
Published in IET Computers & Digital Techniques
Received on 5th May 2008
Revised on 2nd October 2008
doi: 10.1049/iet-cdt.2008.0042

ISSN 1751-8601

Case studies in determining the optimal field
programmable gate array design for computing
highly parallelisable problems
J.E. Rice1 K.B. Kent2
1Department of Math and Computer Science, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
2Faculty of Computer Science, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
E-mail: j.rice@uleth.ca

Abstract: Reconfigurable hardware has recently shown itself to be an appropriate solution to speeding up
problems that are highly dependent on a particular complex or repetitive sub-algorithm. In most cases, these
types of solutions lend themselves well to parallel solutions. The optimal design on field programmable gate
arrays (FPGAs) for problems with algorithms or sub-algorithms that can be highly parallelised is investigated.
In addition, a classification system is introduced, which categorises FPGA-based solutions into ‘instance-
specific’ and ‘parameter-specific’.

1 Introduction
When comparing dedicated hardware and software solutions,
it is usually said that hardware is fast and software is slow,
although software is more flexible than hardware. Most
problems are generally solved in software, since the
overhead of writing a program to solve the problem is
usually low in comparison to the effort involved in
designing a dedicated hardware solution. However, if the
resulting solution is too slow, consumes too much power or
is physically too large, a move to dedicated hardware might
be made. In the past, this would have required fabricating a
special-purpose circuit designed specifically to solve the
problem at hand. The introduction of reconfigurable
hardware now allows us to merge the advantages of both
hardware and software. The advent of field programmable
gate arrays (FPGAs) has provided researchers and industry
alike with a hardware solution, leveraging much of the
speed advantages of fabricated circuits that can be
reprogrammed in many cases virtually limitlessly. The effort
involved in designing hardware solutions is now much
more feasible, even if only one instance of the chip will be
required. Moreover, it is possible to design a hardware
solution specific to only one instance of the problem input
data, since the FPGA can then be reprogrammed to deal
with subsequent instances of the data [1].

This has led to many interesting changes in the way that
problems are solved in hardware. Co-processors that can
change their main focus as needed by the user are
becoming available, and people researching problems such
as DNA matching [2, 3], image compression [4, 5], graph
applications [6] and various applications in security [7, 8]
are now using FPGAs as their development platform.

Many hardware solutions leverage the ability of FPGAs to
provide parallel processing. However, this requires that the
problem be subdivided in order to allow the hardware
components to simultaneously process the separate parts of
the problem. There is overhead in how to subdivide the
problem, and in how to merge the results into a final
solution. Communication between the separate parts may
be needed. And so the question becomes at what point is
there too much subdivision; that is, when does the
overhead required outweigh the advantages of the parallel
processing speed-up? We investigate this problem through
the study of FPGA implementations for two problems each
well-suited to FPGA implementation.

2 Comparisons to other work
Previous work related to this research includes [2, 9–12]. In
each of these works only one particular type of problem was

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 247
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

investigated; this paper extends the work to consider multiple
problems that are approached in a variety of ways.

In general, the goal of this work is to determine, for a
particular problem, how best to utilise the resources
available on the FPGA. The most relevant example in
software technology would be the analysis performed
within a compilation context to achieve automatic program
parallelisation [13]. In order to be effective, parallel
computing must efficiently utilise the resources that are
made available, and must consider both data dependencies
[14, 15] and shared resources [16–18]. Software-based
research in this area has filtered into the embedded systems
domain with the introduction of novel platforms and
paradigms; such work has been carried out on entire
systems consisting of both custom hardware and a software
processor (System-on-Chip) [19] as well as more
complex systems consisting of a network of computing
resources (Network-on-Chip) [20]. Several Network-on-
Chip architectures have also been researched for
communication scalability in order to determine the
threshold at which each infrastructure becomes a serious
limiting factor [21, 22]; however, this work focuses on
topologies, and not on particular problems and their
solutions as introduced in our work.

Other related work for FPGA-type devices includes the
work by Milder on automatic generation of hardware
implementations of the discrete Fourier transform (DFT)
[23]. This work allows the user to specify parameters such
as size, throughput and latency of the data to be processed,
assuming it is known, and the system will choose the best
implementation based on this information. Our work did
not find that a particular implementation performed better
or worse for given datasets, although we are continuing
investigations in this area. Milder et al. also published
earlier work in resource estimation for DFT IP cores [24].
This work estimates the numbers of slices required for
particular DFT implementations. Although an application
of their work involving determining the fastest DFT is
briefly discussed, the authors are mainly considering slice
usage estimations, without the added discussion of how
maximising slice usage can affect the speed of the
implementation.

Cong et al. study the optimality of the logic synthesis step
in [25, 26], which, although related to this work, is not our
primary interest. Our work is mainly focused on the links
between additional parallelism to increase computation
speed and the resulting overhead in communication
resources.

