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Abstract

In recent years, reversible computing has established itself as a promising research area and

emerging technology. This is motivated by a widely supported prediction that conventional

computer hardware technologies will reach their limits in the near future. This thesis fo-

cuses on three important areas of reversible logic, which is an area of reversible computing.

Firstly, this thesis proposes a transformation based synthesis approach for realizing con-

servative reversible functions using SWAP and Fredkin gates. The proposed SWAP and

Fredkin gates approach is compared with NOT, CNOT and Toffoli gates approach. Exper-

imental results show that synthesizing conservative reversible functions using SWAP and

Fredkin gates is more efficient than comparable approaches using NOT, CNOT and Toffoli

gates.

Most existing synthesis approaches in reversible logic result in circuits that may not

be optimal in terms of cost metrics such as the gate count, the number of garbage lines

or the quantum cost. Hence, post synthesis optimization approaches are used to generate

simplified circuits. This thesis proposes ten templates for optimizing SWAP and Fredkin

gates-based reversible circuits. We have applied these templates in SWAP and Fredkin

gates-based circuits, and achieved (on average) a 16% reduction in quantum cost.

Secondly, this thesis proposes an approach for the design of online testable reversible

circuits. A reversible circuit composed of NOT, CNOT and Toffoli gates can be made online

testable by adding two sets of CNOT gates and a single parity line. The performance of the

proposed approach for detecting a single bit fault, a crosspoint fault and a family of missing

gate faults has been observed. Discussion around the correctness of our approach and its

overhead is also provided.
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DEDICATION

Thirdly, we have proposed an approach to achieve fault tolerance in reversible circuits.

A design of a 3-bit reversible majority voter circuit is presented. The proposed majority

voter circuit is simpler and of lower cost in terms of the gate count and the quantum cost

than existing designs in the literature. This voter circuit can be used to design fault tolerant

reversible circuits. We also provide designs for extending the voter circuit.
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Chapter 1

Introduction

We are living in an age where there is an ever growing dependency on digital devices. The

amount of information processed by digital devices continues to increases over time. In

order to process this increasing volume of information, the number of components fabri-

cated on integrated circuits of a digital device is also increasing over time. Over the past

few decades, the size of the components has been reduced in order to increase the density

of these components on integrated circuits. However, this pattern cannot continue forever

because the current technology is approaching the physical limits of computing [14].

Limitations of traditional computing, such as heat dissipation, can become an obstacle

for the further development of current technology [14, 15]. Logic in traditional computing

is irreversible. In most cases, bits of information are destroyed during the logical opera-

tions that are performed in traditional computing. One of the fundamental limitations of

traditional computing is that each time information is lost, energy is dissipated regardless

of the underlying technology. In 1961 R. Landauer showed that KT ln2 joules are dissipated

each time an information bit is lost during a logical operation, where K is Boltzmann’s con-

stant and T is the operating temperature in Kelvin [30]. At room temperature, the amount

of dissipated heat becomes 2.9× 10−21 joules. For instance, when a two-input AND gate

produces a single bit of output, this amount of energy is dissipated as heat. The amount of

generated heat may not seem significant at present. However, as Moore’s law [62], predict-

ing a doubling of components every few years, has held true over the last several decades,

this heat dissipation is becoming a major concern in traditional irreversible systems. Re-

1



1.1. OBJECTIVES

versible computing [15] offers a solution to this potential deadlock of further development

in traditional computing.

It was also shown by Charles Bennett that theoretical zero power dissipation can only

be achieved if the circuit is logically reversible [5]. Reversible computing is bijective, and

by definition reversible circuits are information-lossless [10]. Thus, by using reversible

computation, the power dissipation which results according to Landauer’s principle can be

decreased or even eliminated. For this reason, in recent years reversible computation has

established itself as a promising research area and emerging technology. Other reasons for

research into reversible systems include connections to quantum computing [21], and appli-

cations in cryptography [64], nano-computing technologies [40] and digital processing [51].

It is widely believed that the next generation computers will be quantum computers. Quan-

tum computations are reversible, and the circuits in quantum computing work on reversible

functions [51]. Therefore, research on reversible logic is inevitable from various points of

view.

1.1 Objectives

Most logic gates used in traditional computation are not reversible. In most cases, the

relationship between the input and the output of a traditional gate is many-to-one. For

example, an AND gate has two or more inputs and one output. However, the relationship

between the input and the output of a reversible gate is one-to-one. Over the past few

years, several reversible logic gates and synthesis methods have been proposed [11, 16, 37,

68]. However, analysing the logic gates and the synthesis approaches in order to optimize

reversible circuits is still an active area of research. We hypothesize that one particular

set of reversible gates can be more useful than another for realizing specific reversible

functions. One of the objectives of this thesis is to develop a synthesis approach for realizing

conservative reversible functions.

The number of gates of a circuit is considered an important complexity measure in tradi-

2



1.2. THESIS ORGANIZATION

tional computing. In addition to this measure, the quantum cost and the number of garbage

lines are two additional factors to consider in measuring the complexity of a reversible

circuit. Template matching and rule based simplifications are two commonly used post-

synthesis methods for optimizing reversible circuits. This thesis introduces new templates

for simplifying reversible circuits.

The testing of reversible circuits is another important area. The physical implementa-

tion of quantum circuits will be different than the implementations of traditional circuits.

Therefore, fault models designed for traditional circuits will not work for reversible circuits.

Proposing a cost-effective testing approach for reversible fault models is another objective

of this thesis.

Since a reversible circuit maintains a one-to-one relationship between inputs and out-

puts, achieving fault tolerance in such a system is not an easy task. A fault tolerant system

can correctly perform its specified operations even in the presence of faults. This thesis also

investigates the existing work on the design of fault tolerant reversible circuits and presents

an efficient approach for achieving fault tolerance in reversible circuits.

1.2 Thesis Organization

The remainder of this dissertation is organized as follows.

Chapter 2 provides a detailed introduction to reversible logic and presents the required

background knowledge necessary for this dissertation.

Chapter 3 discusses transformation based synthesis in reversible logic. A proposed

approach based on this technique is presented in this chapter. The performance of this

proposed approach is evaluated and compared with an existing approach. This chapter also

introduces templates and presents a post synthesis optimization approach for simplifying

reversible circuits.

Chapter 4 describes reversible fault models and fault testing approaches. The existing

testing approaches in reversible circuits are analysed and the limitations of these approaches

3



1.2. THESIS ORGANIZATION

are identified. A testing approach for three reversible fault models is proposed later in this

chapter.

Chapter 5 focuses on fault tolerance. The requirements for achieving fault tolerance in

reversible circuits are discussed in this chapter. A majority voter circuit is presented, which

can be used to design fault tolerant reversible circuits. An extension of this voter circuit and

other areas of application of the proposed voter are also discussed in this chapter.

Chapter 6 highlights the contributions, concludes with discussions and provides direc-

tions for possible future work.

4



Chapter 2

Background

This chapter describes the fundamental concepts of reversible logic as well as the principles

of synthesis, fault testing and fault tolerance in reversible logic.

2.1 Logic Computation

Logic plays a major role in modern day computation. Digital logic is a logic for repre-

senting and manipulating digital information. Logic in computer science deals with defin-

ing a problem in terms of Boolean functions, and designing a circuit in order to implement

the functions. Logic in today’s digital devices follows the principle of Boolean logic, which

is also known as classical or traditional logic. As discussed in Chapter 1, there exists limits

to the existing physical components of a digital system that implement traditional logic.

Reversible logic offers one possible model to design a digital system to overcome such

limitations.

2.1.1 Traditional Logic Computation

Like any other function, a traditional logic function maps one or more inputs to one or

more outputs. More specifically, a traditional logic function, f , takes the form f : Bn −→

Bm, where n and m are non-negative integers, and B = {0,1} is a Boolean domain. The

values of n and m may or may not be equal and in most cases n > m. For example, a simple

circuit consisting of only one AND gate has two (or more) inputs, but has only one output.

That is, logic computations in traditional approaches often map multiple inputs to fewer

outputs. A convenient way to represent the relationship between inputs and outputs is by

5



2.1. LOGIC COMPUTATION

using a truth table. A truth table shows all possible input and output combinations for a

specific logic function. A truth table for a Boolean logic function uses (n+m) columns and

2n rows to show the behaviour of a function for all possible input instances of the function

of n input and m output.

Table 2.1: Truth tables of traditional logic functions.

(a) NOT operation.

I O

0 1
1 0

(b) AND operation.

I1 I2 O

0 0 0
0 1 0
1 0 0
1 1 1

(c) Full adder operation.

I1 I2 cin sum cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

One of the simplest examples of a traditional logic function is a logical NOT operation,

which takes one input and generates one output, as shown in Table 2.1(a). Tables 2.1(b)

and 2.1(c) show functions for which the relationship between inputs and outputs is not

one-to-one. Hence, for these functions it is not possible to determine the input states by

observing only the output of a function. For example in Table 2.1(b), the output values are

0 for the input states (0,0),(0,1), and (1,0). By observing this output value, 0, it is not

possible to determine whether the input values are (0,0),(0,1), or (1,0). A similar obser-

vation can be made from the truth table shown in Table 2.1(c) and most other traditional or

classical logic functions. The relationship between inputs and outputs of a traditional func-

tion is not bijective (with the only exception being a NOT operation). This means that the

relationship between inputs and outputs of a traditional function is not one-to-one and onto.

Since bijective relationships between inputs and outputs do not exist for most traditional

functions, it is not possible to determine an input instance from an output instance of a tra-

ditional function. For this reason traditional logic is sometimes referred to as irreversible

6
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logic.

2.1.2 Reversible Logic Computation

A reversible logic function has the form f : Bn−→ Bn, where n is a non-negative integer

and the domain B = {0,1}, with the key feature being that the function is bijective. More

specifically, the number of inputs and the number of outputs of a reversible function are

exactly the same. In particular, there is always a distinct output state for each of the possible

input states.

Table 2.2: Truth tables of reversible logic functions.

(a) NOT operation.

I O

0 1
1 0

(b) Contolled NOT operation.

I1 I2 O1 O2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(c) Full adder operation.

gin cin i1 i2 cout sum gout1 gout2

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1

7
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The work in this thesis is restricted to Boolean reversible logic functions. For a Boolean

reversible function of n variables, a truth table requires 2n columns and 2n rows in order

to represent the function. Table 2.2(a) shows that a NOT operation in reversible logic has

the same functionality as that of a traditional NOT operation (Table 2.1(a)). In fact, a NOT

operation in traditional logic is reversible in nature. As long as there is a unique output for

each input instance of a function, the function is reversible (Table 2.2). This relationship

between the input and the output allows the determination of input values of a function from

the output values. In order to transform an irreversible function into a reversible one, it is

often necessary to include one or more extra variables on the output and/or input sides of a

truth table of the irreversible function. For example, the truth table of a reversible full adder

shown in Table 2.2(c) consists of extra variables on both the input and output as compared to

the truth table of its irreversible counterpart shown in Table 2.1(c). The additional inputs are

called constant inputs, or ancilla inputs. The additional outputs are non-functional outputs

because these are not the output of interest of the reversible function. In a full adder, sum

and carry are the two output bits of interest. In Table 2.2(c), two outputs, sum and cout ,

represent the sum and the carry bits of a full adder. The other two outputs, gout1 and gout2,

are used to maintain the bijective relationship between the inputs and the outputs of this

reversible full adder function. These non-functional outputs are known as garbage outputs,

as they do not contribute to the property of the original output of a function.

Two important properties of reversible functions are the parity preserving property and

the conservation property. A parity preserving reversible function, as the name suggests,

preserves the parity of the input vectors to the corresponding output vector. For example,

in a parity preserving reversible function, if the parity of an input vector is even, the par-

ity of the output vector will also be even. Every output vector of the function shown in

Table 2.3(a) preserves the parity (either odd or even) of the corresponding input vector.

Hence, the function shown in Table 2.3(a) is an example of a parity preserving function.

However, this function is not a conservative function. A reversible function is called a
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conservative function if and only if the number of 1s in the output vector is the same as

that of the corresponding input vector, for all inputs. The function shown in Table 2.3(b)

is an example of a conservative reversible function. Chapter 4 shows the role of the par-

ity preserving property in the fault detection and testing of reversible circuits. A synthesis

approach based on the conservation property is presented in Chapter 3.

Table 2.3: Parity preserving and conservative reversible functions.

(a) A parity preserving function.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 0 0

(b) A conservative function.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 1

2.2 Logic Gates and Circuits

A logic gate performs one or more logical operations in order to implement a logical

function. A circuit consists of one or more logic gates, which are connected by some form

of interconnected media (e.g. wire). This section describes some logic gates as well as

logic circuits in traditional and reversible logic computation.

2.2.1 Traditional Logic Gates

Several logic gates exist for designing circuits in traditional logic. The gates AND, OR

and NOT are the primary logic gates. Figure 2.1 shows both a NOT and an AND logic

gate. These two gates are used to implement the traditional NOT (Table 2.1(a)) and AND

(Table 2.1(b)) functions, respectively. A NOT gate works as an inverter, which always
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takes one input and produces one output after inverting the input value. An AND gate, on

the other hand, works on more than one input and produces a single output. A full adder

circuit, which consists of traditional logic gates, is shown in Figure 2.1(c), and implements

the function represented by Table 2.1(c). A traditional full adder circuit has three input lines

and two outputs lines to generate sum and carry bits.

(a) A traditional NOT gate. (b) A traditional AND gate.

S

Cout

A

B

Cin

(c) A traditional full adder circuit.

Figure 2.1: Some traditional circuits.

2.2.2 Reversible Logic Gates

A reversible circuit consists of one or more reversible gates that are connected in cas-

cade. That is, the output(s) of a prior gate is/are connected as input(s) to the following

gate. For example, consider a reversible circuit g2(g1(x1,x2)) where the outputs of a logic

gate g1 are connected as the inputs of the gate g2 in order to implement a 2-bit reversible

function, f (x1,x2). Like a reversible logic function, one of the fundamental characteristics

of a reversible gate is that the relationship between inputs and outputs is one-to-one. This

implies that the output values of a reversible gate are distinct for any given input. So unlike

a traditional irreversible gate, it is always possible to restore the input values of a reversible

gate from the outputs. A traditional NOT gate is also a reversible gate, since it is possible

10
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to deduce the input of a NOT gate from its output. For example, 1 at the output of a NOT

gate for a particular instance indicates that the input of that instance is 0.

A number of reversible gates exist in order to implement reversible functions. The two

most widely used categories of reversible logic gates are [71] : the NCT (NOT-CNOT-

Toffoli) gate family and the SF (SWAP-Fredkin) gate family.

NCT gate family

The NCT gate family (Figure 2.2) consists of NOT, CNOT and Toffoli gates. This is

one of the most widely used gate families in reversible computing. The simplest possible

reversible logic gate is a NOT gate. A NOT gate (Figure 2.2(a)), like a NOT gate in tra-

ditional logic, consists of one input and one output, which inverts the value of the input to

generate the output. A CNOT gate and a Toffoli gate are variations of a NOT gate.

A CNOT gate [12] is a controlled-NOT gate with a control input and a target input.

The value presented at the control point determines when to invert the value of the target

input, or simply transfers the target input value to the output. Figure 2.2(b) shows a CNOT

gate. The (•) symbol in the CNOT gate represents a control point and the (⊕) symbol

indicates the target of a reversible gate. When the value of the control of a CNOT gate is

1, the gate inverts the value of the input that is connected to the target line. If the value of

the control point is 0, the value of the target input remains unchanged to the target output.

For example, when the inputs of a CNOT(I1, I2) gate in Figure 2.2(b) are (1,0), the output

(O1,O2) will be (1,1 ⊕ 0) ≡ (1,1). Unlike a NOT gate, a CNOT gate can control the

inversion of an input value, hence its name is controlled-NOT or CNOT. A CNOT gate is

also known as Feynman gate. A variation of a Feynman gate is a double Feynman gate. A

double Feynman gate consists of one control point and two target lines. When the value of

the control point is 1, the double Feynman gate inverts both input values that are connected

to the target lines [53].

A Toffoli gate [68] is a form of the CNOT gate where the number of control points is
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I O = Ī

(a) A reversible NOT gate.

I1

I2

O1 = I1

O2 = I1 I2

(b) A CNOT gate.

O1 = I1

O2 = I2

O3 = I3 I1I2

I1

I2

I3

(c) A 3×3 Toffoli gate.

I1

I2

I3

In-1

In

O1 = I1

O2 = I2

O3 = I3

On-1 = In-1

On = In Ī1I2Ī3....In-1

(d) A n×n Toffoli gate with multiple and negative
control.

Figure 2.2: Some reversible gates of NCT gate family.

more than 1. For example, Figure 2.2(c) shows a 3×3 Toffoli gate with two control points

and one target line. The two input lines, I1 and I2, are connected to the two control points

and the third input I3 is connected to the target line. The values of the inputs, which are

connected to the control lines, remain unchanged at the output. The values presented at the

input of these control lines determine when the gate will invert the value presented at the

target input line. The target line in Figure 2.2(c) has the function: O3 = I3⊕I1I2. This means

the value of the target line will be inverted when both inputs that are connected to the control

points have the value 1. For example, when (I1, I2, I3) ≡ (0,1,1), the output of the Toffoli

gate will be (O1,O2,O3)≡ (0,1,1). In this case there is no change on the value of the target

input, since one of the control points (I1) is equal to 0. However, when (I1, I2, I3)≡ (1,1,1)

the gate output will be (O1,O2,O3)≡ (1,1,1⊕1 ·1)≡ (1,1,1⊕1)≡ (1,1,0). In this case

both control points have the value 1, which is the required condition for inverting the input

values at the output. The truth table of a 3×3 Toffoli gate is shown in Table 2.4.

Based on the number k of control points of a gate, a logic gate in the NCT family is also

referred to as a k-CNOT gate. For example, based on the number of control lines the NOT,

CNOT and 3× 3 Toffoli gates are also known as 0-CNOT, 1-CNOT and 2-CNOT gates

respectively. A Toffoli gate with multiple controls is referred to as a multiple controlled

Toffoli (MCT) gate. In addition, a Toffoli gate or a Feynman gate can have one or more
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Table 2.4: Truth table of a 3×3 Toffoli Gate.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

negative control points. For example, a negative control Feynman (1-CNOT) gate inverts

the input value at the target line if and only if the value of the control point is 0. A negative

control is represented by a (◦) symbol in the NCT gate library. For example, Figure 2.2(d)

shows a multiple controlled Toffoli gate where two input lines I1 and I3 are connected to the

two negative control lines. A negative control, like a positive control of a logic gate, does

not affect the value on the line to which it is connected. The output function of the target

of a n×n-Toffoli gate, as shown in Figure 2.2(d), is On = In⊕ I1I2 I3In−1. This means that

when the values of all negative control points are 0, and the values of all positive control

points are 1, the gate will invert the value that is connected to its target input.

Another common way to represent the gates of the NCT family is in the form of Toffoli

gates. A TOF(C;T) notation is used to indicate a Toffoli gate with C control points and T

target lines. For instance, TOF(0;T), TOF(1;T) and TOF(2;T) represent a NOT, a CNOT

and a 3×3 Toffoli gates, respectively. An important property of a Toffoli gate is that it can

be used to implement any reversible function. For this reason, a Toffoli gate is known as a

universal gate in reversible logic [52].

SF Gate Family

Two other important reversible logic gates are SWAP and Fredkin gates. A Fredkin gate

[16] is a variation of SWAP gate with one or more control points. A Fredkin gate is also a
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universal gate in reversible logic, since it is possible to implement the three basic operations

(NOT, AND and OR) using only Fredkin gates [52]. As discussed above, the logic gates in

the NCT gate family invert the value of the target input based on certain conditions (in the

case of CNOT, Toffoli gates) or without any condition (in the case of NOT gates). Instead

of inverting the input value on a target line, the target lines of an SF gate interchange

their values. Generally, a gate of the SF gate family has two target lines. When a gate

interchanges the values of the target lines at the output without any condition, the gate is

called a SWAP gate. However, if the swap or interchange of the target values occurs based

on the values presented on the control lines, the gate is called a Fredkin gate. The truth table

of a 3×3 positive controlled Fredkin gate is shown in Table 2.5. Figures 2.3(a) and 2.3(b)

Table 2.5: Truth table of a 3×3 positive controlled Fredkin gate.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

show a SWAP gate and a 3× 3 positive controlled Fredkin gate respectively. A SWAP

gate always swap the values which are connected to its targets lines. For an input vector

(I1, I2), the output of the SWAP gate will be (O1 = I2,O2 = I1), as shown in Figure 2.3(a).

However, a positive controlled Fredkin gate interchanges two target input values (I2, I3) if

the value of the other input, I1, which is connected to a control line (•), is 1. If the value

of I1 equals to 0, the Fredkin gate simply transfers all the input values to the corresponding

output values without interchanging the target values. A 3× 3 positive controlled Fredkin

gate with a control point connected to I1, and two target lines, I2 and I3, has the following

output functions at
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1. control point: O1 = I1

2. target line: O2 = I1I2⊕ I1I3, and

3. target line: O3 = I1I2⊕ I1I3.

I1

I2

O1 = I2

O2 = I1

(a) A SWAP gate.

I1

I2

I3

1 (0)

I3 (I2)

I2 (I3)

(b) A (3×3) positive controlled Fredkin gate.

I1

I2

I3

0 (1)

I3 (I2)

I2 (I3)

(c) A (3×3) negative controlled Fredkin gate.

I1

I2

I3

I4

O1 = I1

O2 = I2

O3 = I4

O4 = I3

If I1 = 0,
and I2 = 1

(d) A (n×n) multiple controlled Fredkin gate.

Figure 2.3: Some reversible logic gates of the SF gate family.

When a Fredkin gate consists of more than one control point, the Fredkin gate is called

a multiple controlled Fredkin (MCF) gate. Like a Toffoli gate, a Fredkin gate can also

have one or more negative controls (Figure 2.3(c)). In this case the gate swaps the values

connected to the target lines if and only if a 0 value is presented at the negative control

point. Figure 2.3(d) shows an example of a multiple controlled Fredkin gate consisting of

both positive and negative control points. In this case a 1 at the positive control and a 0 at

the negative control point activate the gate to interchange the values on the target lines.

One or more reversible gates can be used to generate a circuit in order to implement a

reversible function. For example, consider a reversible function f (I1, I2, I3)≡ (O1,O2,O3)

where (O1,O2,O3) are defined as (I1, I1⊕ I2,(I1⊕ I1I2)⊕ I3) respectively. These three out-

put functions can be implemented by the circuit TOF(TOF(TOF(I1); I2); I3) consisting of

three reversible gates as shown in Figure 2.4. As seen in this example the outputs of one
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gate gi are connected as the inputs for the gate gi+1 which appears immediately next to gi

in the circuit. The output of the NOT gate, TOF(I1), is I1 which is connected as an in-

put of the following CNOT gate. This then computes TOF(TOF(I1); I2) = TOF(I1; I2) =

(I1, I1⊕ I2). Finally, the outputs of this CNOT gate are connected as the inputs of the 3-

bit Toffoli gate, which computes TOF(TOF(TOF(I1); I2); I3) = TOF(TOF( I1; I2); I3) =

TOF(I1, I1⊕ I2; I3) = (I1, I1⊕ I2, I1 · (I1⊕ I2)⊕ I3) = (I1, I1⊕ I2, I1⊕ I1 · I2⊕ I3).

O1

O2

O3

I1

I2

I3

Figure 2.4: A reversible circuit consisting of three gates.

2.3 Synthesis Approaches in Reversible Logic

The concept of synthesis is very important in designing reversible logic circuits. Syn-

thesis refers to the transformation of a logic function into a corresponding logic circuit.

According to some synthesis approaches, if a logic function is irreversible, the first step of

a logic synthesis is to transform the function into its reversible equivalent. One or more

garbage lines and/or constant inputs are included in the original irreversible function in or-

der to make the function reversible. The final step is to transform the reversible function

into a logic circuit consisting of one or more reversible gates which are connected in cas-

cade. The resulting circuit is a reversible circuit. There can be more than one reversible

circuit for implementing a single function. Two important factors play a significant role in

transforming irreversible functions into reversible circuits: (1) the number of garbage lines

and/or constant inputs, which are included in order to transform the irreversible function to

a reversible one; and (2) the use of different reversible logic gates for realizing the reversible

function by a reversible circuit.
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During the process of transforming an irreversible function into the corresponding re-

versible function, it is necessary to observe the output of the irreversible function. If the

output of an irreversible function has a maximum number of k identical patterns, the mini-

mum number of garbage lines required to make the function reversible is dlog2ke [35]. For

instance, consider the irreversible AND function in Table 2.6(a). The output of this irre-

versible function has 3 occurrences of logic 0. Thus the minimum number of garbage lines

required in order to transform the function into its reversible counterpart is dlog23e= 2 as

shown in Table 2.6(b). For the input line, I3 = 0 in Table 2.6(b), the function performs the

AND operation of input lines, I1 and I2, and generates the output at O3. The other two

output lines, O1 and O2, do not contribute to the final output, and hence these two lines are

considered garbage lines. An important fact to observe is that the behaviour of the function

in Table 2.6(b) is the same as the behaviour of a 3×3-Toffoli gate (Table 2.2(c)). Thus, a

2-input traditional AND operation can be implemented by a 3× 3-Toffoli gate, as shown

in Figure 2.5. Chapter 3 covers more regarding synthesis and post synthesis approaches in

reversible logic.

