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Abstract

Machine learning techniques have been applied to improve the learning process and to

learn about the utilization of natural languages. Previous research has shown that similar

techniques can be applied in the analysis of computer programming (artificial) languages.

Several studies have demonstrated the influence of sociolinguistic characteristics such as

age, gender, region, and social status in natural languages. This research focuses on deter-

mining the impact of sociolinguistic characteristics of the author, particularly gender and

region on computer programs. We use machine learning and statistical techniques to find

out the similarities and dissimilarities in the use of programming language based on the

gender and region of the programmer. The results of various experiments are promising.

We demonstrate that we can predict the gender of programmers with 83.1% accuracy and

the region of the programmer with 92.5% accuracy.
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Chapter 1

Introduction

In today’s world, if we look at the types of language being used, we can classify them into

two broad categories: the first is natural language and the second is artificial language. Nat-

ural language refers to an inter-human language such as English, French, Arabic, and Ben-

gali. Humans use natural language to communicate with each other. In contrast, artificial

language, which is also known as a programming language, is used by humans to commu-

nicate with computers. The use of natural language among humans differs depending on

the region, society, religion, age, gender, and social or economic status [18]. These factors

may also affect the users of the artificial language or programming language. Natural lan-

guages developed over thousands of years. However, artificial languages are synthesized by

logicians and linguists to meet some specific design criteria. The most basic characteristic

of the distinction is that an artificial language can be fully circumscribed and studied in its

entirety [14].

A programming language is a formal language which is used to give instruction to

computers to perform specific tasks [26]. Generally, a programming language is formed

of two components: syntax and semantics. Syntax describes the format or structure of the

programming elements, and semantics describes the meaning of the syntax of an element.

Every programming language follows specific syntax and semantics quite strictly and that

is why there are limited options left to the user of a programming language to express their

thoughts while writing a program. Also the use of programming elements depends on the

specific problem. However, programmers have some space to reflect their programming
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1. INTRODUCTION

identity in the layout and structure of a program, such as the number of blank lines, number

of comment lines, and number of mixed lines in a program.

One area where machine learning techniques have been applied is to improve the au-

tomated learning process and to learn about the utilization of natural languages. Previous

research [23, 4, 17] has shown that similar techniques can be applied in the analysis of

computer programming (artificial) languages. Several studies [23, 3, 4, 16] have demon-

strated the influence of sociolinguistic characteristics such as age, gender, and social status

in natural languages. The research we are proposing focuses on determining the impact

of sociolinguistic characteristics of the author, particularly gender and region, on computer

programs.

For decades linguistics researchers have sought to identify and interpret possible differ-

ences in linguistic styles between males and females [4]. As computer programs are also

developed by male and female programmers, in this research we explore the possibility

of identifying the gender of the programmer based on their programming style. Addi-

tionally, programming language is also used worldwide, and that is why we also explore

the possibility of identifying the region of the programmer based on their programming

style. Identification of the differences in programming language use in different groups

of programmers could help us to understand possible shortcomings or advantages of their

programming language knowledge. This will help to improve the teaching practice among

the different groups of programmers. Additionally, if a common pattern is found among a

group of programmers, this could help to design and develop specific Integrated Develop-

ment Environments (IDEs) for specific groups of programmers.

In automated text categorization problems, machine learning techniques are widely used

[3, 15]. In this study we also used machine learning techniques to investigate the gender

and region difference in the use of programming among the programmers. We propose to

use several popular machine learning techniques including Bayes net, Simple logistic, K

star, bagging, classification via regression, DTNB, and random forest. To implement these

2



1.1. MOTIVATION AND HYPOTHESIS

machine learning techniques, we selected WEKA [13], which is an open-source machine

learning tool and widely used in automatic text categorization problems [15, 6]. WEKA

supports various functions of machine learning such as data processing, feature extrac-

tion, supervised and unsupervised learning, and model evaluation of different kinds of data.

We also used Microsoft Excel to carry out statistical analysis on the variations of features

among the different groups of programmers.

1.1 Motivation and Hypothesis

Misek-Falkoff [21] suggested that techniques from linguistics can be used to analyze

a computer program. Naz [23] implemented machine learning techniques to classify the

C++ programs based on the gender of the programmer. She used vocabularies of program-

ming language (e.g., keywords, operators, loops, and comments) as features to categorize

the programs based on the gender of the programmer. However, the use of these features or

programming elements often depends on the problem to be solved rather than the choices of

the programmers. That is why to find out the difference between male written and female

written programs, we emphasize the layout and structure of the program rather than the

use of different elements of the program. The layout or the structure of a program mainly

depends on the programmer. For example, the use of comments in a program fully depends

on the programmer. Also the use of commenting style usually varies from programmer to

programmer. A programmer can decide where to write the comments, how to write the

comments, and how many times the comments are needed in a program. That is why in

this research we try to find out more significant features which will classify the programs

based on the gender of the programmer more accurately. We also try to improve the perfor-

mance of the learning models so that models can perform better to predict the gender of a

programmer on future datasets.

William Labov [18] suggested that social variables such as age, gender, region, and

ethnicity may influence an individual’s linguistic expression [23]. Some researchers have

3
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sought to assess the impact of gender on natural languages [3, 16]. Naz [23] researched

the classification of programs according to the gender of the programmer. She showed that

gender does appear to affect the use of programming language. In accordance with this, our

hypothesis is that an additional social variable, the region that the programmer originates

from, may also correlate with variability in the use of programming language.

For this research, we investigate only whether we can identify the effect of gender and

region in the use of computer language or programming language. In the future, we could

include other social variables such as age and level of experience of the programmer.

1.2 Contributions

In this research we use machine learning to identify sociolinguistic characteristics of

the authors of computer programs. Machine learning has been shown to be effective in

the analysis of natural language, and our research focuses on extending this to the analy-

sis of programming languages. Short-term outcomes include improving assessing whether

we can identify variations in the use of programming languages associated with the pro-

grammers’ gender and region. Thus, research affirms that, coding is a deliberate action

across cultural and technological fields [8]. All languages, even programming languages,

allow for choices that could reflect the programmer’s social context. While the syntax of a

computer program is quite strictly determined by the programming language, choices left

up to the programmer include the use of different numbers and types of loops, data types,

keywords, operators, and comments [30]. Based on this, the proposed research will use

machine learning to analyze and identify individuals’ coding styles and their associations

with sociolinguistic variables. Three areas can potentially benefit from this work:

• It may be possible to enhance the design of compiler and to increase the efficiency of

Integrated Development Environments (IDEs) so that particular styles or preferences

of different sociolinguistic groups are supported; communication between different

groups preferring different styles could also be facilitated.

4



1.3. ORGANIZATION OF THESIS

• This work may aid software companies in the design of development teams by provid-

ing information about thinking and coding styles of different groups of programmers.

• Outcomes of our sociolinguistics analysis could help to enhance programming lan-

guage teaching methods by providing knowledge about individuals’ preferred use of

programming languages.

1.3 Organization of Thesis

In Chapter 2 we provide an overview of sociolinguistics, machine learning, WEKA, and

classification algorithms based on the related research on these fields.

Chapter 3 describes the data collection procedure and the methodology that we used

to classify male and female written programs and also Canadian and Bangladeshi written

programs. We explain all the steps that we implement in our methodology. We also describe

all four experiment with their results. Threats to validity and programming environment are

also discussed in this chapter.

Chapter 4 provides some analysis on features to identify gender and region based vari-

ations in the programs of our dataset.

In Chapter 5 we conclude this research with the discussion of possible research direc-

tions.

5



Chapter 2

Background and Literature Review

2.1 Related Work

Factors such as clothing, mannerisms, speech, and writing represent the social identity

of a person in a society. Every member of a society tends to follow certain conventions

in terms of socio-characteristics such as age, gender, and socio-economic status [23]. The

study of social factors which influence or are influenced by the use of a language or linguis-

tic variations within a society is known as sociolinguistics [18, 25]. An example of this is

when an English-speaker’s birthplace can be recognized simply by the individual’s accent

and use of various words. Similarly, an individual’s accent and use of various words can

determine a person’s place in a society.

Many researchers have explored socio-linguistic factors of written documents in differ-

ent natural languages [4,5,6]. For example, Argamon et al. [4] examined gender differences

in English literature in the British National Corpus (BNC). The BNC consists of fiction and

nonfiction writings from articles and books. The dataset contains 604 text documents, and

each document on an average consists of more than 2,000 words. In [4], machine learning

and statistical techniques were employed to find out the differences based on the author’s

writing style. The machine learning techniques were used to identify relevant features from

the dataset. Lexical and syntactic features were analyzed according to the gender of authors

and from that, more than 1000 features were selected to investigate gender difference in the

textual documents. In order to select a small list of the most relevant features from those

1000 features, Argamon et al. [4] used a machine learning method named the EG algorithm

6



2.1. RELATED WORK

[20]. Using the EG algorithm, only 50 features were selected from the list of 1000 features.

These 50 features had an impact on the differentiation between male written and female

written textual documents. Statistical techniques were also used to find out the significance

of the features. The student’s t-test and Mann-Whitney U test were used to identify dif-

ferences in the use of features in male written and female written documents. Machine

learning and computational intelligence have also been used in the analysis of various data,

ranging from text documents [15] to biological data such as genes or proteins [28].

Argamon et al. were able to then extend their work to an analysis of French literature

[3]. They examined gender differences in 600 French literary and historic textual docu-

ments. In this case, Argamon et al. [3] used a machine learning algorithm named SVM

(Support Vector Machine) to distinguish between male and female written documents. Us-

ing the support vectors from the SVM model, relevant features were identified based on the

word distribution, usage, and their frequencies. Using those features, the SVM model was

able to predict the gender of the authors accurately by 90%. The results from [4] and [3]

were similar.

Authorship analysis or analysis of writing differences has also been carried out in the

field of computer programs. Krusl and Sappford [17] explored classification of program-

mers style in order to find characteristics of coding style that might identify the author of a

program. They used 88 C programs collected from various problem domains as their cor-

pus or dataset. Machine learning methods implemented using LNKnet software were used

for the authorship analysis. Nearest neighbor and neural network algorithms were applied

for supervised learning and the k-means clustering algorithm was used for unsupervised

learning. In order to evaluate the learning model, they used the n-fold cross-validation

method. Indentation of C statements, use of conditional compilation, choice of while, for

or do loops, and the number of lines in a function are some of the features they used in their

study. The research also suggested that features such as the use of white spaces and more

can be extracted by visual analysis for analyzing coding style.

7



2.1. RELATED WORK

Table 2.1: List of 50 Features

C++ Vocabulary Features

Keywords
#include, #define, using, void, cout, cerr,

cin, return, exit, int, float, char, const,
double, bool, new, break, public, private

Operators
<, - >, >, &, &&, +, ++, !, !=, ==, =,
-, –, *, /, |, ||, /=, +=, -=, *=, <=, >=

Comments //*, //, /* */
Brackets { }, ( )

Block Execution for, while, switch

Steven and Tahaghoghi also studied authorship attribution for computer programs [5].

