
A Systolic Array Technique for Determining
Common Approximate Substrings

to be presented as ISCAS2006

Kenneth B. Kent
Faculty of Computer Science
University of New Brunswick

Fredericton, New Brunswick, Canada
Email: ken@unb.ca

Jacqueline E. Rice
Dept. of Math & Computer Science

University of Lethbridge
Alberta, Canada

Email: j.rice@uleth.ca

Abstract— A new technique that makes use of a systolic
array structure is proposed for solving the common approximate
substring (CAS) problem. This approach extends the technique
introduced in [1] from the computation of the edit-distance
between two strings to the more encompassing CAS problem.
The technique presented is validated and analyzed through
simulation.

I. INTRODUCTION

A known problem in bioinformatics is that of determining,
within two or more strings of DNA, a common approximate
substring (CAS) [2], [3]. Generally a search for a CAS is
successful if a similar pattern of symbols is found within all
of a given series of sequences, allowing a certain amount
of error. Previous work [4] has investigated the use of field
programmable gate array (FPGA) technology to combine the
flexibility of software and the acceleration of hardware in
finding a solution for the CAS problem.

A. Common Approximate Substring Matching

The problem we wish to solve is that of determining which,
if any, substrings within a given set of strings are common to
all of the strings in the set. The problem is made considerably
more complex by allowing the incorporation of an error factor
in the matching process. This is a technique used in DNA
sequencing, where the discovery of sequence homology to a
known protein or family of proteins may provide information
about the function of a newly sequenced gene [5]. The
discovery of homologous sequences and families begins with
the search for common motifs [5], [6].

In searching for common motifs the goal is to find similar
sequences of symbols, where the length of the sequence or
motif is a predefined value (m). The search space is a given
set of n DNA strings, or sequences, also of a defined length (l).
Finally, the allowable number of errors in the match between
a given motif and a substring within a DNA string is set at d.
In this work we limit the definition of an “error” to that of a
simple replacement of one symbol with another; shifts and/or
gaps in the sequence are not permitted. Figure 1 illustrates

how a motif of length 5 can be found within 4 DNA strings,
allowing an error of 1.

TGACTCGACC

TACTGCCTCG

CTGGCTAATA

ATTCCTGACT

Fig. 1. An example of common approximate substrings of length 5 with an
error of 1. Solution motifs for this example are: TGACT, TGCCT, TGGCT,
and TGACT.

B. Previous Work

Previous work in this area includes [7], [8], [9], [5], [10] and
[11]. Various approaches have been used, including dynamic
programming [11], approximation of optimal alignments [5],
the use of three-dimensional matrices [9] and the use of
reconfigurable hardware [7], [8]. The work presented in this
paper was motivated by [7] along with the desire to build a
more efficient data structure specific to this problem.

II. APPROACH

The first step in processing the strings from the database is
to preprocess the first search string. It is necessary to partition
the string into l − m + 1 motifs, and then for each motif
generate all possible motifs that are distance d errors from
the generating motif. These are then stored as a forest of
trees, where the forest represents all possible motifs for a
given generator. Sharing of trees is possible in a restricted
way. Entire paths from top node to leaf node can be shared,
and identical upper portions of paths can be shared; however,
unique paths must result in unique leaf nodes. An example is
shown in Figure 2.

A. Nodes

Each node in a tree has processing and storage capabilities.
The storage consists of the following:

• the character value of the node,



(A)
A

T

T

C

A C G T

G

T 
A

T

C

C

T

G

C

T

T

C

T

Level 1

Level 2

Level 3

(B)
C

C

T

T

A C G T

G

T 
A

T

A

T

T

G

T

T

T

T

T

Level 1

Level 2

Level 3

Fig. 2. An example illustrating how motifs ACT (A) and CTT (B) generate
two distinct forests when d = 1. The shaded areas indicate where full trees,
or complete branches of trees, can be shared.

• a bit vector whose length is equal to the level on which
the node resides, and

• a current piece of data. This may be a character or a
numeric value as alternated in the input stream. The
numeric value will never exceed 2 times the number of
levels in the trees.