Table 2.6: Transformation of an irreversible function to a reversible one.

(a) Irreversible AND
function.

input output
I1 I2 O

0 0 0
0 1 0
1 0 0
1 1 1

(b) One possible corresponding
reversible AND function.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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(AND operation)

ga
rb

ag
e

ou
tp

ut
sO1 = I1

O2 = I2

O3 = I1 I2

I1

I2

constant 0
input

Figure 2.5: A 3×3-Toffoli gate operating as an AND gate.

2.4 Cost Metrics in Reversible Logic

Since a reversible function can be synthesized in multiple ways, it is necessary to eval-

uate the cost of the synthesis approaches. A number of metrics can be used to evaluate the

efficiency of circuits for realizing the same reversible function [45]. Gate count is one of

the most common cost metrics, particularly in traditional logic design. As the name sug-

gests, gate count refers to the number of gates required in a circuit to realize a function. For

example, one Toffoli gate is used to implement the AND operation, as shown in Figure 2.5.

In this case the gate count is 1. However, gate count is not a useful parameter when the

circuits consist of different types of gates. Gate count does not consider gate complexity;

it instead simply counts the number of gates in a circuit. Gate count can be a good eval-

uator when two circuits consist of gates of the same size and complexity. Mohammadi et

al. [45] proposed a new form of gate count by giving some weight to the gates based on the

complexity of the gates of a circuit.

The number of garbage outputs in a circuit is another important cost metric. During

the synthesis process in reversible logic, one or more garbage outputs may be needed for

maintaining reversibility. The values of the garbage lines are not significant to the final

output of a circuit. Therefore, it is desirable to minimize the number of garbage outputs. A

circuit design with fewer garbage lines is considered a desirable design.

For many, quantum cost is the most important parameter for evaluating a reversible cir-

cuit from a design standpoint. Quantum cost is defined as the number of basic or primitive

quantum gates which are required to design a reversible gate. The 1× 1 and 2× 2 quan-
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Table 2.7: Quantum cost of n×n Toffoli gates.

Size (n) Garbage Name Quantum Cost

1 0 NOT,t1 1
2 0 CNOT,t2 1
3 0 Toffoli,t3 5
4 0 Toffoli,t4 13
5 0 t5 29
5 2 t5 26
6 0 t6 61
6 1 t6 52
6 3 t6 38
7 0 t7 125
7 1 t7 80
7 4 t7 50
8 0 t8 253
8 1 t8 100
8 5 t8 62
9 0 t9 509
9 1 t9 128
9 6 t9 74

10 0 t10 1021
10 1 t10 152
10 7 t10 86

n > 10 0 tn 2n−3
n > 10 1 tn 24n−88
n > 10 n−3 tn 12n−34

tum gates are considered primitive quantum gates. For example, quantum NOT, CNOT, V

and V+ gates are considered primitive quantum gates, and the quantum cost of these gates

is considered to be 1. The quantum cost of a Toffoli gate and a Fredkin gate is 5, since

five primitive gates are required for designing these gates. Barenco et al. [4] showed a

realization of a 3× 3 Toffoli gate consisting of 2 positive control points using five primi-

tive quantum gates. Smolin and DiVincenzo [66] presented an implementation of a 3× 3

positive-controlled Fredkin gate using five 2-qubit (quantum bit) elementary quantum gates.

Quantum compuation and quantum gates are beyond the scope of this thesis. A detailed

discussion on quantum gates can be found in [4, 43, 51]. In addition, there have been a
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number of works such as [2, 4, 34, 35, 39, 33, 58] on minimizing the quantum cost for

designing a reversible circuit. Table 2.7 shows the quantum cost of positive control Toffoli

gates [71].

Table 2.8: A 3-bit reversible function.

input output
I1 I2 I3 O1 O2 O3

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 1 1 1

Another important factor to consider when designing reversible circuits is to minimize

the number of garbage outputs. However, there are some cases where the quantum cost of

a circuit can be reduced by adding garbage lines [33]. For example, as seen from Table 2.7,

the quantum cost of a 6×6 Toffoli gate without including any extra line as a garbage line is

61. However, after adding 1 and 3 lines as garbage lines the quantum cost of a 6×6 Toffoli

gate can be reduced to 52 and 38 respectively. Therefore, a large number of garbage lines

does not always yield a higher quantum cost.

I1

I2

I3

O1

O2

O3

(a)

I1

I2

I3

O1

O2

O3

(b)

Figure 2.6: Two different realizations of the same function using the SF gate family.

Similarly a higher gate count for a circuit does not necessarily mean a higher quan-

tum cost. Consider the 3× 3 reversible function shown in Table 2.8. Figure 2.6 shows
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two different implementations of this function using only SWAP and Fredkin gates. Both

implementations have a gate count of 3. The realization in Figure 2.6(a) uses two negative-

controlled Fredkin gates and one positive-controlled Fredkin gate. The quantum cost of the

first implementation is (5+5+5) = 15. The circuit in the second implementation, shown

in Figure 2.6(b), uses two SWAP gates and one 3×3 positive-controlled Fredkin gate. Here

the quantum cost is (3+ 3+ 5) = 11. Both circuits consist of 3 logic gates; however, the

second circuit offers a more efficient circuit design, from the perspective of the quantum

cost, than the first circuit.

2.5 Faults and Fault Testing in Reversible Logic

A fault leads to a failure of a system. A fault can be defined as an imperfection within

some hardware and/or software components. Therefore, a fault leads the system to produce

an incorrect output. This incorrect output is known as an error, which is a deviation from

the accurate outcome [26]. Faults are the unwanted events for a system and, therefore, must

be detected and removed.

A fault model is a model that considers the potential faults which may occur in a sys-

tem [59]. An ideal fault detection method can detect all the faults of a particular fault model.

A common fault model in traditional logic is the stuck-at fault model. Sometimes a wire

can pass only high or low voltage signals due to the malfunction of some part of a circuit.

That is, a path of a circuit is “stuck at” a particular voltage level. When a line of a circuit

passes only high voltage due to the occurrence of a fault, the fault is considered to be a

stuck-at 1 fault. When a line of a circuit passes only low voltage, the fault is considered

to be a stuck-at 0 fault. As a consequence the circuit generates an incorrect output. For

example, if a line is broken, it is considered open and the output of that line will always be

0. The fault in this situation is refered to be stuck-at 0. However, research suggests that the

stuck-at fault model is not an appropriate fault model in reversible computing [20, 73]. A

number of fault models for reversible logic have been proposed [20, 56, 73].
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A method of testing is required in order to identify the occurrence of a fault in a circuit.

Testing indicates whether a system is faulty or fault-free. Fault coverage is an important

concept in testing which relates fault models to testing strategies. Fault coverage is a ratio

of the number of faults detected by a testing method to the total number of detectable faults

for a given fault model. Methods of testing in reversible computation are divided into two

categories: offline testing and online testing [59]. Each has its own benefits and drawbacks.

Online testing approaches apply the testing operations in real time. That is, online testing

methods determine whether the output of a system is correct or incorrect while the system

is performing its normal operations. However, this is not the case for an offline testing

method. In offline testing, the system under consideration is taken out of its normal mode

of operation, and then the method of testing is applied. Fault models and testing approaches

in reversible logic are described in detail in Chapter 4 of this thesis.

2.6 Fault Tolerance in Reversible Logic

The difference between fault testing and fault tolerance is that fault testing is a process

of error identification whereas fault tolerance is a process of error correction. Fault toler-

ance is an attribute that enables a system to generate correct output even in the presence of

faults in the system. One or more techniques may be required in order to achieve fault toler-

ance. These may include fault detection, fault diagnosis, fault containment, fault recovery

and fault masking. Each of these techniques requires additional logical or physical compo-

nents of the system such as hardware, software and/or information [26]. For example, one

way to achieve fault tolerance in a system is to replicate one or more physical components

of the system. The techniques and approaches that can be used to achieve fault tolerance in

reversible circuits are described in Chapter 5.
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Chapter 3

Synthesis and Post-Synthesis

This chapter begins with providing the basic concepts of synthesis in reversible logic. A

transformation-based synthesis is proposed in this chapter. This chapter also introduces

templates for optimizing reversible circuits. Experimental results that evaluate the proposed

templates are provided at the end of the chapter.

3.1 Logic Synthesis in Reversible Logic

Logic synthesis is the process of generating a circuit design, described as a cascade of

gates, that can implement the desired logic function. The relationship between the inputs

and the outputs of a logic function determines the number of the logic gates, type of logic

gates used, and the order in which the logic gates appear in the circuit. If a logic function

is already reversible, the synthesis process can take place immediately. However, if a logic

function is not reversible, the first step in most synthesis algorithms is to transform the irre-

versible function into a reversible one. One or more garbage outputs and/or constant inputs

are added to an irreversible function in order to transform the irreversible logic function

into a reversible logic function. Section 2.3 in Chapter 2 shows an example of transforming

an irreversible AND function into a reversible function. In most cases, a reversible circuit

design with fewer garbage outputs and/or constant inputs is considered a desirable design.

The minimum number of garbage outputs which are required in order to transform an irre-

versible function into a reversible function is dlog2Ke, where K is the maximum number of

a repeated pattern in the output of an irreversible function [35].
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A number of logic synthesis techniques in reversible logic have been proposed as de-

scribed in [60]. In this work we focus on transformation based logic synthesis.

3.1.1 The Transformation Based Synthesis Approach [41]

A transformation based approach takes as its input a truth table of a reversible function,

and applies reversible logic operations to transform the function into an identity function.

The gates which perform these logic operations during the tranformation constitute the

circuit that implements the input reversible function. The gates appear in the circuit in

the same order in which the logical operations are performed during transformation. Be-

fore the synthesis takes place if a function is not reversible, the first step is to transform

the irreversible function into a reversible function. Works such as proposed by Maslov et

al. [35] and Miller et al. [42] describe techniques for this. One of the major advantages of a

transformation-based synthesis approach is that the process of generating circuits based on

this approach does not create any garbage output or constant input lines. Thus, in terms of

the number of inputs and outputs lines, the size of the circuit generated by a transformation

based synthesis is minimal.

The transformation based synthesis algorithm was proposed by Miller et al. [41]. The

authors demonstrated two variations: a basic algorithm and a bidirectional algorithm, both

based on the NCT gate library. In the basic algorithm, the reversible logic operations are

applied to the output of the function’s truth table. We assume that we are applying the

algorithm to a reversible function of n variables. The objective is to make f (i) = i, for i = 0

to 2n− 1, where i is the i-th row of a reversible function, f . The following is the basis of

the transformation based logic synthesis approach (from [41]):

Step 0: If f (0) = 0, no transformation is required and go to step 1. Otherwise, if

f (0) 6= 0, apply one or more (1× 1) Toffoli gates (i.e. NOT gates) in order to achieve

f (0) = 0. After applying the NOT gate(s), the value 000 will be at the top row of the output

truth table, as shown in Table 3.1.
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Step 1: Repeat for i = 1 to 2n−1: If f (i) = i, no transformation is required. If f (i) 6= i,

apply the smallest (k× k) Toffoli gate, k = 2 to n in order to make f (i) = i. One or more

gates may be required in order to achieve f (i) = i.

The choice of a gate during each step of the transformation is crucial in order to maintain

convergence. The gate in one step of transformation must not change the bits of the previous

steps. Consider the (3× 3) reversible function shown in Table 3.1. The transformation

based synthesis transforms this function to an identity function.

Table 3.1: Truth table of a (3×3) reversible function.

input output
ai bi ci ao bo co

(0) 0 0 0 0 0 0 (0)
(1) 0 0 1 1 0 0 (4)
(2) 0 1 0 0 0 1 (1)
(3) 0 1 1 0 1 1 (3)
(4) 1 0 0 0 1 0 (2)
(5) 1 0 1 1 0 1 (5)
(6) 1 1 0 1 1 0 (6)
(7) 1 1 1 1 1 1 (7)

Table 3.2 shows the entire transformation process. Recall that the basic algorithm works

on the outputs of the function. The goal is to ensure that for each i, we map f (i)−→ i, for

i= 0 to (2n−1) where n is the number of bits. At each stage, if a transformation is required,

it is necessary to apply one or more logic gates in order to map f (i)−→ i. The bottom row

of each column in Table 3.2 indicates the logic gate which is applied at the corresponding

stage of transformation. Applying a gate to the function of one stage generates the value

used for the next stage. Note that the notation T (a;b) indicates a 1-CNOT gate with a

control on line ‘a’ and a target on line ‘b’. Similarly T (a,b;c) indicates a (3× 3) Toffoli

gate, where the target is on the line ‘c’ and the controls of the gate are on input lines ‘a’ and

‘b’. Applying the transformation based approach to the function shown in Table 3.1 takes

place as follows:

Step 0: As shown in Table 3.2, the value at the first row of the output is a0b0c0 = 000,
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which is already in its proper position (0-th position). Hence, no transformation is required

for the first row.

Step 1: For the next row of the truth table, we need to map f (100)−→ 001. Applying

two NOT gates in the a-th and c-th positions in order to transform (a,b,c)≡ 100 to 001 does

not work in this case, because the use of NOT gates would also invert the value of the first

row of the truth table, which is not permitted. In this case two stages are required in order to

achieve the desired transformation. A CNOT gate T (a;c) can be applied, which transforms

100 to 101. Another CNOT gate T (c;a) is required to apply in order to transform 101 to

001. Stages (i) and (ii) in Table 3.2 illustrate this step.

Step 2: The next required mapping is f (101) −→ 010. We need three CNOT gates

T (a;c), T (a;b) and T (b;a) in order to map 101 to 010. As we see from stages (iii), (iv)

and (v), the three CNOT gates convert 101 to 010. Again, these three CNOT gates do not

alter any of the previous rows of the truth table. However, the bits in the rows which are

below the third row are changed.

Step 3: In this step we have 100 in the fourth row of the truth table in place of 011.

Thus, the required mapping in this step is f (100)−→ 011. As similar to the previous step,

this step also requires three stages of transformation in order to map f (100)−→ 011. The

sequence of T (a;c), T (a;b) and T (b,c;a) is used to transfer 100 into 011.

Step 4: At this step the fifth row of the truth table has a value of 101. The required

mapping at his stage is f (101) −→ 100. A single gate T (a;c) can be applied to perform

this mapping, as we see from stage (ix) of Table 3.2.

Step 5: The required mapping at this step is f (110) −→ 101. We need to apply two

(3×3) Toffoli gates T (a,b;c) and T (a,c;b) in order to map 110 into 101.

Step 6: At this step the values of the last two rows must be exchanged. We need to map

f (111)−→ 110. A single (3×3) Toffoli gate T (a,b;c) transforms the bits in the required

places. At the end of this step, as shown in Table 3.2, for every possible i, the relationship

f (i)−→ i holds and the transformation process terminates its execution.
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Table 3.2: Transformation stages of the function from Table 3.1.

(a)
(Step 0) (Step 1) (Step 2)

output (i) (ii) (iii) (iv) (v) (vi)
a0 b0 c0 a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4 a5 b5 c5 a6 b6 c6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0
0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0
1 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1
1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1

No Transformation T(a;c) T(c;a) T(a;c) T(a;b) T(b;a)

(b)
(Step 3) (Step 4) (Step 5) (Step 6)

(vii) (viii) (ix) (x) (xi) (xii) (xiii)
a7 b7 c7 a8 b8 c8 a9 b9 c9 a10 b10 c10 a11 b11 c11 a12 b12 c12 a13 b13 c13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0
1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1

T(a;c) T(a;b) T(b,c;a) T(a,c) T(a,b;c) T(a,c;b) T(a,b;c)

The circuit generated by the process, as shown in Table 3.2, is presented in Figure 3.1.

The entire transformation process requires 8 CNOT gates and 4 Toffoli gates. Thus, the

gate count, GC, is 12. Using the table in section 2.4, we can compute the quantum cost,

QC, is ((8×1)+(4×5)) = 28. The next subsection describes our proposed algorithm. We

also show the circuit realization for the same function using our proposed approach.

a0

b0

c0

at

bt

ct

Figure 3.1: The circuit obtained from the function shown in Table 3.1.
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3.1.2 A Proposed Transformation Based Synthesis Approach

Before describing our proposed approach, it is important to observe a significant prop-

erty of the function shown in Table 3.1. The truth table of the function shows that for each

row, the number of 1s in the input is equal to the number of 1s in the output. Thus, the

function is a conservative function.

Our hypothesis is that a circuit realization for a conservative reversible function will be

more efficient if we use SF gates instead of NCT gates. Thus we propose a SF gate based

transformation approach [47]. The underlying idea of SF-based transformation synthesis

is the same as the approach described previously in this chapter. The difference is that

instead of using the logic gates from the NCT gate family, we use only SWAP and Fredkin

gates to realize the transformations. While NCT gates manipulate bits by inverting the bits,

SF gates interchange the bits when the control points of these gates satisfy the necessary

condition. Since a conservative function has an equal number of 1s in the input and the

output, our hypothesis is that the interchange of bits rather than the inversion of bits during

the process of transformation will generate efficient circuits. The transformation based

approach involves the mapping between two values consisting of the same number of 1s.

The output of a SF gate consists of the same number of 1s as the input. Thus, the SF gates

will be more suitable and require fewer logical operations than NCT gates for mapping one

value into another of a conservative function.

As in the NCT version, the proposed approach examines one row of the truth table at

each step. The objective is to make f (i) = i, for i = 0 to 2n− 1, where i is the i-th row of

a reversible function f , and n is the number of inputs/outputs (bits) of the function. The

following is the basis of SF gate base transformation approach.

Step 0: Since the function is a conservative function, the first row of the truth table of

the function will be f (0) = 0. Thus, no transformation is required and go to step 1.

Step 1: For i = 1: If f (1) = 1, no transformation is required. If f (1) 6= 1, apply a SWAP

gate in order to make f (1) = 1.
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Step 2: Repeat for i = 2 to 2n−1: If f (i) = i, no transformation is required. If f (i) 6= i,

apply a SWAP gate or the smallest (k× k) Fredkin gate in order to make f (i) = i, where

k = 3 to n. One or more gates may be required in order to achieve f (i) = i.

We use the same function from Table 3.1 to demonstrate the SF-based transformation

synthesis. As before, the proposed approach begins with the output of the function. Ta-

ble 3.3 shows the transformation stages. In this table S(a,b) represents a SWAP gate with

two targets, ‘a’ and ‘b’. F(a;b,c) represents a Fredkin gate with a control point on line,

‘a’, and two targets on lines ‘b’ and ‘c’.

Step 0: The first row of the function shown in Table 3.1 is f (000) = 000, thus no

transformation is required.

Step 1: The necessary transformation in the second row of the table is f (100)−→ 001.

We need to map 100 to 001. A single SWAP gate, S(a,c), can be used for this mapping.

This SWAP gate interchanges the values of ‘a’ and ‘c’. If we compare with the synthesis

approach illustrated in Table 3.2, the NCT based transformation requires two stages (two

gate levels) for the same mapping.

Step 2: After applying a SWAP gate at the second step, the value at the third row is 100.

The required mapping in this step is f (100) −→ 010. Thus, we must transform 100 into

010. A SWAP gate, S(a,b), can be used for the required mapping.

Step 3: At this step of transformation, the required mapping is f (110) −→ 011. A

SWAP gate, S(a,c), could transform 110 to 011; however this mapping would also change

the bits in the previous rows. One of the basic concepts of the transformation based synthe-

sis is that a mapping in one step must not alter any of the previous rows. Hence, a (3×3)

Fredkin gate can be used for the required mapping. We use a Fredkin gate, F(b;a,c), which

swaps the two target bits ‘a’ and ‘c’, when the control bit ‘b’ = 1.

Step 4: At this step the function in the fifth row is f (100) = 100, so no transformation

is required. However, the required transformation in the sixth row is f (110) −→ 101. A

(3× 3) Fredkin gate F(a;b,c) swaps the values of ‘b’ and ‘c’ when the value of ‘a’ is
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1. By applying the Fredkin gate F(a;b,c) at this step, the entire function is transformed

to an identify function. The resulting circuit realization of the function from Table 3.1 is

displayed in Figure 3.2.

Table 3.3: Stages of SF based transformation of the function in Table 3.1.

step 0 step 1 step 2 step 3 step 4
output i (ii) (iii) (iv) (v)

a b c a0 b0 c0 a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0
0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1
1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

No Transformation S(a,c) S(a,b) F(b;a,c) F(a;b,c)

a0

b0

c0

at

bt

ct

Figure 3.2: Circuit resulting from SF based synthesis of the function from Table 3.1.

3.1.3 Comparison of Transformation Based Approaches

Figures 3.1 and 3.2 show two circuits for the same function from Table 3.1. The former

circuit is realized following the NCT gates transformation based approach from [41], while

the latter circuit realization is generated by our SF based transformation approach. In Fig-

ure 3.2, we have a GC of 4 as compared to a GC of 12 for the circuit in Figure 3.1. The

SF gate based transformation also performs better than the NCT based synthesis from the

perspective of QC. The QC of the new implementation is (2×3)+(2×5) = 16, while the

QC for the circuit realization in Figure 3.1 is 28. Table 3.4 shows the comparison between

the two circuits shown in Figures 3.1 and 3.2.

In order to compare the SF gate based transformation approach with the NCT gate based

transformation approach from a wider perspective, we have generated all possible (3× 3)
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Table 3.4: Comparison between two circuits shown in Figures 3.1 and 3.2.

Metric NCT SF

GC 12 4
QC 28 16

conservative reversible functions. There are 36 conservative (3×3) reversible functions in

total. We have realized all the 36 conservative (3× 3) reversible functions using both the

NCT based transformation approach and the proposed SF based transformation approach.

The performance was evaluated in terms of GC and QC. Table 3.5 shows the results. After

observing the entire table, the highest percentage of reduction in GC is 67. We achieve this

reduction in GC for more than half of the (3× 3) conservative reversible functions. The

percentage of reduction in GC on average is 62%.

As we see from Table 3.5, the SF gate family based transformation synthesis approach

performs extremely well compared to the other approach as far as GC is concerned. One of

the reasons behind the performance improvement is that SF gates need fewer operations to

map one value to another of a conservative function. Since the function is conservative, the

mapping involves two bit combinations that have the same number of 1’s and 0’s. In general

this type of transformation can be carried out with fewer operations if we exchange the bits

of a row instead of inverting the bits. For example, in order to transform 010 into 001, we

have two possible circuit realizations, as shown in Figure 3.3. The ability to change two bits

at a time makes the SF gates more efficient than the NCT gates for realizing conservative

reversible circuits.

0

1

0

0

0

1

(a) using NCT gate realization.

0

1

0

0

0

1

(b) using SF gate realization.

Figure 3.3: Circuit realization using NCT and SF gate families.
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Table 3.5: Performance comparison of NCT gate transformation based synthesis and SF
gate transformation based synthesis.

NCT gate transformation SF gate transformation Reduction Percentage of decrease
No. GC QC GC QC GC QC GC QC

1 9 25 3 13 6 12 66.67 48.00
2 6 10 2 8 4 2 66.67 20.00
3 9 25 3 13 6 12 66.67 48.00
4 6 10 2 8 4 2 66.67 20.00
5 3 3 1 3 2 0 66.67 0.00
6 6 18 2 8 4 10 66.67 55.56
7 7 11 3 11 4 0 57.14 0.00
8 10 26 4 16 6 10 60.00 38.46
9 9 21 3 11 6 10 66.67 47.62

10 6 6 2 6 4 0 66.67 0.00
11 7 11 3 11 4 0 57.14 0.00
12 10 26 4 16 6 10 60.00 38.46
13 9 25 3 13 6 12 66.67 48.00
14 6 10 2 8 4 2 66.67 20.00
15 3 3 1 3 2 0 66.67 0.00
16 6 18 2 8 4 10 66.67 55.56
17 7 23 3 13 4 10 57.14 43.48
18 4 8 2 8 2 0 50.00 0.00
19 9 21 3 11 6 10 66.67 47.62
20 6 6 2 6 4 0 66.67 0.00
21 7 11 3 11 4 0 57.14 0.00
22 10 26 4 16 6 10 60.00 38.46
23 9 13 3 11 6 2 66.67 15.38
24 12 28 4 16 8 12 66.67 42.86
25 3 3 1 3 2 0 66.67 0.00
26 6 18 2 8 4 10 66.67 55.56
27 9 25 3 13 6 12 66.67 48.00
28 6 10 2 8 4 2 66.67 20.00
29 7 23 3 13 4 10 57.14 43.48
30 4 8 2 8 2 0 50.00 0.00
31 3 7 1 5 2 2 66.67 28.57
32 6 22 2 10 4 12 66.67 54.55
33 3 7 1 5 2 2 66.67 28.57
34 6 22 2 10 4 12 66.67 54.55
35 3 15 1 5 2 10 66.67 66.67
36 0 0 0 0 0 0 0 0

Table 3.5 shows that the SF based synthesis also performs better than the NCT based

synthesis from the perspective of QC. SF based synthesis results in achieved lower QC for

almost 70% of the 36 functions. For the remaining 30% functions, the QC is the same for

both approaches. There is not a single instance where the NCT based synthesis performs

better than our proposed approach. Indeed in one case there is a decrease in QC of 67%.
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However, the average percentage of reduction of quantum cost using the SF based synthesis

is 29%.