In their experiment they used a corpus consisting of 1640 C programs written by 100 pro-

grammers. They used statistical analysis to determine the author of a program. Their

research had a 67% success rate in terms of finding out the genuine author of a program.

University of Lethbridge M.Sc graduate Fariha Naz [23] investigated gender differences

in programming language use. She used machine learning methods to categorize C++ pro-

grams according to the gender of the author/programmer. In her work she used open source

implementations of machine learning algorithms: nearest neighbors (K*), decision tree

(J48), and Bayes classifier (Nave Bayes).The dataset of her experiments consisted of 100

C++ programs. Among those 100 C++ programs, 50 programs were written by male pro-

grammers and 50 programs were written by female programmers. She treated each C++

program, as a text document. In order create the numerical representation of each C++ pro-

gram, she used a list of features described in [6] and also showed in Table 2.1. The feature

list included operators, keywords, loops, and comments. She used 50 features to convert the

collected C++ programs into numeric form. She also applied term frequency and inverse

document frequency (tf-idf) [31] technique to create numerical representations of original

dataset. The tf-idf vectors represented the occurrences of frequencies of the features within

each C++ program.

The machine learning tool WEKA [13] was used to construct three supervised learning

8



2.2. MACHINE LEARNING

models: K*(nearest neighbor), J48(decision tree), and Nave Bayes. These models were

used to categorize the collected C++ programs based on the gender of the programmer

(male/female). Supervised learning was used to train the three models. Cross validation

and hold out techniques were used to evaluate the performance of classification models.

Among the three classification models the K*(nearest neighbor) model performed best

with an accuracy of 72%. This model was able to correctly classify 72% of the programs

according to the gender of the programmer. The Nave Bayes model achieved 66% accuracy,

and the J48 (decision tree) model achieved 63% accuracy. The Kstar model also achieved

the highest f-measure of 71.9%. Nave Bayes and Kstar achieved 66% and 63% f-measures

respectively. The Kstar model was able to classify the highest number of female written

programs accurately. Out of 50 male written programs, the Kstar model classified 39 female

written programs accurately. The Nave Bayes model classified the highest number of male

written programs correctly. 33 out of 50 male written programs were classified correctly by

the Nave Bayes model.

Naz [23] also performed another experiment where she reduced the feature set. She used

the same three classification model and evaluation techniques in this experiment. However,

the number of features were reduced from fifty to seven. In this experiment, the Kstar (near-

est neighbor) model again performed best with an accuracy of 71%. This model was able to

correctly classify 71% of the programs according to the gender of the programmer. The J48

(decision tree) model performed better than the previous experiment with 50 features. J48

achieved 70% accuracy, whereas Naive Bayes achieved 61%. However, the Naive Bayes

model was able to classify the highest number of male written programs accurately. Out

of 50 male written programs, the Naive Bayes model classified 39 male written programs

accurately. The Kstar (nearest neighbor) model classified the highest number of female

written programs correctly. 36 out of 50 female written programs were classified correctly

by the Kstar model.

9



2.2. MACHINE LEARNING

2.2 Machine Learning

Machine learning is making its mark and is beginning to play a key role in a variety of

critical and complex applications such as natural language processing, data mining, expert

systems, pattern recognition, and image recognition. Machine learning has created many

opportunities for researchers in these fields and this is just the beginning. According to

[32], machine learning is likely to be the backbone of future development.

Machine learning is a field of artificial intelligence which has emerged from the fields

of pattern recognition and computational learning theory. In 1959, Arthur Samuel defined

machine learning as a Field of study that gives computers the ability to learn without being

explicitly programmed [32]. Machine learning allows computers to learn and make pre-

dictions on data rather than strictly following the instructions of a static program. Tom

Mitchell in 1997 gave a constructive definition of machine learning. He said, A computer

program is said to learn from experience E with respect to some task T and some perfor-

mance measure P, if its performance on T, as measured by P, improves with experience E .

The goal of machine learning is never to make perfect guesses, because machine learning

deals in domains where there is no such thing. The goal is to make guesses that are good

enough to be useful [22].

2.2.1 Data

Data is the center point of machine learning. All learning and analysis in machine

learning is based on data. Machine learning methods learn from training data, also known

as examples. It is very important to have an appropriate amount and quality of data to train a

machine learning model to predict accurately with unseen data. When we think about data,

generally we think about databases consisting of rows and columns. In machine learning,

the data is generally also organized like this. We use standard terms to refer to different

aspects of the data:

i. Instance - A tuple or a row of a data table is called an instance. An instance contains
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features or attributes.

ii. Feature - A column of a data table is known as a feature. A feature is also known

as an attribute. An attribute or feature is a property or characteristic of an instance (e.g.,

height, weight, blood type, body temperature)

iii. Data Type - Features or attributes can have various data types such as integers,

strings, floats, dates, times, or several complex data types associated with learning methods.

iv. Datasets - Sets of multiple instances of a data table are called datasets. Datasets are

important for training and testing purposes in machine learning. In the training period, the

learning model will learn the characteristics of the input dataset. In the testing period, the

learning model will use those characteristics to predict class labels on unseen datasets.

v. Training Datasets - A training dataset is a collection or set of instances that is used

as an input to a machine learning algorithm to train a model.

vi. Testing Dataset - A collection or set of instances which is used to measure the

accuracy of a machine learning model is known as a testing dataset. Since the testing dataset

is already known to the learning model, the use of this testing dataset will increase the

accuracy rate or performance of the learning model. In order to measure the performance of

the learning model accurately, testing datasets are not used alongside the training datasets.

2.2.2 Data Preparation Process

In order to achieve reliable predictions from a machine learning model, it is very impor-

tant to handle and organize the data precisely. There are three steps involved in preparing a

dataset for use by a machine learning algorithm. First, we must select the data and then we

must process and transform the data [33].

i. Selecting Data - Data which are relevant to the problem chosen should be selected.

Sometimes it is good to collect all the relevant data that are available for the problem domain

because it helps to train the model well. We can miss important features if we filter out some

data without testing by the learning model.
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ii. Processing Data - After data selection, the next step should focus on the utilization

of the collected data by the learning algorithm. Data processing will help to create a frame-

work for the collected data in order for the algorithm to work efficiently on the data. There

are three steps for processing data:

(a) Formatting - The raw data which has been collected from different sources

may not be in a suitable format for use by the machine learning algorithm. The data may

need to be formatted according to the needs of the machine learning algorithm.

(b) Cleaning - There may be some incomplete or missing data in the raw data.

A process may be needed to fix or remove the missing data in order to make the dataset

consistent and useful for the problem being solved.

(c) Sampling - There may be more data available than is needed. A very large

amount of data will increase the running time, computational complexity, and memory

requirements of the learning algorithm. To solve this issue, it is better to take a small

dataset that will represent the collected dataset. This is called sampling.

2.2.3 Data Transformation

The last step is transforming the data. The data must be transformed according to the

needs of the learning algorithm and the knowledge of the problem domain. Scaling, feature

aggregation, and feature decomposition are most common data transformation techniques.

Scaling is done to bring all the features into the same scale for different quantities in the pre-

processed data. For example: The preprocessed data may contain attributes with mixtures

of scales for various quantities such as dollars, kilograms and sales volume. Many machine

learning methods like data attributes to have the same scale such as between 0 and 1 for

the smallest and largest value for a given feature [33]. There may be some features in the

preprocessed data which will be more useful and productive for the learning method if they

are aggregated into a single attribute or feature. This method is called feature aggregation.

Feature decomposition consists of dividing the complex features in the preprocessed data
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into multiple features to make the learning process easier and more efficient.

2.2.4 Categories of Machine Learning

Depending on the nature of learning, machine learning tasks can be classified into two

broad categories. They are [12]:

(1) Supervised Learning - In supervised learning a dataset is given to the learning al-

gorithm where the dataset consists of sample inputs and their class labels. In supervised

learning data instances are labeled with its class label. The goal is to learn the rule which

will match the inputs to outputs. In supervised learning, the learning algorithm produces an

inferred function by analyzing the training data. This inferred function is used to map the

new data to its corresponding class labels. Supervised learning is generally used for gen-

eralizing a learning model. In supervised learning predictions are compared by the model

with the known outputs and modification is done if there is any error. The most common

example of supervised learning is classification. In this work we are using supervised learn-

ing.

(2) Unsupervised Learning - In unsupervised learning there are no labels on the input

data. It is the job of the learning algorithm to determine any structure in its input data.

The main goal of unsupervised learning is to discover either hidden patterns in the data,

or a way to predict on data which is known as feature learning. Unsupervised learning

is generally used for generalizing the structure of the learning model that does not have

any predefined class labels along with the data. Unsupervised learning helps the model to

naturally identify and explore the characteristics of data. The most common example of

unsupervised learning is clustering.

2.2.5 Components of Text Categorization

In machine learning to solve text categorization problems there are four components to

follow [5]:

13



2.3. MODEL EVALUATION TECHNIQUES

• Document Representation - The first step is to choose a large set of text features

which might be useful for categorizing a given text (typically words that are neither

too common nor too rare) and represent each text as a vector consisting of values

representing the frequency of each feature in the text.

• Dimension Reduction - The second step is to use various criteria for reducing the

dimension of the vectors - typically by eliminating features which don’t seem to be

correlated with any category.

• Learning Method - Next, we need to use some machine learning method to construct

one or more models of each category

• Testing Protocol - Lastly, we need to use some testing protocol to estimate the relia-

bility of the system.

2.3 Model Evaluation Techniques

In order to build a best possible learning model for a specific problem we need to evalu-

ate the learning algorithm. Various techniques to evaluate machine learning algorithms are

discussed below [33]:

2.3.1 Test Harness

It is important to define a test harness before starting to use a machine learning algorithm

for training a model. The data which will be used both for training and testing the learning

algorithm is called a test harness. A test harness is used for analyzing the performance

of the machine learning algorithm. A test harness allows the testing of the algorithm to

perform quickly and regularly against a standard result of the problem domain. From the

list of estimated algorithms for a problem, the test harness will assist the model to select the

best algorithm for learning. The test harness also indicates how predictable the problem is.

If the result from different learning algorithms is not satisfactory, then this would suggest
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that there is a lack of data to learn the structure of the problem, or the structure of the

learning algorithm needs to be transformed in order to build the model.

2.3.2 Cross Validation

Cross validation is a widely used approach for testing learning algorithms. The first

step of the cross validation technique is to create a number of folds. Folds are divisions of

the entire data set into groups of instances of equal size. After that the learning model is

trained using all folds except the one which will be used later on to test the model.