The character value of the node is required for performing
comparisons with the characters that are streamed into the
nodes. The bit vector is required to record the number of
errors encountered at that node when performing comparisons;
however, the memory of the bit vector (i.e. the number of
errors to be remembered) is limited by the level in the tree at
which the node resides. Root, or top nodes are at level 1 while
the leaf or final nodes are at level m. The final piece of data is
either a character for comparison to the node’s own character
or a numeric value that is used for summing the errors that
have been encountered on the motifs’ travel down through the
levels of the tree.

Each node must be able to process either characters passed
into it or numbers. If a character is passed to a node then the
node must first perform a comparison of the given character
to the node’s own character. If their values match then a value
of 0 is shifted into the right end of the node’s bit vector. If
their values do not match then a value of 1 is shifted into the
bit vector. An example of this is shown in Figure 3 (A). If a

A01

T

A11 T

bit

vector

node

char

current

data

A11

0

A11 1

bit

vector

node

char

current

data

T

(A) (B)
Fig. 3. (A) An example of how a level 2 node processes a character when
the character does not match, and (B) an example of how the node processes
a number.

number is passed to a node then the node adds to it the value
of the leftmost bit in the node’s bit vector. An example of this
is shown in Figure 3 (B).

Most of the nodes in the system follow the requirements
as given above. However below the leaf nodes, at level m +
1, there must also be a special type of node called an exit
node. There is a one-to-one correspondence between each leaf
node (at level m) and each exit node. Exit nodes collect and
compare sums passed out of the above leaf nodes to d, and
record which strings have found the path represented by that
leaf node to be a potential CAS solution. If a sum value s is
less than or equal to d then we record in the exit node the
number of the string currently being processed in a bit vector.
The reason for this is that any leaf nodes that result in any
sums of d or less are satisfiable CAS solutions for the given
string. Leaf nodes that result in potential CAS solutions for
every string are verified CAS solutions for all strings. Once
all strings have been processed through the systolic system we
can determine which leaves are terminators for verified CAS
solutions by checking which exit nodes have recorded a ’1’
bit for all input strings. Figure 4 illustrates a path with its exit
node and the data currently stored in it.

A1

C00 1

bit

vector

node

char

current

data

T

T000 C

00011 2

Level 1

node

Level 2

node

Level 3

node

exit

node

data

d
string

list

current

sum

Fig. 4. An example of a path through a tree with its exit node recording the
value of d, the current sum, and the 4 input strings for which this path has
resulted in a potential CAS solution (currently just string 1).

For example, if we begin with the length 3 motif ACT
and allow 1 error then the clump of trees generated consists
of 3 levels, with 10 leaf nodes as shown in Figure 2 (A).
Figure 5 shows nodes on one path leading to a leaf node;
this path represents the generating motif ACT. If we now
begin processing an example string TCT then Figures 6 to
10 illustrate how the characters, alternating with digits, are
propagated through the system. This example assumes there
is only a total of 4 input strings.

0 A

bit

vector

node

char

current

data

0000 0

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

00 C

000 T

Fig. 5. The data initially stored in the tree nodes of a path representing motif
ACT.

The algorithm is as follows, assuming n strings of length l,
and that we are searching for CAS motifs of length m with d



1 A T

bit

vector

node

char

current

data

0000 0

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

00 C

000 T

T

1 A 3

bit

vector

node

char

current

data

0000 0

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C T

000 T

2

T

(A) (B)
Fig. 6. (A) The first character to compare with, T, is passed into the top
node. The characters do not match so a 1 is shifted into the bit vector. (B)
A 2 is next passed in; T moves to the next node and the value in the top bit
vector is added to the 2 passed in. A 2 is passed in because we do not yet
have a valid substring; until the length of the substring is >= m the sum
values passed in begin at value d + 1.

1 A C

bit

vector

node

char

current

data

0000 0

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C 3

000 T T

C

3

T

1 A 3

bit

vector

node

char

current

data

0000 -

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

10 C C

000 T 3

2

C

3

T

(C) (D)
Fig. 7. (C) The next character to compare with, C, is passed into the top
node. The currently stored 3 is passed to level 2, and the T from level 2 goes
to level 3; this is a match so a 0 goes into the level 3 bit vector. (D) A 2 is
next passed in, shuffling each of the pieces of data down to the next levels.

permitted errors.