Finally, work in resource utilisation in prime number
validation has been published in [27], which addresses
similar architectural issues as does our work. Their work
also takes note of the trade-off in increasing complexity
with additional parallelism, resulting in lowered clock
cycles. However, our work continues this investigation with

additional problems, and compares the results from this
phenomenon across the problems under investigation.

3 Background
We first introduce a number of concepts so that future
discussions may be clearly understood.

3.1 Configurable hardware
The primary focus of this work is ‘configurable hardware’. By
this we refer to hardware devices such as FPGAs that may be
programmed multiple times to solve different problems.
FPGAs are basically what the name describes:
hardware consisting of arrays of logic elements that are
programmable in the field (i.e. not in a large manufacturing
plant, as is usually necessary). The most common type of
programmable logic element in FPGAs is called a K-LUT,
which is a K-input one-output lookup table (LUT). With
such an element, any K-input single-output Boolean
function can be implemented. Other resources on a FPGA
chip include I/O elements, which are mainly situated
around the edges of the chip, and routing resources
allowing the LUTs to be connected as needed to
implement the desired functionality.

3.2 Problems investigated
Two types of problems were investigated during the course of
our studies. These are described in the following subsections.

3.2.1 Computing the autocorrelation coefficients:
The autocorrelation coefficients of a Boolean function F are
the result of applying the autocorrelation transform:

B(u) ¼
X2n"1

v¼0

F (v) # F (v$ u) (1)

where n is the number of inputs and v ¼
Pn

i¼1 vi2
i"1 [28].

Table 1 shows the autocorrelation coefficients for
the majority function, F (X) ¼ x1x3 þ x1x2 þ x2x3. For

Table 1 Autocorrelation coefficients for the majority
function, F(X) ¼ x1 x3þ x1 x2þ x2x3

u B(u)

000 4

001 2

010 2

011 2

100 2

101 2

110 2

111 0

248 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

example, the value for B(001) is computed by expanding
Equation (1) as follows:

B(001) ¼ F (000) # F (000$ 001)þ F (001) # F (001$ 001)
þ # # # þ F (111) # F (111$ 001)

¼ F (000) # F (001)þ F (001) # F (000)
þ # # # þ F (111) # F (110)

¼ 0 # 0þ 0 # 0þ # # # þ 1 # 1
¼ 2

Note that the value of u used to compute each coefficient is
generally given in its binary format.

The autocorrelation coefficients have been used in
applications such as variable ordering for ROBDDs [29],
classification and detecting special properties of functions
such as symmetries [30]. The application of configurable
hardware to this problem was first introduced in [31].

3.2.2 Edit-distance calculation: The determination of
the similarity between two DNA or protein sequences is a
common problem in bioinformatics [32]. The problem lies
in how to compute a ‘score’ that identifies the number of
mutations necessary to change one of the sequences (the
query sequence) into the other (the target sequence). One
approach to this problem is to compute all pairwise
comparisons between the two strings; however, this is quite
computationally expensive. There are three actions that can
be taken as the comparisons progress [33]:

† mutation, or changing one symbol to another,

† insertion, or inserting an additional symbol, and

† deletion of a symbol.

Each operator is assigned a particular weight, and the total
of the required operations is the score. The implementation
investigated in this work uses a fixed-weight version of the
edit-distance algorithm in [32] with modifications from
[34]. The primary concept is that of the processing
element, which is defined as follows:

d (i, j) ¼

i when j ¼ 0
j when i ¼ 0

min
d (i " 1, j " 1)þ C(i, j)
d (i " 1, j)þ wi
d (i, j " 1)þ wd

8
<

: otherwise

8
>>>><

>>>>:

(2)

This assumes a two-dimensional array of cells where i and j
are the row and column values, respectively, and the edit-
distance solution consists of having each of these cells use
the formula to compute its value. The other variables used
in this equation are

† wd, which is the cost of deleting a single element from the
string,

† wi, which is the cost of inserting a single element into the
string, and

† C(i, j), which is zero if the ith symbol of string S is the
same as the jth symbol of string T, otherwise it is wm, or
the cost of mutating an element from one string into an
element from the other.

This work imposes the restrictions that wm ¼ 2 and
wi ¼ wd ¼ 1. In the two-dimensional array storing, each
value of d, the edit-distance between two strings S and T is
found in d (jSj, jT j).

4 Approaches
There are a variety of ways to approach the problems addressed
in this research. We have classified these into two groups:
instance-specific and parameter-specific approaches.

An instance-specific approach requires that the design
incorporate the data for a particular instance of the
problem. Computing the solution for another instance of
the problem may require redesign and reprogramming of
the hardware, but the specificity of the solution may result
in quite significant speed advantages. In contrast to this, a
parameter-specific approach results in a solution that is
suitable for solving a variety of instances of the given
problem, provided that those instances fit within given
parameters. Parameters are usually variables such as limits
on the input length of the data.