Step 1: Training by folds 1+2+3 testing by fold 4

Step 2: Training by folds 1+2+4 testing by fold 3

Step 3: Training by folds 1+3+4 testing by fold 2

Step 4: Training by folds 2+3+4 testing by fold 1

This is an iterative process and it continues until each fold gets a chance to test the

model. Performance is measured by averaging the results of each fold to find out the effi-

ciency of the algorithm. The number of folds generally depends on the problem and size

of the dataset. For example, a 4-fold cross validation will consist of 4 iterations of training

and 4 iterations of testing a learning model:

2.3.3 Evaluation Metrics

Performance measurement of a machine learning model is necessary in order to assess

the solution. The performance measure should give an indication of the correctness or error

in the prediction of the trained model. The classifier evaluation metrics include accuracy,

precision, recall, and f-measure [13, 12].

A confusion matrix is a useful tool for analyzing the performance of a model. This

indicates how well a classifier can recognize samples of different classes. To explain the

working principle of a confusion matrix, a table of size “n x n” is shown in Table 2.2. n
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Table 2.2: Confusion Matrix

Gender Male Female Total
Male TP FN P

Female FP TN N
Total P′ N′ P+N

represents the number of classes (male and female). In this confusion matrix, samples from

male programmers are considered as positive samples and samples from female program-

mers are considered as negative samples. If we look at the Table 2.2 we find these terms:

TP, FP, TN, FN, P, W, P′ and N′. These terms are briefly described below:

• True Positives (TP) - TP refer to the positive samples that are predicted correctly by

the model.

• True Negatives (TN) - TN refer to the negative samples that are correctly predicted

by the model.

• False Positives (FP) - FP refer to the negative samples that are predicted incorrectly

as positive samples.

• False Negatives (FN) - FN refer to the positive samples that were predicted incorrectly

as negative samples.

P is the number of positive samples and N is the number of negative samples. P′ is

the number of samples that are predicted as positive samples (P′ = TP+FP) and N′ is the

number of samples that are predicted as negative samples (N′=TN+FN). By using a confu-

sion matrix, evaluation matrices such as accuracy, precision, recall, and f-measure can be

calculated as follows:

• Accuracy - The accuracy rate of a classifier reflects how well the classifier recognizes

samples of different classes. The accuracy of a classifier is the percentage of samples

that are classified correctly by the classifier. The formula for calculating the accuracy

of a model is as follows [13, 12]:
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Accuracy =
T P+T N

P+N

• Precision - Precision is a measure of exactness [12]. Precision measures the percent-

age of positive samples which are classified as a specific class and actually belong to

that class. The formula for calculating the precision of a model is as follows [13, 12]:

Precision =
T P

T P+FP

• Recall - Recall is the “measure of completeness” [13, 12]. Recall measures the per-

centage of positive data samples which are classified correctly as a specific class by

the model. The formula for calculating the recall of a model is as follows [13, 12]:

Recall =
T P

T P+FN
=

T P
P

• F-measure - In classification problems occasionally there can be an inverse relation-

ship between precision and recall [12]. So, it is possible that at times a model can

achieve high precision but low recall. For this reason, f-measure is used as an alterna-

tive way to use precision and recall. F-measure is the harmonic mean of the precision

and recall [12]. The formula for calculating the f-measure of a model is as follows

[13, 12]:

F-measure =
2∗Precision∗Recall

Precision+Recall

2.4 WEKA

In this work we used open source machine learning software named WEKA (Waikato

Environment for Knowledge Analysis) [13]. WEKA is widely used in the field of machine

learning. The main reason behind using WEKA is that WEKA supports the core functions
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of machine learning data processing, feature selection, model building, and model testing.

There are also many built-in machine learning algorithms available in WEKA.

2.4.1 WEKA Data Format

The data file with which WEKA works is known as an ARFF (Attribute-Relation-File-

Format) file. An ARFF (Attribute-Relation File Format) file is an ASCII text file that de-

scribes a list of instances sharing a set of attributes [13]. An ARFF file consists of two

distinct sections. The first section is the header and the second section is data. The header

section of the ARFF file includes the name of the relation, a list of features/attributes, and

the types of the attributes. In general, the first line of an ARFF file is defined as the relation

name. The format to define a relation is:

@relation <relation-name>

Every section in an ARFF file starts with a @ symbol. It represents the start of a section

in an ARFF file. @relation states that this is the start of the relation section. ¡relation-

name¿ can be any string given by the user. The second part of the header section is the

attribute/feature declaration. The format for attribute declaration is:

@attribute <attribute-name> <data-type>

Attribute declarations take the form of an ordered sequence of @attribute statements.

Each attribute in the data set has its own @attribute statement which uniquely defines the

name of that attribute and data type of that attribute. The order in which the attributes

are declared indicates the column position in the data section of the file. For example, if

an attribute is the third one declared then WEKA expects that all of those attributes’ values

will be found in the third comma delimited column [23]. There are four data types available

for the value of an attribute. These are:

1. Numeric (Integer or real numbers)

2. Nominal (List of possible values)

3. String (Textual values)
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4. Date (Date format)

The last section of an ARFF file is the data section. This consists of the data declaration

line and actual instance lines. The data section is denoted as: @data. This single line rep-

resents the starting of the data segment. After the data declaration line actual data instances

are provided. On each single line, one data instance is represented with a carriage return

denoting the end of the instance. Attribute/feature values of each instance are separated by

commas. In each instance, attribute values must appear in the order in which they were

declared in the @attribute section. A missing value in any instance is denoted by a single

question mark ?. Values of nominal and string attributes are case sensitive. An example of

an ARFF file is shown in Table 2.3.

There is another type of ARFF file which is known as Sparse ARFF. Sparse ARFF

files are almost similar to ARFF files but data with zero values are not shown in the data

section. A sparse ARFF file has similar relation and attribute sections but differs in the

data section. The zero attributes are omitted and non-zero attributes are explicitly identified

by the attribute number and their values. Suppose we have a data section as follows in an

ARFF file:

@data

0, A, 0, B, yes

0, 0, A, 0, no

The representation of this data section in Sparse ARFF will be like this:

@data

{ 1 A, 3 B, 4 yes }

{ 2 A, 4 no }

In sparse ARFF, each data instance is surrounded by curly braces. The format for each

data instance is : <index> <space> <value>. The attribute index starts from zero.
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Table 2.3: Sample ARFF File

@relation weather

@attributeoutlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,?,FALSE,yes
rainy,68,80,FALSE,yes

2.4.2 Classification Algorithms of WEKA

In WEKA there are six categories of classification algorithms available. From each

category we selected at least one algorithm to build one of our classification models. Brief

descriptions of the six categories of classification algorithms are given below:

• Bayesian Classifiers - Bayesian classifiers are generally statistical classifiers [12].

All the Bayesian classifiers are based on Bayes theorem. Bayes theorem describes

the probability of an event, based on prior knowledge of conditions that might be

related to the event [12]. In a Bayesian classifier, the role of a class is to predict the

values of features for members of that class. Samples are grouped in to classes based

on the common values of the features [29]. In a Bayesian classifier Bayes rule is

used to predict the class given the feature values. The classifier builds a probabilistic

model of the features and uses the model to predict the class of a new sample. Some

examples of Bayesian classifiers in WEKA are NaiveBayes, AODE, BayesNet, and

DMNBText. From the Bayesian classifiers, we used the BayesNet classifier to build

one of our classification models.
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• Tree Classifiers - All the classifiers in this category follow a flow chart tree like struc-

ture, where an internal node represents a test on an attribute, the outcome of the test

is denoted by the branch and the leaf node denotes the class label. In tree classifiers,

a “divide-and-conquer” approach is implied to the problem of learning from a set

of independent instances which leads to a tree like representation [13]. Tree classi-

fiers are most popular in machine learning because trees are expressive and easy to

understand [10]. Some popular tree classifiers in WEKA are ADTree, DFTree, J48,

RandomForest, RandomTree, and RepTree. From the tree classifiers, we used the

RandomForest classifier to build one of our classification models.

• Rule Based Classifiers - Rule based classifiers generally make use of a set of IF-

THEN rules for classification problem. A series of tests is a precondition of a rule. All

the tests must succeed in order to execute the rule. The outcome of a rule execution

provides the class that applies to instances covered by that rule [13]. Some examples

of rule based classifiers in WEKA are DecisionTable, DTNB, JRip,OneR, Ridor, and

ZEroR. From the rule based classifiers we used the DTNB classifier to build one of

our classification models.

• Function Based Classifiers - Function category classifiers combine all the classifiers

which can be written down as mathematical equations in a reasonably natural way

[13]. Some examples of function based classifiers in WEKA are LinearRegression,

SMO, LibSVM, SimpleLogistic, SMOreg, and Window. From the function based

classifiers we used the SimpleLogistic classifier to build one of our classification

models.

• Lazy Classifiers - All the previous classifiers, when given a set of training samples,

will construct a classification model before testing new samples [12]. In contrast,

lazy classifiers store the training instances and do no real work until testing new

samples. When training sample is given, a lazy classifier simply stores it and waits
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until the model receives a test sample . When the model receives a test sample, it

starts the classification process to classify the sample based on the similarity to the

stored training sample. These kind of classifiers are also known as instance based

learners [12]. Some examples of lazy classifiers in WEKA are IB1, IBK, Kstar,

LBR, and LWL. From lazy classifiers, we used the Kstar classifier to build one of our

classification models.

• Meta Classifiers - Classification algorithms under meta classifiers use or combine

multiple classification algorithms into one classifier in order to make the classification

decision more reliable. Some examples of meta classifiers in WEKA are: Bagging,

LogitBoost, END, Dagging, Decorate, ClassificationViaRegression, and Classifiac-

tionViaClustering. From the tree meta we used Bagging and ClassificationViaRe-

gression classifiers to build two of our classification models.

2.4.3 Feature Selection

In general a dataset contains a set of features or attributes. It may happen that some

features are not relevant to the learning task. Leaving out the important features or keeping

the irrelevant features may degrade the performance of a model. Redundant features can

also slow down the learning process [13]. That is why it is important to choose a small set

of features which is sufficient for learning and improvement of the quality of the concept

description [9, 4]. WEKA provides some important algorithms to find out the useful fea-

tures. To select useful features from our selected set of features, we used one of the attribute

evaluators of WEKA named “InfoGainAttributeEval”. This is a statistical technique which

evaluates features on the basis of Information Gain with respect to the class [13]. The dif-

ference between original information about the proportion of classes and new information

which is obtained after the identification of the useful attribute is called information gain

[23]. The following formula is used to calculate information gain [12, 33]:

Info Gain (Class, Attribute) = H (Classs) - H (Class | Attribute)
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InfoGainAttributeEval extracts relevant features from the original feature set. This eval-

uator works with a search method in order to find out the best features. In WEKA, Info-

GainAttributeEval uses the Ranker [33] algorithm as a searching algorithm. Based on the

value of information gain, the ranker algorithm creates a list of features with the rank of

individual features. The ranker method helps to identify the relevant and irrelevant features

from the original set of features. A small set of features can be made by picking the relevant

features which in turn may improve the performance of the learning model.
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Chapter 3

Methodology

3.1 Data Collection

Data for this work were collected from two sources. The first source was the Univer-

sity of Lethbridge, Canada, and the second source was several universities in Bangladesh.