As mentioned above, the proposed transformation based synthesis using the SF gate

family follows a greedy approach. We have designed our algorithm in this way because the

basic transformation based synthesis algorithm from [41] also follows a greedy approach,

and this allow us to make a fair comparison. At every step of transformation, the algorithm

selects the lowest cost gate in terms of quantum cost. When there is a choice between a

SWAP gate and a Fredkin gate in order to make a transformation happen, the algorithm

selects a SWAP gate, since a SWAP gate has lower quantum cost than a Fredkin gate. For

example, if we observe the second column (i) of Table 3.3, we need to transform 100 into

010. There are two choices for this mapping. We could use either a SWAP gate S(a,b)

or a negative controlled Fredkin gate, F
′
(c;a,b). A SWAP gate S(a,b) exchanges the bits

of ‘a’ and ‘b’. A negative controlled Fredkin gate, F
′
(c;a,b), swaps the values of ‘a’ and

‘b’ when c = 0. Either of the two gates can serve the purpose at this stage. However, the

proposed SF gate based transformation selects the SWAP gate S(a,b) in this case, because a

SWAP gate has lower quantum cost than a Fredkin gate. However, if we use a F
′
(c;a,b) at

this stage, we get the circuit presented in Figure 3.4(a). The use of F
′
(c;a,b) gate reduces

the QC from 16 to 13 compared with the circuit in Figure 3.2. In addition, one less gate is

needed in this circuit realization. The interesting fact is that the circuit in Figure 3.4(a) can

be simplified further. The choice of gate is one of the crucial factors in order to synthesize

an efficient circuit. The circuit represented in Figure 3.4(b) is a further simplified version

of the circuit shown in Figure 3.4(a). Figure 3.4(b) shows that the GC is 2 for this circuit.

The QC for this circuit is 5+ 5 = 10. Now if we compare the GC and QC of the circuit

presented in Figure 3.4(b) with that of the NCT gate based basic transformation synthesis

(Figure 3.1), the GC is reduced from 12 to 2, which is a six-fold reduction. The QC is

reduced from 28 to 10, which results in almost 3 times the improvement in QC of a circuit

which is realized using the SF gate based transformation synthesis as compared with that
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of NCT gate based transformation synthesis approach.

Thus we see that the SF gate based transformation approach performs much better than

the NCT gate based transformation for all (3× 3) conservative reversible functions. In

addition, performance of the SF gate based transformation can be improved further if the

selection of gate at each stage can be done intelligently rather than following a greedy

approach.
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(b)

Figure 3.4: Further simplified circuits for the function shown in Table 3.1.

We have also compared the results from our proposed SF-based approach with the re-

sults from applying an exact synthesis approach [17] available in RevKit [67]. The com-

parison is shown in Table 3.6. The exact approach results in a circuit implementation with

minimal gate count using the NCT gate library. There is no known exact approach that

uses the SF gate library. There is not a single instance where the exact synthesis generates

circuits with lower GC than the SF based transformation approach. The highest percentage

of reduction in GC is 67%. However, the average percentage of reduction of GC using

the SF based synthesis is 54%. The negative values in the table indicate the increment in

QC using SF based synthesis over exact synthesis. The QC increases in the case of 10

functions out of all 36 conservative functions. The highest percentage of reduction in QC

using our proposed synthesis approach is 67% and the percentage of reduction in QC on
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Table 3.6: Performance comparison of the minimal circuits generated using exact
synthesis [67] with the circuits generated using SF gate based synthesis.

Exact Synthesis SF gate synthesis Reduction Percentage of decrease
No. GC QC GC QC GC QC GC QC

1 6 14 3 13 3 1 50.00 7.14
2 6 10 2 8 4 2 66.67 20.00
3 6 14 3 13 3 1 50.00 7.14
4 6 10 2 8 4 2 66.67 20.00
5 3 3 1 3 2 0 66.67 0.00
6 4 8 2 8 2 0 50.00 0.00
7 6 10 3 11 3 -1 50.00 -10.00
8 7 15 4 16 3 -1 42.86 -6.67
9 6 10 3 11 3 -1 50.00 -10.00

10 6 6 2 6 4 0 66.67 0.00
11 6 10 3 11 3 -1 50.00 -10.00
12 7 15 4 16 3 -1 42.86 -6.67
13 6 14 3 13 3 1 50.00 7.14
14 6 10 2 8 4 2 66.67 20.00
15 3 3 1 3 2 0 66.67 0.00
16 6 10 2 8 4 2 66.67 20.00
17 6 14 3 13 3 1 50.00 7.14
18 4 8 2 8 2 0 50.00 0.00
19 6 10 3 11 3 -1 50.00 -10.00
20 6 6 2 6 4 0 66.67 0.00
21 6 10 3 11 3 -1 50.00 -10.00
22 7 15 4 16 3 -1 42.86 -6.67
23 6 10 3 11 3 -1 50.00 -10.00
24 7 15 4 16 3 -1 42.86 -6.67
25 3 3 1 3 2 0 66.67 0.00
26 6 10 2 8 4 2 66.67 20.00
27 6 14 3 13 3 1 50.00 7.14
28 6 10 2 8 4 2 66.67 20.00
29 6 14 3 13 3 1 50.00 7.14
30 4 8 2 8 2 0 50.00 0.00
31 3 15 1 5 2 10 66.67 66.67
32 4 20 2 10 2 10 50.00 50.00
33 3 7 1 5 2 2 66.67 28.57
34 4 20 2 10 2 10 50.00 50.00
35 3 7 1 5 2 2 66.67 28.57
36 0 0 0 0 0 0 0 0

average is 8%. The reduction in GC can be explained by the fact that SF gates require

fewer operations to implement swaps, which are the main operations carried out in conser-

vative functions. However in general, SF gates have higher QC than their NCT equivalents,

so there is less saving in QC. For example, a SWAP gate S(b,c) can be used in order to
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transform (a,b,c) = 010 into 001. The GC and the QC for a single SWAP gate are 1 and

3 respectively. However, two NCT gates, T (b;c) and T (c;b), will be required in order to

transform (a,b,c) = 010 into 001. In this case GC and QC are 2. Thus the GC is reduced

by using the SF gate family, while the QC (for this example) is not.

We have also generated all possible (4× 4) conservative functions. There are 414720

(4× 4) conservative reversible functions. We have investigated the circuit realization for

each of these functions using both the SF gate based synthesis and the NCT gate based

synthesis. However, unlike the case of (3×3) functions, there are some circuit realizations

where the GC and QC increase with the SF gate based transformation synthesis as com-

pared to that of the NCT gate based synthesis. Table 3.7 shows the amount of reduction in

GC and QC using the SF-based transformation instead of the NCT-based transformation.

Table 3.7(b) shows that among all the 414720 (4×4) conservative reversible functions, the

QC increases for 27213 functions and the GC increases for 2 functions (in one of these the

GC increases only by 1). The QC reduces for almost 93% of the 414720 functions. The

highest reduction in GC by using the SF gate based transformation as compared with that

of the NCT gate based transformation synthesis is 27. The highest percentage of reduction

in GC using our proposed synthesis approach is 87% and the percentage of reduction in GC

on average is 61%. By using the SF gate based transformation synthesis we get a highest

reduction in QC of 104, whereas the highest percentage of reduction of QC is 87%. For all

(4×4) functions, the average percentage of decrease of QC is 35%.

3.2 Post Synthesis Optimization

A reversible circuit generated by a synthesis method may not be optimal from the per-

spective of the number of garbage lines, quantum cost and/or gate count. For example,

Figure 3.2 shows a circuit generated by transformation based synthesis. This circuit can

be simplified further, as shown in Figure 3.4. A circuit design that offers fewer garbage

lines and/or lower GC and QC is desirable. After synthesis takes place, several strategies
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Table 3.7: Percentage of reduction in GC and QC when using SF based transformation as
compared to NCT based transformation.

(a) Best results.

NCT SF Reduction % Decrease

GC 15 2 13 86.67
QC 102 13 89 87.25

(b) Average results.

Reduction on average No. of functions: 414720
% decrease Decrease Increase % Decrease

GC 61 414706 2 99.99
QC 35 385650 27213 92.99

can be used in order to simplify reversible circuits, including template matching optimiza-

tion [1, 9, 37, 58] and rule based optimization [2, 24].

A template consists of two patterns of gates which are equivalent to each other. Tem-

plate matching is a process to find a pattern of gates that can be replaced by another equiv-

alent pattern of gates in order to simplify a circuit design. Figure 3.5 shows two templates
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Figure 3.5: Two templates presented in [41].

presented in [41]. The output functions of both circuits in Figure 3.5(a) are evaluated as

x= a, y= a⊕b and z= a⊕c. Thus, these two circuits perform the same reversible function.
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The left hand circuit has a GC of 3 and QC of 11. However, both the GC and QC of the

right hand circuit are 2. Therefore, the right hand circuit design is more efficient in terms

of GC and QC. Since both circuits perform the same function, it is preferable to use the

right hand circuit in a circuit design. Miller et al. also introduce other templates for 2 and

3 input reversible circuits as well as a template matching algorithm [41]. This algorithm

searches for a pattern of gates in a reversible circuit and replaces the pattern by another

simpler pattern of gates. An extension of this algorithm is presented in [38]. Maslov et al.

introduced some templates based on Toffoli and Fredkin gates in [36]. Templates based on

both positive and negative controls are presented by Datta et al. [8] and Rahman et al. [58].

Iwama et al. also present rules which can be used to simplify reversible circuits [24]. Other

rule based post synthesis optimization works include [2, 7].

Most template matching and rule based optimization techniques focus on reversible

circuits based on either NCT gates or a combination of Toffoli and Fredkin gates. In this

dissertation, we present optimization techniques for SF circuits based on template matching

and rule-based simplifications. Some optimization rules designed for NCT gate families can

also be used for SF circuit simplification. For example, the deletion rule can be used as an

optimization technique for SF-based circuits. The deletion rule [7, 24, 38] states that two

adjacent gates with the same target and control lines do not contribute to the functionality

of the circuit. For example, consider the circuit shown in Figure 3.6. The output function

of this circuit can be evaluated as x = a, y = b and z = ab⊕ c⊕ ab = c. It is seen that the

circuit is simply passing the input values to the corresponding output lines. So the two 3-bit

Toffoli gates can be removed from the circuit.

x

y

z

a

b

c

Figure 3.6: An example to demonstrate the deletion rule in a reversible circuit.
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The deletion rule for NCT-based circuits can also be used to optimize SF circuits. How-

ever, not all NCT-based rules are useful for optimizing SF based circuits. For example, the

moving rule proposed for NCT gates is a useful approach for simplifying reversible circuits.

The moving rule states that two adjacent gates g1(c1, t1) and g2(c2, t2) can be interchanged

if the target of one gate is not a control of another gate, i.e. c1∩ t2 = /0 and c2∩ t1 = /0.

1 2 3 4

x

y

z

a

b

c

(a)

1 2 3 4

x

y

z

a

b

c

(b)

1 2 3

x

y

z

a

b

c

(c)

1 2 3

x

y

z

a

b

c

(d)

x

y

z

a

b

c
(e)

Figure 3.7: An example to demonstrate the moving rule for circuit simplification.

The moving rule is particularly useful in order to find a template in a circuit. For exam-

ple, Figure 3.7 shows an example of the moving rule for NCT based circuit simplification.

Figure 3.7(a) shows how the positions of gates labeled 1 and 2 can be interchanged, as

the controls of gate 1 are not the target of gate 2 and vice versa. Figure 3.7(b) shows the
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Figure 3.8: A SF circuit where the moving rule does not work.

circuit after interchanging gates 1 and 2. The three gates enclosed by a box match with

template presented in Figure 3.5(a). After substituting the gates according to the template,

the circuit becomes as shown in Figure 3.7(c). Gate 1 and gate 2 in Figure 3.7(c) satisfies

the moving rule and after exchanging these two gates the circuit becomes as presented in

Figure 3.7(d). Gates 2 and 3 in Figure 3.7(d) can be deleted according to the deletion rule.

Figure 3.7(e) shows the circuit after applying templates. The moving rule plays a signifi-

cant role in applying simplification rules and templates for NCT based circuit optimization.

However, this moving rule works only on NCT based reversible circuits. Figure 3.8

shows an example of a SF based circuit where the moving rule cannot be applied. According

to the moving rule, two gates can be interchanged if controls of one gate are not the target of

other gate. Figure 3.8(a) shows a circuit that consists of two 3-bit Fredkin gates. Since the

control of one gate is not a target of another gate, the two gates are interchanged as shown

in Figure 3.8(b). However, these two circuits are not equivalent. As shown in the figure,

the two circuits generate different outputs for the same input vector. In this dissertation,

we have modified the moving rule for applications in SF based reversible circuits. The

modified moving rule is presented in section 3.2.2.
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3.2.1 Proposed Templates

Most existing reversible circuit optimization techniques focus on NCT gates. This sec-

tion presents templates for SF gate based reversible circuits. We consider both template

matching and rule based simplification for circuit optimization. The basic difference be-

tween rule based simplification and template matching is that templates must match specific

patterns of gates, while rules can be applied to a broad group of gates. For example, the

deletion rule shown in Figure 3.6 is also true for n-bit gates. Template matching, on the

other hand, includes two patterns of gates that may not be true for other n-bit gates. For

example, our proposed Template 5, discussed later in this section, is an example of tem-

plate matching optimization. For better understanding we refer to both templates and rules

as templates in this dissertation. Note that G(C;T ) represents a gate G from the SF gates

family. C and T represent the sets of the control points and the targets of G, respectively.

Template 1

Two adjacent gates G1(C1;T1) and G2(C2;T2) can be removed from a circuit if C1 =C2

and T1 = T2. That is, if targets of a SWAP gate are on the same line as that of an adjacent

SWAP gate, the two SWAP gates can be removed from the circuit. In case of a Fredkin gate,

when the controls and targets of two adjacent gates are the same in polarity and operate on

the same line, the two Fredkin gates have no effect on circuit operation.

SWAP(t1, t2)SWAP(t1, t2)≡ I (3.1a)

FRED(c; t1, t2)FRED(c; t1, t2)≡ I (3.1b)

FRED(c; t1, t2)FRED(c; t1, t2)≡ I (3.1c)

Figure 3.9 shows Template 1 and its variations based on different SF gates. Equation 3.1

shows the expressions for the templates shown in this figure. As it is seen, the circuits work
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(c) Negative control Fredkin gates.

Figure 3.9: Template 1.

as identity circuits, which simply pass the inputs to the outputs. For example, suppose the

outputs of the first Fredkin gate in Figure 3.9(b) are p, q and r which operate on lines a, b

and c respectively. The output functions of the first Fredkin gate are p = a, q = ab⊕ ac,

and r = ab⊕ac. Similarly, the output functions of the second Fredkin gate are x = p = a,

y = pq⊕ pr = a(ab⊕ ac) + a(ab⊕ ac) = ab⊕ ab = b(a⊕ a) = b, and z = pq⊕ pr =

a(ab⊕ac)⊕a(ab⊕ac) = ac⊕ac = c(a⊕a) = c. That is, x = a, y = b, and z = c. Thus,

the circuit in Figure 3.9(b) transfers the inputs to the outputs unchanged. The other two

variants of Template 1 can be proven in similar ways.

Template 2

The next template can be applied when a cascade of a SWAP gate and a 3-bit positive

control Fredkin gate appear in such a way that the targets of the SWAP and the Fredkin

gates are on the same lines of a circuit. This sequence of two gates can be replaced by

a 3-bit negative control Fredkin gate. The control and the targets of the negative control

Fredkin gate appear on the corresponding lines where the control and the targets of the
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positive control Fredkin gate appear. That is, for two adjacent gates G1(T1) and G2(C;T2) if

T1 = T2, the two gates can be replaced by G(C;T1). In addition, a sequence consisting of a

SWAP and a negative control Fredkin gate can be substituted by a positive control Fredkin

gate. Equation 3.2 shows the expressions and Figure 3.10 illustrates both versions of this

template.

SWAP(t1, t2)FRED(c; t1, t2)≡ FRED(c; t1, t2) (3.2a)

SWAP(t1, t2)FRED(c; t1, t2)≡ FRED(c; t1, t2) (3.2b)
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Figure 3.10: Template 2.

Suppose p and q are the two outputs of the SWAP gate in Figure 3.10(a). Here p= b and

q = a. The output of the Fredkin gate will be x = cp⊕cq = cb⊕ca, y = cp⊕cq = cb⊕ca,

and z = c. The outputs of the negative control Fredkin gate in this figure are x = cb⊕ ca,

y = cb⊕ ca, and z = c. Thus, the two circuits in this figure are equivalent to each other.

Template 2 reduces both GC and QC by 1.
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Template 3

Two adjacent gates G1(C1;T1) and G2(C2;T2) can be replaced by G(T1) if C1 =C2 and

T1 = T2. Template 3 can be applied when two 3-bit Fredkin gates with different polarity

appear in such a way that the controls and targets of the gates are on the same lines. In such

a case, the Fredkin gate pair can be replaced by a single SWAP gate. The targets of the

SWAP gate appear on the same line as that of the Fredkin gates, as shown in Figure 3.11.

FRED(c; t1, t2)FRED(c; t1, t2)≡ SWAP(t1, t2) (3.3)

The figure shows that the negative control Fredkin gate interchanges the bits at the top two

a
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c

x
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z
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Figure 3.11: Template 3.

lines of a circuit when c = 0. Next, the positive control Fredkin gate swaps the bits at the

same top lines when c = 1. Thus, regardless of the value presented at the bottom line, the

values at the top two lines interchange, and this is what a SWAP gate does. Template 3

reduces QC by 70% and GC by 1.

Template 4

Template 4 can be applied when two Fredkin gates of different sizes appear in cascade

in a circuit. This template is applicable when a 3-bit Fredkin gate, FRED(C1,T1) and a

4-bit Fredkin gate, FRED(C2,T2) appear in such a way that C1 ∩C2 = C1, and T1 = T2.

In other words, the targets of both gates are on the same line, and the control of the 3-bit

Fredkin gate shares the line with any of the controls of the 4-bit Fredkin gate. If these two

adjacent Fredkin gates appear in this manner, they can be replaced by a 4-bit mixed polarity

Fredkin gate.
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FRED(c1; t1, t2)FRED(c1,c2; t1, t2)≡ FRED(c1,c2; t1, t2) (3.4a)

FRED(c1; t1, t2)FRED(c1,c2; t1, t2)≡ FRED(c1,c2; t1, t2) (3.4b)
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Figure 3.12: Template 4.

Figure 3.12 shows two versions of this template for both positive and negative polar-

ity. The expressions for this two versions are given in Equation 3.4. As seen from Fig-

ure 3.12(a), the positive control of the 4-bit mixed polarity Fredkin gate is on the same line

as the control of the 3-bit Fredkin gate. Template 4 reduces QC from 18 to 13. The GC is

also reduced to 1.

Template 5

The next template is an example of a circuit optimization using template matching when

a pattern of gates is replaced by another pattern of gates. Template 5 replaces a sequence

of 3 gates to a sequence of 2 gates as shown in Figure 3.13. The QC is reduced by 3 after

applying this template to a circuit. The truth table for Template 5 is presented in Table 3.8.

45



3.2. POST SYNTHESIS OPTIMIZATION

Both circuits in Figure 3.13 implement the function shown in Table 3.8.

SWAP(t1, t2)FRED(t2; t1,c)FRED(c; t1, t2)≡ FRED(c; t1, t2)FRED(t2; t1,c) (3.5)
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Figure 3.13: Template 5.

Table 3.8: Truth table for Template 5.

inputs outputs
a b c x y z

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Template 6

Template 6 can be applied to simplify two n-bit Fredkin gates when n≥ 4. Two adjacent

n-bit Fredkin gates G1(C1∪ci;T1) and G2(C2∪ci;T2) can be replaced by a n−1-bit Fredkin

gate G3(C3;T3), where C1 =C2 =C3, and T1 = T2 = T3.
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FRED(c1,c2; t1, t2)FRED(c1,c2; t1, t2)≡ FRED(c2; t1, t2) (3.6a)

FRED(c1,c2; t1, t2)FRED(c1,c2; t1, t2)≡ FRED(c2; t1, t2) (3.6b)

FRED(c1,c2,c3; t1, t2)FRED(c1,c2,c3; t1, t2)≡ FRED(c1,c2; t1, t2) (3.6c)

FRED(c1,c2,c3; t1, t2)FRED(c1,c2,c3; t1, t2)≡ FRED(c1,c3; t1, t2) (3.6d)
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Figure 3.14: Template 6.

In other words this template can be used when the controls and targets of two n-bit

Fredkin gates appear on the same lines and only one control point of a gate has a different

polarity. In such a case the two n-bit gates can be replaced by a (n−1)-bit Fredkin gate. The

target of the (n−1)-bit Fredkin gates appear on the same line as that of n-bit Fredkin gates

and the control with opposite polarity will be removed. Figure 3.14 shows this template

and its variations for 4-bit and 5-bit Fredkin gates, and Equation 3.6 shows the expressions

for these four variations of Template 6. For 4-bit Fredkin gates, this template reduces GC

by 1, and QC from 26 to 5.
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Template 7

Template 7 can be applied when two adjacent 4-bit Fredkin gates appear in such a way

that the controls and the targets of both gates are on the same line. However, the polarities

of control points on same line are different. These Fredkin gates can be replaced by two

positive control 3-bit Fredkin gates. The targets of both 3-bit Fredkin gates are on the same

lines as that of the 4-bit Fredkin gates and controls will be on different lines as shown in

Figure 3.15. The expression of this template is shown in Equation 3.7. The GC remains the

same after applying this template, however, the QC reduces from 26 to 10.

FRED(c1,c2; t1, t2)FRED(c1,c2; t1, t2)≡ FRED(c1; t1, t2)FRED(c2; t1, t2) (3.7)
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Figure 3.15: Template 7.

Template 8

Template 8 can be applied when a 3-bit Fredkin gate and a 4-bit Fredkin gate appear in

such a way that the targets and the controls of both gates appear on the same line. However,

the 4-bit Fredkin gate has the same polarity on its control points, and the control point of the

3-bit Fredkin gate is opposite in polarity than that of the 4-bit Fredkin gate. Figure 3.16(a)

shows that both control points of the 4-bit Fredkin gate are positive, while the control point

of the 3-bit Fredkin gate is negative. In this case these two Fredkin gates can be replaced by

a cascade of a SWAP gate and a 4-bit mixed polarity Fredkin gate, as shown in Figure 3.16.

The GC remains the same after applying this template, however, the QC is reduced by 2.
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One variant of Template 8 is shown in Figure 3.16(b). Equation 3.8 shows the expressions

of these two variations of Template 8.

FRED(c1; t1, t2)FRED(c1,c2; t1, t2)≡ SWAP(t1, t2)FRED(c1,c2; t1, t2) (3.8a)

FRED(c1; t1, t2)FRED(c1,c2; t1, t2)≡ SWAP(t1, t2)FRED(c1,c2; t1, t2) (3.8b)
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Figure 3.16: Template 8.

Template 9

Template 9 is applicable to 5-bit Fredkin gates, as shown in Figure 3.17. When the

controls and targets of a 5-bit positive control Fredkin gate and a 5-bit mixed polarity Fred-

kin gate appear on the same line, and two controls of the mixed polarity Fredkin gate are

negative controls, then these two 5-bit Fredkin gates can be replaced by 3 positive control

Fredkin gates. That is, two adjacent Fredkin gates G1(C∪c1∪c2;T ) and G2(C∪c1∪c2;T )
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can be replaced three gates G3(C,T ), G4(C∪ c1,T ) and G5(C∪ c2,T ).

FRED(c1,c2,c3; t1, t2)FRED(c1,c2,c3; t1, t2)

≡ FRED(c3; t1, t2)FRED(c1,c3; t1, t2)FRED(c2,c3; t1, t2) (3.9a)

FRED(c1,c2,c3; t1, t2)FRED(c1,c2,c3; t1, t2)

≡ FRED(c3; t1, t2)FRED(c1,c3; t1, t2)FRED(c2,c3; t1, t2) (3.9b)
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Figure 3.17: Template 9.

One of the advantages of this template is that this template replaces the mixed polarity

Fredkin gates by the uniform polarity Fredkin gates. A variant of this template is shown

in Figure 3.17(b). Unlike other templates, Template 9 increases GC by 1. However, QC is

reduced from 58 to 31. Equation 3.9 shows the expressions of these two variations.

Template 10

Template 10 works for two 5-bit Fredkin gates. This template can be applied when

the controls and the targets of two 5-bit Fredkin gates appear on the same line of a circuit.

However, one control of each gate has negative polarity, and the control points with negative
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polarity are not on the same line. These two 5-bit Fredkin gates can be replaced by two 4-bit

Fredkin gates, as shown in Figure 3.18. Equation 3.10 shows the expression of Template 10.

The GC for this template remains the same, however QC is reduced from 58 to 26.

FRED(c1,c2,c3; t1, t2)FRED(c1,c2,c3; t1, t2)≡ FRED(c2,c3; t1, t2)FRED(c1,c3; t1, t2)

(3.10)
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Figure 3.18: Template 10.