1) Preprocessing Step:

with first DNA string
for i = 0 to l −m

for motif consisting of characters i to i + m− 1
generate all possible motifs at distance d
build tree consisting of those motifs

reduce nodes by merging trees with identical roots

2) Processing Step:

for j = 2 to n
for k = 0 to l

(1) input character k from string j
to the top node(s) of the tree array

pass currently stored data to
next node(s) down

(2) if tickcount ≤ m
set x = d + 1

else set x = 0
input x to the top node(s) of the tree array
pass currently stored character to
next node(s) down

for k = l to l + m
input - to top nodes

in order to propagate final
sums to exit nodes

determine which exit nodes are verified
CAS solutions

1 A T

bit

vector

node

char

current

data

0000 3

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

10 C 4

001 T C

T

3

C

3

1 A 1

bit

vector

node

char

current

data

0000 -

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C T

001 T 4

0

T

4

C

(E) (F)
Fig. 8. (E) The final character T is passed in, causing the 3, C, and 3 values
to move to the next levels down. The middle 3 becomes a 4 as we add the
leftmost bit ofof the bitvector at level 2. (F) A 0 is passed in to the top node.

1 A -

bit

vector

node

char

current

data

0000 4

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C 1

010 T T

--

1

T

4

1 A -

bit

vector

node

char

current

data

0000 -

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C -

010 T 1

--

-

1

T

(G) (H)
Fig. 9. In both (G) and (H) a - is passed in, in order to propagate the sum
value for the entire motif down to the exit node.

3) Node Functionality - Regular Nodes:

if character data passed in
if character matches node value
shift 0 into right end of
that node’s bit vector

otherwise
shift 1 into right end of
that node’s bit vector

if numeric data passed in
take the number passed in and add to it the
leftmost bit of that node’s bit vector

4) Node Functionality - Exit Nodes:

if numeric data passed in
if value is ≤ d

1 A -

bit

vector

node

char

current

data

0001 1

Level 1

node

Level 2

node

Level 3

node

exit

node

d
string

list

current

sum

1

01 C -

010 T -

--

-

-

1

(I)
Fig. 10. (I) The final data is passed in, and the sum for the motif TCT reaches
the exit node. The sum is equal to d indicating that TCT is a potential CAS
solution.



set bit j representing string j in the
node’s bit vector to ’1’

if bit vector is all ’1’s then output ’1’

III. DISCUSSION

There can be at most m levels in all trees, and at most
d∑

i=0

3i ·
(

m

i

)
.

leaf nodes in each forest. This is the exact number of motifs
generated for each group of m characters. For example, for
m = 10 and d = 2 this results in 436 possible motifs.

Regardless of the number of leaves, the processing of each
subsequent string is performed in constant time, requiring 2l+
m steps for each string. This allows each character to move
through the m levels of the forest as well as the intermediate
numeric values for summing the errors encountered.

The big issue for any implementation of this technique is
the memory limitations. Each regular node requires

• a maximum of m bits to store a bit vector,
• 2 bits for storing its character data, and
• memory for storing the data to be passed into the node.

If we allow 8 bits for the passed in data then the maximum
sum value is 255, which should be far greater than will ever
be requried (such a large value would mean that the motif
lengths are 255, which would likely far exceed the memory
capacity of any type of implementation). Exit nodes require

• a bit vector of length l to store the string list,
• memory for storing d and
• memory to store the data passed in as above.

It is likely that 4 bits would be sufficient to store d, as that
would allow a maximum value of 15.

This is clearly a design intended for hardware implementa-
tion, as each node will in effect behave as a separate processor
as the data is passed down through the structure on each clock
pulse. The most important aspects to such a design are the
node structure, as a great number of nodes are required, and
the implementation of sharing of nodes. Shared paths must be
identified in the preprocessing step, which would take place
in software. Once the hardware design is in place, however, it
would be possible to compare to any number and any size of
DNA strings desired. An area requiring some thought is that
of careful selection of the first DNA string, the string used to
generate the systolic array structure.