Before starting the data collection procedure, it was necessary to receive the permission

from the University of Lethbridge Human Subject Research Committee. We secured the

approval (protocol 2012-012) from the committee after submitting all the necessary doc-

uments of the data collection procedure (described in Appendix A). We collected C++

programs as well as some information about the writer of each program. Before collecting

the data from the students, we collected their permission to use their programs and infor-

mation in this research. We collected 50 male written and 50 female written C++ programs

from the students of Computer Science Department of the University of Lethbridge. These

programs were collected as part of assignments and projects from the computer science

classes. Other information about the writers of the programs was collected via a survey

which was provided to each participant.

We also collected 40 male written and 20 female written programs from several uni-

Table 3.1: Data collection

Gender University of Lethbridge Survey Monkey Total Samples
Male 50 40 90

Female 50 20 70
Total 100 60 160
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versities in Bangladesh. We collected these 60 C++ programs plus authors’ information

through Survey Monkey which is an online survey development website [2]. In total, we

collected 160 C++ programs written by both males and females. After collecting all the

programs we cleaned all programs manually. This included removing all personal infor-

mation such as students’ names, id numbers, course information, and any other info which

was not related to the programming or coding.

3.2 Document Representation

Our machine learning classification model requires inputs as a vector of numeric feature

values and the model gives output as nominal values. In our classification model, feature

values were numeric and class labels were nominal. There were two class labels: male and

female. In our research work, we treated each collected C++ programs as a text document.

In each document, we calculated the 16 selected feature values to transform the original text

based dataset into a numerical dataset. Using the values of selected features, the programs

were transformed into the appropriate data format for the classification model. We calcu-

lated the value of 16 features to generate the numeric feature vector of each C++ program.

We represented each code by the programs feature values. Thus our dataset composed of

the data instances represented by feature vectors (numeric values of 16 features of each

code) and a class label (male or female). The dataset was then used to train and evaluate

the learning model that we built using WEKA [13].

3.3 Feature Selection

To categorize the programs according to the gender of the author/ programmer, we se-

lected 15 features of a code/program. These features were selected from “IEEE Standard

for Software Productivity Metrics” [1]. These features are: total lines, total source code

lines, source code lines percentage, total blank lines, blank lines percentage, total comments

lines, comment lines percentage, total mixed lines, mixed lines percentage, total commen-
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tary words (cword), total physical executable lines of code (sloc-p), total logical executable

lines of code (sloc-l), total functions, total code function lines, and average code lines in

functions. We also selected region of the programmer as a feature. In total 16 features were

selected for this research. Short descriptions of these features are given below.

1. Total lines - Count of lines that include number of source code lines, comment lines,

and blank lines.

2. Total source code lines - All the code lines excluding total blank lines and total

comment lines.

3. Source code lines percentage - Percentage of source code lines as compared to the

total lines.

4. Total blank lines - Total number of empty lines.

5. Blank lines percentage - Percentage of blank lines as compared to the total lines.

6. Total comment lines - Total number of lines which are not executable by the compiler

but useful for code description and other information about the code.

7. Comment lines percentage - Percentage of comment lines as compared to the total

lines of code.

8. Total mixed lines - Count of lines that include both code and comments.

9. Mixed lines percentage - Percentage of mixed lines as compared to the total lines of

code.

10. Total commentary words (CWORD) - Total words in all the comments of a single

program.

11. Physical executable lines of code (SLOC-P) - Physical SLOC is a count of lines in

the text of the program’s source code excluding comment lines [24].

12. Logical executable lines of code - Logical SLOC attempts to measure the number of

executable statements, but their specific definitions are tied to specific computer languages.

For instance, one simple logical SLOC measure for C-like programming languages is the

number of statement-terminating semicolons [27].
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/* how many lines are here /*

for (i = 0; i < 200; i++)

{

printf ("Thank You");

}

In the above code, we have 3 physical lines of code, 2 logical lines of code and 1

comment line.

13. Total functions - Total number of functions used in a single program.

14. Total function lines - Total number of lines in all the functions of a single program.

15. Average function lines - Total function lines divided by the total number of func-

tions.

16. Region of the programmer - In our dataset, we have collected data from the students

of two regions: Canada and Bangladesh. We used this region of the programmer/author as

one of our features.

3.3.1 Region of the Programmer as a Feature

We selected the region of the programmer as one of the features while categorizing the

programs according to the gender of the authors. The region of the programmer is not a

feature of a program, but rather this is a feature of a programmer. Some initial experiments

showed that inclusion of the region of the programmer in the feature list improved the

performance of the machine learning models in predicting the gender of the author. In our

dataset we had programs from two different regions: Canada and Bangladesh. Therefore,

we performed two initial experiments that used the same 160 data samples, the same seven

classification models, and the same cross validation technique to evaluate the performance

of the models which we used in our main experiments (described in section 3.4). The only

difference in the two experiments was the feature set. In one experiment we used all 16

features (described in section 3.3) where we included the region of the programmer in the
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Table 3.2: Impact of Region of the Programmer

Classifaction Model

Experiment 1
with 16 Features Including
Region of the Programmer

(Accuracy %)

Experiment 2
with 15 Features Excluding
Region of the Programmer

(Accuracy %)
Simple Logistic 77.5 67.5

Kstar 75 71.9
Bagging 76.9 74.4

Classification
Via Regression

78.1 70

DTNB 83.1 70.6
Random Forest 80.6 74.4

Bayes Net 70 70

feature set. In the other experiment we excluded the region of the programmer from the

feature set and used the remaining 15 features to categorize the programs based on the

gender of the authors. The results of the two experiments are shown in Table 3.2. From

Table 3.2 we can see that except for the Bayes net model, all the other models performed

significantly better when we used the region of the programmer as a feature. The inclusion

of this feature helped the model to predict the gender of the programmer more accurately.

The accuracy of the models increased from 2% to 12%, depending on the models, with the

inclusion of the region of the programmer in the feature set. That is why we included this

in the feature set while categorizing the programs based on the gender of the programmer.

Further discussion of this inclusion of this feature is discussed in Section 4.5.

3.4 Experimental Work

In our research, the collected C++ programs were treated as text documents in order to

apply several learning algorithms to categorize the programs according to the gender and

the region of the programmer. We used WEKA to build classification models. These clas-

sification models used machine learning algorithms to classify the given input correctly. In

our research, a vector of numeric feature values was provided as input to the classification
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model. Classification models provided outputs in the form of class labels. Class labels

were male and female. In this research, we also tried to classify the collected C++ pro-

grams according to the region of origin of the programmer. We again used WEKA to build

classification models. In this case, a vector of numeric feature values were also provided as

input to the classification model. Classification models provide outputs in the form of class

labels. Class labels were Canada and Bangladesh. For building the classification model

in WEKA, we needed to build the appropriate data format. Using the feature values, C++

programs were transformed into the appropriate data format for WEKA.

We used supervised learning to build our classification models. In WEKA there are six

categories of classification algorithm available (described in section 2.4.2). From each of

the six categories we selected at least one algorithm to build the classification models.In

total, we used seven machine learning algorithms:

• From the function category algorithms simple logistic algorithm was selected.

• From the lazy category nearest neighbor (kstar) algorithm was selected.

• From meta category bagging and classification via regression algorithms were se-

lected.

• From rule category Decision table-Naive Bayes (DTNB) algorithm was selected.

• From the tree category algorithms random forest algorithm was selected.

• From the Bayes category Bayes net algorithm was selected.

These learning algorithms were used to train and test our dataset. To build each learning

model for categorizing the programs according to the gender of the programmer, we used a

total of 160 data instances and 16 features. All the data instances were labeled as male or

female.To build each learning model for categorizing the programs according to the region

of origin of the programmer, we used a total of 160 data instances and 15 features. All
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the data instances were labeled as Canada or Bangladesh. In this research, we performed

4 different experiments using our dataset of 160 programs. A brief description of these 4

experiments are given below:

• In the first experiment, we classified the collected C++ programs according to the

gender of the author/programmer. The first experiment consisted of 16 features and

used the cross validation technique to evaluate the results of the classification models.

In the second experiment, we again classified the collected C++ programs according

to the gender of the programmer/author. However, in this experiment, we reduced

our feature set from 16 to 6 and used the cross validation technique to evaluate the

results of the classification models.

• In the third experiment, the goal was to classify the collected C++ programs accord-

ing to the region of the programmer/author. The third experiment consisted of 15

features and used cross validation technique to evaluate the result of the classifica-

tion models. In the fourth and last experiment, we again classified the collected C++

programs according to the region of the programmer/author. However, in this experi-

ment, we reduced our feature set from 15 to 7 and used the cross validation technique

to evaluate the results of the classification models.

All four experiments used the same dataset. In experiment 1 and 2, data instances were

associated with male and female class labels. In experiment 3 and 4, data instances were

associated with Canada and Bangladesh class labels. To carry out the four experiments and

to develop the classification models we used WEKA. Further details for each experiment

are given below.

3.4.1 Parameter Settings

In this research, for all of the machine learning experiments we used WEKA. Using

WEKA we tried to build some learning models and test those models with our dataset.
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Besides using the seven classifiers (Bayes net, simple logistic, bagging, classification via

regression, random forest, K star, and DTNB), we also used other features of WEKA. We

used these features as a part of the data formatting, feature selection, and model evaluation

process. Brief descriptions of the used features of WEKA are given below:

• Discretize Filter - In our experiments we used the Bayes net classifier to build one of

the learning models. The Bayes classifier performs well when attribute/feature values

are discretized rather than continuous [19]. So, to make the feature values discrete,

we applied one of the supervised attribute filters of WEKA named as “Discretize”.

The Discretize filter converts the numeric attributes to nominal [13].

• Randomized Filter - We applied one of the unsupervised instance filters of WEKA

named “Randomize”. This filter was used to shuffle the order of the dataset randomly

before implementing supervised learning methods. We set the seed value to the de-

fault value 42. The random number generator is reset with the seed value whenever a

new set of instances is passed in [13].

• Cross validation - In order to evaluate the seven learning models, we used the cross

validation technique of WEKA. In the cross validation process, we set the number

of folds at 10. This means that our dataset was divided into 10 equal parts or folds.

Then these 10 folds performed 10 iterations of training and 10 iterations of testing of

each learning model.