3.2.2 Reversible Circuits Optimization

The templates introduced in section 3.2.1 can be used to simplify reversible circuits. In

section 3.2 we illustrated the significance of the moving rule in circuit simplification. We

also demonstrated that the moving rule described in [7, 24, 37] works only on the NCT gate

families. This section introduces a proposed modified moving rule which can be used for

optimizing SF gate based circuits.

Two adjacent SF gates G1(C1,T1) and G2(C2,T2) can be interchanged if C1∩T2 = θ and

C2∩T1 = θ, and either T1∩T2 = θ or T1 = T2. In other words, two adjacent gates from the

SF gate family can be interchanged if two conditions hold: (i) no control of one gate is a

target of another gate, and (ii) targets of both gates are on the same line, or targets of both

gates are on different lines. For example, Figure 3.19(a) shows that targets of the two gates

are on two different lines. When these two gates are interchanged, the functionality of the

circuit does not change. It is seen from the figure that both circuits generate the same output
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Figure 3.19: Moving rules for the SF gate families.

for the same input. The moving rule can also be applied if targets of both gates are on the

same lines, and the control points and the targets do not share any common line, as shown

in Figure 3.19(b).

We have used an algorithm that incorporates the moving rule in order to apply the pro-

posed templates. This algorithm is based on the algorithm presented in [58]. The moving

rule increases the chances to match more templates, which can optimize a circuit even fur-

ther. For example, consider the 4× 4 reversible circuit shown in Figure 3.20(a). The GC

and QC of this circuit are 3 and 15 respectively. The gates of this circuit do not match any

of the proposed templates. However, it can be observed that for the gates labeled 1 and 2,

no control point of any gate is on the target lines of the other gate. In addition, the targets

of both gates are on the same line. So according to the moving rule, it is possible to inter-

change the position of these two gates. After applying the moving rule, the circuit becomes

as shown in Figure 3.20(b). Now gates 2 and 3 match Template 3 from Figure 3.11. Gates

2 and 3 can be replaced by a SWAP gate, as shown in Figure 3.20(c). The two gates in Fig-

ure 3.20(c) match Template 2, which is presented in Figure 3.10(a). The resulting circuit

after applying Template 2 is presented in Figure 3.20(d) with a GC of 1 and QC of 5.
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Figure 3.20: An example to show the role of the moving rule in circuit optimization.

The template matching algorithm maintains two lists of gates: an input list and an output

list. The input list includes all the gates which appear in the original circuit. The output

list stores the gates after the process of simplification is finished. The algorithm reads the

input list and the list of all templates, and applies templates when a match is found. When

a sequence of gates is replaced by a template, the new sequence of gates is stored in the

output list. The algorithm processes the next sequence of gates from the input list. At each

step, the algorithm decides whether a sequence of gates is to be replaced by a template or

not. If no match is found for a sequence of gates, the algorithm applies the moving rule to

increase the possibility of finding a match. A sequence of gates that does not match any

template is also stored in the output list. Algorithm 1 shows the major steps involved in the

template matching algorithm. The algorithm executes the CHECK T EMPLAT E (input

gate list) procedure in order to find a match. The algorithm terminates its execution when

no more templates can be applied to the input gate list.

We have tested the algorithm on the benchmark circuits available on RevLib [71]. In

the benchmarks there are only six circuits based on the SF gate family. The result of this

experiment is presented in Table 3.9. The column labled ‘Lines’ in this table indicates the
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Algorithm 1 Template matching algorithm.
1: Input : input gate list
2: Output : output gate list
3: procedure CHECK TEMPLATE(input gate list)
4: Count the number of gates in the input gate list
5: Repeat while the number of gates in the input gate list > 2
6: if a match is found then
7: Apply Template (input gate list)
8: else
9: Apply Moving Rule (input gate list)

10: end if
11: end procedure
12:
13: procedure APPLY TEMPLATE(input gate list)
14: if two adjacent gates gi and gi+1 match a template then
15: Append the template gates to the output gate list
16: Remove gi and gi+1 from the input gate list
17: end if
18: if three adjacent gates gi, gi+1 and gi+2 match Template 5 then
19: Append the template gates to the output gate list
20: Remove gi, gi+1 and gi+2 from the input gate list
21: end if
22: Return
23: end procedure
24:
25: procedure APPLY MOVING RULE(input gate list)
26: if two gates gi and gi+1 can be interchanged then
27: Append gi+1 to the output gate list
28: Remove gi+1 from the input gate list
29: else
30: Append gi to the output gate list
31: Remove gi from the input gate list
32: end if
33: Return
34: end procedure

number of input bits. The GC and QC under the ‘original circuit’ column indicates the GC

and QC of the circuits before applying the templates. The GC and QC under the ‘optimized

circuit’ column represent GC and QC of the circuits after applying the templates. The

template matching reduces GC and QC for two of the six benchmark circuits. The best

results are achieved for hwb4 circuit, which sees 18% GC and 9% QC reduction. The
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number of circuits considered for this experiment is not large enough, since the number

of benchmark circuits based on the SF gate family are very few. In addition, one circuit

consists of only one gate which cannot be further optimized.

Table 3.9: Results after applying the proposed templates on benchmark circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines GC QC GC QC GC QC

f redkin 3 1 5 1 5 0 0
hwb4 4 11 65 9 59 18.18 9.23
hwb5 5 24 214 24 214 0 0

decode24 6 3 15 3 15 0 0
hwb6 6 65 1115 64 1112 1.54 0.27
hwb7 7 116 3998 166 3998 0 0

In order to evaluate the efficiencies of the proposed templates from a broader perspec-

tive, we randomly generated 500 SF based circuits. The number of lines of these circuits

varied from 3 to 7, similar to the benchmark circuits in RevLib. Based on the number of

gates, these circuits are of three different sizes: 10, 50 and 100. Our proposed approach for

circuit optimization has been applied to these randomly generated circuits, and a portion

of the result is presented in Table 3.10. The entire result in presented in Appendix A. The

highest percentage of reduction of both GC and QC is 91%. The percentage of reduction

of GC on average is 17%. The average reduction of QC is 16%.

3.3 Chapter Summary

3.3.1 Contribution

A transformation based synthesis approach [47] for realizing conservative reversible

functions is presented in this chapter. This chapter also introduces 10 templates for opti-

mizing SF gate based reversible circuits. A modified moving rule for circuit optimization

is also proposed in order to increase the possibility of matching templates.
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3.3.2 Conclusion

Transformation based synthesis offers function realization without including any addi-

tional garbage lines to circuits. In this chapter we have presented a transformation based

synthesis approach based on SF gates to realize conservative reversible functions. We have

generated all possible 3-bit and 4-bit reversible functions and realized these functions with

both our proposed approach and the approach proposed in [41]. The approach presented

in [41] is based on the NCT gate families. Our experimental results suggest that realiza-

tion of conservative functions with SF gates is more efficient than NCT gates in terms of

GC and QC. We have also compared the circuits generated using exact synthesis with SF

based synthesis for implementing 3-bit conservative functions. Experimental results show

that SF based synthesis generates significantly more efficient circuits than exact synthesis

when comparing gate count, although slightly less so when comparing quantum cost. This

is likely due to the high quantum costs of the SF gate family.

Our proposed SF based synthesis follows the principle of the NCT transformation based

synthesis presented in [41]. A NCT transformation based synthesis approach works by

mapping a reversible function into an identity function. During the process of transforma-

tion the operations performed at each stage must not affect the previous stages. One or more

logic gates are applied to perform the logical operations at each stage. We have shown in

section 3.1.3 that the choice of gates at each stage is very important in order to achieve a

simplified circuit.

Reversible circuits generated with the transformation based synthesis may not be op-

timal. Template matching and rule based optimization techniques are two common ap-

proaches to simplify reversible circuits generated by transformation based synthesis. In

this chapter we have presented 10 templates based on template matching and rule based op-

timization. We have tested the proposed templates to simplify reversible circuits consisting

of only SF gates. Since few SF gate based circuits are available as benchmark circuits in

RevLib, we have randomly generated 500 SF based reversible circuits. The results of ex-
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periments suggest that our proposed templates can contribute to optimizing SF gate based

reversible circuits. The highest reduction in QC is 9% after applying the proposed tem-

plates on benchmark circuits. In case of randomly generated circuits we have achieved

16% reduction in QC on average.

3.3.3 Future Directions

Our experiments on synthesizing conservative functions reveal that there is a need for

the classification of reversible functions. If the class of a reversible function is known in

advance before synthesis takes place, it may be possible to generate more efficient circuits.

In addition, improving the gate selection process during each stage of the transformation

based synthesis is an important area of further research. The performance of the transfor-

mation based synthesis can be improved further if this approach consider the next stages

before selecting a gate for the current stage. Instead of selecting a gate with a greedy ap-

proach, an intelligent gate selection technique may consider both previous and next stages

prior to selecting a gate for the current stage. So a gate selected for the current stage will

make it possible to transform the next stages with lower QC, and thus improve the overall

performance.

We have compared the cost of the circuits generated using our proposed SF based syn-

thesis with the minimal circuits generated using exact synthesis. We gates used in exact

synthesis are NCT gates. Generating minimal circuits using SF based exact synthesis is an

open area of further research.

Lastly, identifying more templates based on SF gates or on a combination of NCT and

SF gates is also an area for future research. Our experimental results show that the QC

is reduced up to 9% after applying the proposed templates on benchmark circuits. The

QC can be reduced further using an efficient template matching algorithm. The algorithm

which we have used to apply the templates uses an exhaustive search approach to match

templates. In [58], Rahman et al. proposed a template matching algorithm that assigns
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ranks to the templates based on the amount of QC reduction offered by the templates. Thus

their proposed algorithm applies templates that offer the best possible reduction in QC

at a particular instant. This indicates that developing an efficient SF gate based template

matching algorithm can also be an area of future study.
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Table 3.10: Results after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines GC QC GC QC GC QC

random173 5 100 695 94 673 6 3.17
random297 4 10 42 8 36 20 14.29
random172 6 55 878 55 878 0 0
random298 6 55 715 54 710 1.82 0.7
random171 7 10 203 10 203 0 0
random299 6 100 1385 97 1376 3 0.65
random178 7 55 1093 55 1093 0 0
random292 4 55 209 44 168 20 19.62
random177 4 10 42 9 39 10 7.14
random293 5 100 773 95 754 5 2.46
random176 3 100 300 28 84 72 72
random2 6 100 1444 98 1438 2 0.42

random294 5 10 111 10 111 0 0
random1 7 55 1268 55 1268 0 0

random175 3 55 165 25 75 54.55 54.55
random295 3 55 165 27 81 50.91 50.91
random290 7 100 2162 100 2162 0 0
random291 7 10 134 8 128 20 4.48
random170 5 100 757 97 746 3 1.45
random4 7 55 1097 51 1085 7.27 1.09
random3 6 10 96 10 96 0 0
random6 3 10 30 4 12 60 60

random179 7 100 1878 100 1878 0 0
random5 5 100 781 96 763 4 2.3
random8 5 100 624 95 609 5 2.4
random7 7 55 1164 55 1164 0 0
random9 7 10 246 10 246 0 0

random163 3 55 165 31 93 43.64 43.64
random285 7 10 192 10 192 0 0
random162 7 10 238 10 238 0 0
random286 5 55 375 50 360 9.09 4
random161 6 100 1379 98 1371 2 0.58
random287 7 100 2079 100 2079 0 0
random160 7 55 1428 55 1428 0 0
random288 5 10 49 9 44 10 10.2
random167 7 100 1964 100 1964 0 0
random281 6 100 1467 100 1467 0 0
random166 3 55 165 15 45 72.73 72.73
random282 5 10 43 10 43 0 0
random165 5 10 58 10 58 0 0
random283 6 55 887 54 882 1.82 0.56
random164 4 100 410 77 329 23 19.76
random284 4 100 412 85 355 15 13.83
random280 4 55 211 43 163 21.82 22.75
random169 6 55 690 54 687 1.82 0.43
random168 6 10 185 10 185 0 0
random289 3 55 165 15 45 72.73 72.73
random196 7 55 1170 55 1170 0 0
random195 3 10 30 6 18 40 40
random194 3 100 300 36 108 64 64
random193 5 55 392 53 384 3.64 2.04
random199 4 55 215 48 190 12.73 11.63
random198 7 10 126 10 126 0 0
random428 7 100 1947 99 1944 1 0.15
random300 7 10 122 10 122 0 0
random421 7 55 1110 55 1110 0 0
random301 6 55 738 55 738 0 0
random422 3 100 300 16 48 84 84
random302 3 100 300 30 90 70 70
random423 4 10 40 10 40 0 0
random303 3 10 30 2 6 80 80
random424 7 55 1253 52 1238 5.45 1.2
random500 6 100 1234 100 1234 0 0
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Chapter 4

Fault Testing

Testing is a very important phase in the process of developing a system. Testing refers

to a process to determine whether a system is faulty or fault-free. Testing is necessary to

ensure the reliability and quality of a digital system [25]. Many testing approaches used

for irreversible circuits cannot be applied to their reversible counterparts due to the nature

of reversible gates and the underlying differences in computation strategy. Research in this

area has focused on fault models and developing fault detection approaches. This chapter

introduces reversible fault models and presents testing approaches for reversible circuits.

4.1 Fault Models and Fault Testing: An Overview

A fault is a failure of a system. In other words, a fault can be defined as a physical defect

that leads a system to produce an incorrect output. Faults must be detected and removed. A

fault model is a model that describes the types of faults which may occur in a system [59].

An ideal fault testing method detects all the faults of a particular fault model. The most

common fault model for traditional logic circuit is the stuck-at fault model [56, 72, 73]. A

stuck-at fault may occur due to the malfunction of some part of a circuit, such as a path or

line of that circuit being able to pass only high or low voltage signals. That is, a path of a

circuit may become stuck at a particular voltage level. When a line of a circuit passes only

high voltage due to some undesirable event, the fault is considered to be a stuck-at 1 fault.

This could occur in the case of a short in a circuit, for instance. On the other hand, if a line

passes only low voltage, the fault is considered to be a stuck-at 0 fault. For instance, this
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could occur if a line or path of a circuit is broken such that voltage cannot pass through it.

As a result, the logic circuit may give an incorrect result. However, research suggests that

the stuck-at fault model is not suitable for reversible computing. For this reason, other fault

models for reversible logic have been developed [20, 56, 73].

Testing determines whether a system is faulty or fault-free. Testing can be divided into

two categories: offline testing and online testing [59]. Each of these strategies has its own

benefits and drawbacks. Online testing methods determine whether the output of a system is

correct or not, while the system performs its normal operations. In offline testing, a system

under consideration is removed from its normal mode of operation before the method of

testing is applied.

4.2 Fault Models for Reversible Logic

The underlying concepts of reversible gates are different from their irreversible coun-

terparts. Therefore, the pattern of occurrence of faults in reversible circuits is likely to

be different. Several technologies have been suggested for the physical implementation of

quantum circuits, which are different than the traditional circuits. For example, the spin of

electrically charged atoms can be used to represent qubits (quantum bits), and the states of

these charged atoms can be changed by directing laser pulses on them [20, 56, 51]. That

is, the reversible gate operations are likely to be implemented by means of pulses. Thus,

faults such as stuck-at faults and bridge faults [59] which are wire-oriented are likely to

be irrelevant in reversible circuits [20, 56]. Thus, the process of detecting faults will be

different in reversible computing. A fault model considers all fault possibilities which may

occur in a circuit. A number of fault models have been developed to cope with the nature

of reversible circuits [59]. This section describes some fault models such as the crosspoint

fault model [73] and the missing and repeated gate fault model [20].
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Figure 4.1: Appearance and disappearance faults in a reversible circuit.

Table 4.1: Truth table of the circuit shown in Figure 4.1.

Input Output
Faulty Fault free

000 000 000
001 001 001
010 011 010
011 010 011
100 101 100
101 100 101
110 111 110
111 110 111

4.2.1 Crosspoint Fault Model [73]

Most reversible gates have control points. The values of these control points determine

whether a gate performs an operation on the target inputs. For example, a 1-CNOT gate

inverts the value of target input when the control is 1. Thus, a fault in a control point

can result in an incorrect output. Faults that are relevant to control points are known as

crosspoint faults. Crosspoint faults are divided into two categories: appearance crosspoint

faults and disappearance crosspoint faults [73]. When one or more control points are added

erroneously to a gate, this is considered to be an appearance crosspoint fault. On the other

hand, if a gate is missing one or more control points, this type of fault belongs to the

category of disappearance crosspoint faults. Based on the number of affected control points,

a crosspoint fault can be either a single crosspoint fault or a multiple crosspoint fault. When
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only one control point appears or disappears, the fault is considered a single crosspoint fault.

When more than one control point is affected, the fault is considered a multiple crosspoint

fault.

Figure 4.1 shows an example of appearance and disappearance crosspoint faults in a

reversible circuit. When the faults are present, the circuit generates incorrect outputs. Ta-

ble 4.1 shows the behaviour of the circuit with the presence of two crosspoint faults. Inves-

tigating the effect of faults on the circuit output is very important in order to develop fault

detection and correction mechanisms. There are certain input vectors for which a fault does

not affect the final output of a circuit. Therefore, in order to test a circuit for a particular

fault, we need to consider those input vectors for which the fault affects the output of the

circuit. For example, Table 4.1 shows that when the input of the circuit in Figure 4.1 is

abc = 000, the circuit generates the corrected output even in the presence of two crosspoint

faults. The faults do not affect the output of the circuit for this particular input. Thus,

abc = 000 is not a desirable input for testing the circuit presented in Figure 4.1 for cross-

point faults. However, when input abc = 100, the circuit generates 101, which is incorrect.

Therefore this input vector can be used to test the circuit for crosspoint faults.

4.2.2 Missing Gate and Repeated Gate Fault Model [56]

The missing and repeated gate fault model is a package of several fault models designed

for reversible circuits. The package consists of four different categories of faults: the sin-

gle missing gate fault model (SMGF), the multiple missing gate fault model (MMGF), the

partial missing gate fault model (PMGF) and the repeated gate fault model (RGF). As men-

tioned earlier, gate operations in reversible circuits are likely to be by means of pulses [20].

SMGFs and MMGFs may occur in a reversible circuit for short, missing or mistuned gate

pulses. RGFs may occur due to long or duplicated gate pulses and PMGFs may occur due

to partially mistuned gate pulses [20, 56].
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Figure 4.2: SMGF in a reversible circuit.

Single Missing Gate Fault Model [56]

The single missing gate fault (SMGF) model was developed to model faults which occur

when an entire gate becomes inactive. That is, a SMGF occurs when an entire gate in a

reversible circuit does not carry out its intended operation. As a consequence, a circuit may

generate an incorrect output due to the complete disappearance of a gate.

Figure 4.2 shows an example of an occurrence of a SMGF in a reversible circuit. In

this circuit, the highlighted CNOT gate is missing. The values at the different levels of this

circuit are presented in Table 4.2. The correct value and incorrect values are represented by

correct value/incorrect value notation in the table. An observation from Table 4.2 is that the

effect of a fault which occurred on a single line is propagated to multiple lines in a circuit.

As a result, more than one output bit may be incorrect as the result of an occurrence of the

fault.

Repeated Gate Fault Model [56]

The repeated gate fault (RGF) model addresses faults that may occur due to an unwanted

replacement of a gate by multiple instances of the same gate. One or more unwanted in-

stances of a gate in a circuit can generate incorrect output. These unwanted instances of a

gate are considered to be RGFs.

The RGF has two different effects based on whether a gate is replaced by an even or

odd number of the same gate. According to [56], the number of erroneous instances of a
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Table 4.2: Output values at the different levels of the circuit shown in Figure 4.2.

Gate Levels
0 1 2 3
0 1 1 1
0 0 0/1 0/1
0 0 0 0/1
0 1 1 1
0 0 0/1 0/1
1 1 1 1/0
0 1 1 1
1 1 1/0 1/0
0 0 0 1/0
0 1 1 1
1 1 1/0 1/0
1 1 1 0/1
1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
1 1 1 1
1 0 0 0
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 1
1 1 1 1

correct/incorrect represents the correct and the incorrect values.

same gate may have the following two effects:

Case 1: If the number of instances of a gate is even, then the faulty effect of a RGF

is identical to the effect of a SMGF.

Case 2: If the number of instances is odd, the fault does not affect the circuit output.

Figure 4.3 shows an example of an occurrence of a RGF in a reversible circuit, where

the number of gate instances is even. A 1-CNOT gate is replaced by two instances of the
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Figure 4.3: A RGF where a gate is replaced by an even number of instances of the same
gate.
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Figure 4.4: A RGF where a gate is replaced by an odd number of instances of the same
gate.

same gate. The values at each gate level of the circuit are presented in Table 4.3.

It can be observed that the faulty effect of the SMGF presented in Table 4.2 (level 2) is

the same as that of a RGF in Table 4.3 (level 3). This demonstrates the property presented in

case 1. That is, with respect to the same gate, the effects of SMGF and a RGF are identical

when a gate is replaced by an even number of instances of the same gate.

Figure 4.4 shows an example of a RGF for an odd number of instances of a gate (case

2). Here, a 1-CNOT gate is replaced by three of the same gate. The values of each gate

level are presented in Table 4.4. The immediate effect of the RGF can be observed at level

4 of this circuit. The values presented in Table 4.4 are identical to the values when there

is no fault in the circuit. That is, as case 2 states, when a reversible gate is replaced by an
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Table 4.3: Output values at the different levels of a circuit shown in Figure 4.3.

Gate Levels
0 1 2 3 4
0 1 1 1 1
0 0 1 0 0
0 0 0 0 0
0 1 1 1 1
0 0 1 0 0
1 1 1 1 1
0 1 1 1 1
1 1 0 1 1
0 0 0 0 1
0 1 1 1 1
1 1 0 1 1
1 1 1 1 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 0 0 0 0
1 1 1 1 1
1 1 1 1 1

odd number of the same gate, this unwanted repetition does not affect the final output of

the circuit.

Multiple Missing Gate Fault Model [56]

The concept of the multiple missing gate fault (MMGF) model is similar to the SMGF

model. However, the difference is that in a MMGF, more than one gate disappears from

a reversible circuit instead of the disappearance of a single gate. The rectangle shown in

Figure 4.5 indicates that the enclosed CNOT and Toffoli gates are missing from the circuit.
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Table 4.4: Output values at the different levels of the circuit in Figure 4.4.

Gate Levels
0 1 2 3 4 5
0 1 1 1 1 1
0 0 1 0 1 1
0 0 0 0 0 1
0 1 1 1 1 1
0 0 1 0 1 1
1 1 1 1 1 0
0 1 1 1 1 1
1 1 0 1 0 0
0 0 0 0 0 0
0 1 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1

Partial Missing Gate Fault Model [56]

The partial missing gate fault (PMGF) model addresses a fault that occurs when instead

of losing an entire gate, some parts of the gate become inactive. More specifically, when

one or more control points of a gate become inactive, the fault can be considered to be a

PMGF. The concept of a PMGF is similar to the concept of the crosspoint faults. A PMGF

turns a n-CNOT gate into a k-CNOT gate, where k < n. The quantity (n− k) is known as

the order of a PMGF.

For example, a 2-CNOT gate has become a 1-CNOT gate due to the lose of one control
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Figure 4.5: An example of the occurrence of a MMGF.
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Figure 4.6: A reversible circuit with the occurrence of a PMGF.

point, as indicated by the rectangle in Figure 4.6.

4.3 Fault Testing in Reversible Circuits

Fault testing is a mechanism to determine whether a system is faulty or fault free. This

section describes some existing offline and online testing approaches for reversible circuits.

4.3.1 Offline Approaches

With offline testing approaches, a method of testing is applied while the system is not

performing its normal operations. Generally offline testing takes place when the load of the

system is at a minimum. The disadvantage of this category of approaches is that an offline

approach reduces system throughput, since a system can not perform its normal operations
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Figure 4.7: An example of a single appearance crosspoint fault.

while the system is in testing mode. The main advantage of offline testing approaches

is that offline approaches reduce the design complexity of a system under consideration.

This means that in most cases, no extra circuitry is required for offline testing [59]. The

main concern of offline testing is to observe the known outputs of a system for specific

inputs. An input vector, which is applied for testing purposes is called a test vector, and

a set of test vectors is known as a test set. A complete test set can detect all faults for

a particular fault model. One of the main challenges of offline testing approaches is to

develop a minimum complete test set. Some offline approaches use additional circuitry for

testing. Offline approaches based on this technique are known as design-for-test (DFT). The

following subsections discuss two categories of offline testing approaches for two reversible

fault models: crosspoint fault testing, and missing and repeated gate fault testing.

Crosspoint Fault Testing

Zhong et al. prosose a crosspoint fault testing approach [73]. They have found that a

complete test set based on the crosspoint fault model can also detect all single appearance

and disappearance crosspoint faults. The basic concept of testing for appearance crosspoint

fault is to select an input test vector, which assigns 1 to an input line that contains control

points and sets other input lines to 0. Suppose an appearance crosspoint fault occurs in the

1-CNOT gate, as indicated in Figure 4.7. Thus, the 1-CNOT becomes a 3-bit Toffoli gate.

In this case an input vector (a,b,c) = (0,1,0) can detect a difference between the correct
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output and an incorrect output. The output of this circuit for fault free operation is (x,y,z) =

(0,1,1). However, in the presence of this appearance fault, the output is (x,y,z) = (0,1,0).