Our solution to the edit-distance problem was best suited
to a parameter-specific approach, as is detailed in Section 4.3.
The computation of the autocorrelation transform was
implemented twice; once as a parameter-specific solution
and once as an instance-specific solution. These are
detailed in Sections 4.1 and 4.2. Section 5 provides some
experimental results, and Section 6 focuses on how each of
these approaches can be examined in terms of the trade-off
between added parallelism, with the accompanying
increased speed, and the overhead of the required increased
complexity that must support the additional parallel
processing capabilities.

In general, the design-flow used in this work consisted of
creating a VHDL or other hardware-language description
of the desired circuit, which was then processed by the
FPGA-design software to generate a configuration file.
Experiments on each problem were carried out to
determine the optimal CLB usage (maximise parallelism
and still place and route in the target device). Particular
differences in the design flow for each problem are
detailed in the subsequent sections.

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 249
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

4.1 Computation of the autocorrelation
coefficients
We first introduce a parameter-specific approach to the
computation of the autocorrelation coefficients. The algorithm
implemented here is based on the work discussed in [35].
The goal in this implementation was to design hardware that
allowed the computation to be carried out for any functions, as
long as the functions fit within certain parameters. In the case
of the autocorrelation function, the only parameter that limits
the circuit is the number of inputs to the function F.

Briefly, the process for computing B(u) is as follows: for
each cube in the disjoint cube list

† compute cube $ u

† search for the new cube or one containing it in the cube list

† if found add two to the sum register as the contribution to
the coefficient

Each function is previously expressed as a list of disjoint cubes
[35].

As indicated in the algorithm, this solution requires that
the function is described as a disjoint cube list [36].
Complete details for the algorithm are given in [35]. The
architecture for this solution is shown in Fig. 1.

Because this solution is based entirely on the algorithm
above, it could be described in entirety in the hardware-
design language. A preprocessing step of converting the
benchmark file to a disjoint cube list is, however, required for
this approach. This preprocessing was carried out in software
(the espresso software [37] with option Ddsjoint was used).

4.2 Another approach to computing the
autocorrelation coefficients
The second solution to the computation of the autocorrelation
function was to use an instance-specific approach. The

architecture shown in Fig. 2 was used in this solution. As
shown in Fig. 2, there are three main components: the
function component, calculator component and the
controller. The function components contain the function for
which the coefficients are to be computed. Two function
components are required, one for each function being
compared in the equation. The computation is carried out by
performing a comparison between the two functions stored in
the function components, thus a large portion of the circuit is
dedicated to representing these functions, and so the
representation choice is very important.

Binary decision diagrams (BDDs) represent a function’s
truth table by having a leaf node for every possible
combination of values that the input variables can hold.
Reduced-ordered binary decision diagrams, or ROBDDs
[38], are a canonical form of BDDs that attempt to reduce
the exponential size of BDDs by sharing similar parts of
the tree. In general, the term BDD is used to refer to a
ROBDD.

In this work, a BDD representation provides a fast and
compact implementation, since the BDD of the function
can be directly translated into a finite-state machine. It is
this portion of the design that makes this an instance-
specific solution, since the two function components are
designed specifically for the given function F and its
counterpart F (v$ u). The benchmark functions used for
our experiments are generally provided in a programmable
logic array (PLA) format. This format is similar to a sum-
of-products, and is supported by espresso [39]. This is used
to build a BDD that is then translated to VHDL.

The controller and calculator components do not need to
substantially change from instance to instance. The controller
component remains the same and simply has its output
directed to another set of function components. The
calculator component changes slightly since it must
accommodate for an additional term in the overall addition
step. Addition of the terms is performed in a pair-wise
fashion to diminish the penalty for highly parallel
architectures (i.e. eight terms requires seven additions
performed in three stages). As the output of the functions is a
single bit, the addition operation is rather insignificant to the

Figure 1 Architecture of the parameter-specific solution for
computing the autocorrelation coefficients

Figure 2 Architecture for instance-specific FPGA solution for
computing the autocorrelation coefficients

250 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

overall performance. This does, however, result in a small
latency increase in the calculator as parallelism is increased.

The underlying technique for this approach was also
introduced in [35].

4.3 Computation of the edit-distance
score
Computation of the edit-distance between two DNA
sequences was the second parameter-specific solution
investigated in this work. The algorithm used for this
problem is described in Section 2.

A naïve approach would be simply to construct the entire
two-dimensional matrix, based on this description. However,
if string S is length m and string T is length n, this would
require (mþ 1)& (nþ 1) processing elements, and is
impractical for most instances of the problem.
Optimisations suggested by Lipton and Lopresti [34] make
a two-channel, two-way systolic array, the most practical
solution, and it is such an architecture that is used in this
work. The processing element can now be reduced to

d (i, j) ¼
a if b ¼ a " 1 or c ¼ a " 1 or Si ¼ Tj

a2 if b ¼ c ¼ a þ 1 and Si = Tj

(

(3)

In this equation, we have

† a ¼ d (i " 1, j " 1),

† b ¼ d (i " 1, j), and

† c ¼ d (i, j " 1).