• InfoGainAttributeEval - In order to reduce the feature set of our experiments, we used

one of the attribute evaluators of WEKA named “InfoGainAttributeEval” (described

in section 2.4.3). This attribute evaluator used the Ranker algorithm to rank all the

features according to the information gain with respect to the class [13].
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3.4.2 Programming Environment

In this research all experiments were run on an Acer Aspire laptop. The configuration

of the laptop included Intel Core i5 processor, 6 GB of RAM, and 500 GB of hard disk.

The computer was running by the Windows 7 operating system. We used WEKA 3.6.13

for the classification of the programs and Microsoft Excel 2016 for statistical analysis of

the features of our research.

WEKA is widely used in the field of machine learning. WEKA is an open-source

machine learning software. By using WEKA we implemented various filters to process the

data, used seven classification algorithms to build the learning models and implemented

an evaluation method to evaluate the performance of the models. We also used the feature

selection function of WEKA to reduce the feature set. We used Microsoft Excel to perform

some statistical analysis on the features of the programming language. We also tried to find

out whether or not there exist significant differences between the use of features in male

and female written programs and in the Canadian and Bangladeshi written programs.

3.4.3 Experiment 1

In experiment 1, our goal was to categorize the C++ programs according to the gender

(male/female) of the programmer. In experiment 1, we used 160 data samples and 16

features. Here class labels were male and female. We first calculated the feature values for

each of the 160 programs. Then we prepared the dataset according to the ARFF file format

of WEKA using those feature values. Next, we used seven classification algorithms to build

seven classification models using WEKA. The steps we followed are shown in Figure 3.1.

The algorithms used were: simple logistic, kstar, bagging, classification via regres-

sion, decision table - Naive Bayes (DTNB), random forest and Bayes net. After building

the seven classification models, we applied the 10 fold cross validation technique to each

classification model in order to evaluate the performance. The final step was to measure

the performances of the seven models using our evaluation metrics. Results are given in
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Figure 3.1: Steps followed for experiment 1

section 3.5.

3.4.4 Experiment 2

In experiment 2, again our goal was to classify the 160 C++ programs according to

the gender (male/female) of the programmer/author.We again used 160 data samples but

here we used only 6 features to build the classification model and classify the programs.

We reduced our feature set from 16 to 6 using the statistical measure Information Gain.

WEKA has a built-in function named InfoGainAttributeEval for feature selection. This
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feature selection method used Ranker algorithm to rank all the features according to the

information gain of each feature. From the ranking of each feature, we selected the top

6 ranked feature for this experiment. Those 6 features were: blank lines percentage, total

blank lines, total functions, region of the programmer, source code lines percentage, and

comment lines percentage. Steps of experiment 2 are shown in Figure 3.2.

Figure 3.2: Steps followed for experiment 2

After selecting the 6 features we used the Remove filter of WEKA to remove the other

features from our dataset. We then used same seven classification algorithms: simple lo-

gistic, kstar, bagging, classification via regression, decision table - Naive Bayes (DTNB),
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random forest and Bayes net to build our seven classification models. After building the

seven classification model we again applied the 10 fold cross validation technique to each

classification model in order to evaluate the performance. Lastly, we measured the perfor-

mance of the models using our evaluation metrics. Results are given in section 3.5.

3.4.5 Experiment 3

We had C++ programs in our dataset written by programmers from two countries,

Canada and Bangladesh. So, in experiment 3 we classified the collected C++ programs

according to the region of the author (Canada/Bangladesh), another socio-linguistic char-

acteristic. In experiment 3, we used 160 data samples and 15 features. Those 15 features

were: total lines, total source code lines, source code lines percentage, total blank lines,

blank lines percentage, total comment lines, comment lines percentage, total mixed lines,

mixed lines percentage, total commentary words (CWORD), physical executable lines of

code (SLOC-P), logical executable lines of code, total functions, total function lines, and

average function line. We removed the feature region of the programmer from the feature

list. Here class labels were Canada and Bangladesh. We first calculated the feature values

of each of the 160 programs. Next we prepared the dataset according to the ARFF format of

WEKA using the feature values. Next we used the seven classification algorithms to build

classification models using WEKA. Steps of the experiment 2 are shown in Figure 3.3.

The seven classification models were built using simple logistic, kstar, bagging, clas-

sification via regression, decision table - Naive Bayes (DTNB), random forest and Bayes

net classification algorithms. After building the models we again applied 10 fold cross val-

idation to each classification model to evaluate the performance. Lastly, we measured the

performance of the models using our evaluation metrics. Results are given in section 3.5.

3.4.6 Experiment 4

In experiment 4, again our goal was to classify the 160 C++ programs according to

the country of the origin of the author (Canada/Bangladesh). Steps of this experiment are
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Figure 3.3: Steps followed for experiment 3

shown in Figure 3.4. In experiment 4, we again used 160 data samples but here we used

only 7 features to build the classification model and classify the programs. We reduced our

feature set from 15 to 7 using the statistical measure Information Gain. From the ranking

of each feature, we selected top 7 ranked feature for this experiment. Those 7 features

were: comment lines percentage, total comment lines, total blank lines, total commentary

words, blank lines percentage, total functions, and average function line. After selecting

the 7 features we used the Remove filter of WEKA to remove the other features from our

dataset. We then used the same seven classification algorithms to build the classification
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models. After building those seven classification models we again applied the 10 fold

cross validation technique to each classification model in order to evaluate the performance.

Lastly, we measured the performance of the models using our evaluation metrics. Results

are given in section 3.5.

Figure 3.4: Steps followed for experiment 4

3.5 Results

In this section we discuss the results of four experiments. In each of the experiments,

seven classification models were developed. In experiment 1 & 2, the main goal was to
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Table 3.3: 16 Features and Cross Validation

Model
Correctly
Classified

(%)

Incorrectly
Classified

(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Simple Logistic 77.5 22.5 78.7 77.5 76.8
Kstar 75 25 74.9 75 74.9

Bagging 76.9 23.1 77.6 76.9 76.3
Classification

Via Regression
78.1 21.9 80 78.1 77.2

DTNB 83.1 16.9 86.3 83.1 82.3
Random Forest 80.6 19.4 80.6 80.6 80.5

Bayes Net 70 30 72.6 70 69.9

categorize the C++ programs according to the gender (male/female) of the programmer. In

these two experiments, class labels were male and female. In experiment 3 & 4, the main

goal was to classify the programs according to the region of the author/programmer. In

these two experiments, class labels were Canada and Bangladesh. In order to evaluate the

seven classification models, the cross validation technique was used in all experiments.

3.5.1 Experiment 1

In experiment 1, we used 16 features and seven classification algorithms to build our

seven models. As shown in Table 3.3, the DTNB model performed best with 83.1% accu-

racy. That means this model was able to classify 83.1% programs of our dataset correctly

according to the gender of the programmer. The accuracy rate of the random forest model

was also above 80%. The random forest model was able to classify 80.6% of the dataset

correctly. Other models were also performed well. The classification via regression model

classified 78.1% of the dataset accurately. The simple logistic and kstar models correctly

classified 77.5% and 75% of the dataset respectively. The DTNB model also achieved the

highest f-measure rate by scoring 82.3%. Next was the random forest model. The random

forest model achieved 80.5% f-measure rate. Precision and recall of DTNB were 86.3%

and 83.1% respectively.
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Table 3.4: Performance of Seven Models with 16 Features

Model TP
(/90)

TN
(/70)

FP
(/70)

FN
(/90)

TP Rate
(%)

FP Rate
(%)

Simple Logistic 82 42 28 8 77.5 26.4
Kstar 72 48 22 18 75 26.4

Bagging 80 43 27 10 76.9 26.6
Classification

Via Regression
84 41 29 6 78.1 26.2

DTNB 89 44 26 1 83.1 21.4
Random Forest 78 51 19 12 80.6 21.1

Bayes Net 55 57 13 35 70 27.5

The DTNB model was able to classify the highest number of male written programs

accurately compared to other models. In Table 3.4, we can see that among the 90 male

written programs, the DTNB model was able to correctly classify 89 (TP=89) male written

programs. Out of 90 male written programs the classification via regression model cor-

rectly classified 84 (TP=84) of them. The simple logistic and bagging model also correctly

classified 82 (TP=82) and 80 (TP=80) male written programs respectively. The random

forest model was able to correctly classify 78 (TP=78) male written programs out of 90

male written programs. The Bayes net model was in the last position among the seven

classification models in terms of classifying the male written programs correctly. Bayes net

model correctly classified 55 (TP=55) male written programs out of 90.

Although the Bayes net model scored lowest in terms of accuracy among the seven

models, this model correctly classified the highest number of female written programs. The

Bayes net model correctly classified 57 (TN=57) female written programs out of 70. The

random forest model was second best in correctly classifying female written programs by

classifying 51 (TN=51) out of 70 female written programs. The Kstar model correctly

classified 48 (TN=48) out of 70 female written programs. The DTNB model correctly

classified 44 (TN=44) out of 70 female written programs. The classification via regression

model performed the worst among the seven classification models in terms of classifying

the female written programs correctly. 41 (TN=41) out of 70 female written programs were
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Table 3.5: 6 Features and Cross Validation

Model
Correctly
Classified

(%)

Incorrectly
Classified

(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Simple Logistic 76.9 23.1 77.8 76.9 76.2
Kstar 76.3 23.7 76.4 76.3 75.9

Bagging 79.4 20.6 80.6 79.4 78.7
Classification

Via Regression
80 20 83.6 80 78.8

DTNB 83.1 16.9 86.3 83.1 82.3
Random Forest 76.9 23.1 77.3 76.9 76.4

Bayes Net 72.5 27.5 75.7 72.5 72.4

classified accurately by the classification via regression model.

3.5.2 Experiment 2

In experiment 2, we reduced our feature set from 16 to 6. As shown in Table 3.5, the

DTNB model performed best with 83.1% accuracy. That means this model was able to

classify 83.1% programs of our dataset correctly according to the gender of the program-

mer. The classification via regression model achieved 80% accuracy. The classification

via regression model was able to classify 80% of the dataset correctly. Other models were

also performed well. The Bagging model achieved almost 80% accuracy. 79.4% of the

dataset was correctly classified by the bagging model. The random forest and simple lo-

gistic models achieved 76.9% accuracy. The Kstar model was close to the random forest

and simple logistic model with an accuracy of 76.3%. The DTNB model also achieved

the highest f-measure rate by scoring 82.3%. The classification via regression and bagging

models achieved 76.8% and 76.7% f-measure respectively. Precision and recall of DTNB

were 86.3% and 83.1% respectively.