The values of the test vector at different stages of the circuit is shown in Table 4.5. In this

table the column xi yi zi indicates the intermediate value which is obtained after the 3-bit

Toffoli gate is applied to the test vector.

Table 4.5: Test vector to detect appearance fault in the circuit shown in Figure 4.7.

(a) Incorrect output reflecting the presence of the fault.

Test Vector xi yi zi xyz

a 0 0 0
b 1 1 1
c 0 0 0

(b) Correct output.

Test Vector xi yi zi xyz

a 0 0 0
b 1 1 1
c 0 0 1

For a n-bit gate, a test vector for an appearance fault must set lines with control inputs

to 1, while other lines to 0. Thus, for each gate of a circuit, one input vector is required in

order to test for any single appearance crosspoint fault. Therefore, the size of a complete

test set to detect all single appearance crosspoint faults in a circuit is, at most, the number

of gates. A compete test set that consists of a minimal number of test vectors is considered

to be the most efficient test set.

Missing and Repeated Gate Fault Testing

This section describes one approach to test reversible circuits for SMGF. Offline testing

approaches for other fault models can be found in [56]. Since a SMGF removes an entire

gate from a circuit, the number of possible SMGFs is equal to the number of gates in a

circuit. The fault detection condition for a SMGF is to set all control inputs of the gate

under consideration to 1 [56]. This fault detection condition assumes that all of the control
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points are positive.
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Figure 4.8: An example of SMGF in a reversible circuit.

For example, consider the reversible circuit shown in Figure 4.8. A test set to detect

all SMGFs for this circuit can be (1,1,x),(x,1,x),(1,x,x). The value x represents a don’t

care value; that is, the value of x in a test vector can be either 0 or 1. This allows some test

vector to overlap, and thus a minimal complete test set can be (1,1,x); for example (1,1,0).

Suppose the 3-bit Toffoli gate shown in Figure 4.8 is affected by a SMGF. Using the test

vector (1,1,0), Table 4.6 shows how the fault affects the test vector at different levels of

the circuit. The correct and incorrect values are presented by correct/incorrect notation in

Table 4.6. This example demonstrates how the test vector identifies a difference between a

correct output and an incorrect output.

Table 4.6: Test vector to identify a SMGF for the circuit, as shown in Figure 4.8.

Gate Levels
0 1 2 3
1 1 1 1
1 1 1 1
0 1/0 0/1 1/0

The correct and incorrect values are presented by correct/incorrect notation.

The above discussion suggests that generating a complete test vector can be a major task

in designing offline testing approaches. In addition, the size of a complete test set should

be minimal [54, 73]. In order to avoid difficulties in generating multiple test vectors, Hayes
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et al. [20] proposed a DFT offline testing approach. Their proposed approach works for

the NCT gate family, and can detect a missing gate fault (MGF) using only a single test

vector. In DFT based approaches, additional circuitry is added to a circuit. According to

their approach, a reversible circuit can be tested for a MGF by adding one line, known as

a DFT line, which contains control points for one or more additional 1-CNOT gates. The

basic idea behind the approach is as follows. The condition to test for MGFs for any k-

CNOT gate family is that a test vector must be in the form of (1,1, ......,1, t) [20], where

t is the target input of a CNOT gate. Only this input vector, in form of (1,1, ......,1, t),

can convert the target bit t to t. All other input vectors will not affect the outputs. The

purpose of each added 1-CNOT gate is to generate the test vector for every gate in the form

of (1,1, ......,1, t). That is, a 1-CNOT gate is added in order to ensure that a control point

of an existing gate is always 1.

Level L 0 1 2 3 4 5 6

1

x

y

z

DFT

a

b

c

1

0

1

1

Figure 4.9: DFT based approach for missing gate testing [20].

This DFT based testing method begins by applying a test vector to the input of a circuit.

The additional circuitry converts a bit of the vector to 1, at each gate level (when necessary),

in order to test for a MGF. When the value of the DFT line is 0, the circuit performs its

normal mode of operation. For testing a circuit, the DFT line must be set to 1. Figure 4.9

shows an example of a DFT based approach for testing a MGF. In this figure, the lines

labeled ‘a’, ‘b’ and ‘c’ are part of the 3-bit original circuit. According to this approach,

an additional line labeled DFT is added to the original circuit. The figure shows that the
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original circuit consists of four gates. The original gates are not connected to the DFT line.

Two extra 1-CNOT gates are used to set the control points of next gates to 1. Figure 4.9

shows that the test vector is (a,b,c) = (0,1,1), and the DFT line is 1. The test vector is

chosen in such a way that the vector must set the control point of the gate which appears

first to 1. The values at different levels of this circuit are presented in Table 4.7. It is seen

from Table 4.7 that for the input test vector (1,0,1,1), the DFT based testing approach sets

1 to control points of each gate in the circuit. The immediate effects of the two additional

1-CNOT gates can be observed at gate levels 3 and 5 from Table 4.7. For the test vector

(1,0,1,1), the circuit generates the output vector (1,1,0,1). Any value other than this

output vector indicates that a MGF is present in the circuit.

Table 4.7: Logic values at different levels to detect MGFs for the circuit, shown in
Figure 4.9.

Gate Levels
0 1 2 3 4 5 6
1 1 1 1 1 1 1
0 1 1 1 1 1 1
1 1 0 1 1 1 0
1 1 1 1 0 1 1

4.3.2 Online Approaches

In online approaches, a system is tested while the system performs its normal oper-

ations. Unlike in offline testing, it is not necessary to remove a system from its normal

mode of operations. Thus online testing approaches increase system throughput, because

a system never sits idle for testing purposes. With this approach, additional circuitry is

attached to a system for testing. So rather than generating test vectors as in offline testing

approaches, the primary design issue of online approaches is to design a minimal circuit

to detect faults while the circuit is operating normally. This section describes some online

testing approaches for reversible circuits.

Vasudevan et al. [69] proposed three new reversible logic gates for online testability.
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(b) A R2 gate.

Figure 4.10: R1 and R2 gates proposed in [69].

Two of the gates, R1 and R2, are used to create an online testable block, CB. Figure 4.10

shows the block diagrams and output functionalities of the R1 and R2 gates. R1 gates are

universal gates; that is, R1 gates can be used to implement any reversible function. The

idea behind the development of the R2 gate is to add online testable features to the R1

gate. When these two gates are connected in cascade, they work as a block with testable

functionalities.

Figure 4.11(a) shows how the outputs of R1 are connected to the inputs of R2 in order

to form a CB, as shown in Figure 4.11(b). As shown in this figure, the values of input lines

p and r are set to 0 and 1, respectively, during normal operations. In a CB, the R1 gate

is used to synthesize logic functions, and the R2 gate is used to add testing feature to the

circuit. The input lines p and r and the output lines q and s are used as parity bits. If the

R1 gate contains a fault resulting in incorrect output, the values of q and s will be the same.

Opposite values of q and s indicates fault-free operations.

Another reversible gate, R, is also proposed by Vasudevan et al. [69]. The purpose of the

R gate is to behave as a checker circuit and check the parity outputs of the CB. The checker

circuit, which is called a two-pair two-rail checker, is constructed by connecting eight R

gates. The checker circuit has four input lines and two output lines. The four input lines

of the two-pair two-rail checker connects the parity output bits from two identical CBs.

Finally, e1 and e2 produce opposite values if the input bits are the complement of each

other, which indicates that the circuit generates a correct output. e1 and e2 are evaluated as
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(b) A R1-R2 pairing testable block.

Figure 4.11: Block diagrams of pairing of R1 and R2 reversible gates.

e1 = x0y1+ x1y0, and e2 = x0x1+ y0y1, respectively.

A similar online testing approach is proposed by Mahammad et al. [31]. There are

three major phases to design an online testable circuit using this approach. Firstly, each

gate of a circuit is transformed to a deduced reversible gate (DRG). Secondly, an identity

gate is attached to the deduced reversible gate in order to form a testable reversible cell

(TRC). Finally, parity outputs of each TRC are connected to build a testable circuit (TC).

According to this approach, a reversible gate is transformed to its corresponding DRG by

adding one parity input line, pi, and one parity output line, po. The output parity line, po,

performs exclusive OR operations between input data bits and the input parity bit, pi. Thus,

each n-bit gate is transformed to a (n+1)-bit DRG. For example, Figure 4.13 shows how a

CNOT gate is transformed to its corresponding deduced version.

The DRG is also reversible and retains the original functionality of a gate. With this

76



4.3. ONLINE APPROACHES

Two Pair

Two Rail

Checker

e1

e2

a

b

c

0

1

CB

x

y

z

q

s

a

b

c

0

1

CB

x

y

z

q

s

x0

x1

y0

y1

Figure 4.12: An online testable circuit based on the approach proposed in [69].
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(a) Block diagram of a CNOT gate.

x = a

y = a b

po= pi a b

a

b

pi

CNOT

Gate
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Figure 4.13: A CNOT gate and its deduced version for online testing.

approach, for an (n×n) reversible gate, an (n×n) identity gate is also required to achieve

testability. The identity gate simply passes the input to its output lines. This identity gate

is also transformed to its deduced form. Next, the input of the deduced identity gate is

connected to the output of the deduced version of the original gate, which forms a (n+2)-

bit TRC for a gate. For example, the TRC of the gate which is shown in Figure 4.13 (b) is

presented in Figure 4.14 (a).

In Figure 4.14 (a), pix and pox are the parity input and output bits of the identity gate.

The four input and output parity bits, as in this figure, can be used to determine whether

the output of a gate is correct or not. As an indication of correct operation, when both
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Figure 4.14: TRC and TC for online testability.

input parity bits are the same, the output parity bits should also be the same. Any unwanted

change of a bit as a result of the occurrence of a fault results in the output parity bits being

the complement of each other when the input parity bits are the same, which indicates that

the output is incorrect. Each n-bit gate of a circuit is transformed to a (n+2)-bit TRC. Each

TRC has n output bits and 2 output parity bits. These output parity bits of each TRC are

connected to testable circuit, TC, as shown in Figure 4.14(b). A TC also contains another

input line, e, which is generally initialized with 0. The value of the output line, T , of a TC

is calculated as T = e⊕ ((po1⊕ pox1)+(po2⊕ pox2)+ ...+(poN⊕ poxN)). When T = 1,

it indicates that the output of the circuit is incorrect.

The online testing approaches presented in [31, 69] are not capable of detecting certain

faults, as shown in [49]. For example, if two CBs, as shown in Figure 4.11(b), are required

to implement a reversible function, and a fault occurs between the two CBs, the approach

proposed in [69] cannot detect this fault. To address this Nayeem et al. [49] proposed an

online testing approach. According to this approach, four modifications are required to

make a reversible circuit online testable. Firstly, for each input line of an (n×n) reversible

circuit, it is necessary to add a 1-CNOT gate before and after the original circuit. Secondly,

a parity line, L, is added to the circuit. The target lines of the added CNOT gates connect

the parity line, L. The third modification is that all n-bit Toffoli gates of the original circuit
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are replaced by (n+1)-ETG gates. ETG stands for extended Toffoli gate, which is a gener-

alized version of a Toffoli gate. The difference between an ETG and a Toffoli gates is that

an ETG has more than one target line, as shown in Figure 4.15. These three modifications

are necessary to design an online testable reversible circuit based on the approach in [49].

However, if an odd number of NOT gates are present in an original circuit, another modifi-

cation is required. In this case an extra NOT gate is added at the end of line parity line, L.

If the number of NOT gates are even, the fourth modification is not required.

i1

i2

i3

in

in+1

o1 = i1

o2 = i2

o3 = i3

on = i1i2i3 in

on+1 = i1i2i3 in+1

Figure 4.15: A (3+1)-bit ETG gate.
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(b) An online testable circuit.

Figure 4.16: An example of online testable reversible circuit based on [49].

Figure 4.16(b) shows an online testable version of the reversible circuit shown in Fig-

ure 4.16(a). The initial value of the parity line L of a testable circuit is set to 0. At the

circuit output, if the value of L becomes 1, it indicates the circuit is faulty. Targets of an

ETG operate on the same set of control points as that of the original gates. So if a fault

affects the output of the original target of a gate, the fault also affects the value on L, which

is connected to the extended target of the gate. The purpose of the CNOT gates which are
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added before ETG gates is to read the parity of the line, L. Another set of CNOT gates is

added after ETG gates for checking the parity on L. Targets of all these CNOT gates are

connected to L, as shown in Figure 4.16. Thus, if a fault occurs and affects the output of

a gate, the fault changes the value of L from 0 to 1, which indicates the system output is

incorrect.

a
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z

(a) A reversible circuit.
1 2 3 4
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c

d

(b) An online testable circuit.

Figure 4.17: An example of online testable reversible circuit based on [28].

The approaches discussed above consider only single bit faults. Kole et al. [28] pro-

posed an online testing approach that can detect SMGFs in NCT based circuits. According

to this approach, each k-CNOT gate of the original circuit is transformed to its correspond-

ing augmented reversible gate (ARG). Their approach also requires one additional parity

line. An ARG contains four gates: three additional gates and the original gate. The targets

of the additional gates connect to the parity line. When the output parity bit is the comple-

ment of the input parity bit, it indicates the output in incorrect. For example, Figure 4.17(b)

shows a testable version of the reversible circuit shown in Figure 4.17(a). Suppose the gate

labeled 3 in Figure 4.17(b) is missing. When the input vector (a,b,c,d) = (1,1,0,1), the

output vector will be (x,y,z,w) = (1,1,0,0). This output is incorrect, which is identified as

the value of ‘w’ is the complement of the value of ‘d’. When the gate labeled 4 is missing,

this fault will not affect the original circuit output, (x,y,z). However, the testable circuit

does not always identify the occurrence of this fault. For example, when the input vector

(a,b,c,d) = (1,0,1,0), the output vector will be (x,y,z,w) = (1,0,1,1). In this case d 6= w,

which identifies the SMGF. However, when the input vector (a,b,c,d) = (1,1,1,0), the
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output vector will be (x,y,z,w) = (1,1,0,0). In this case d = w, which does not identify the

SMGF.

As seen from the above discussion, most existing testing approaches rely on input and

output parities in order to detect faults. Other research that also falls in this category in-

cludes [19, 23, 55, 61, 65]. Many authors address the problem of testing by proposing parity

preserving gates in terms of block diagrams, and checks the parity of inputs and outputs of

the parity preserving blocks. Moreover, as we have seen earlier, many works do not test

their proposed approaches for reversible fault models. In recent years, Przigoda et al. has

tested existing reversible online fault detection approaches against reversible fault models.

They showed that parity preserving blocks are inadequate to detect missing gate faults in

reversible logic [57]. The limitation of detecting a single bit fault by the approach proposed

in [69] is described in [49]. Simply maintaining parities between the inputs and the outputs

is not always enough to detect faults in reversible logic. For example, Figure 4.18 shows

two reversible circuits based on two different online testing approaches. Figure 4.18(a)

shows a TRC of a CNOT gate based on the approach proposed by Mahammad et al. [31].

As we discussed earlier, the input lines pi and pix are the parity lines from two DRGs. So

for a single gate of a circuit, four additional gates are required to form a TRC for the gate.

Figure 4.18(b) shows an online testable version of a CNOT gate based on the approach

proposed in [49]. With this approach, four additional CNOT gates are added to the online

testable circuit, and the CNOT gate is transformed to its extended version, as we discussed

earlier in this section. The value of the output parity, P, determines whether the circuit is

faulty or fault free. If P = 0, it indicates that the output is correct.

Suppose the PMGF occurs in the circuits, as indicated in Figures 4.18(a) and (b). Since

the control of the CNOT gate in Figure 4.18(a) is missing, the CNOT gate will work as a

NOT gate with a target on line, ‘b’. Thus, when a = 0 and b = 1, the correct output should

be x = 0 and y = 1. However, from Table 4.8(a), it is seen that when ab = 01, the value

of xy = 00, which in incorrect. With the approach presented in [31], as an indication of
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Figure 4.18: Two existing reversible online testing approaches for PMGF.

fault free circuits, when pi = pix, output parities should be po = pox; and when pi 6= pix,

output parities should be po 6= pox. However, Table 4.8(a) shows that the output parities are

the complement of each other even when the circuit generates an incorrect output, that is,

xy = 00 when the inputs are ab = 01. A similar observation can be seen in Table 4.8(b).

Due to the presence of a PMGF, the extended CNOT gate transformed to two NOT gates

on line ‘b’ and ‘L’. When ab = 01, the circuit shown in Figure 4.18(b) generates xy = 00,

which is incorrect. However, the output parity line is still 0. A 0 on output parity line

indicates that the output is correct, though the output is not correct in this case. Thus, the

approach presented in [49] also fails to detect a PMGF. Similarly, the approaches presented

in [31] and [49] can not detect incorrect output for other reversible fault models, such as

SMGFs, RGFs, and crosspoint faults.

Our proposed approach is based on the testing technique presented in [49]. Nayeem et

al. [49] examined their proposed approach against only single bit fault model. In addition,

the authors only consider the case when a fault occurs in an original circuit. They did not

consider the occurrence of faults in the extra circuitry which is added to the circuit. In this
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Table 4.8: Truth tables of the circuits shown in Figure 4.18.

(a) Output of the circuit shown in
Figure 4.18(a).

inputs outputs
a b pi pix x y po pox

0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 1 1 0 1
1 1 1 1 1 0 1 1

(b) Output of the circuit
shown in Figure 4.18(b).

inputs outputs
a b L x y P

0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 1 1 0
1 1 0 1 0 0

work we consider all possible locations where a fault may occur in a circuit. In addition,

we have tested our proposed online testing approach for three categories of reversible fault

models.

4.4 New Online Testing Approach [46]

In this section, we are presenting our proposed online fault testing approach for detect-

ing three types of faults in reversible circuits.

4.4.1 Design

Given a reversible circuit with L lines and N gates, the first step to transform a reversible

circuit to its online testable equivalent is to add an extra line to the circuit. This line is a

parity line, p, which is initialized to 0. The next step is to transform each k-CNOT gate of

the circuit into a duplicate gate block. For each line of the original circuit, a 1-CNOT gate

is added at the beginning and at the end of the original circuit. The targets of the additional

CNOT gates are connected to the parity line, p.

A duplicate gate block (DGB) consists of two gates. A DGB includes a k-bit Toffoli

gate with an additional k-bit Toffoli gate, as shown in Figure 4.19. The controls of the newly

added gate (or duplicate gate) are on the same lines as that of the original gate. However,

the target of a duplicate gate is connected to the parity line, p. In the case of a 0-CNOT gate,

there is no control line, so a DGB consists of two 0-CNOT gates: one on the same line as
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Figure 4.19: Conversion of a Toffoli gate into a Duplicate Gate Block.

the original reversible gate and another on the parity line, p. DGBs appear in the same order

as the gates in the original circuit. A total of L 1-CNOT gates are added at the beginning

and the end of DBGs. We refer to the set of 1-CNOT gates which appears before DBGs as

the preamble block. The set of 1-CNOT gates which appear after the DGBs, are referred

to as the postamble block. Figure 4.20 illustrates the conversion. Figure 4.20(a) shows a

reversible full adder circuit consisting of four gates. These four gates are transformed into

their corresponding DBGs in an online testable version of a full adder circuit, as shown in

Figure 4.20(b). A full adder circuit has four lines, as shown in Figure 4.20(a). Thus, four

1-CNOT gates are added in the preamble and postamble blocks. Targets of these additional

1-CNOT gates are connected to a parity line, pin.

With our proposed approach, an entire testable circuit consists of three blocks in se-

quence: preamble block, DBGs and postamble block. If the QC of an original circuit is Q,

and the circuit has L lines, the QC of the circuit’s online testable equivalent will be 2L+2Q,

since the QC of a 1-CNOT gate is 1 [32, 71].

One major advantage of this approach is that circuit overhead reduces significantly for

circuits with higher GC. The number of CNOT gates of a testable circuit remains the same

if the number of gates in the original circuit increases. In addition, online testable circuits

based on this approach are easy to design. That is, this approach reduces design complexity

by simplifying the testable portion of the circuit. In addition, the design of this circuit is

dynamic in nature. If a gate is added or removed from the original circuit, a CNOT gate on

the corresponding line is added or removed.

84



4.4. NEW ONLINE TESTING APPROACH

a

b

c

0

g1

g2

sum

carry

(a) A full adder reversible circuit.

Postamble blockPreamble block

a

b

c

0

pin=0

g1

g2

sum

carry

pout

DGB1 DGB2 DGB3 DGB4

DGBs

(b) Online testable equivalent of the full adder.

Figure 4.20: Transformation of a reversible circuit into its online testable equivalent.

4.4.2 Analysis

The first step before analysing the capability or behaviour of the proposed online testable

circuit in detecting faults is to ensure whether the testable circuit performs its intended oper-

ations after adding extra circuitry. Figure 4.20(b) shows an online testable full adder circuit

based on our proposed approach. As we see from the figure, the full adder circuit has three

data input bits and two other inputs. Table 4.9 shows the truth table for the online testable

full adder circuit. The sum and carry output bits are generated after adding three inputs a,

b, and c. The output parity line is labeled as pout , and g1 and g2 are two garbage outputs.

It is important to observe that the output parity bits, pout equals to 0 for all the rows, which

indicates that the output is correct.

Figure 4.21 shows a general diagram of an online testable reversible circuit. Px and Qxy

represent the parity line and the common lines, respectively. Targets and control lines of

gates are treated as common lines. The outputs at the preamble block can be determined as

follows: Q11 = Q10, Q21 = Q20 ,. . . ,QL1 = QL0 and P1 = P0⊕Q10⊕Q20⊕Q30 · · ·⊕QL0.
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Table 4.9: Truth table for the circuit shown in Figure 4.20(a)

inputs outputs
a b c 0 pin g1 g2 sum carry pout

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 1 0 0
0 1 1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 1 0 0
1 0 1 0 0 1 1 0 1 0
1 1 0 0 0 1 0 0 1 0
1 1 1 0 0 1 0 1 1 0

Since the parity line is initialized to 0, then P0 = 0 and P1 = Q10⊕Q20⊕Q30 · · ·⊕QL0.

From the above equation, it can be observed that the preamble block works as a parity

checker. That is, if the parity of the common lines at the input (level 0) is odd, after passing

through the preamble block, the value on the parity line (P1) at level 1 changes to 1. If the

parity of the common lines at the input (level 0) is even, the value of the parity line, P1, at

level 1 remains 0. The output values of the preamble block on the common lines will equal

to the input values. Thus, the value on parity line will be 1 when the parity of the common

lines is odd. On the other hand, the value on parity line will be 0 when the parity of the

common lines is even. This property is termed as the parity property.
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Figure 4.21: Block diagram of an online testable reversible circuit.

The output of the preamble block becomes the input to the cascade of DGBs. If there

is no fault in the preamble block, the DGBs also preserve the parity property. Let Fx be
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the output function of a DGB. Let Tx and Px+1 be two target lines of the original gate and

the duplicate gate of a DGB, respectively. The target line of a duplicate gate is always

the parity line whereas the target line of the original gate is one of the common lines.

For example, Figure 4.20(b) shows that the targets of the duplicate gates are on the parity

line, whereas the targets of original gates can be on any line other than the parity line.

Therefore, Tx is one of the lines amongst {Q1(x+1),Q2(x+1), . . . ,QL(x+1)}. Let Tx = Qi(x+1)

where i ∈ (1,2,3, . . . ,L); then Tx = Fx⊕Qix and P(x+1) = Fx⊕Px.

From the above two equations, it is observed that if Fx = 1, P(x+1) and Tx invert the

input values, Px and Qix, respectively. If Fx = 0, the output of the DGB will equal to its

input, and no change will take place. Thus, changes in Tx and P(x+1) take place simulta-

neously. In other words, changes in the parity of the common lines and P(x+1) take place

simultaneously. We refer to this property of the DGB as simultaneous change property. The

simultaneous change property ensures that the parity property remains consistent through-

out the output of the DGBs. Thus, if the parity property is violated at the input of a DGB,

the effect of this violation is passed to the output of the DGB.

The output of the cascade of the DBGs supplies the input to the postamble block. If

there is no fault in any of the previous blocks, the input of a postamble block also satisfies

the parity property. That is, if the parity of the common lines is even (odd) at level (n+1)

in Figure 4.21, the input parity, Pn+1, will be 0(1). The output equations of the postamble

block are: Q1(n+2) = Q1(n+1), Q2(n+2) = Q2(n+1) , . . . , QL(n+2) = QL(n+1); and P(n+2) =

P(n+1)⊕Q1(n+1)⊕Q2(n+1)⊕Q3(n+1) · · ·⊕QL(n+1)

From the above equation it is seen that if the parity of the common lines is odd at

level (n+ 1), then P(n+1) equals to 1 and hence, the output parity, P(n+2) becomes 0. On

the other hand, if the parity of the common lines at level (n+1) is even, then P(n+1) equals

to 0, and P(n+2) will still be 0. Therefore, in a fault-free circuit operation, the input of

the postamble block preserves the parity property, and the final output parity P(n+2) of the

circuit will be 0. When the value of P(n+2) becomes 1, it indicates an incorrect output.
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4.4.3 Testing: Fault Detection

This section shows our proposed online testing method to identify incorrect output in the

presence of faults in a reversible circuit. We have considered different types of reversible

fault models to illustrate our approach. We assume that at any given instant, at most, one

fault is present in a reversible circuit. Faults that affect the output of a circuit change the

value of the output parity bit from 0 to 1. That is, 1 at the output parity line indicates that the

output is incorrect. We have considered three scenarios from the perspective of the location

of occurrence of a fault in a circuit: case 1: when a fault occurs in an original gate of a

DGB; case 2: when a fault occurs in a duplicate gate of a DGB; and case 3: when a fault

occurs in either preamble or postamble blocks.