Details of the reduction to this simplified version are given
in [9].

The implementation consists of an array of processing
elements, an up/down counter and a controller, as shown
in Fig. 3. Each processing element computes the formula
given in Equation (3) and passes the result to its left and
right neighbours. Figure 4 illustrates how the elements of
the array communicate.

The design-flow used for generating FPGA configurations
for this solution is shown in Fig. 5. There are a number of
parameters that can be varied when applying this solution
to problem instances. In particular, it is common to have
strings of varying lengths, and also to require more than
two comparison strings. Thus, the design-flow incorporates
a template for a general solution to the problem. When the
parameters are known then a solution specific to those
inputs, but still applicable to general instances of data
within those parameters, can be generated and an FPGA
configuration file created.

5 Experimental results
Most of the tests reported here were carried out on a Pentium
4, 2.8 GHz, running Windows XP. The target device for
the edit-distance problem and the instance-specific
autocorrelation computation was the Xilinx Virtex-E 802e,
and the Xilinx Integrated Software Environment (ISE)
6.3i tool suite was used to generate designs and
simulate the solutions. However, for the parameter-specific
autocorrelation computation, a Xilinx Virtex 812E device
was targeted. The reason for this is that this chip was
packaged on a daughter-board with on-board RAM that
was utilised for extra storage in this solution. In this case,
the Xilinx ISE 5.2i tool-suite was used to generate the
designs, and the results for this solution were obtained by
execution on the targeted device.

Figure 3 Architecture used for computing the edit-distance
of two strings

Figure 4 Systolic array of processing elements used to compute the edit-distance of two strings S and T

Figure 5 Design-flow for generating FPGA configurations
for the edit-distance problem

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 251
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

We should note that some results are reported in terms of
‘slices’. The Xilinx XCV812E device contains 9408 slices,
each of which is approximately one-half of a CLB.

The benchmarks used for computation of the
autocorrelation function are taken from the MCNC 91
benchmark set [40]; for this work, only single-output
functions are considered.

5.1 Parameter-specific autocorrelation
computation
The parameter-specific solution to this problem allowed two
variations. One was in the number of bits for storage of each
cube in the listed used for comparisons. A smaller number of
bits limits the solution to work on functions with fewer input
variables, but a larger number of bits requires additional
computation space on the FPGA. The second variation
was in the number of coefficients to be computed in
parallel. As shown in Equation (1) the value u specifies

which particular coefficient is desired. This value can range
from 0 to 2n " 1. This solution assumes that all of these 2n

coefficients are required, and so attempts to compute
multiple coefficients in parallel. The modified architecture
is shown in Fig. 6. Table 2 contains information regarding
the resource usage for various configurations, and Table 3
shows the timing results from these tests. The clock speed
for all tests was 26 MHz. It should be noted that in
Table 3 the computations were repeated, as necessary,
until all 2n coefficients were computed, and the time for
computing all 2n coefficients is reported.

5.2 Instance-specific autocorrelation
computation
In each clock cycle, the hardware architecture used for this
solution (shown previously in Fig. 2) can compute only one
term of the 2n required for each coefficient. Replication of
the function components, as shown in Fig. 7, allows for
multiple terms to be computed in parallel. In general, the
experiments on this solution consisted of increasing the
number of function components by two until the design
could no longer fit into the FPGA. Table 4 gives results
for the optimal circuit for each of the benchmark test cases.
In every case, the fastest computation time was attained at
the highest level of parallelism that the Xilinx tools could
successfully place and route, even though this resulted in a
clock frequency of as low as 2 MHz. In Table 4, the first
three columns give the name of the benchmark, the
number of nodes that its BDD representation required and
the number of inputs. The optimal level of parallelism
achievable is linked to this. The column titled ‘max parallel’
refers to the maximum number of function components
that the tools could successfully design for, and the final
two columns provide statistics on the number of slices (of a
total of 9408 available) required.

There is one extra factor that must be considered with an
instance-specific solution, and that is the length of time
required to generate the bitstream for configuration of the

Table 2 Space usage of the Xilinx Virtex 812E chip for various scenarios of the parameter-specific
approach to the autocorrelation computation problem

Cube bits Parallel coeffs LUTs for logic LUTs for routing LUT usage (%) Slice usage (%)

32 64 13 933 891 78 95

26 64 12 696 696 71 84

21 64 11 722 502 62 75

15 64 10 554 307 57 65

10 64 9588 176 51 56

32 32 7412 477 41 51

10 32 5119 114 27 30

32 1 956 81 5 8

Figure 6 Modified architecture of the parameter-specific
solution for computing the autocorrelation coefficients

252 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

FPGA. In our experiments, this could take anywhere from
10 min to 24 h. This is clearly of a magnitude far larger
than we are considering for the run-time comparisons. This
certainly must be taken into consideration for solution
implementations that are only required to be calculated
once. For other problems, however, it is likely that a
solution may be used multiple times, thus leveraging
the high overhead of creating the instance-specific
implementation. It is worth noting that as techniques in
incremental synthesis are developed, the time required to
re-synthesise the circuit will certainly decrease [41].