The DTNB model was able to classify the highest number of male written programs

accurately compared to other models. In Table 3.6, we can see that among the 90 male

written programs the DTNB model was able to correctly classify 89 (TP=89). Out of 90
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Table 3.6: Performance of Seven Models with 6 Features

Model TP
(/90)

TN
(/70)

FP
(/70)

FN
(/90)

TP Rate
(%)

FP Rate
(%)

Simple Logistic 81 42 28 9 76.9 26.9
Kstar 77 45 25 13 76.3 26.4

Bagging 83 44 26 7 79.4 24.3
Classification

Via Regression
80 40 30 2 80 25.1

DTNB 89 44 26 1 83.1 21.4
Random Forest 79 44 26 11 76.9 26.2

Bayes Net 56 60 10 34 72.5 24.6

male written programs, the bagging model correctly classified 83 (TP=83) of them. The

simple logistic and classification via regression models also correctly classified 81 (TP=81)

and 80 (TP=80) male written programs respectively. The random forest model was able

to correctly classify 79 (TP=79) out of 90 male written programs. The Bayes net model

performed the worst among the seven classification models in terms of classifying the male

written programs correctly. The Bayes net model correctly classified only 56 (TP=56) male

written programs out of 90.

Although the Bayes net model scored lowest in terms of the accuracy rate among the

seven models, the model correctly classified the most female written programs. The Bayes

net model correctly classified 60 (TN=60) female written programs out of 70 female written

programs. The Kstar model was second in correctly classifying female written programs by

classifying 45 (TN=45) out of 70 female written programs. All three bagging, DTNB and

random forest models classified 44 (TN=44) out of 70 female written programs correctly.

The classification via regression model performed the worst among the seven classification

models in terms of classifying the female written programs correctly. Only 40 (TN=40) out

of 70 female written programs were classified accurately by the classification via regression

model.
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Table 3.7: 15 Features and Cross Validation

Model
Correctly
Classified

(%)

Incorrectly
Classified

(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Simple Logistic 81.3 18.7 81.3 81.3 81.3
Kstar 85 15 85.5 85 85.1

Bagging 88.1 11.9 88.1 88.1 88
Classification

Via Regression
88.8 11.2 88.8 88.8 88.8

DTNB 90.6 9.4 90.7 90.6 90.6
Random Forest 92.5 7.5 92.5 92.5 92.5

Bayes Net 82.5 17.5 83 82.5 82.6

3.5.3 Experiment 3

In experiment 3, our goal was to classify the programs according to the region of the

programmer. We used 15 features and seven classification algorithms to build our seven

models. As shown in Table 3.7, the random forest model performed best with 92.5% accu-

racy. That means this model was able to classify 92.5% programs of our dataset correctly

according to the region of the programmer. The accuracy of the DTNB model was also

above 90%. The random forest model was able to classify 90.6% of the dataset correctly.

Other models were also performed well. The accuracy rates of the rest of the five models

were all more than 80%. The classification via regression model achieved 88.8% accuracy.

The classification via regression model was able to classify 88.8% of the dataset accurately.

The bagging and kstar models correctly classified 88.3% and 81.3% of the dataset respec-

tively. The random forest model also achieved the highest f-measure rate by scoring 92.5%.

Next was the DTNB model. The DTNB model achieved 90.6% f-measure. Precision and

recall of random forest model were both 92.5%.

The random forest model was able to accurately classify the most programs written by

Canadian programmers compared to other models. In Table 3.8, we can see that among the

100 programs written by Canadian programmers random forest model was able to correctly

classify 95 (TN=95) programs. The bagging and DTNB models also accurately classified
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Table 3.8: Performance of Seven Models with 15 Features

Model TP
(/60)

TN
(/100)

FP
(/100)

FN
(/60)

TP Rate
(%)

FP Rate
(%)

Simple Logistic 45 85 15 15 81.3 21.3
Kstar 51 85 15 9 85 15

Bagging 48 93 7 12 88.1 15.1
Classification

Via Regression
52 90 10 8 88.8 12.1

DTNB 53 92 8 7 90.6 10.3
Random Forest 53 95 5 7 92.5 9.2

Bayes Net 49 83 17 11 82.5 17.8

more than 90 programs of Canadian programmers. Out of 100 programs written by Cana-

dian programmers the bagging and DTNB model correctly classified 93 (TN=93) and 92

(TN=92) of them respectively. The classification via regression model accurately classified

90 (TN=90) programs which were written by Canadian programmers. Both the simple lo-

gistic and Kstar models correctly classified 85 (TN=85) programs. The Bayes net model

was in the last position among the seven classification model in terms of classifying the

Canadian written programs correctly. The Bayes net model correctly classified 83 (TN=83)

Canadian written programs out of 100.

Although the Bayes net model scored lowest in terms of accurately classifying Canadian

written programs among the seven models, this model correctly classified the highest num-

ber of Bangladeshi written programs. The DTNB and random forest models correctly clas-

sified the highest number of Bangladeshi written programs. Both the DTNB and random

forest models correctly classified 53 (TP=53) Bangladeshi written programs out of 60. The

classification via regression model was second in classifying correctly Bangladeshi written

programs by classifying 52 (TP=52) out of 60. The Kstar model classified 51 (TP=51)

Bangladeshi written programs correctly out of 60. From 60 Bangladeshi written programs,

49 (TP=49) programs were classified correctly by the Bayes net model. The simple logistic

model performed the worst among the seven classification models in terms of classifying

the Bangladeshi written programs correctly. 45 (TP=45) out of 60 Bangladeshi written
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Table 3.9: 7 Features and Cross Validation

Model
Correctly
Classified

(%)

Incorrectly
Classified

(%)

Precision
(%)

Recall
(%)

F-measure
(%)

Simple Logistic 81.3 18.7 81.3 81.3 81.3
Kstar 83.8 16.2 84.3 83.8 83.9

Bagging 85.6 14.4 85.7 85.6 85.4
Classification

Via Regression
88.1 11.9 88.3 88.1 88.2

DTNB 83.8 16.2 84.3 83.8 83.9
Random Forest 89.4 10.6 89.3 89.4 89.3

Bayes Net 85 15 86 85 85.2

programs were classified accurately by the simple logistic model.

3.5.4 Experiment 4

In experiment 4, again our goal was to classify the programs according to the region

of the programmer. We reduced our feature set from 15 to 7. We used seven classification

algorithms to build seven classification models. As shown in Table 3.9, the random forest

model performed best with 89.4% accuracy. This means that model was able to classify

89.4% of the programs of our dataset correctly according to the region of the programmer.

The classification via regression model was able to classify 88.1% of the dataset correctly.

Other models were also performed well. Bagging model achieved 85.6% accuracy. The

Bayes net model also achieved 85% accuracy. The DTNB and kstar models both cor-

rectly classified 83.8% of the dataset. The random forest model also achieved the highest

f-measure rate by scoring 89.3%. Next was the classification via regression model, which

achieved 88.2% f-measure. Precision and recall of the random forest model were 89.3%

and 89.4% respectively.

Both the random forest and bagging models were able to classify accurately most pro-

grams written by Canadian programmers compared to other models. In Table 3.10, we

can see that among the 100 programs written by Canadian programmers random forest and
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Table 3.10: Performance of Seven Models with 7 Features

Model TP
(/60)

TN
(/100)

FP
(/100)

FN
(/60)

TP Rate
(%)

FP Rate
(%)

Simple Logistic 45 85 15 15 81.3 21.3
Kstar 50 84 16 10 83.8 16.4

Bagging 44 93 7 16 85.6 19.3
Classification

Via Regression
52 89 11 8 88.1 12.5

DTNB 50 84 16 10 83.8 16.4
Random Forest 50 93 7 10 89.4 13

Bayes Net 53 83 17 7 85 13.7

bagging model were able to correctly classify 93 (TN=93) programs. The classification via

regression model also accurately classified 89 (TN=89) programs out of 100 programs writ-

ten by Canadian programmers.The simple logistic model correctly classified 85 (TN=85)

programs which were written by Canadian programmers. Both the DTNB and Kstar mod-

els correctly classified 84 (TN=84) programs. The Bayes net model performed the worst

among the seven classification model in terms of classifying the Canadian written programs

correctly. The Bayes net model correctly classified 83 (TN=83) Canadian written programs

out of 100.

The Bayes net model correctly classified the most Bangladeshi written programs. The

Bayes net model correctly classified 53 (TP=53) Bangladeshi written programs out of 60.

The classification via regression model was second in correctly classifying Bangladeshi

written programs by classifying 52 (TP=52) out of 60 programs. All three DTNB, Kstar

and random forest models accurately classified 50 (TP=50) Bangladeshi written programs

out of 60. The bagging model performed the worst among the seven classification models

in terms of classifying the Bangladeshi written programs correctly. Only 44 (TP=44) out of

60 Bangladeshi written programs were classified accurately by bagging model.
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3.6 Discussion

In this section, we perform comparative analysis of the performance of learning models

from the four experiments. We use accuracy, f-measure and confusion matrix to discuss the

performance of the models.

3.6.1 Male and Female Written Programs

In experiment 1 and 2, the goal was to classify the programs according to the gender

of the programmer. We used seven learning models for this purpose. In experiment 1,

we used 16 features and in experiment 2, we used 6 features. Except for the Bayes net

model, the other six models’ accuracy was close to each other in both experiments. In

both experiments, the DTNB model’s performance was the best among the seven seven

learning models. One reason for this better result is the underlying concept of the DTNB

classification algorithm. This is a hybrid classifier. This classifier combines the power of

two classifiers: decision table and Naive Bayes. The DTNB algorithm splits the set of

attributes into two groups: one group assigns class probabilities based on Naive Bayes, the

other group does this based on a decision table, and the resulting probability estimates are

combined to take the classification decision [11].

The DTNB model achieved the highest accuracy of 83.13% and f-measure of 82.30%.

If we look at the confusion matrix of the DTNB model in Table 3.11, we see that among

the 90 male written programs, the DTNB model was able to correctly classify 89 of them.

From the 70 female written programs this model correctly classified 44 programs. The

DTNB model was able to classify the highest number of male written programs among the

7 models. One of the drawbacks of the DTNB model is the overfitting of data; we noticed

that the model is more biased towards the male class label. As shown in Table 3.11, out of

160 programs, 133 programs were classified correctly. However, there were 26 programs

mislabeled as male-written and 1 program mislabeled as female-written programs. The

model was not able to categorize the female written programs accurately.
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Table 3.11: DTNB Confusion Matrix of Experiment 1 & 2

Gender Male Female Total
Male 89 1 90

Female 26 44 70
Total 115 45 160

Table 3.12: Bayes Net Confusion Matrix of Experiment 1

Gender Male Female Total
Male 55 35 90

Female 13 57 70
Total 68 92 160

It is interesting to see that although we have reduced the number of features in experi-

ment 2, this did not however, have any impact on the performance of the DTNB model. In

both experiments, the performance of the DTNB model was same. The reason behind this

is that in the DTNB model at each step, the algorithm removes an attribute entirely from the

model [11]. For this reason in both experiments the DTNB model used only four features

from the feature set to classify the programs. From the classifier output report of WEKA

we found that these four features were the number of blank lines, number of comment lines,

number of total functions, and region of the programmer. As both experiments used these

four features, that is why the f-measure scores were the same.

