques would be applicable towards the analysis
of computer programs.

B. Gender Identification

More recently Argamon et al. [4] explored gender differ-
ences in French literature by performing classification of text
documents using SVM'ie" [5]. A model was developed to
discriminate between male- and female-authored documents
on the basis of word distribution, usage, and frequencies.
Argamon et al. observed that female authors of texts used more
personal pronouns and negation, whereas male writers used
more determiners and quantifiers. Common function words
such as articles were used equally by males and females;
however, personal pronouns and emotional language were
more commonly used in texts written by female authors. The
model was able to assign gender labels to unclassified data
with an accuracy of 90%; moreover, the model allowed the
extraction of the features that played the highest role in the
classification process.

Argamon et al. [11] also investigated gender differences in
English literature, utilizing the British National Corpus (BNC).
This dataset was analyzed on the usage of parts-of-speech.
A machine learning technique called the EG algorithm was
used to select a small set of the most useful features from
a list of over 1000 features. The EG algorithm was able to
identify 50 features that played the most important part in the
distinction of male- and female- authored texts. Argamon et
al. concluded that the findings in the French texts replicated
similar analysis from the English texts. This cross-linguistic
similarity illustrated the usefulness of the machine learning
techniques across datasets from different languages.



C. Authorship Analysis

Authorship analysis has been carried out mostly with
datasets composed of text documents written in natural lan-
guage. However, there are some studies which investigate
authorship analysis of artificial language datasets (computer
programs). Krsul and Sappford [9] classified C programs to
discover a set of features that might be used to identify
authorship. The intent was to use such information in re-
solving authorship disputes, detecting plagiarism, and in the
construction of a programmer’s “signature” [9], [22]. The
distinction of authors was based on writer-specific features
coinciding with small variations in programs by a given author
but large variations in the whole dataset. LNKnet [23] software
was used to apply machine learning algorithms and statistical
analysis of features to refine the feature list in order to
discriminate more accurately between programmers. Along
with machine learning techniques used to identify authorship,
statistical analysis of C programs was carried out using SAS
[24]. Krsul and Sappford concluded that distinct authors can
be found, even using a small dataset of C programs, because
programmers tend to develop programs using style conventions
with which they are personally familiar.

IV. METHODOLOGY

To employ machine learning methods on the textual data
there are a few steps that must be performed including
choosing the document representation, learning method, and
testing protocol [3], [12]. An overview of our methodology is
given in Figure 1.

Computer
Programs

Numerical
representation of dataset
based on fifty attributes.

Construct three
classification models.

Evaluate the three
classification models
using LOOCV.

Collect values of
evaluation metrics.

Fig. 1. Overview.

Step 1: Data

Our dataset consisted of C++ programs collected as part of
assignments and projects from computer science classes at the
University of Lethbridge. The sociolinguistic information was
gathered via a survey which was provided to each participant.
Male programmers were over-represented in the dataset due
to the low number of female students in these courses as
shown in Table II. Thus, in our attempt to create a balanced
dataset of 100 C++ programs, we needed to oversample the
dataset; that is, multiple computer programs written by a single
female programmer were used as part of the dataset. Each
C++ program was cleaned manually to avoid the misrep-
resentation of the identified features. This manual cleaning
included removing the participant’s information to preserve
the confidentiality, removal of white spaces and removal of
comments that contained features.

TABLE 11
PARTICIPANTS

Gender | Participants | Provided Samples | Used Samples
Male 65 240 50
Female 19 64 50
Total 84 304 100

Step 2: Document Representation

To create the numerical representation of computer pro-
grams, we used a small list of features such as operators,
keywords, loops, and comments [21]. We also applied the term
frequency and inverse document frequency (tf-idf) technique,
as described in section II-B, to compute the frequency of
features in each author’s computer program and in the entire
dataset. The data instances for our experiments consisted of
C++ programs collected from University of Lethbridge stu-
dents. Each instance is composed of class labels (representing
“male” and “female” programmers) and feature vectors. The
set of features with its tf-idf score [7] for each program is
referred to as a feature vector.

TABLE III
LIST OF ATTRIBUTES

Type of Attributes Fifty Attributes
#include, #define, using, void, cout, cerr,
Keywords cin, return, exit, int, float, char, const
double, bool, new, break, public, private
< => > & && + L = ==, 5,
Operators
— ==k [, 1= 4=, = k= <=, >=
Comments 1%, 1, I*
Brackets {}, O
Loops for, while, switch

Step 3: Supervised Learning Models

In this work we constructed three supervised learning (clas-
sification) models: K*, J48, and Naive Bayes (as described in



section II-C), using an open-source machine learning software,
WEKA [6]. These models were created to classify computer
programs based on the gender of the programmers.