5.3 Comparison to software
It is interesting to compare these results to those achieved in
software implementations. Table 5 gives the best times as

reported in [35] for software computation techniques, and
compares them to the best times as resulting from our two
hardware implementations.

Table 5 A comparison of the best computation times from
[35] to the FPGA solutions reported on in this work

Test case Software Param. specific Instance specific

9symml 39.82 0.2940 0.577

cm152a 18.62 0.2680 9.128

co14 117.0 0.2490 0.59322

ex10 0.64 0.2650 0.00298

ex20 0.64 0.2680 0.00298

ex30 0.64 0.2968 0.00299

life 11.38 0.2760 0.576

majority 0.64 0.2680 0.00298

max46 5.689 0.2750 0.597

mux01 .200 000 24.58 9941

ryy6 409.6 2.133 9.507

sym10 30.72 1.174 2.340

xor5 0.64 0.27 0.00298

All timings are reported in seconds for computation of 2n

coefficients
Figure 7 Enhanced architecture for the instance-specific
computation of the autocorrelation function

Table 3 Times (in s) to compute all 2n coefficients as
required by the parameter-specific autocorrelation solution

Test case 64 parallel No parallel

9symml 0.2940 1.0069

Cm152a 0.2680 0.3181

co14 0.2490 0.4480

ex10 0.2650 0.3024

ex20 0.2680 0.2934

ex30 0.3010 0.2968

Life 0.2760 0.6843

majority 0.2680 0.3102

max46 0.2750 0.3349

mux01 24.5830 309.2230

Ryy6 2.1330 32.8776

Sym10 1.1740 27.9384

xor5 0.2700 0.3058

Table 4 Test results showing the slice usage for the optimal
circuit for each benchmark, as generated by the instance-
specific autocorrelation solution

Test
case

No. of
BDD
nodes

No. of
inputs

Max.
parallel

No. of
slices

Slice
usage
(%)

ex10 6 5 252 9350 99.38

xor5 6 5 252 9350 99.38

majority 8 5 252 9372 99.62

ex30 10 5 252 9341 99.29

ex20 11 5 250 9391 99.82

cm152a 16 11 226 9385 99.76

ryy6 21 16 214 9308 98.94

9symml 25 9 212 8806 93.60

co14 27 14 214 9234 98.15

sym10 31 10 192 8600 91.41

mux01 33 21 190 9333 99.20

max46 75 9 158 8920 94.81

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 253
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

5.4 Edit-distance
To generate the results for the edit-distance solution we
assumed that there were 1000 target (T) strings to be
compared. The source and all target strings are of equal
length. The results shown in Table 6 were obtained from
both simulation and performance on the FPGA device.
The ‘Parallelism’ column refers to the number of systolic
arrays that are implemented, while the ‘length’ column
refers to the number of processing elements in each systolic
array. The values presented represent the largest
combination of parallelism and length that can ‘fit’ within
the target FPGA.

This computation in software, a C implementation
executing on a Pentium 2.8 GHz processor, requires
24 759 ms – significantly slower than the hardware
solutions presented. Faster hardware solutions exist, such as
Hookiegene [42], where further improvements are made to
the array of processing elements. These continuous
improvements focus on the individual processing elements
to obtain better performance.

6 Discussion
The problem in general is how to fit more parallel computing
elements for each problem into a limited amount of resources
while also taking into account the added complexity and
overhead of dealing with these additional processors, which
will require additional routing and more complex controller
components.

The structure employed in solving the edit-distance
problem lent itself to a very nice scalable architecture, since
communication resources were only required between
adjacent processing elements. This is clearly shown in
Fig. 4. To increase parallelism for this problem, it was
necessary to duplicate the entire array of processing
elements. Since these arrays tended to be fairly large, a
maximum number of arrays tended to be reached quite
quickly, and so the controller was required to control at
most 16 parallel components.

In contrast, for the instance-specific autocorrelation
computation, each and every processing element is required
to communicate with the controller. Thus, as we replicate
processing elements, the communications requirements
increase far faster.

An interesting problem to examine is that of test case ryy6
for the instance-specific solution to the autocorrelation
computation. Table 7 gives some of the results from this
test case. As expected, the addition of parallel components
increased congestion in the routing and complexity in the
controller, leading to a decreased clock frequency. In fact,
the clock speed decreases very quickly as we begin
increasing parallelism, while at the bottom of the table the
clock rate decreases much more slowly. With the increase
in parallelism, there is an increase in logic to process the
results from the parallel components. The increase in logic
for the calculator is insignificant. With the design described
in Section 2, each increase in parallelism results in one
additional adder. Fig. 8 shows how these rates compare.