In both experiments, the Bayes net model performed the worst among the seven learning

models. In experiment 1, the Bayes net model achieved accuracy of 70% and in experiment

2, accuracy was 72.5%. F-measure was also lower than the other models. In experiment 1,

the f-measure was almost 70%, and in experiment 2, the f-measure was 72.40%. If we look

at the confusion matrices of the Bayes net model in Table 3.12 and Table 3.13, we observe

that this model accurately classified 55 out of 90 male written programs and 57 out of 70

female written programs in experiment 1.

In experiment 2, 56 programs out of 90 male written programs and 60 out of 70 female

written programs were correctly classified by the Bayes net model. The Bayes net model
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Table 3.13: Bayes Net Confusion Matrix of Experiment 2

Gender Male Female Total
Male 56 34 90

Female 10 60 70
Total 66 94 160

was able to classify the highest number of female written programs among the seven mod-

els. However, from the confusion matrix we found that because of the over fitting of data,

the Bayes net model performed poorly among the seven models. It is clearly seen that this

model is more biased towards the female class label, because in experiment 1, 35 programs

and in experiment 2, 34 programs were misclassified as female written programs. Another

reason is the underlying concept of the Bayes net algorithm. The Bayes net algorithm works

well when the feature values are discretized [19]. In our dataset values were continuous,

and for that reason we did not get the best performance from the Bayes net model. That is

why when we applied the discretize filter in experiment 2, the accuracy of the model was

increased by 2.5%.

3.6.2 Canadian and Bangladeshi Written Programs

In experiment 3 and 4, the goal was to classify the programs according to the region of

the programmer. In experiment 3, we used 15 features and in experiment 4, we used 7 fea-

tures. In both experiments, the random forest model achieved the highest accuracy (92.5%

in experiment 3 and 89.39% in experiment 4) and f-measures (92.5% in experiment 3 and

89.30% in experiment 4). Table 3.14 and Table 3.15 shows that the random forest model

accurately predicted the region of 95 out of 100 Canadian written programs and 53 out of 60

Bangladeshi written programs in experiment 3. In experiment 4 this model accurately pre-

dicted the region of 93 Canadian written programs and 50 Bangladeshi written programs.

Therefore 148 programs in experiment 3 and 143 programs in experiment 4 were correctly

classified by the random forest model. We noticed that the model is not biased towards

one specific class label. The random forest model incorrectly predicted the region of the
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Table 3.14: Random Forest Confusion Matrix of Experiment 3

Region Bangladesh Canada Total
Bangladesh 53 7 60

Canada 5 95 100
Total 58 102 160

Table 3.15: Random Forest Confusion Matrix of Experiment 4

Region Bangladesh Canada Total
Bangladesh 50 10 60

Canada 7 93 100
Total 57 103 160

programmer for 5 Canadian written and 7 Bangladeshi written programs in experiment 3,

and 7 Canadian written and 10 Bangladeshi written programs in experiment 4.

In experiments 3 and 4, the simple logistic model performed the worst among the seven

models. In both experiments, this model achieved the lowest accuracy (accuracy = 81.13%)

and f-measures (f-measure = 81.30%). From Table 3.16, we observe that in both experi-

ments, the simple logistic model accurately predicted the region of the programmer of 85

Canadian and 45 Bangladeshi written programs. In total 130 programs were classified cor-

rectly by the region of the programmer. The model incorrectly predicted the region of the

programmer of 15 Canadian and 15 Bangladeshi written programs. Another interesting

fact is that, the performance of the simple logistic model remained the same in experiment

4 although we reduced the number of features from 15 to 7. WEKA’s classifiers output

report showed that in the simple logistic model, the classification algorithm used four fea-

tures to make the classification decision. These four features were number of blank lines,

percentage of blank lines, number of comment lines, and number of total functions. As

all of these four features were included in the reduced feature set, this helped to obtain the

same f-measures in both experiments.
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Table 3.16: Simple Logistic Confusion Matrix of Experiment 3 & 4

Region Bangladesh Canada Total
Bangladesh 45 15 60

Canada 15 85 100
Total 60 100 160

3.7 Threats to Validity

According to Buse and Weimer [6], there exist some threats towards the validity of the

results of this kind of research. In our research we also identified several potential threats

to validity. These are:

• The dataset of this research was quite small. The dataset consisted of only 160 C++

programs. Because of this small dataset, there was a lack of data to train the machine

learning model more effectively.

• The number of male written and female written programs were not evenly distributed.

We had 90 male written and 70 female written programs in our dataset. The number

of female participants in this research was lower than the number of male participants.

• The number of Canadian written and Bangladeshi written programs were not evenly

distributed. The number of Canadian participants were higher than the number of

Bangladeshi participants. We had 100 Canadian written programs and 60 Bangladeshi

written programs in this study.

• In this research we tried to classify the programs according to the region of the pro-

grammer, which is Canada or Bangladesh. However, from Canada we only collected

programs from University of Lethbridge, and from Bangladesh we collected pro-

grams from six universities. This is a limited selection (extremely limited in the case

of Canada) which means results are not generalizable to the whole countries. This is

a threat to the validity of the results of the machine learning models.
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• In this research we only considered the C++ program, not other kinds of programming

language. Other language may demonstrate different results.

• Another threat to validity is the type of participants in this research. All the partici-

pants of this research were students. They are not professional programmers. Their

year of experience in programming knowledge varies from one to four. So it is quite

obvious their use of programming language is quite different from expert and profes-

sional programmers.

• We had programs belonging to various problem domains which could result in varia-

tion in feature usage. This is also a threat to the validity of the results.

• In this research we selected a small set of features to classify collected programs

based on the gender or the region of the programmer. We trained and evaluated our

machine learning models for these features. There is the possibility that we missed

some other important features for this research.

• In this study we selected region of the programmer as a feature while classifying the

programs based on the gender of the author. Not having region of the programmer

would impact any future results, if we wanted to expand this work to a large dataset.

This is also a threat to validity of the results.
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Chapter 4

Analysis of Features

4.1 Reducing the Set of Features

As our dataset was composed of only 160 programs, we reduced the feature set to avoid

over fitting of data. In order to find out the most significant features for the learning models,

we applied a feature evaluator. The selected feature evaluator was information gain, which

in WEKA is named “InfoGainAttributeEval” (described in section 2.4.3). Using this feature

evaluator, we selected the top six highest ranked features for the classification of programs

according to the gender of the programmer. These six features were:

• Source code lines percentage

• Total number of blank lines

• Blank lines percentage

• Comment lines percentage

• Total number of functions

• Region of the programmer

Using these six features and the cross validation technique, we developed the same

seven classification models. Our goal was to identify whether a reduced feature set is

enough to categorize the collected programs according to the gender of the programmer.

To find out the significance of the reduced feature set, we performed comparative anal-

ysis between the models with all 16 features and the models with reduced six features.
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Table 4.1: F-measures in Gender-wise Classification

Classification
Algorithms

F-measure Based
On 16 Features
(Experiment 1)

F-measure Based
On 6 Features
(Experiment 2)

Simple Logistic 76.80% 76.20 %
Kstar 74.90 % 75.90 %

Bagging 76.30 % 78.70 %
Classification Via Regression 77.20 % 78.80 %

DTNB 82.30 % 82.30 %
Random Forest 80.50 % 76.40 %

Bayes Net 69.90 % 72.40 %

Table 4.1 shows the performance of the seven models with 16 features and the performance

of the seven models with the reduced six features. Performances are shown in terms of f-

measure of the models. From Table 4.1, we can see that classification models with reduced

number of features performed almost similar to the models with all the 16 features. Among

the seven classification models, four of them achieved the highest f-measure in compar-

ison with the models with all 16 features. These four models were the K star, bagging,

classification via regression and Bayes net model. As we removed some features in the

second experiment, this helped to remove the noisy data from the dataset and helped the

classification model to predict the class of the program more accurately.

Simple logistic and DTNB models achieved almost the same f-measure. Only the ran-

dom forest model achieved a lower f-measure than the other six models in comparison with

the models with all 16 features. After reducing the features, the DTNB model scored the

same f-measure (f-measure = 82.30%) as the f-measure with 16 features. The main rea-

son for this same score is that, in both experiments, the DTNB model used the same four

features to classify the programs according to the gender of the programmer. From the clas-

sifier output report of WEKA, we found that these four features were the number of blank

lines, number of comment lines, number of total functions, and region of the programmer.

As in both experiments, these four features were present, which is why in both experiments

the f-measure score was same.
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Table 4.2: F-measures in Region-wise Classification

Classification
Algorrithms

F-measure Based
On 15 Features
(Experiment 3)

F-measure Based
On 15 Features
(Experiment 4)

Simple Logistic 81.30 % 81.30 %
Kstar 85.10 % 83.90 %

Bagging 88.00 % 85.40 %
Classification Via Regression 88.80 % 88.20 %

DTNB 90.60 % 83.90 %
Random Forest 92.50 % 89.30 %

Bayes Net 82.60 % 85.20 %

We also tried to reduce the feature set for the classification of programs based on the re-

gion of the programmer. The same evaluator “InfoGainAttributeEval” was used to identify

the most relevant features for the learning models. Using the feature evaluator, we selected

the top seven highest ranked features. These seven features were:

• Total number of blank lines

• Blank lines percentage

• Total number of comment lines

• Comment lines percentage

• Total commentary words

• Total number of functions

• Average function lines

Using this subset of features and the cross validation technique, we again developed the

same seven classification models. Here the goal was to identify whether a subset of features

is enough to classify the collected programs according to the region of the programmer.

To find out the significance of the reduced feature set, we performed comparative anal-

ysis between the models with all 15 features and the models with reduced seven features.
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Table 4.2 shows the performance of the seven models with 15 features and the performance

of the seven models with the reduced seven features. Performances are shown in terms of

the f-measure of the models. From Table 4.2 we can see that in the experiment of reduced

features set, except for the simple logistic model all other models scored less in terms of

the f-measure score in comparison with the models with all 15 features. The simple logistic

model achieved the same f-measure of 81.30%. From WEKA’s classifier output report, we

found that in the simple logistic model four features were used to take the classification

decision. These four features were the number of blank lines, percentage of blank lines,

number of comment lines, and number of total functions. As all of these four features

were included in the reduced feature set, this helped obtain the same f-measure in both

experiments.

4.2 Statistical Approach

In this research we tried to find out the differences in programming styles and use of

programming features among the male and female programmers. In order to do that, we

built some machine learning models and ran a variety of experiments with our collected

dataset and the selected list of features. We found some significant results from those mod-

els which indicates that there exists some differences among the male written and female

written programs. To determine whether the differences are real or occur by chance, we

carried out a statistical test. This statistical test will help to determine whether the features

which we used to build the machine learning models are statistically significant or not.