Initial implementation work targeting a Spartan 2E 200
FPGA found that a processor node implementation requires
8 CLBs and operates at 166.639 MHz. An exit node imple-
mentation requires 130 CLBs with a clock rate of 57.991 MHz.
A implementation of the forest illustrated in Figure 2 (A) (21
processing nodes and 10 exit nodes) resulted in 1452 CLBs
operating at 57.991 MHz. However, since the exit nodes are
only required to process every second input, the overall clock
speed can be increased through simple clock management. A
revised implementation of Figure 2 (A) using a clock divider
resulted in 1472 CLBs with a clock speed of 93.032 MHz.

IV. CONCLUSION AND FUTURE WORK

This paper presents a design for a systolic type of structure
intended for use in determining common approximate sub-
strings amongst many DNA strings in a search set. This design
is intended to use software for the preprocessing step, which
will then generate a hardware description for implementation
in a reconfigurable device. The implementation phase of this
work is not yet completed, although preliminary results for
each type of node are reported in Section III. The authors have
also been able to simulate an implementation for the forest of
nodes shown in Figure 2 (A), illustrating the feasibility of the
design. Work in this area is continuing, and will ultimately
result in a complete implementation which will be compared
to previous work such as [7]. Results obtained thus far by this
solution is positive.

There are some important differences between this and
previous work. Yamaguchi [8] et al. suggest the use of a
reconfigurable device in their solution; however they require
two reconfiguration phases in the solution for the edit-distance
calculation. Other work such as [7] and [9] require either
processing in multi directions or a back-tracking phase. In our
solution data progresses in one direction through the structure,
thus giving us a fixed and constant time for determining CAS
solutions.

This work was motivated by work presented in [7] and
continuing work in [1]. Finding an optimal structure in which
to represent a problem can often be the key to finding a good
solution, and the combination of concepts from each of these
works has resulted in such a solution for the CAS problem.

REFERENCES

[1] K. B. Kent, R. B. Proudfoot, and Y. Zhao, “Parameter-Specific FPGA
Implementation of Edit-Distance Calculation,” 2006, submitted to the
International Symposium on Circuits and Systems (ISCAS).

[2] A. D. Smith, “Common Approximate Substrings,” Ph.D. dissertation,
Faculty of Computer Science, University of New Brunswick, October
2003.

[3] P. A. Evans, A. D. Smith, and H. T. Wareham, “On the Complexity
of Finding Common Approximate Substrings,” Theoretical Computer
Science, pp. 407–430, 2003.

[4] K. B. Kent, J. E. Rice, S. V. Schaick, and P. A. Evans, “Hardware-Based
Implementation of the Common Approximate Substring Algorithm,” in
Proceedings of the Euromicro Symposium on Digital System Design:
Architectures, Methods and Tools (DSD), 2005, pp. 314–320.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” Jornal of Molecular Biology, pp.
403–410, Oct. 1990.

[6] P. Pevzner. and S.-H. Sze, “Combinatorial Approaches to Finding Subtle
Signals in DNA Sequences,” in Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology (ISMB), 2000,
pp. 269–278.

[7] K. B. Kent, J. E. Rice, S. V. Schaick, and P. A. Evans, “Hardware-Based
Implementation of the Common Approximate Substring Algorithm,” in
Proceedings of the Euromicro Symposium on Digital System Design:
Architectures, Methods and Tools (DSD), 2005, pp. 314–320.

[8] Y. Yamguchi, Y. Miyajima, T. Maruyama, and A. Konagaya, “High
Speed Homology Search Using Run-Time Reconfiguration,” in Pro-
ceedings of Field-Programmable Logic and Applications (FPL) 2002.
Springer Lecture Notes in Computer Science (LNCS), 2002, pp. 281–
291.

[9] H. Lee and F. Ercal, “RMESH Algorithms For Parallel String Matching,”
in Proceedings of the 3rd International Symposium on Parallel Architec
tures, Algorithms and Networks (I-SPAN’97), 1997, pp. 223–226.



[10] W. R. Pearson, “Flexible Sequence Similarity Searching With the
FASTA3 Program Package,” Methods in Molecular Biology, pp. 269–
278, 2000.

[11] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming,” in Proceedings of the
9th Combinatorial Pattern Matching Conference, Spring-Verlag LNCS
Series #1448, 1998, pp. 1–13.