Table 6 Test results from the optimal circuit for each case of parallelism for the
edit-distance problem

Parallelism Length No. of slices Slice usage (%) Max. freq. (MHz) Time (ms)

1 830 9378 99.68 79.789 41.584

2 420 9126 97.00 85.448 9.819

4 220 8993 95.59 80.593 2.723

6 140 8417 89.47 80.919 1.149

8 110 8812 93.66 80.593 0.679

10 90 9120 96.94 81.083 0.441

12 70 8456 89.88 82.590 0.281

13 60 8444 89.75 81.981 0.207

14 50 8005 85.09 85.266 0.145

18 50 9001 95.67 82.488 0.133

20 40 8884 94.43 97.305 0.0812

22 30 7541 80.16 102.722 0.0522

24 30 8204 87.20 101.937 0.0482

254 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

The same trend can be seen in the edit-distance circuit,
(Fig. 9). Despite this decrease in clock speed as the number
of parallel components were increased, we see in the timing
column of Table 7 that the increased parallel computation
power more than offsets the decrease in the clock speed,
and we achieve the best performance with the largest
amount of parallel function components that can be fit
onto the device. This result held consistently across all the
approaches examined in this work.

Parallelism in the parameter-specific autocorrelation
computation was achieved by replicating the components
that dealt with computing the exclusive or of a particular
cube with the current value for u, and then searching for
the result in the cube list. One of the variations tested in
this work was that of limiting the number of bits used
to store each cube. As indicated earlier, limiting this
value would reduce the size (in terms of number of
input variables) of the functions that could be worked
with, but gave interesting results, as shown in Table 8.
Additional code optimisations after these values were
obtained were able to improve the implementation to the
final version in which 32 bits were used to store the
cubes, 64 coefficients were computed in parallel and the
clock could be run at 26 MHz. The choice of computing
64 coefficients in parallel was made primarily due to
being able to maximise the physical resources of the chip
most effectively at this size, as is illustrated in Table 2.
As shown in Fig. 6, the main overhead in adding
parallel components lies in the need to route the cube
information to each computational and comparator
component. This is limited by our choice of 64
replications of these components.

One question to be asked is why the decrease in cube size
allows for a faster clock speed? We suspect that simply freeing
up the resources on the FPGA allowed for more or less
optimal routing strategies by the CAD tools, thus affecting
the clock speed as shown in Table 8.

Table 7 A selection of the CLB usage and timing results for
benchmark ryy6

Parallelism CLB usage (%) Max. freq. (MHz) Time (s)

2 2.56 75.483 56.90

30 14.84 23.856 12.00

60 28.55 12.317 11.62

90 42.66 8.973 10.64

120 55.84 6.954 10.31

150 69.56 5.728 10.00

180 84.03 4.957 9.63

200 93.05 4.512 9.52

214 98.94 4.222 9.51

Figure 8 Percentages of CLB usage, performance and clock speed in relation to the number of parallel function components
used for computing the ryy6 benchmark solution

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 255
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

7 Conclusions and future work
In this work we have suggested that there are two types of
solutions to problems to be solved in hardware: instance-
specific solutions and parameter-specific solutions. Within
these categories we have applied and investigated solutions to
two particular problems. In applying reconfigurable solutions
to these problems, we found in general that, as was expected,
as more components were added to the FPGA the clock
speed at which the FPGA was capable of processing
decreased. This is logical, since additional routing was
required to connect parallel components and the
component(s) managing them. In our opinions, the extra
hardware required for the managing component(s) was
negligible, and thus should not have contributed significantly
to the reduction in clock speed. We have theorised that the
major contributor to this decrease is the additional routing
and resulting congestion. Future work is needed to clarify

how these elements interact and contribute to the clock speed
reduction.

Despite this, the general result is that additional
parallelism generally resulted in faster overall computation
despite the slower clock speed – indicating that the
computation advantage in the parallelism outweighed the
disadvantage of slower communications and additional
overhead.

The three solutions that were examined exhibited varying
possibilities for parallelism. The edit distance problem
required minimal additional communications structures as
additional computing components were added, and the
parameter-specific autocorrelation solution behaved in a
similar manner. However, the instance-specific
autocorrelation solution addition of processing elements
required communication structures from each one of these to
the controller, and so the overhead of adding more elements
was higher than in the other two solutions. This overhead was
generally reflected in sharp decreases in the achievable clock
speed, which imposed a limit on the performance
improvements that could be attained by added parallelism.

Future work in this area includes the development of a
standardised technique for decomposing problems into sub-
problems that can be addressed in this manner, since such
success was achieved for these problems. An automated tool is
in development that assists with the configuring of a hardware
specification to determine the maximum parallelism while

Table 8 Achievable clock speeds for varying limits on cube
size for the parameter-specific autocorrelation solution

Cube size (bits) Clock speed (MHz)

10 35

15 27

21 22

32 15

Figure 9 Percentages of CLB usage, performance and clock speed in relation to the number of parallel function components
used for computing the edit-distance benchmark solution

256 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

fitting within the target FPGA resources. In addition, we hope
to build upon this success by applying our technique to other
problems that have not, in the past, been well suited to FPGA
speed-up such as those involved with database processing.