V. RESULTS AND DISCUSSION

To develop three models we employed the leave-one-out
cross-validation (LOOCV) technique, which is described in
section II-D. We used confusion matrices (as reported in
section II-E) to perform comparative analysis and calculated
evaluation metrics that are associated with each classification
model. Table IV shows the confusion matrix for the decision
tree classification model. We observe that this model is able to
accurately classify 33 computer programs out of 50 programs
as female-authored. Similarly, 30 out of 50 computer programs
are correctly classified as male-written programs. However,
this model misclassifies 17 as male-authored and 20 as female-
authored programs.

TABLE IV
J48 CONFUSION MATRIX

Gender | Female | Male
Female 33 17
Male 20 30

Table V shows the confusion matrix for the nearest neighbor
model. This model accurately classifies 39 computer programs
out of 50 as female-written programs and 33 out of 50
computer programs as male-written programs. However, 11
were mislabeled as male-written and 17 as female-written
programs.

TABLE V
K* CONFUSION MATRIX
Gender | Female | Male
Female 39 11
Male 17 33

In Table VI, we observe that the Naive Bayes (NB) clas-
sification model correctly labels 33 samples out of 50 as
programs developed by female and male programmers. This
model misclassifies 17 samples as male and female-authored
programs. We observe these differences in the performance of
various supervised learning models due to the differences in
their underlying algorithms.

TABLE VI
NAIVE BAYES CONFUSION MATRIX
Gender | Female | Male
Female 33 17
Male 17 33

We also perform a comparative analysis on the basis of f-
measure to address concerns where precision and recall may

not provide an accurate assessment of a model’s predictive
capabilities. As shown in Table VII, we achieve f-measure of
63% with the decision tree (J48) model because of the small
number of correctly classified computer programs. The highest
f-measure is achieved by the nearest neighbor (K*) model.
This means that the classification models developed in this
study are able to correctly predict the gender of approximately
63%-72% of the samples in our dataset. We would expect
the predictive performance of these models on a new dataset
would lie within this range.

TABLE VII
PERFORMANCE OF THE CLASSIFICATION MODELS

Models Precision (%) Recall (%) F-measure (%)
K* 72.3 72 71.9
J48 63 63 63
NB 66 66 66

VI. LIMITATIONS

In this study, there are potential limitations that threats the
validity of the work:

1) The data in these experiments was male skewed. To ad-
dress this we used multiple computer programs written
by female programmers. Because of this our female-
authored data may be biased towards a particular indi-
vidual’s programming style. This implied that multiple
computer programs showed certain coding practices,
resulting in similar choices in terms of coding style.

2) In programming courses, there is a possibility of impos-
ing a specific set of coding styles regarding the usage
comments and data types. This could skew the style of
newly beginning programmers. However, there is still
the possibility for a great deal of individuality in a
program, especially by the end of the semester.

3) In this study, a large number of participants belonged
to the computer science courses that were offered at
the University of Lethbridge. Thus, the computer pro-
grams utilized in our study were developed exclusively
by participants with little experience in comparison to
industrial programmers with experience in developing
software in C++ programming language.

VII. CONCLUSION AND FUTURE WORK

In this work, we categorized computer programs on the
basis of the gender of the computer programmers. We used
dataset composed of C++ programs written by male and fe-
male programmers. We developed three classification models:
nearest neighbor (K*), decision tree (J48), and Bayes classifier
(Naive Bayes). We concluded that for a limited dataset of C++
programs it is possible to utilize machine learning techniques
to differentiate between male and female programmers. We
are able to achieve 72.3% of precision, 72% of recall, and



71.9% of f-measure which established that social factors such
as gender are reflected in the use of the C++ programming
language.

We are planning to extend this preliminary work by applying
attribute selection algorithms to distinguish the top-ranked fea-
tures out of 50 features. This way we would be able to identify
features that are prevalent in male and female written computer
programs and observe the impact on the evaluation metrics
of the models. In addition, we plan to expand this work to
examine different sociolinguistic variables, including the first
spoken language of programmers, the first learned artificial (or
programming) language, or the years of experience in the C++
programming language to observe their effects on the artificial
language use by programmers.
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