Missing Gate Fault Family

This section illustrates the mechanism of identifying MGFs in our proposed online

testable reversible circuits. Figure 4.22 shows occurrences of a SMGF and PMGF in a

testable version of a full adder circuit. However, we assume only one type of fault is

present at a time in the circuit. In this figure the CNOT gates labeled from 1 to 4 constitute

the preamble block. Gates marked from 5 to 12 are part of a series of DGBs. Gates 5 and

6 form a single DGB, where the gate labeled 5 is the gate from the original circuit and

the gate labeled 6 is the duplicate gate. Note that targets of all duplicate gates in DBGs

are connected to pin. Gates from 13 to 16 are part of the postamble block, as indicated in

Figure 4.22.

Single Missing Gate Fault and Repeated Gate Fault

Case 1: Suppose the original gate in a DGB is missing. A missing gate does not affect

the circuit output if any of this gate’s control points are 0. So in order to demonstrate how

our approach identifies the occurrence of faults, we are considering an input vector that

sets all control points of the original gate to 1. The output of the original gate is connected

to one of the common lines. Recall from section 4.4.2 that targets and control lines of
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the gates of the testable circuit are treated as common lines. Because the original gate is

missing, there will no change in common lines. However, since the duplicate gate of this

DGB is connected to the parity line, and all control points of this gate are 1, the value on

the parity line will be inverted. Therefore, this DGB output will violate the parity property.

According to the simultaneous change property, this violation will be forwarded to the input

of the postamble block. When the inputs of the postamble block do not follow the parity

property, the parity line will generate 1 at its output, which indicates that the circuit is faulty.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SMGF
a

b

c

0

pin=0

g1

g2

sum

carry

pout

PMGF

Preamble Block DGBs Postamble Block

Figure 4.22: Testing for the occurrences of SMGF and PMGF.

For example, we assume that the original gate labeled as 5 and indicated by a dotted

line in Figure 4.22 is missing. Note that gate 5 and gate 6 form a single DGB, where

gate 5 is the original gate and gate 6 is the duplicate gate. The target of the duplicate

gate is on the parity line, and control points of both gates are on the same line. If, during

normal operations, the input vector is (a,b,c,0, pin) = (1,1,0,0,0), the duplicate gate (gate

6) inverts its target input, as both control points are 1. However, since the original gate is

missing, the original gate (gate 5) will not invert its target input. So for this input vector,

(1,1,0,0,0), the circuit output will be (g1,g2,sum,carry, pout) = (1,0,0,0,1) instead of the

correct output (1,0,0,1,0). Similarly, when (a,b,c,0, pin) = (1,1,1,0,0), the circuit output

will be (g1,g2,sum,carry, pout) = (1,0,1,0,1). It is seen from both examples that output

parity, pout = 1, which indicates that the circuit is faulty.
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Case 2: Now suppose a SMGF occurs in the duplicate gate (gate 6) of a DGB in Fig-

ure 4.22. Similar to case 1, the fault will be identified for input vectors that set all control

points of the duplicate gate to 1. For such an input vector, the original gate (gate 5) inverts

its target input. So the output of the common lines will change because the output of the

common lines depends on the original gate. However, since the target line of the faulty gate

is connected to the parity line, the output parity line of this DGB will not be changed. So

there is a violation of the simultaneous change property. This violation will also affect the

parity property at the input of the postamble block. As a result, the final output parity of the

circuit will be 1, which identifies the fault.

For example, when (a,b,c,0, pin) = (1,1,0,0,0), the gate 5 inverts its target input, as

both control points are set to 1. However, the gate 6 will not invert its target bit. So the si-

multaneous change property is violated, and the circuit output becomes (g1,g2,sum,carry,

pout) = (1,0,0,1,1), and the output parity, pout becomes 1, which indicates that the output

is incorrect.

Case 3: Now consider the case when one of the gates in the preamble block is missing.

Target lines of all 1-CNOT gates appear in the parity line, so a fault in the preamble block

does not affect the common lines output. However, the fault must affect the parity output,

P1, which is given by P1 = Q10⊕Q20⊕Q30, . . . ,QL0. According to the parity property, the

output parity bit of the preamble block should be 0 if the parity of the common lines is even,

and the parity output should be 1 if the parity of the common lines is odd. Since one of the

1-CNOT gates is missing, the fault violates the parity property. This violation affects the

output parity line of the circuit, and the output parity line, pout , will be 1, which indicates

an incorrect output.

As far as RGFs are concerned, if a gate is replaced by an odd number of instances of the

same gate, the fault does not affect the circuit output. However, if the number of instances

is even, the effect of this fault is identical to that of a SMGF [56]. Thus, the parity output

of the proposed online testable circuit will be 1 for the occurrence of RGFs.
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Partial Missing Gate Fault

Case 1: If a PMGF occurs in an original gate of a DGB, some control points of the gate

become inactive. For such a fault to be detected, at least one of the missing control points

should be 0, and the rest of the control points of the faulty gate should be 1 [56]. Thus,

when the missing control point is 0, and all non-missing control points are 1, the faulty

gate will invert its target input. Since the target of the original gate is one of the common

lines, the parity of the common lines will be changed. However, all the control points of

the duplicate gate are not 1. So the duplicate gate will not invert its target input. Thus, the

value on the parity line of the DGB will not be changed. As a result, the parity property

will be violated at the output of this DGB. According to the simultaneous change property,

this violation will propagate throughout the cascade of DGBs to the input of the postamble

block. In this case the output of the circuit will be incorrect, as indicated by 1 on the output

parity line.

For example, suppose the control point of the gate labeled 9, as indicated in Figure 4.22,

is missing. Since the control point of the 2-CNOT gate 9 is missing, this gate will work

as a 1-CNOT gate. So when the input vector (a,b,c,0, pin) = (0,0,1,0,0), this gate will

be active and invert its target input. However, both control points of the duplicate gate

labeled 10 are not 1. So this duplicate gate remains inactive and will not invert its target

input. As a result, the simultaneous change property will be violated and the final out-

put of this circuit will be (g1,g2,sum,carry, pout) = (0,0,1,1,1), which is incorrect and

can be identified as pout = 1. Similarly when (a,b,c,0, pin) = (1,1,1,0,0), the output is

(g1,g2,sum,carry, pout) = (1,0,1,0,1) instead of the correct output (1,0,1,1,0). This fault

can also be identified as pout = 1. Therefore, a PMGF that may occur in a DGB’s original

gate can be identified.

Case 2: Now consider a case when a control point of a duplicate gate is missing. When

the non-missing control points are 1 and the missing control point is 0, the duplicate gate

will invert its target input. That is, the value of the parity line immediately after this du-
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plicate gate will be inverted, since the target of the duplicate gate lies on the parity line.

However, the common lines simply pass the inputs of the original gate to the output, as

the original gate will be inactive. So the target of the original gate will not invert its input.

Thus, there is a change in the value of the parity line, but parity of the common lines re-

mains the same, which violates the simultaneous change property. As a consequence, the

output parity of the circuit will be 1, which identifies the fault.

For example, a PMGF occurs in the duplicate gate labeled as 10 in Figure 4.22. Consider

a case when the control point on line ‘b’ of the duplicate gate (gate 10) is missing. So

the gate labeled 10 becomes a 1-CNOT gate with the control on line ‘c’. Now, when

(a,b,c,0, pin) = (0,0,1,0,0), the duplicate gate will be active, while the original gate will

be inactive. The output of the online testable circuit will be (g1,g2,sum,carry, pout) =

(0,0,1,0,1), which is incorrect, as indicated by the value of the output parity.

Case 3: If a PMGF occurs in the preamble block, a 1-CNOT gate will become a 0-

CNOT gate. A 0-CNOT gate will change every bit on its input. Thus, the output parity bit

of the preamble block will always be the opposite of the correct value. As in previous cases,

this incorrect parity will propagate to the successive blocks of the circuit, and the circuit

output will be affected. A similar situation will happen if a PMGF occurs in a postamble

block. In both cases, the parity output will be 1.

Crosspoint Fault

This section discusses the mechanisms to detect disappearance and appearance cross-

point faults. A disappearance fault is identical to a PMGF. Thus, the effect of a disappear-

ance fault and its detection mechanism is the same as that of PMGF. Here we discuss the

detection of appearance faults.

Case 1: If an appearance fault occurs in an original gate of a DGB, one or more extra

control points are added to the gate. This fault is detectable if at least one of the additional

control points is 0, while other control points are 1. In this case the target of the faulty gate
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does not invert its input bit. However, the target of the duplicate gate in the DGB inverts its

target input, which connects to the parity line. As a result, DGB output does not satisfy the

parity property, and the circuit generates an incorrect output.

appearance fault
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Figure 4.23: Testing for the occurrences of appearance crosspoint fault.

For example, suppose an appearance fault occurs in gate lebeled 11 in Figure 4.23. The

original gate’s control point which is on line ‘a’ appears as a fault, as indicated in this figure.

Gate labeled 11 becomes a 2-CNOT gate due to the presence of this fault. So for the input

vector (a,b,c,0, pin) = (0,0,1,0,0), gate 11 becomes inactive, as the control point on line

‘a’ equals to 0. However, the duplicate gate 12 becomes active, as it is a 1-CNOT gate and

the control of this gate is ‘b’ is 1. So gate 12 inverts its target input. In this case the circuit

will generate an incorrect output vector (g1,g2,sum,carry, pout) = (0,1,1,1,1). The parity

output, pout , becomes 1, which indicates that the circuit is faulty.

Case 2: When an appearance fault occurs in a duplicate gate of a DGB, the fault is

detectable when any of the extra control points is 0, and all other control points are 1. In

this case the original gate inverts the bit at the gate’s target line. However, the control

points of the duplicate gate are not 1, so the parity output remains the same as its input. As

a result, similar to as in case 1, the parity property is violated. The violation will affect the

circuit output, and the incorrect output can be identified by observing the parity output of

the circuit.
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For example, suppose a control point on line ‘a’ is added to the duplicate gate 12 in

Figure 4.23. In this case when the input vector is (a,b,c,0, pin) = (0,0,1,0,0), the output

vector is (g1,g2,sum,carry, pout) = (0,1,0,1,1). It is seen that the parity output is 1, which

indicates an incorrect output.

Case 3: If an extra control point appears on a 1-CNOT gate of the preamble block, the

fault will affect the circuit output only when the newly added control point is 0 and the old

control point is 1. In such a case the gate will not invert its target bit. Thus, the preamble

block generates a an incorrect output, which will not satisfy the parity property. Similarly

if an appearance fault occurs in the postamble block, the parity output will be 1.

For example, when (a,b,c,0, pin) = (0,0,1,0,0), the output vector, (g1,g2,sum,carry,

pout), becomes (0,0,1,0,1). The output parity bit is 1, which identifies that the output is

incorrect.

Single Bit Fault

Single bit fault model deals with a situation when exactly one output of a circuit is

incorrect because of a change in a bit on a line. If a single bit fault occurs in our proposed

online testable circuit, the output of common lines will not follow the parity property. This

violation of the parity property will be propagated to the input of the postamble block,

because of the nature of the simultaneous change property of DGBs. The input of the

postamble block, in turn, will not follow the parity property. Hence, the parity output will

be 1, which indicates the fault in the circuit.
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Figure 4.24: Testing for an occurrence of a single bit fault.
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For example, suppose a single bit fault occurs between the second and third DGBs of a

circuit as shown in Figure 4.24. When an input vector (1,0,0,0,0) is applied to the circuit,

the value on line ‘b’ will be changed from 1 to 0. This change of bit violates the parity

property. The corrected output of the circuit should be (1,1,0,0,0); however the actual

output, reflecting the fault, is (1,0,0,0,1). The violation of the parity property is carried

through the circuit and the value of the output parity line becomes high, which identifies

the presence of the fault in the circuit in Figure 4.24.

If there is no fault in the preamble block and DGBs, the input of the postamble block

will satisfy the parity property. However, if a fault occurs in the postamble block, the effect

of this fault will be the same as that of the preamble block, as both preamble and postamble

blocks are same in architecture. The parity output will also be 1 for the presence of a fault

in postamble block.

To summarize, if a fault occurs in the original gate of a DGB, the output of the cor-

responding DGB does not satisfy the parity property. Moreover, because of the property

of the simultaneous change property of DGBs, the violation of the parity property will be

propagated to the input of the postamble block. When the input of the postamble block, in

turn, does not follow the parity property, the output of the postamble block generates 1 on

the parity line, which indicates that a fault occurs in the circuit.

4.4.4 Comparison and Limitation

Comparison

This section offers a comparison between our proposed approach and two other online

testing approaches. Nayeem et al. [49] proposed an online testing approach for the detection

of single bit faults. They used two sets of CNOT gates and a single parity line to make a

reversible circuit online testable. In their approach, all k-Toffoli gates of an original circuit

are transformed to (k + 1)-Extended Toffoli Gates (ETG). We have designed an online

testable reversible full adder circuit based on their approach proposed in [49]. The resulting
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Table 4.10: Overhead for selected benchmark circuits.

Circuits Original Circuit Testable Circuit Overhead (%)
Functions Lines GC QC GC QC GC QC

rd32 4 4 8 16 24 300% 200%
4b15g1 4 15 47 38 102 153% 117%
ham7 7 25 49 64 112 156% 129%
rd53 7 30 232 74 478 147% 106%
hwb8 112 449 1461 1122 3146 150% 115%
hwb9 170 699 2275 1738 4890 149% 115%

hwb10 10 3631 139470 7282 278960 101% 101%
frg2 1219 3724 12468 9886 27374 165% 120%

GC = Gate Count

QC = Quantum Cost

testable circuit has a GC of 12 and QC of 28. An online testable full adder circuit designed

using our proposed approach is presented in Figure 4.20. This circuit has a GC of 16 and

QC of 32. The QC and GC of our approach are slightly higher as compared to the approach

in [49]. However, their approach only considers single bit faults, whereas our proposed

approach can detect three types of faults.

Next we compare our approach with another online testing approach, proposed by Kole

et al. [28]. Their approach requires each k-CNOT gate of the original circuit is transformed

to its corresponding ARG consisting of four gates. Thus with their strategy, four gates are

required to represent one gate. Therefore, in order to implement a full adder circuit, as

shown in Figure 4.20(a), their approach requires a testable circuit with a GC of 16, which

is the same as that of our approach. The QC of their testable circuit is 32, which is also the

same as that of our approach. However, their approach considers only SMGFs.

Our proposed online testing approach is well suited for a circuit with a large number of

gates. Table 4.10 presents the GC and QC of testable circuits after applying our approach

to selected benchmark circuits [71]. From this table, it is seen that for circuits with a larger

number of gates, our proposed approach actually results in a lower overhead (in terms

of percentage of the original size). If we observe the first two benchmark circuits (with
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same number of inputs) from Table 4.10, the circuit overhead is significantly lower for the

circuit (4b15g1) with a higher GC. The reason behind this reduction is that the number

of additional gates in preamble and postamble blocks does not depend on the number of

gates in an original circuit, but rather depends on the number of bits (inputs) of the circuit.

Circuits rd32 and 4b15g1 have the same number of bits, however 4b15g1 has almost four

times more gates.

Compared with the approach presented by Kole et al. [28], our approach also offers

efficient designs for circuits with a large number of gates, when we consider the QC. For

instance, if we add one 1-CNOT gate to the original circuit presented in Figure 4.20(a),

according to our approach the QC increases by 2, since the QC of a 1-CNOT gate is 1, and

we duplicate the gate. However, according to the other approach [28], the QC increases by

4.

Limitations

There are some limitations of our proposed online testable circuit. Firstly, the proposed

approach can not detect a single bit fault that occurs in a preamble block of a circuit. A sin-

gle bit fault in a preamble block causes a reversible circuit to generate an incorrect output.

However, in this case the output parity line will be 0. Thus, the output parity bit will not

indicate that the circuit output is incorrect.

In addition, our approach fails to detect a particular case when dealing with MMGFs.

MMGFs occur when several consecutive gates are missing in a circuit [56]. Suppose N

consecutive original gates of a circuit become inactive, i.e. missing. N might be even or

odd. For different input vectors, different gates amongst the missing gates may affect the

input bits. Consider a case where an even number of gates are missing. Thus, the parity

property will be violated an even number of times. When the parity property is violated an

even number of times, the effect of the fault goes unnoticed on the parity line of a testable

circuit. Thus, when the number of MMGFs is even, the output will be incorrect, however,
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the parity property will still be preserved. So the parity output will be 0, which will not

indicate the presence of a fault, even though the output is incorrect.

Now consider an input vector for which the number of missing gates, which affects

the parity line, are odd. The parity property is violated an odd number of times. Hence,

the value of the parity output converts to 1, which clearly indicates an error in the output.

Therefore, some but not all the possible MMGF faults are detectable by our proposed online

approach.

4.5 Chapter Summary

4.5.1 Contribution

The chapter focuses on analysing and designing fault testing approaches for reversible

circuits. The contribution of this chapter are as follows:

• Identify the limitations of the existing online testing approaches.

• Present an online testing approach for detecting three types of faults in reversible

circuits.

4.5.2 Conclusion

In this chapter we have analysed fault models for reversible logic. We have observed

the behaviour of different faults in reversible circuits. Studying and analysing the behaviour

of faults is particularly important in order to develop fault testing strategies. We have also

analysed existing testing strategies in reversible logic. Our study and analysis suggests that

most existing reversible fault testing approaches have limited scope in fault detection. For

example, some works have not considered the occurrences of faults in additional circuitry,

some testing approaches have considered only one type of fault model, or some approaches

have not considered reversible fault models.

This chapter presents an online testing approach [46] for reversible circuits based on

the NCT gate library. With this approach, a reversible circuit can be converted to its online
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testable version by adding a set of CNOT gates and a single parity line. With these small

modifications, we create a circuit that computes its original functionality, and in addition,

the circuit will detect single bit faults, MGFs or crosspoint faults. The proposed approach

requires 2(L+N) additional gates in order to make a reversible circuit consisting of L lines

and N gates online testable. This increases the circuit overhead in terms of gate count and

quantum cost, however in return, the circuit becomes online testable for three fault models.

Our approach can also detect a fault even if the fault occurs in the additional circuitry, unlike

other approaches in the literature. In addition, since the number of additional CNOT gates

depends on the number of bits of a reversible circuit, the percentage of overhead in terms

of gate count and quantum cost will be reduced for a circuit with larger gate count.

We have considered different fault scenarios in a reversible circuit and observed the

output. If a fault occurs in the original gate of a circuit, and affects the input vector, the

output will be incorrect and the output parity will become 1. We also observe that if a fault

occurs in any of the extra circuitry, the original output of the circuit will not be affected.

However the parity line will go high which clearly indicates the presence of a fault in the

circuit.

4.5.3 Future Directions

Extension of the approach to detect all the possibilities of single bit faults and multiple

missing gate faults is an area of further research. Our proposed approach is based on NCT

gates. With this approach, it is possible to design an online testable circuit for any reversible

function. However, the proposed online testable approach will not work for a circuit that

contains SF gates. Analysing the interaction between the NCT gate and the SF gate families

in a circuit in order to propose an online testing approach regardless of the types of gate is

another open area for future work.

99



Chapter 5

Fault Tolerance in Reversible Logic

This chapter focuses on the principle of fault tolerance in digital system and highlights

different design issues, and techniques for building fault tolerant reversible logic circuits.

Our proposed approach for designing truly fault tolerant reversible circuits is also presented

in this chapter.

5.1 Principle of Fault Tolerance

Fault tolerance is a unique attribute of a digital system, which enables a system to con-

tinue with the intended operations even under the influence of faults. A fault in a digital

system can occur for different reasons, such as flaws in system specification and implemen-

tation, defects of system components, or external environmental disturbance. The occur-

rence of a fault in a system often causes an error. An error is a deviation of the output from

the system’s desired behaviour. With the presence of an error, a system may fail to perform

its designated tasks. This is referred to as a system failure [3, 26, 50]. The cause-and-effect

relationship among fault, error and failure states that a fault is the cause for an error and a

failure, in turn, is the effect of an error [26]. The concept of fault tolerance comes into play

for recovering a system from a potential state of failure. The property of fault tolerance en-

ables a system to continue to function correctly in the presence of errors. Fault tolerance is

the survival attribute or mechanism which returns a system from a potential erroneous state

to an error free state [3]. The area of fault tolerance is not a new field in digital computing.

Fault tolerance has been used in areas where digital computers perform crucial tasks such as
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space programs, military applications, and medical diagnosis treatment and activities [26].

5.2 Techniques to Achieve Fault Tolerance

A fault tolerant system must be capable of generating the expected outcome even in the

presence of errors, either by correcting errors or bypassing errors. In order to design a fault

tolerant system, it is necessary to build in redundancy of some type, generally hardware

redundancy, software redundancy and/or information redundancy [26]. However, in the

reversible domain, simply adding redundancy in order to combat system failure is not the

only factor to consider. The addition of redundancy to a reversible system must ensure that

one-to-one and onto relationships between the inputs and the outputs persist. Therefore,

achieving fault tolerance in reversible logic is a challenging task.

With the concept of redundancy one or more techniques must be required in order to

design a fault tolerant system [26, 50].

• Fault detection: a process of identifying whether or not a fault has occurred by ob-

serving the output of a system component.

• Fault location or fault diagnosis: takes place after fault detection. Fault location is

used to locate the place where a fault has occurred or locate the component which is

responsible for the fault.

• Fault containment: a process of isolating a fault in order to prevent the effect of a

fault to propagate to other parts of the system.

• Fault recovery: takes place in order to restore the integrity of the system. A recovery

process generally involves a replacement or reconfiguration of a faulty component,

or some technique to bypass the effect of a fault.

• Fault masking: a dynamic process to provide corrected outputs in the system. The

process of masking contributes to a fault tolerant system by hiding the effects of faults

from the final output of the system.
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5.3 Testing vs. Tolerance

The principle and techniques of testing are discussed in Chapter 4. Although the con-

cepts of fault tolerance and testing are often confused, they are not the same. For instance,

works on testing such as [46, 49, 69] present approaches that allow the circuit to be tested

for faults, often using parity preservation. However, this does not provide fault tolerance,

as defined later in this chapter.

Many works in the literature that address fault tolerant circuit designs in reversible logic

use the term fault tolerant when really they are referring to testing. Works that fall into

this category include [18, 22, 23, 29, 44, 53, 63]. In these works, the authors propose

approaches which can fall into a category of testing. For example, Parhami [53] highlights

the fact that most arithmetic and other processing functions do not preserve the parity of

the input data at the output end. If the parity of input data is maintained throughout the

computation, no intermediate error checking mechanism is required to detect faults in a

circuit. The paper identifies some parity preserving reversible logic gates and presents a

fault detection method based on parity preserving reversible gates. For example, Fredkin

gates and double Feynman gates are parity preserving gates. A reversible circuit which

is composed of only these two gates can detect an occurrence of fault as described by

Parhami [53]. The paper also presents a design for a parity preserving full adder reversible

circuit. The author concludes that fault tolerance can be achieved without adding any extra

design effort if a reversible circuit is built using only parity preserving logic gates. Based

on this concept, Islam et al. [23] proposed an approach to design what they claimed to be

fault tolerant reversible circuits. The authors proposed a 4×4 parity preserving reversible

gate, or IG gate, as shown in Figure 5.1. They offer an implementation of a reversible

full adder circuit with two IG gates and claim that their proposed design is fault tolerant,

suggesting again that fault tolerance can be achieved without any extra design effort if a

reversible circuit is built using parity preserving gates. Their proposed full adder circuit is

presented in Figure 5.2.
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Figure 5.1: IG gate presented in [23].

Since an IG gate is a parity preserving gate, the proposed full adder circuit also preserves

the parity. The sum and the output carry of the full adder in [23] are defined as sum =

a⊕ b⊕ cin and cout = (a⊕ b)cin⊕ ab. For fault free operation, when a = 1, b = 0 and

cin = 1, the sum and the output carry are calculated as sum = 1⊕ 0⊕ 1 = 0 and cout =

(1⊕ 0) · 1⊕ 1 · 0 = 1⊕ 0 = 1. Suppose a single bit fault occurs in the third line from the

top of the circuit, as shown in Figure 5.2. The third output line of the first IG gate, which

generates ab, is connected to the third input line of the second IG gate. As an effect of a

single bit fault, as shown in Figure 5.2, the value of ab is inverted before contributing to

the second IG gate. For example, when the full adder performs the addition of the three

input bits, a = 1, b = 0 and cin = 1; the third line from the top generates ab = 0. Due to the

presence of the fault, the value of ab will be 1. This incorrect value of ab will be an input

of the second IG gate, as shown in Figure 5.2. In this case the output carry is calculated

as cout = (a⊕ b)cin⊕ ab = (1⊕ 0) · 1⊕ 1 = 1⊕ 1 = 0, which is incorrect. As we see, the

proposed full adder circuit in [23] has no ability to generate corrected output in the presence

of a fault. Thus, this full adder cannot be called a fault tolerant full adder.

a

a b

ab

IG

Gate

IG

Gate

a

b

0

0

g2

sum

cout

g3g1

cin

Figure 5.2: Parity Preserving Full Adder Circuit Composed of IG gates.