8 References

[1] HAUCK S., DEHON A.: ‘Reconfigurable computing: the
theory and practice of FPGA-based computation’ (Morgan
Kaufmann, 2007)

[2] KENT K.B., RICE J.E., VAN SCHAICK S., EVANS P.A.: ‘Hardware-
based implementation of the common approximate
substring algorithm’. Proc. Euromicro Symp. Digital Syst.
Design: Architectures, Methods and Tools (DSD),
2005, pp. 314–320

[3] YAMAGUCHI Y., MIYAJIMA Y., MARUYAMA T., KONAGAYA A.: ‘High
speed homology search using run-time reconfiguration’.
Proc. Field-Programmable Logic and Applications (FPL)
2002. Springer, Lecture Notes in Computer Science
(LNCS, 2438), pp. 281–291

[4] RITTER J., MOLITOR P.: ‘A partitioned wavelet-based
approach for image compression using FPGAs’. Proc. IEEE
2000 Custom Integrated Circuits Conf. (CICC), 2000,
pp. 547–550

[5] SUCHITRA S., LIM C.S., SRIKANTHAN T.: ‘Array based
architecture for EZW image encoding on FPGA using
Handel-C’. Conf. Record of the Thirty-Eighth Asilomar
Conf. Signals, Systems and Computers, 2004, vol. 1,
pp. 447–450

[6] SERRA M., KENT K.: ‘Using FPGAs to solve the hamiltonian
cycle problem’. Proc. Int. Symp. Circuits and Systems
(ISCAS’03), 25–28 May 2003, Bangkok, Thailand, IEEE
Press), pp. III–228–III–231

[7] SATO T., FUKASE M.: ‘Reconfigurable hardware
implementation of host-based IDS’. Proc. 9th Asia-Pacific
Conf. Commun. (APCC), 2003, vol. 2, pp. 849–853

[8] GALANIS M.D., KITSOS P., KOSTOPOULOS G., SKLAVOS N.,
KOUFOPAVLOU O., GOUTIS C.E.: ‘Comparison of the hardware
architectures and FPGA implementations of stream
ciphers’. Proc. 11th IEEE Int. Conf. on Electronics, Circuits
and Systems (ICECS), 2004, pp. 571–574

[9] KENT K.B., PROUDFOOT R.B., ZHAO Y.: ‘Optimizing the edit-
distance problem’. Proc. 17th Int. Workshop Rapid System
Prototyping (RSP), Chania, Crete, June 2006, pp. 14–16

[10] KENT K.B., RICE J.E., RONDA T., YONG Z.: ‘Instance-specific
versus parameter-specific circuit generation’. Proc. Int.
Conf. Eng. Reconfigurable Syst. Algorithms (ERSA), 2005,
pp. 243–246

[11] RICE J.E., KENT K.B.: ‘Systolic array techniques for
determining common approximate substrings’. Proc. Int.
Symp. Circuits and Systems (ISCAS), 2006 cdrom paper
1480.pdf

[12] ZHAO Y.: ‘Maximizing performance of configurable
hardware resources’, Master’s Thesis, University of New
Brunswick, 2006

[13] BANERJEE U., EIGENMANN R., NICOLAU A., PADUA D.: ‘Automatic
program parallelization’, Proc. IEEE, 1993, 181, (2),
pp. 211–243

[14] PANDA P., CATTHOOR F., DUTT N.D., ET AL.: ‘Data
and memory optimization techniques for embedded
systems’, ACM Trans. Des. Autom. Electron. Syst., 2001, 6,
(2), pp. 149–206

[15] PANDA P.R., DUTT N.D., NICOLAU A.: ‘Local memory
exploration and optimization in embedded systems’, IEEE
Transactions on Computer-Aided Des. Integr. Circuits Syst.,
1999, 18, (1), pp. 3–13

[16] ANDERSON M., AMARASINGHE S., LAM M.S.: ‘Data and
computation transformations for multiprocessors’, ACM
SIGPLAN Notices, 1995, 30, (8), pp. 166–178

[17] MANJIKIAN N., ABDELRAHMAN T.S.: ‘Fusion of loops for
parallelism and locality’, IEEE Trans. Parallel Distrib. Syst.,
1997, 8, (2), pp. 193–209

[18] RINARD M.: ‘Analysis of multithreaded programs’
(Spring Lecture Notes in Computer Science, Germany,
2001), vol. 2126, pp. 1–19

[19] JERRAYA A.A., YOO S., BAGHDADI A., LYONNARD D.:
‘Automatic generation of application-specific architectures
for heterogeneous multiprocessor system-on-chip’.
Proc. 38th Conf. Design Automation (DAC’01), 2001,
pp. 518–523

[20] JANTSCH A., TENHUNEN H.: ‘Networks on chip’ (Kluwer
Academic Publishers, 2003)