103



5.4. APPROACHES TO ACHIEVE FAULT TOLERANCE

Similarly Haghparast el al. [18], the authors present a parity preserving Toffoli gate

which is shown in Figure 5.3. According to this approach, a 3-bit Fredkin gate and a double

Feynman gate are used to design a parity preserving Toffoli gate. Since a Feynman gate is

already a parity preserving gate, the authors use two of their proposed parity preserving

Toffoli gates and two double-Feynman gates to design what they claim is a fault tolerant

full adder circuit. However, similar to the previous example, the full adder circuit presented

in [18] has no ability to generated corrected output in the presence of faults in the circuit,

and so is not fault tolerant.

āb

ab
a

0

b

c

Fredkin

Gate Double

Feynman

Gate

a

ab

ab c

b

Figure 5.3: Parity Preserving Toffoli gate [18].

As discussed above, these works focus on preserving parity in reversible circuits. After

ensuring parity preservation in their designs, the authors of these works claim that their pro-

posed approaches are fault tolerant. Parity preservation can be used as a testing approach,

which may indicate whether the output of a circuit is correct or incorrect. However, a fault

tolerant circuit must have the capability to supply corrected (intended) values at the output

even in the presence of faults in the circuit. A parity preserving circuit does not guarantee

that the circuit is fault tolerant, since the use of parity preservation offers only error de-

tection. Parity preservation does not ensure that the circuit generates corrected output in

the event of error. Thus the designs based on parity preservation cannot be categorized as

offering fault tolerance. Other works that indeed fall into the category of fault tolerance are

described later in this chapter.
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Figure 5.4: Achieving fault tolerance using the concept of redundancy.

5.4 Approaches to Achieve Fault Tolerance

Fault tolerance is generally achieved through the addition of redundancy. Redundancy

to achieve fault tolerance can take several forms, generally hardware redundancy, software

redundancy, information redundancy and/or timing redundancy [26]. This added redun-

dancy comes at a cost. Redundancy is an additional resource in form of logical or physical

components of a system, which helps to a system to achieve fault tolerance. For example,

error detection and correction codes are some of the most common forms of information re-

dundancy, and have been used extensively in information theory and data transmission [13].

Similarly additional hardware or software can be included in a system in order to achieve

fault tolerance. The behavior of a system is an important factor to consider when choosing

a particular type of redundancy to make the system fault tolerant. For example, the choice
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of redundancy that can be added to an information transfer system may not be the same

as that of an information generation system. The input and the output of an information

transfer system are the same (e.g telephone system), whereas the output of an information

generation system may not always be the same as the input (e.g calculator). As a form of

information redundancy, a code is generated by performing some calculation on the data on

the sender side, and the generated code is included with the data to be sent (e.g. checksums

or cyclic-redundancy codes) [13]. Upon receiving the data at the destination, the additional

piece of information (i.e. the added code) allows the detection and correction of errors

which may occur in transmission. Since data on both the sender side and the receiver side

are the same, this technique of information redundancy is useful. However, this is not the

case for a system that generates data instead of transferring data. Since the data on input

and output are different, the types of error detection and correction techniques discussed

above cannot be used in information generating systems.

Figure 5.4 shows a bottom-up diagram to achieve fault tolerance using the concept of

redundancy. A common approach to achieve fault tolerance in an information generating

system is to incorporate hardware redundancy by replicating one or more physical compo-

nents of a system. The cost of this is initially high, but is ammortized over the lifetime of

the system. Hardware redundancy can offer an active approach, a passive approach or a

combination of both [26]. An active approach to fault tolerance works by detecting a fault,

locating the fault and recovering the system through some form of reconfiguration. From

the perspective of recovering a system from faults, an active approach can be considered an

offline approach because the recovery process can only take place after the faulty system is

taken out of operation. Fault tolerance can also be achieved using a passive approach that

does not require detecting or reconfiguring, but rather masking the occurrence of faults.

A passive approach is an online approach which can recover a system from the effect of

faults in real time. That is, with a passive approach, it is not necessary to stop the system

from performing its normal mode of operations. However, unlike an offline approach that
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actively removes faults, an online approach does not remove the faults from a faulty sys-

tem, but instead prevents the effects of faults from affecting the original output of a system.

In this dissertation we consider an online approach to achieve fault tolerance. Figure 5.4

shows the concept of hardware redundancy and the factors to consider in order to achieve

fault tolerance in a digital system.

5.5 Fault Tolerance in Reversible Circuits

In our work we focus on fault masking to achieve fault tolerance in reversible logic.

The reasons for choosing fault masking as a tool for designing a fault tolerant reversible

logic circuit is the simplicity and the dynamic behaviour of fault masking techniques. Fault

masking allows a system to generate the correct output in real time. As a passive approach,

a fault masking technique does not need to reconfigure or replace any physical component

of a system. A system which is designed using a fault masking technique hides faults from

the output, i.e. a fault cannot affect the final outcome of a system. Therefore, a fault may

affect the system locally, but cannot affect the global performance of the system.

Triple modular redundancy (TMR) has been used as one of the most common forms of

passive hardware redundancy to design a fault tolerant system [6, 26, 50, 70]. The basic

idea of TMR is to use three exact copies of a module (system), and a majority voter is used

to combine the outputs from the triple modules. The majority voter is designed in such a

way that it always generates the bit which appears on majority of the input lines. Therefore,

if one of the modules generates an incorrect output, the majority voter will still generate

the correct output by masking the output of the faulty module. The basic concept of TMR

in traditional computing is depicted in Figure 5.5. Sometimes more than three modules

are used to form n-modular redundancy, where n replicas of a module are connected to a

majority voter.
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Figure 5.5: Three identical copies of a module using TMR in traditional computing.
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Figure 5.6: A minimum triplicated voter circuit proposed in [72].

5.5.1 Existing Reversible Majority Voter Circuits

There are only a few attempts in the literature to design majority voter circuits in re-

versible logic. In [72], the authors proposed two designs based on triple modular redun-

dancy. In their proposed design, a voter circuit takes three inputs from the output of three

copied circuits and generates three data outputs. In order to maintain reversibility, the voter

used in their design is a 5-bit circuit with two garbage lines and two constant input lines.

Their proposed voter circuit is presented in Figure 5.6. In this figure, ‘x’, ‘y’ and ‘z’ are the

three data outputs. The design goal is to produce all 0 or all 1 on the three data outputs,

thus masking any faulty output. However, our analysis suggests that this circuit does not

generate the intended output. For example, when the input of this circuit is abc = 010,
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the output is xyz = 011, d1d2 = 01. However, according to their approach the correct data

output for this particular input should be xyz = 000, as 0 is the majority bit in data inputs.

This approach also needs additional logic to check whether all 3 outputs are 0s (or 1s).

A simplified majority voter circuit, as shown in Figure 5.7, is presented in [6]. The

authors describe a reversible fault tolerant multiplexing scheme using a 3-bit repetition

code. The voter consists of two CNOT gates and one Toffoli gate, and the majority output

value is taken from the line labeled ‘ao’. For example, consider the case when the input

bits are abc = 011. Since the values of both control points on line ‘a’ are 0, the two CNOT

gates become inactive. However, the Toffoli gate is active, since bc = 11. Thus, the Toffoli

gate inverts the value at line ‘a’ and sends 1 to output ‘ao’, since the value of ‘a’ is 0. In

this way the circuit generates the majority bit on line ‘ao’. The other two outputs, ‘bo’ and

‘co’, are garbage outputs and can be ignored. The majority voter has a GC of 3 and a QC

of 1+1+5 = 7. The majority voter proposed in [6] can be used in designing fault tolerant

reversible circuits by following the principle of triple modular redundancy.

a

b

c

aO

bO

cO

Figure 5.7: A reversible majority voter as proposed in [6].

5.5.2 A Proposed Reversible Majority Voter

In this section we present a simplified and cost effective approach for designing a ma-

jority voter in reversible logic [48]. To introduce our approach, a reversible three input

majority voter is shown in Figure 5.8. The behaviour of this circuit is characterized by the

truth table in Table 5.1.

The output of interest is ‘ao’, which always gives the value appearing on the majority

109



5.5. FAULT TOLERANCE IN REVERSIBLE CIRCUITS

a

b

c

aO

bO

cO

Figure 5.8: A three input reversible majority voter.

Table 5.1: Truth table for the reversible voter circuit.

after 1st gate after 2nd gate
abc a′b′c′ aoboco

000 000 000
001 001 001
010 010 010
011 011 101
100 101 011
101 100 100
110 111 111
111 110 110

of the input lines. The other two lines are not used, and thus are considered garbage. The

QC of this circuit is very low: 1 for the CNOT gate and 5 for the Fredkin gate, for a total of

6, which offers a small improvement as compared to the approach presented in [6]. As we

see from Figure 5.8, the control of the Fredkin gate is (a⊕c). When a = c then (a⊕c) = 0,

and the Fredkin gate becomes inactive and does not interchange the values of ‘a’ and ‘b’ at

the output. In this case ‘a’ is the value used as the majority output. However, when a 6= c

then (a⊕ c) = 1, and the Fredkin gate becomes active and swaps the value of ‘a’ and ‘b’.

In this case the value of ‘b’ will be the majority output.

Our proposed majority voter circuit can be used to achieve fault tolerance in any re-

versible circuit. For example, consider a 3× 3 reversible circuit shown in Figure 5.9(a).

Suppose the output line ‘c’ is the output of interest for this circuit and the other two outputs

are garbage. Figure 5.9(b) shows a fault tolerant design for the circuit from Figure 5.9(a).

As we see from Figure 5.9(b), three copies of the circuit are used, since we are using the
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(a) A reversible circuit.
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(b) Fault tolerant version of the circuit presented in Figure 5.9(a).

Figure 5.9: Achieving fault tolerance using TMR.

principle of TMR. The three output lines from the three copied modules are connected to

our proposed majority voter. If any one of the three copied modules becomes faulty, the

majority voter masks the fault and sends the correct output to ‘c’. The other two output

lines ‘g1’ and ‘g2’ are the garbage output lines of the majority voter.

5.5.3 Fault Tolerant Full Adder Design

A fault tolerant full adder design based on our proposed majority voter is shown in

Figure 5.10. Since there are two outputs (sum and carry) of interest in a full adder, two

majority voters are required to ensure that faults in either output can be masked. As we see

from Figure 5.10, there are three carry lines that are connected to the voter on top, while the

bottom voter is connected to the three sum lines. This design can generate correct output
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Figure 5.10: A fault tolerant reversible full-adder circuit design.

in the presence of faults from any of the proposed fault models [56, 59, 73] as long as the

fault affects, at most, one of the triplicated full adders. Similarly this design can be applied

to any type of circuit, albeit with a significant amount of hardware overhead.

5.6 Extension of Reversible Majority Voter

Although an odd value of n is desirable for a n-bit voter, a voter with an even number

of inputs can sometimes be required in different applications. In this section, we present

designs for both odd and even bit majority voters. We show that an even bit majority voter

circuit can be used in designing an odd bit majority voter. First we consider the design of
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a n-bit majority voter, where n is even. When n is even, there are inputs for which there is

no majority value; that is, the number of lines/input bits carrying 0 and the number of lines

carrying 1 may be equal. In such cases we can consider both values to be the majority, or

neither to be the majority, depending on the requirements of a particular application. One

might refer to this as a “tie”. For an instance, when we have a 4-bit input of (0,1,1,0),

the majority voter circuit could send either a 1 or 0 to the final output. For our design, we

consider this to be a don’t care condition.

Figure 5.11 shows a design of a 4-bit reversible majority voter consisting of three

CNOT gates and one 4-bit Toffoli gate. The output that reflects the majority is labeled

‘ao’. The other three outputs are non-functional outputs. For example, consider an input

vector (a,b,c,d) = (1,0,0,0). Since a = 1, three CNOT gates are active and invert their

corresponding target input bits. So the three bits (b,c,d) are transformed from (0,0,0) to

(1,1,1). At this point the Toffoli gate becomes active and inverts the target bit a = 1 to 0.

In this way the majority bit 0 is sent to the output line, ‘ao’. The GC and QC of this 4-bit

majority voter is 4 and 16, respectively. However, it is possible to reduce these costs by

using the functionality of a 3-bit majority voter.

a

b

c

d

aO

bO

cO

do

Figure 5.11: A 4-bit majority voter.

Lemma: For an even n, a (n− 1)-bit majority voter is sufficient to determine the ma-

jority of n bits, assuming that “ties” are treated as don’t cares.

Proof: Let x be a Boolean variable and {y0, . . . ,yn−1} be the n Boolean inputs to a

n-bit majority voter where n is even. Also, let l be the number of bits in {y0, . . . ,yn−1} that

take on the value of x. A sufficient condition for x to have the value of the majority of bits
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d
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do

Figure 5.12: A 4-bit majority voter designed from a 3-bit voter.

in {y0, . . . ,yn−1} is: dn/2e ≤ l which is also a condition to determine the majority bit in a

combination of bits {y0, . . . ,yn−2} i.e. for the next lower (odd) value of n.

Figure 5.12 shows a design for a 4-bit majority voter. A 3-bit majority voter works on

the input bits ‘a’, ‘b’ and ‘c’, and supplies the majority bit to the final output ‘ao’. The input

bit ‘d’ is passed to ‘do’ unchanged. Table 5.2 shows the behaviour of the 4-bit majority voter

from Figure 5.12. The design cost is the same as that of a 3-bit voter (GC of 2 and QC of

6). We also see that the majority among the first three bits serves as the final majority bit of

all four bits, and so in fact, the fourth bit has no effect in determining the final outcome.

It is similarly possible to design a 6-bit voter by simply including a sixth line to a 5-bit

majority voter. Figure 5.14 shows such a design. A 4-bit majority voter can be used in

designing a 5-bit voter. The dashed box on right side of a 5-bit voter in Figure 5.13 shows

a 4-bit majority voter. A constant input, pin, is initialized to 0. A CNOT gate is connected

from each of the inputs of the 4-bit voter to the parity line, pin. The 4-bit voter manipulates

the four bits (b,c,d and e) and sends the majority of these four bits to the point labeled, ‘x’.

The value of ‘x’ indicates three cases based on the number of appearance of ‘x’ in the four

input bits: two, three or four times of appearance.

Case 1: When the value of ‘x’ appears exactly twice in (b,c,d and e), it indicates one of

the don’t care conditions and hence, the fifth bit at the line labeled, ‘a’, is the final majority

bit. A group of CNOT gates, as shown in the dashed box in Figure 5.13, determines the

parity of the four bits (b,c,d and e). In a don’t care condition, the parity bit is (x⊕ x⊕
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Table 5.2: Truth table of the 4-bit majority voter shown in Figure 5.12.

abcd aobocodo

0000 0000
0001 0001
0010 0010
0011 0011 don’t care
0100 0100
0101 0101 don’t care
0110 1010 don’t care
0111 1011
1000 0110
1001 0111 don’t care
1010 1000 don’t care
1011 1001
1100 1110 don’t care
1101 1111
1110 1100
1111 1101

x⊕ x) = 0. In this case the 3-bit Fredkin gate, as shown in Figure 5.13, becomes inactive,

so the bit at ‘a’ provides the majority bit at output ‘a0’. For example, when (a,b,c,d,e) =

(0,1,0,0,1), the 4-bit voter sends 1 to the point labeled ‘x’ in Figure 5.13. The CNOT

gates block calculates the parity (1⊕0⊕0⊕1) = 0. In this case both Fredkin gates become

inactive, hence the Fredkin gates do not interchange the value of ‘a’ and ‘x’ at the output.

The bit at ‘a’ goes to the output line, ‘ao’, as the majority bit.

Case 2: When the value of ‘x’ appears exactly three times in the 4-bit inputs, the value

of ‘x’ serves as the final majority bit of a 5-bit voter. In this case the parity line, pin =

(x⊕x⊕x⊕x) = 1. Thus, the 3-bit Fredkin gate becomes active and interchanges the value

of ‘a’ and ‘x’. The value of ‘x’ goes to the final output ‘ao’. Note that, the 5-bit Fredkin

gate remains inactive, since 1 in the parity line deactivates a negative control of the Fredkin

gate. For example, when (a,b,c,d,e) = (1,1,0,0,0), the 4-bit voter supplies 0 to ‘x’. In

this case the output of the CNOT gates block is (1⊕ 0⊕ 0⊕ 0) = 1, which activates the
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Figure 5.13: A 5-bit reversible majority voter.

3-bit positive control Fredkin gate. Thus the 3-bit Fredkin gate swaps the values of ‘a’ and

‘x’, and 0 goes to the final output line ‘ao’ as the majority bit.
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Figure 5.14: A 6-bit reversible majority voter.

Case 3: Here, we consider the case when the value of ‘x’ appears exactly four times

in the 4-bit inputs (b,c,d,e). The last 5-bit negative control Fredkin gate is included in

Figure 5.13 to supply the majority bit at the output when all four inputs of the 4-bit voter

are the same and the fifth input line of a 5-bit voter has an opposite bit. For example, when

(a,b,c,d,e) = (0,1,1,1,1), the output of the 4-bit voter is (1,0,0,0) and the parity line is
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(1⊕1⊕1⊕1) = 0. In this case the 3-bit Fredkin gate remains inactive. However the three

0s on the three lines labeled ‘pin’, ‘d’ and ‘e’ activate the 5-bit negative control Fredkin

gate. The 5-bit Fredkin gate swaps ‘a’ and ‘x’, thus the circuit sends 1 to the output line

‘ao’.

The GC and QC of a 5-bit voter is 10 and 54 respectively. We can use the 5-bit voter to

design a 6-bit voter by simply including the sixth line with the same design cost, as shown

in Figure 5.14. In this way it is possible to extend a majority voter circuit by building on

designs for smaller voters.

5.7 Chapter Summary

5.7.1 Contribution

This chapter primarily focuses on designing fault tolerant reversible circuits. The key

contributions of this chapter are as follows [48]:

• Present a 3-bit reversible majority voter circuit.

• Provide designs for extending the voter from 3-bit to 6-bit.

• Describe methodology to design fault tolerant reversible circuits using the voter cir-

cuit proposed in this chapter.

5.7.2 Conclusion

This chapter presents a 3-bit reversible majority voter circuit. The purpose of this circuit

is to identify the bit value which appears more than any other bit value on the three input

bits, assuming the use of Boolean (binary) values. Our proposed design is simpler and of

lower cost in terms of gate count and quantum cost than existing designs in the literature.

We also provide the designs for extending the voter from 3-bit up to 6-bits. Moreover,

we demonstrate the application of our voter in fault tolerant reversible circuit design. We

provide an overview and analysis of existing works that term themselves to be fault tolerant,
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but which do not meet the required characteristics to be categorized as such. Lastly, we

present a design of a fault tolerant reversible full adder circuit. The proposed design can be

used to make any reversible circuit fault tolerant. The proposed majority voter can be used

to generate a corrected output in the presence of any type of fault as long as the fault affects

a minority of the n input lines to the voter.

5.7.3 Future Directions

One of the crucial threats in designing a fault tolerant digital system using n-modular

redundancy is the single point failure. In a n-modular redundant system, all the replicated

modules are connected to a majority voter circuit. The majority voter bypasses the faults

that may occur in the modules and generates the correct output. However, if the majority

voter becomes faulty, the generated output may be incorrect. Therefore, failure of a majority

voter leads to the failure of an entire system. For example, if one of the majority voters

in our proposed fault tolerant full adder (Figure 5.10) fails, the full adder circuit fails to

generate the correct sum or carry. Thus, making the majority voter robust is one of the

main areas of further study. In addition, future work includes developing techniques for

fault location as well as fault correction in reversible circuits.
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Chapter 6

Conclusion

6.1 Contribution and Conclusion

This thesis contributes to three major areas of reversible computing: synthesis, testing

and tolerance. Most existing reversible synthesis approaches focus on using NCT gates

or combining NCT and SF gates to realize functions. In this thesis we have proposed ap-

proaches to realize reversible functions using only SF gates. A part of this work has been

published in [47]. We have proposed a transformation based synthesis which can be used

to realize conservative functions using SF gates. We have generated all possible 3-bit and

4-bit conservative reversible functions and realized these functions using both SF gates and

NCT gates. Experimental results suggest that realization of reversible conservative func-

tions using SF gates is more efficient than NCT gates in terms of GC and QC. For realizing

3-bit conservative functions, the percentage of reduction in GC and QC on average are 62%

and 29% respectively. In some cases the percentage of reduction in GC and QC can be

achieved up to 67%. We have also compared the minimal circuits generated using exact

synthesis with our proposed SF based synthesis for implementing 3-bit conservative func-

tions. Experimental results show that the percentage of reduction in GC and QC on average

are 54% and 8% respectively using SF based synthesis over exact synthesis. For 4-bit con-

servative functions, the average percentages of reduction of GC and QC are 61% and 35%

respectively using the SF based approach as compared to the NCT based transformation

approach.

Since reversible circuits generated from most synthesis approaches may not be optimal,
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post synthesis optimization approaches can be used in order to improve the GC and QC

of these circuits. This thesis introduces 10 templates based on template matching and rule

based simplification approaches for optimizing SF based reversible circuits. We have con-

sidered templates for both positive and negative control Fredkin gates. We have identified

the fact that some rules proposed for NCT gates can not be applied for SF gates, e.g. the

moving rule. We have modified the moving rule in order to apply this rule for optimizing

SF based reversible circuits. The proposed templates have been tested to optimize SF gate

based benchmark circuits found in RevLib [71] and up to 9% reduction in QC has been

achieved. We have also applied the proposed templates on 500 randomly generated SF gate

based circuits, and we have achieved an average improvement of 16% in QC.

In the area of testing, we have described several reversible fault models and analysed

the conditions to detect different types of faults in reversible circuits. We have investi-

gated the existing reversible fault testing approaches and discussed the limitations of these

approaches. The limitations of existing online fault testing approaches include (i) testing

approaches that rely only on checking the input and the output parities of reversible circuits

can not detect certain faults, (ii) testing approaches that have not considered reversible fault

models, and (iii) testing approaches that have not considered the occurrences of faults in ad-

ditional circuitry. In this thesis we have presented an online testing approach for reversible

circuits, and this approach has been published in [46]. With this approach, it is possible to

make any NCT based reversible circuit online testable. According to our approach, for a

reversible circuit with L lines and N gates it is necessary to include a parity line, 2L CNOT

gates and N additional duplicate gates to make the circuit online testable. The overhead for

some selected benchmark circuits [71] based on our proposed approach has been calculated.

Our approach results in a lower percentage of overhead for a circuit consisting of a large

number of gates. We have discussed the mechanism of fault detection with our proposed

online testable circuits by considering three reversible fault models. The reversible fault

models considered include single bit fault model, missing and repeated gate fault model,
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and crosspoint fault model. The proposed online testing approach has been compared with

other existing reversible online testing approaches from the perspective of gate count and

quantum cost. Experimental results show that our proposed approach performs better than

other existing reversible testing approaches. In addition, our approach can also detect a fault

even if the fault occurs in the additional circuitry, unlike other approaches in the literature.

Lastly our research also makes contributions to the field of fault tolerant reversible cir-

cuits design. Our investigation in the area of fault tolerance in reversible logic reveals that

most existing works that use the term fault tolerant are actually referring to fault testing. We

have described the requirements and the strategies to achieve fault tolerance in reversible

circuits. We have proposed a 3-bit majority voter circuit that can be used to design fault

tolerant reversible circuits. The majority voter circuit generates the bit value which appears

more than any other bit value on the three input bits. We have presented a design of a fault

tolerant full adder circuit using our proposed voter circuit. Our proposed voter is simple

in design, and offers lower cost in terms of GC and QC than the existing majority voter in

reversible logic. We have demonstrated how to make any reversible circuit fault tolerant

using our proposed majority voter. In addition, we have proposed some designs to extend

the majority voter. We have shown that an n−1-bit voter circuit can be reused to design a

n-bit voter circuit. In addition, we have shown that when the number of inputs of a voter

circuit is even, i.e. when n is even, a n−1-bit voter circuit can be used as a n-bit voter. A

part of this work has been published in [48].

6.2 Future Works

The findings of this thesis open several doors in different areas of reversible logic for

further research, such as:

1. A comparison between NCT and SF gate based transformation approaches to realize

conservative functions has been presented in Chapter 3. The results show that realiza-

tion of conservative functions using SF gates is more efficient than NCT gates. This
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indicates the fact that there is a need to classify reversible functions. Thus an im-

portant area of further study includes the classification of reversible functions based

on their properties. A synthesis approach can generate more efficient circuits if it is

possible to know the class of the reversible functions in advance.

2. The current version of our transformation based synthesis considers the previous

stages of transformation while selecting gates for the current stage. This synthesis

approach selects one or more gates to perform desired transformation in a stage using

greedy method. The selection of gates is very important in order to design an effi-

cient circuit. The gate selection process can be improved further if the gate selection

process considers both previous and next stages of transformation.

3. Since most synthesis algorithms generate circuits which may not be optimal, more

focus is needed in the field of post-synthesis optimization approaches. Most existing

templates and rules are specified for a particular gate family. For example, the moving

rule that works for NCT gates do not work for SF gates and vice-versa. Identifying

more templates and rules which combine both NCT and SF gates is another area for

further research.