[21] SALDANA M., SHANNON L., CHOW P.: ‘The routability of
multiprocessor network topologies in FPGAs’. Proc. IEEE/
ACM Int. Workshop System-Level Interconnect, 2006,
pp. 49–56

[22] SALDANA M., SHANNON L., YUE J.S., BIAN S., CRAIG J., CHOW P.:
‘Routability of network topologies in FPGAs’, IEEE Trans.
Very Large Scale Integration (VLSI) Syst., 2007, 15, (8),
pp. 948–951

[23] MILDER P.A., FRANCHETTI F., HOE J.C., PUSCHEL M.: ‘FFT
Compiler: from math to efficient hardware HLDVT invited
short paper’. Proc. IEEE Int. High Level Design Validation
and Test Workshop (HLDVT), 2007, pp. 137–139

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258 257
doi: 10.1049/iet-cdt.2008.0042 & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

[24] MILDER P.A., AHMAD M., HOE J.C., PUSCHEL M.: ‘Fast and accurate
resource estimation of automatically generated custom DFT IP
cores’. Proc. Fourteenth ACM/SIGDA Int. Symp. Field
Programmable Gate Arrays (FPGA), 2006, pp. 211–220

[25] CONG J., MINKOVICH K.: ‘Optimality study of logic synthesis
for LUT-based FPGAs’. Proc. Fourteenth ACM/SIGDA Int.
Symp. on Field Programmable Gate Arrays (FPGA), 2006,
pp. 33–40

[26] CONG J., MINKOVICH K.: ‘Optimality study of logic synthesis
for LUT-based FPGAs’, IEEE Trans. Computer-Aided Des.
Integr. Circuits Syst., 2007, 26, (2), pp. 230–239

[27] CHEUNG R.C.C., BROWN A., LUK W., CHEUNG P.Y.K.: ‘A scalable
hardware architecture for prime number validation’. Proc.
2004 IEEE Int. Conf. Field-Program. Technol., 2004,
pp. 177–184

[28] KARPOVSKY M.: ‘Finite orthogonal series in the design of
digital devices’ (John Wiley & Sons, 1976)

[29] CROW J.E., MUZIO J.C., SERRA M.: ‘The use of autocorrelation
coefficients for variable ordering for ROBDDs’. Proc. 4th Int.
Workshop Appl. Reed-Muller Expansion in Circuit Design
(RM99), 1999, pp. 185–196

[30] RICE J.E.: ‘Autocorrelation coefficients in the
representation and classification of switching functions’.
PhD thesis, University of Victoria, 2003

[31] KENT K.B., RICE J.E.: ‘Using instance-specific circuits to
compute autocorrelation coefficients’. Proc. 1st Northeast
Workshop on Circuits and Systems (NEWCAS), Montreal,
Canada, 14–16 June 2003, pp. 61–64

[32] WAGNER R., FISCHER M.: ‘The string-to-string correction
problem’, J. ACM, 1974, 21, (1), pp. 168–173

[33] CHURCHILL D., GILLARD P., HAMILTONM., WAREHAM T.: ‘Prototyping
parallel sequence edit-distance algorithms in FPGA hardware’.
Proc. 14th Annual Newfoundland Electrical and Computer
Engineering Conference (NECEC), 2004

[34] LIPTON R.J., LOPRESTI D.: ‘A systolic array for rapid string
comparison’. Proc. Chapel Hill Conf. VLSI, 1985, pp. 363–376

[35] RICE J.E., MUZIO J.C.: ‘Methods for calculating
autocorrelation coefficients’. Proc. 4th Int. Workshop on
Boolean Problems, (IWSBP), 2000, pp. 69–76

[36] THORNTON M., SHIVAKUMARAIAH L.: ‘Computation of disjoint
cube representations using a maximal binate variable
heuristic’. Proc. IEEE Southeastern Symp. System Theory,
2002, pp. 417–421

[37] RUDELL, R.: ‘Espresso minimization tool man pages.’
http://www.fke.utm.my/downloads/espresso/espresso.1.html

[38] BRYANT R.: ‘Graph-based algorithms for boolean
function manipulation’, IEEE Trans. Compu., 1986, C–35,
(8), pp. 677–691

[39] RUDELL, R.: Tutorial on espresso, 2008. http://www.fke.
utm.my/downloads/espresso/espresso.5.html

[40] YANG, S.: ‘Logic synthesis and optimization benchmarks
user guide version 3.0’. Downloaded from http://www.cbl.
ncsu.edu/xBed/datasets/BCSP/LogSynth91/1991-IWLSUG-
Saeyang/1991-IWLSUG-Saeyang.pdf

[41] Xilinx Inc. Xst user guide, 2008

[42] PUTTEGOWDA K., WOREK W., PAPPAS N., DANDAPANI A., ATHANAS P.,
DICKERMAN A.: ‘A run-time reconfigurable system for gene-
sequence searching’. Proc. 16th Int. Conf. VLSI Design,
2003, p. 561

258 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 247–258
& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0042

www.ietdl.org

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 17, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