4. An efficient template matching algorithm can increase the possibility to match tem-

plates in a reversible circuit. Rahman et al. proposed an algorithm that considers

the rank of a template before applying the template to a circuit [58]. Their approach

assigns ranks to the templates based on the amount reduction of quantum cost offered

by each template. The proposed algorithm searches for the templates that offer the

best possible reduction in GC. The algorithm which we have used to apply our pro-

posed SF based templates can be improved based on the approach proposed in [58].

5. Our proposed testing approach can not detect a particular case of MMGF which we

discussed in Chapter 4. Moreover, our testing approach can not detect a single bit

fault that occurs in the preamble block of an online testable circuit. Extension of
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our proposed testing approach in order to overcome these shortcomings is an area of

further research.

6. The current version of our proposed testing approach is designed for NCT based

circuits. An online testing approach for SF based circuits which is similar to our

approach is presented in [27]. Combining these two approaches in order to design a

general online testing approach that can be applied to any reversible circuit regardless

of the types of gates is an important area of further study.

7. The majority voter circuit presented in Chapter 5 can be used to design a fault tolerant

reversible circuit. The proposed majority voter circuit is based on TMR. One of the

problems of a system based on TMR is a single point failure. In order to make the

majority voter robust by providing a guard against this potential single point failure

is another area for further research. One potential approach is to add an online testing

feature to the voter, so the output of the voter can indicate whether the voter circuit

itself is faulty or fault free.

8. This thesis presents a passive approach to design fault tolerant reversible circuits.

With this approach, a circuit will be able to generate correct output by bypassing the

effect of faults. A passive approach does not locate or correct faults. However, an

active approach includes the techniques to locate and correct faults. Including a fault

location technique to our proposed voter circuit design is another area of future work.

Thus the voter circuit will not only generate the correct output, but also the circuit

output can provide information to locate the faults. In this case it is possible that the

values of the garbage output lines of a voter circuit can be used to locate the faults.
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Appendix A

Experiment Result

Table A.1: Results after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random130 3 55 165 15 45 72.73 72.73
random252 4 10 36 6 24 40 33.33
random373 5 55 369 51 357 7.27 3.25
random494 5 100 691 90 661 10 4.34
random253 5 55 439 50 418 9.09 4.78
random374 6 100 1278 96 1266 4 0.94
random495 6 10 183 10 183 0 0
random254 6 100 1475 92 1447 8 1.9
random375 3 10 30 6 18 40 40
random496 7 55 1098 55 1098 0 0
random255 4 10 48 7 35 30 27.08
random376 7 55 958 55 958 0 0
random497 4 100 394 88 354 12 10.15
random134 3 100 300 48 144 52 52
random490 5 55 401 53 391 3.64 2.49
random133 6 55 705 55 705 0 0
random370 6 55 815 55 815 0 0
random491 7 100 1910 100 1910 0 0
random132 3 10 30 4 12 60 60
random250 6 55 623 53 617 3.64 0.96
random371 5 100 726 98 720 2 0.83
random492 6 10 89 10 89 0 0
random131 5 100 741 95 724 5 2.29
random251 3 100 300 48 144 52 52
random372 4 10 42 10 42 0 0
random493 3 55 165 21 63 61.82 61.82
random78 5 10 56 10 56 0 0
random79 4 55 221 37 159 32.73 28.05
random74 7 100 2326 99 2319 1 0.3
random75 5 10 71 10 71 0 0
random76 3 55 165 25 75 54.55 54.55
random77 6 100 1350 97 1337 3 0.96
random81 7 10 115 8 107 20 6.96
random82 4 55 225 49 207 10.91 8
random83 6 100 1336 100 1336 0 0
random84 7 10 257 10 257 0 0
random80 4 100 406 87 359 13 11.58

random138 7 10 217 10 217 0 0
random137 5 100 756 95 735 5 2.78
random136 4 55 225 41 171 25.45 24
random135 6 10 91 10 91 0 0
random256 3 55 165 21 63 61.82 61.82
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Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random377 7 100 1979 96 1963 4 0.81
random498 5 10 66 9 61 10 7.58
random257 6 100 1164 93 1141 7 1.98
random378 7 10 356 10 356 0 0
random499 7 55 931 53 925 3.64 0.64
random258 3 10 30 2 6 80 80
random379 5 55 367 53 359 3.64 2.18
random139 7 55 1192 51 1180 7.27 1.01
random259 5 55 386 51 352 7.27 8.81
random241 4 55 205 46 170 16.36 17.07
random362 5 100 685 92 661 8 3.5
random483 6 10 111 10 111 0 0
random242 5 100 787 96 753 4 4.32
random363 3 10 30 4 12 60 60
random484 3 55 165 9 27 83.64 83.64
random243 4 10 40 8 34 20 15
random364 6 55 723 50 706 9.09 2.35
random485 5 100 695 95 680 5 2.16
random244 5 55 433 51 401 7.27 7.39
random365 5 100 673 97 664 3 1.34
random486 6 10 192 10 192 0 0
random123 5 10 84 10 84 0 0
random122 7 100 2447 99 2444 1 0.12
random480 7 10 195 10 195 0 0
random121 3 55 165 17 51 69.09 69.09
random360 3 10 30 2 6 80 80
random481 6 55 754 55 754 0 0
random120 7 10 161 10 161 0 0
random240 3 10 30 8 24 20 20
random361 7 55 1203 53 1197 3.64 0.5
random482 3 100 300 56 168 44 44
random67 7 55 1283 55 1283 0 0
random68 4 100 390 83 335 17 14.1
random69 5 10 82 9 79 10 3.66
random63 6 10 156 10 156 0 0
random64 5 55 373 54 366 1.82 1.88
random65 3 100 300 26 78 74 74
random66 5 10 47 8 41 20 12.77
random70 5 55 394 52 363 5.45 7.87
random71 6 100 1572 100 1572 0 0
random72 6 10 105 9 102 10 2.86
random73 7 55 1106 52 1097 5.45 0.81

random127 3 55 165 21 63 61.82 61.82
random249 6 10 100 10 100 0 0
random126 3 10 30 4 12 60 60
random125 7 100 2211 100 2211 0 0
random124 4 55 225 46 190 16.36 15.56
random245 4 100 386 82 324 18 16.06
random366 4 10 38 7 29 30 23.68
random487 7 55 1346 55 1346 0 0
random246 5 10 51 9 48 10 5.88
random367 4 55 223 50 204 9.09 8.52
random488 3 100 300 34 102 66 66
random129 5 10 91 9 86 10 5.49
random247 3 55 165 27 81 50.91 50.91
random368 5 100 696 93 673 7 3.3
random489 6 10 127 10 127 0 0
random128 5 100 776 95 759 5 2.19
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A. EXPERIMENT RESULT

Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random248 6 100 1412 98 1406 2 0.42
random369 7 10 208 10 208 0 0
random152 3 100 300 26 78 74 74
random274 5 55 346 54 339 1.82 2.02
random395 4 100 406 83 339 17 16.5
random151 3 55 165 17 51 69.09 69.09
random275 3 100 300 36 108 64 64
random396 5 10 78 10 78 0 0
random150 5 10 84 10 84 0 0
random276 7 10 302 10 302 0 0
random397 7 55 1110 55 1110 0 0
random277 5 55 437 52 426 5.45 2.52
random398 7 100 1933 99 1930 1 0.16
random156 7 10 227 10 227 0 0
random270 7 10 120 10 120 0 0
random391 7 55 1259 55 1259 0 0
random155 5 100 695 97 686 3 1.29
random271 5 55 461 52 430 5.45 6.72
random392 4 100 400 90 370 10 7.5
random154 6 55 665 55 665 0 0
random272 5 100 788 93 761 7 3.43
random393 4 10 42 8 36 20 14.29
random153 6 10 102 8 92 20 9.8
random273 4 10 36 8 30 20 16.67
random394 4 55 237 49 219 10.91 7.59
random56 7 100 2336 99 2333 1 0.13
random57 4 10 42 10 42 0 0
random58 4 55 219 47 195 14.55 10.96

random390 6 10 181 10 181 0 0
random59 3 100 300 42 126 58 58
random52 7 55 1162 53 1156 3.64 0.52
random53 6 100 1202 98 1160 2 3.49
random54 6 10 78 10 78 0 0
random55 5 55 393 49 373 10.91 5.09
random60 6 10 127 10 127 0 0
random61 3 55 165 17 51 69.09 69.09
random62 5 100 846 99 843 1 0.35

random159 3 10 30 2 6 80 80
random158 3 100 300 36 108 64 64
random157 6 55 757 55 757 0 0
random278 6 100 1375 95 1360 5 1.09
random399 5 10 58 10 58 0 0
random279 4 10 40 8 34 20 15
random141 3 10 30 6 18 40 40
random263 7 100 2085 98 2079 2 0.29
random384 4 10 38 8 28 20 26.32
random140 6 100 1457 98 1451 2 0.41
random264 4 10 44 8 34 20 22.73
random385 5 55 436 54 433 1.82 0.69
random265 5 55 303 50 284 9.09 6.27
random386 5 100 770 95 751 5 2.47
random266 5 100 652 93 631 7 3.22
random387 7 10 291 10 291 0 0
random145 5 55 406 54 401 1.82 1.23
random380 3 100 300 32 96 68 68
random49 4 55 215 39 167 29.09 22.33

random144 5 10 78 9 75 10 3.85
random260 7 100 2067 100 2067 0 0
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A. EXPERIMENT RESULT

Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random381 6 10 172 10 172 0 0
random143 7 100 2102 98 2096 2 0.29
random261 4 10 36 5 21 50 41.67
random382 4 55 223 38 152 30.91 31.84
random142 5 55 392 50 377 9.09 3.83
random262 3 55 165 21 63 61.82 61.82
random383 5 100 711 95 694 5 2.39
random45 3 10 30 2 6 80 80
random46 6 55 587 52 578 5.45 1.53
random47 3 100 300 22 66 78 78
random48 5 10 69 10 69 0 0
random41 5 100 678 92 652 8 3.83
random42 4 10 44 9 41 10 6.82
random43 7 55 970 55 970 0 0
random44 7 100 2357 100 2357 0 0
random50 4 100 376 72 280 28 25.53
random51 6 10 143 10 143 0 0

random149 5 100 688 95 651 5 5.38
random148 3 55 165 17 51 69.09 69.09
random147 6 10 138 10 138 0 0
random146 4 100 384 85 339 15 11.72
random267 4 10 42 9 39 10 7.14
random388 5 55 334 51 318 7.27 4.79
random268 6 55 748 54 745 1.82 0.4
random389 5 100 708 96 696 4 1.69
random269 3 100 300 32 96 68 68
random450 3 10 30 4 12 60 60
random330 7 10 238 10 238 0 0
random451 6 55 827 54 824 1.82 0.36
random210 7 10 277 10 277 0 0
random331 6 55 722 55 722 0 0
random452 4 100 396 81 335 19 15.4
random211 5 55 498 53 468 3.64 6.02
random332 3 100 300 38 114 62 62
random453 3 10 30 4 12 60 60
random38 3 100 300 24 72 76 76
random39 4 10 38 10 38 0 0
random34 3 55 165 13 39 76.36 76.36
random35 3 100 300 28 84 72 72
random36 4 10 38 9 35 10 7.89
random37 6 55 772 55 772 0 0
random30 4 10 36 7 27 30 25
random31 3 55 165 29 87 47.27 47.27
random32 7 100 2070 99 2067 1 0.14
random33 7 10 250 7 195 30 22
random40 5 55 450 54 427 1.82 5.11

random216 3 10 30 8 24 20 20
random337 4 55 231 49 209 10.91 9.52
random458 4 100 394 77 313 23 20.56
random217 7 55 1004 53 998 3.64 0.6
random338 6 100 1295 96 1281 4 1.08
random459 7 10 168 10 168 0 0
random218 5 100 699 89 660 11 5.58
random339 7 10 141 10 141 0 0
random219 6 10 98 10 98 0 0
random212 7 100 1762 100 1762 0 0
random333 4 10 42 6 26 40 38.1
random454 5 55 348 49 326 10.91 6.32
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A. EXPERIMENT RESULT

Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random213 6 10 165 10 165 0 0
random334 4 55 229 46 194 16.36 15.28
random455 5 100 741 94 719 6 2.97
random214 7 55 969 55 969 0 0
random335 4 100 414 81 337 19 18.6
random456 7 10 219 10 219 0 0
random215 7 100 1912 100 1912 0 0
random336 7 10 135 10 135 0 0
random457 7 55 981 55 981 0 0
random440 6 100 1494 97 1483 3 0.74
random320 3 100 300 40 120 60 60
random441 5 10 71 10 71 0 0
random200 5 100 797 91 730 9 8.41
random321 5 10 67 10 67 0 0
random442 7 55 922 55 922 0 0
random27 6 10 154 10 154 0 0
random28 3 55 165 5 15 90.91 90.91
random29 4 100 400 82 342 18 14.5
random23 3 100 300 32 96 68 68
random24 6 10 114 8 108 20 5.26
random25 3 55 165 23 69 58.18 58.18
random26 3 100 300 34 102 66 66
random20 7 100 2196 98 2190 2 0.27
random21 3 10 30 4 12 60 60
random22 7 55 1076 55 1076 0 0

random209 4 100 400 82 342 18 14.5
random205 4 55 211 42 164 23.64 22.27
random326 6 100 1329 99 1326 1 0.23
random447 4 10 42 8 36 20 14.29
random206 6 100 1252 99 1249 1 0.24
random327 4 10 34 9 31 10 8.82
random448 7 55 1251 55 1251 0 0
random207 3 10 30 4 12 60 60
random328 5 55 459 54 452 1.82 1.53
random449 5 100 735 89 678 11 7.76
random208 6 55 718 52 709 5.45 1.25
random329 3 100 300 44 132 56 56
random201 7 10 155 10 155 0 0
random322 7 55 931 55 931 0 0
random443 3 100 300 28 84 72 72
random202 3 55 165 13 39 76.36 76.36
random323 3 100 300 40 120 60 60
random444 5 10 58 10 58 0 0
random203 6 100 1354 99 1351 1 0.22
random324 5 10 98 8 92 20 6.12
random445 4 55 207 42 160 23.64 22.71
random204 7 10 271 10 271 0 0
random325 7 55 1384 55 1384 0 0
random446 3 100 300 32 96 68 68
random230 4 100 410 79 335 21 18.29
random351 5 10 78 10 78 0 0
random472 3 55 165 19 57 65.45 65.45
random231 5 10 69 8 59 20 14.49
random352 6 55 800 53 774 3.64 3.25
random473 6 100 1382 100 1382 0 0
random232 7 55 1301 55 1301 0 0
random353 6 100 1301 97 1290 3 0.85
random474 3 10 30 8 24 20 20
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Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random233 6 100 1286 100 1286 0 0
random354 6 10 100 9 97 10 3
random475 4 55 221 46 190 16.36 14.03
random112 4 55 229 42 178 23.64 22.27
random16 4 55 219 38 164 30.91 25.11

random111 6 10 168 10 168 0 0
random17 3 100 300 30 90 70 70

random110 7 100 2256 100 2256 0 0
random18 3 10 30 8 24 20 20

random470 7 100 2139 100 2139 0 0
random19 4 55 227 49 205 10.91 9.69

random350 6 100 1311 97 1300 3 0.84
random471 4 10 40 10 40 0 0
random12 4 10 42 10 42 0 0
random13 5 55 345 52 336 5.45 2.61
random14 4 100 408 79 337 21 17.4
random15 7 10 395 10 395 0 0
random10 6 55 738 53 732 3.64 0.81
random11 7 100 1677 96 1619 4 3.46

random116 3 100 300 32 96 68 68
random238 6 55 663 54 660 1.82 0.45
random359 7 100 1998 98 1988 2 0.5
random115 6 55 686 54 681 1.82 0.73
random239 6 100 1539 100 1539 0 0
random114 7 10 260 10 260 0 0
random113 4 100 414 80 338 20 18.36
random234 4 10 46 5 23 50 50
random355 4 55 215 41 169 25.45 21.4
random476 7 100 2196 100 2196 0 0
random119 5 100 704 93 675 7 4.12
random235 4 55 225 45 187 18.18 16.89
random356 6 100 1457 96 1439 4 1.24
random477 6 10 109 9 106 10 2.75
random118 4 55 219 42 168 23.64 23.29
random236 6 100 1357 99 1354 1 0.22
random357 7 10 272 10 272 0 0
random478 6 55 847 53 841 3.64 0.71
random117 4 10 34 10 34 0 0
random237 7 10 162 9 159 10 1.85
random358 6 55 673 55 673 0 0
random479 4 100 406 86 352 14 13.3
random340 7 55 1220 55 1220 0 0
random461 3 100 300 44 132 56 56
random220 5 55 379 53 373 3.64 1.58
random341 6 100 1337 97 1328 3 0.67
random462 7 10 180 10 180 0 0
random221 7 100 2315 97 2304 3 0.48
random342 7 10 219 8 209 20 4.57
random463 3 55 165 27 81 50.91 50.91
random222 6 10 138 10 138 0 0
random343 6 55 702 55 702 0 0
random464 6 100 1472 93 1447 7 1.7
random101 5 100 787 95 772 5 1.91
random100 7 55 1381 55 1381 0 0
random460 3 55 165 19 57 65.45 65.45
random105 3 10 30 2 6 80 80
random227 7 100 2191 100 2191 0 0
random348 4 10 38 9 35 10 7.89
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Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random469 5 55 388 55 388 0 0
random104 4 100 390 76 306 24 21.54
random228 6 10 118 9 115 10 2.54
random349 3 55 165 15 45 72.73 72.73
random103 7 55 1020 54 1017 1.82 0.29
random229 7 55 1099 55 1099 0 0
random102 4 10 44 6 28 40 36.36
random109 5 55 378 54 373 1.82 1.32
random223 7 55 1284 55 1284 0 0
random344 5 100 659 92 627 8 4.86
random465 7 10 221 10 221 0 0
random108 4 10 42 10 42 0 0
random224 4 100 400 85 351 15 12.25
random345 7 10 183 10 183 0 0
random466 6 55 780 55 780 0 0
random107 7 100 2152 100 2148 0 0.19
random225 3 10 30 4 12 60 60
random346 6 55 712 55 712 0 0
random467 3 100 300 24 72 76 76
random106 3 55 165 19 57 65.45 65.45
random226 3 55 165 29 87 47.27 47.27
random347 7 100 1652 97 1641 3 0.67
random468 4 10 44 10 44 0 0
random174 4 10 42 10 42 0 0
random296 3 100 300 38 114 62 62
random173 5 100 695 94 673 6 3.17
random297 4 10 42 8 36 20 14.29
random172 6 55 878 55 878 0 0
random298 6 55 715 54 710 1.82 0.7
random171 7 10 203 10 203 0 0
random299 6 100 1385 97 1376 3 0.65
random178 7 55 1093 55 1093 0 0
random292 4 55 209 44 168 20 19.62
random177 4 10 42 9 39 10 7.14
random293 5 100 773 95 754 5 2.46
random176 3 100 300 28 84 72 72

random2 6 100 1444 98 1438 2 0.42
random294 5 10 111 10 111 0 0

random1 7 55 1268 55 1268 0 0
random175 3 55 165 25 75 54.55 54.55
random295 3 55 165 27 81 50.91 50.91
random290 7 100 2162 100 2162 0 0
random291 7 10 134 8 128 20 4.48
random170 5 100 757 97 746 3 1.45

random4 7 55 1097 51 1085 7.27 1.09
random3 6 10 96 10 96 0 0
random6 3 10 30 4 12 60 60

random179 7 100 1878 100 1878 0 0
random5 5 100 781 96 763 4 2.3
random8 5 100 624 95 609 5 2.4
random7 7 55 1164 55 1164 0 0
random9 7 10 246 10 246 0 0

random163 3 55 165 31 93 43.64 43.64
random285 7 10 192 10 192 0 0
random162 7 10 238 10 238 0 0
random286 5 55 375 50 360 9.09 4
random161 6 100 1379 98 1371 2 0.58
random287 7 100 2079 100 2079 0 0
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Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random160 7 55 1428 55 1428 0 0
random288 5 10 49 9 44 10 10.2
random167 7 100 1964 100 1964 0 0
random281 6 100 1467 100 1467 0 0
random166 3 55 165 15 45 72.73 72.73
random282 5 10 43 10 43 0 0
random165 5 10 58 10 58 0 0
random283 6 55 887 54 882 1.82 0.56
random164 4 100 410 77 329 23 19.76
random284 4 100 412 85 355 15 13.83
random280 4 55 211 43 163 21.82 22.75
random169 6 55 690 54 687 1.82 0.43
random168 6 10 185 10 185 0 0
random289 3 55 165 15 45 72.73 72.73
random196 7 55 1170 55 1170 0 0
random195 3 10 30 6 18 40 40
random194 3 100 300 36 108 64 64
random193 5 55 392 53 384 3.64 2.04
random199 4 55 215 48 190 12.73 11.63
random198 7 10 126 10 126 0 0
random197 6 100 1305 97 1294 3 0.84
random192 6 10 150 10 150 0 0
random96 4 10 44 8 34 20 22.73

random191 4 100 392 82 330 18 15.82
random97 4 55 223 47 195 14.55 12.56

random190 3 55 165 13 39 76.36 76.36
random98 3 100 300 30 90 70 70
random99 3 10 30 6 18 40 40

random185 4 100 432 80 352 20 18.52
random184 5 55 385 51 347 7.27 9.87
random183 7 10 115 10 115 0 0
random182 4 100 394 74 296 26 24.87
random189 6 10 140 10 140 0 0
random188 6 100 1307 98 1301 2 0.46
random187 6 55 604 55 604 0 0
random186 4 10 36 8 30 20 16.67
random89 5 100 694 91 659 9 5.04

random181 5 55 395 54 392 1.82 0.76
random85 3 55 165 23 69 58.18 58.18

random180 3 10 30 6 18 40 40
random86 3 100 300 44 132 56 56
random87 5 10 67 10 67 0 0
random88 3 55 165 15 45 72.73 72.73
random92 6 100 1310 97 1297 3 0.99
random93 5 10 51 8 45 20 11.76
random94 7 55 997 55 997 0 0
random95 5 100 764 99 757 1 0.92
random90 4 10 42 8 36 20 14.29
random91 5 55 346 48 305 12.73 11.85

random418 4 55 223 42 180 23.64 19.28
random419 6 100 1162 99 1157 1 0.43
random414 6 10 121 10 121 0 0
random415 7 55 1282 53 1276 3.64 0.47
random416 6 100 1284 100 1284 0 0
random417 7 10 217 10 217 0 0
random410 5 100 662 96 650 4 1.81
random411 7 10 208 10 208 0 0
random412 3 55 165 21 63 61.82 61.82
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Table A.1: Experiment result after applying templates on randomly generated circuits.

Circuits Original Circuit Optimized Circuit % of Reduction
Function Lines OGC OQC NGC NQC PGC PQC

random413 6 100 1420 98 1414 2 0.42
random407 6 100 1418 99 1415 1 0.21
random408 3 10 30 8 24 20 20
random409 5 55 414 52 399 5.45 3.62
random403 6 55 925 53 861 3.64 6.92
random404 7 100 2004 99 1981 1 1.15
random405 5 10 58 9 53 10 8.62
random406 7 55 1262 54 1257 1.82 0.4
random400 5 55 360 50 345 9.09 4.17
random401 3 100 300 50 150 50 50
random402 4 10 38 8 32 20 15.79
random430 6 55 549 55 549 0 0
random310 5 55 414 47 380 14.55 8.21
random431 7 100 2043 100 2043 0 0
random319 7 55 1083 55 1083 0 0
random315 4 10 44 9 37 10 15.91
random436 3 55 165 9 27 83.64 83.64
random316 7 55 1074 55 1074 0 0
random437 5 100 700 97 691 3 1.29
random317 5 100 736 91 681 9 7.47
random438 4 10 40 8 34 20 15
random318 3 10 30 6 18 40 40
random439 5 55 368 51 356 7.27 3.26
random311 4 100 408 84 356 16 12.75
random432 3 10 30 2 6 80 80
random312 7 10 158 10 158 0 0
random433 6 55 663 55 663 0 0
random313 3 55 165 23 69 58.18 58.18
random434 5 100 739 92 715 8 3.25
random314 4 100 396 81 331 19 16.41
random435 5 10 48 9 45 10 6.25
random420 7 10 206 10 206 0 0
random308 5 100 815 97 786 3 3.56
random429 7 10 173 10 173 0 0
random309 6 10 111 10 111 0 0
random304 6 55 914 55 914 0 0
random425 6 100 1251 97 1242 3 0.72
random305 4 100 412 88 368 12 10.68
random426 7 10 172 8 166 20 3.49
random306 6 10 147 8 137 20 6.8
random427 4 55 225 46 198 16.36 12
random307 4 55 225 49 207 10.91 8
random428 7 100 1947 99 1944 1 0.15
random300 7 10 122 10 122 0 0
random421 7 55 1110 55 1110 0 0
random301 6 55 738 55 738 0 0
random422 3 100 300 16 48 84 84
random302 3 100 300 30 90 70 70
random423 4 10 40 10 40 0 0
random303 3 10 30 2 6 80 80
random424 7 55 1253 52 1238 5.45 1.2
random500 6 100 1234 100 1234 0 0
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