As a form of statistical method, we used the “t-test” to carry out the statistical analysis.

Results of this statistical analysis were measured in terms of ρ value that can be found in

the output. The t-test is a statistical test which indicates whether or not there is a significant

difference between the mean or average scores of two groups. This is a common approach

to compare two samples or groups with small sample sizes. The t-test calculates the means

of two groups and tells whether or not they are different from each other. The t-test also
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indicates how significant the differences are. In short, the t-test determines whether the

differences of two groups are real or occur by chance.

In a t-test two hypotheses are tested. A null hypothesis is tested against the alternative

hypothesis. The null hypothesis is denoted as H0 and the alternative hypothesis is denoted

as Ha. The null hypothesis, H0 states that there is no difference in two groups (µ1 = µ1)

because it might occur by chance. The alternative hypothesis, Ha states that there is a

difference in two groups (µ1 6= µ1). The results from the t-test either support or reject the

null hypothesis, H0. If the null hypothesis is rejected then the alternative hypothesis is

supported but can not be proved. The ρ value provides evidence that the difference is either

due to random chance or not [23]. A threshold value is used to indicate the difference of

statistical significance between two groups. In general, the threshold value is 0.05. The

difference between two groups is real if the ρ value of a t-test is less than 0.05. This rejects

the null hypothesis, H0. This means the differences between two groups are statistically

significant. On the other hand, the likelihood of the result occurring by chance is high

when the ρ value is greater than 0.05. This accepts the null hypothesis, H0. This means the

differences are not statistically significant. This can happen when the number of samples

is not large enough. Studies with a small number of samples are bound to have “deficient

power” [7], which means that it is not possible to know if results would be different with a

large number of samples [23].

In order to find out the significance of our features in male written and female written

programs we carried out the t-test. We performed a two-tailed t-test to find out if the mean

of one group is greater than the other group. In this test we were interested to see whether

the difference can be considered to be statistically significant or not. We performed the

t-test for each of the features to determine which hypothesis is acceptable. In all the tests,

features are treated as dependent variables and the group of programmers (male or female)

are treated as independent variables. The ρ value of each feature from the t-test is shown in

Table 4.3.
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Table 4.3: T-Test (ρ-values) in Gender-wise Classification

Features ρvalue
Total Lines 0.1612

Total Source Code Lines 0.3812
Source Code Lines Percentage 0.0001

Total Blank Lines 0.0028
Blank Lines Percentage 0.0001
Total Comment Lines 0.1886

Total Comment Lines Percentage 0.0012
Total Mixed Lines 0.2049

Mixed Lines Percentage 0.0204
Total Commentary Words 0.6285

Physical Executable Line of Code 0.4629
Logical Executable Line of Code 0.3917

Total Functions 0.0628
Total Function Lines 0.3128

Average Function Lines 0.0861

In Table 4.3 we observe that there are five features which have a ρ value less than 0.05.

These features are:

• Source code line percentage

• Total number of blank lines

• Blank lines percentage

• Comment line percentage

• Mixed line percentage

The null hypothesis, H0 is rejected and the alternative hypothesis, Ha is accepted for

these five features. Therefore, we can consider these five features as statistically significant.

For the remaining features, ρ values are greater than 0.05 indicating that null hypothesis,

H0 can not be rejected. So, these features are not considered statistically significant. This is

not surprising as we have very small number of male written and female written programs

57



4.2. STATISTICAL APPROACH

Table 4.4: Comparison of Feature Use in Male and Female Written Programs

Features Male Written
Programs

Female Written
Programs

Source Code Lines Percentage 76% 24%
Total Number of Blank Lines 18% 82%

Blank Lines Percentage 18% 82%
Comment Lines Percentage 34% 66%

Mixed Lines Percentage 78% 22%

in our dataset. We can say that these remaining features have no relation to the gender of

the programmer.

Based on the statistically significant features we performed a comparative analysis be-

tween male and female written programs. Table 4.4 shows the percentage of programs

where the statistically significant features were used more in one group of programmers

than other. From the table, we can see that source code line percentage was higher in 76%

male written programs than the female written programs. Mixed line percentage was also

higher in male written programs than the female written programs. In 78% of the programs

mixed line percentage was higher in male written programs than female written programs.

On the other hand total number of blank lines, blank line percentage and comment lines

percentage were higher in female written programs than the male written programs. In

82% of the programs the total number of blank lines and blank line percentage were higher

in female written programs. In 66% of the programs comment line percentage was higher

in female written programs than male written programs.

From the comparison of statistically significant features in 160 programs of our dataset,

it appears that female programmers tends to use more blank lines and comments in their

programs compared to the male written programs and that is why we found that source

code line percentage is higher in male written programs than the female written programs.

Another interesting fact is that male programmers like to write comments in parallel with

the code line, where as female programmers like to write comments in a separate new line.

In this research we also tried to find out the differences in programming styles and use
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Table 4.5: T-Test (ρ-values) in Region-wise Classification

Features ρvalue
Total Lines 0.88143

Total Source Code Lines 0.91161
Source Code Lines Percentage 0.08607

Total Blank Lines 0.25854
Blank Lines Percentage 0.44013
Total Comment Lines 0.00279

Total Comment Lines Percentage 0.00016
Total Mixed Lines 0.00533

Mixed Lines Percentage 0.01799
Total Commentary Words 0.00001

Physical Executable Line of Code 0.97261
Logical Executable Line of Code 0.74681

Total Functions 0.00002
Total Function Lines 0.62019

Average Function Lines 0.00001

of programming features among the Canadian and Bangladeshi programmers. In order to

do that, we again carried out the t-test. We performed the t-test for each of the features to

determine which hypothesis is acceptable. In all the tests, features are treated as depen-

dent variables and the regions of the programmers (Canada or Bangladesh) are treated as

independent variables. The ρ values of each feature from the t-test are shown in Table 4.5.

In Table 4.5 we observe that there are seven features which have a ρ value less than

0.05. These features are:

• Total number of comment lines

• Comment lines percentage

• Total number of mixed lines

• Mixed lines percentage

• Total number of commentary words
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• Total number of functions

• Average function lines

The null hypothesis, H0 is rejected and the alternative hypothesis, Ha is accepted for

these seven features. Therefore, we can consider these seven features statistically signif-

icant. For the remaining features, ρ values are greater than 0.05, indicating that the null

hypothesis, H0 can not be rejected. So, these features are not considered statistically sig-

nificant. This is not surprising as we have very small number of Canadian written and

Bangladeshi written programs in our dataset. We can say that these remaining features

have no relation to the region of the programmer.

Based on the statistically significant features we performed a comparative analysis be-

tween Canadian and Bangladeshi written programs. Table 4.6 shows the percentage of

programs where the statistically significant features were used more in one group of pro-

grammers than other. From the table, we can see that except the average function lines

all the other features were used more in Canadian written programs than the Bangladeshi

written programs. In 66% programs of our dataset average function lines were higher in

Bangladeshi written programs. On the other hand in total number of comment lines, com-

ment lines percentage, total number of mixed lines, mixed lines percentage, total number

of commentary words and total number of functions were higher in 86%, 90%, 78%, 76%,

86% and 74% Canadian written programs respectively.

From the comparison of statistically significant features in 160 programs of our dataset,

it appears that Canadian programmers used more comments and functions than the Bangladeshi

programmers. Use of comments and functions make a program more manageable and more

understandable. So we might conclude that Canadian written programs are more manage-

able and more understandable than the Bangladeshi written programs.
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Table 4.6: Comparison of Feature Use in Canadian and Bangladeshi Written Programs

Features Canadian Written
Programs

Bangladeshi Written
Programs

Total number of comment lines 86% 14%
Comment lines percentage 90% 10%

Total number of mixed lines 78% 22%
Mixed lines percentage 76% 24%

Total number of commentary words 86% 14%
Total number of functions 74% 26%

Average function lines 34% 66%

4.3 Visual Analysis of Random Programs

In this study we also conducted visual inspection or visual analysis of collected pro-

grams alongside with machine learning and statistical analysis to find out the differences

among the male written and female programs, as well as Canadian written and Bangladeshi

written programs.

4.3.1 Male and Female Written Programs

We visually investigated the five features which were found to be statistically signifi-

cant, as determined on the t-test, in classifying male and female written programs. These

five features were source code line percentage, number of blank lines, blank lines percent-

age, comment line percentage, and mixed line percentage. We randomly chose three male

written and three female written programs for visual inspection from our collected C++ pro-

grams. Though we have chosen the programs randomly, we selected the male and female

written programs with same number of total lines for a better comparison of two groups of

programmers. We did a one to one comparison of male and female written programs where

both the programs contained almost the same number of lines.

The first male written program had a total of 222 lines and the first female written

program had a total of 217 lines. In the male written program, source code line percentage

was 91.89%, where in the female program source the code line percentage was 75.12%.
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Table 4.7: First Male and Female written Program

Feature Male Written Program Female Written Program
Total Number of Lines 222 217

Source Code Line Percentage 91.89% 75.12%
Number of Blank Lines 0 32
Blank Lines Percentage 0% 14.75%

Comment Lines Percentage 5 16
Mixed Lines Percentage 5.86% 2.76%

Table 4.8: Second Male and Female written Program

Feature Male Written Program Female Written Program
Total Number of Lines 323 314

Source Code Line Percentage 95.36% 76.43%
Number of Blank Lines 0 23
Blank Lines Percentage 0% 7.32%

Comment Lines Percentage 2.79% 14.65%
Mixed Lines Percentage 1.86% 1.59%

In the male written program there were no blank lines. In the female written program

there were 32 blank lines and the blank lines percentage was 14.75%. In the male written

program, the programmer used 5 comments and the percentage was 2.25%. On the other

hand, the female programmer used 16 comments and the percentage was 7.37%. Finally, in

the male written program, 13 mixed lines were found with the percentage of 5.86%, while

in the female written program, 6 mixed lines were found with the percentage of 2.76%.

The second male written program had a total of 323 lines and the second female written

program had a total of 314 lines. In the male written program, source code line percentage

was 95.36%, where in the female program the source code line percentage was 76.43%.

In the male written program, there were no blank lines. In the female written program,

there were 23 blank lines and the blank lines percentage was 7.32%. In the male written

program, the programmer used 9 comments and the percentage was 2.79%. On the other

hand, the female programmer used 46 comments and the percentage was 14.65%. Finally,

in male written program, 6 mixed lines were found with the percentage of 1.86% , while in
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Table 4.9: Third Male and Female written Program

Feature Male Written Program Female Written Program
Total Number of Lines 108 105

Source Code Line Percentage 63.89% 86.67%
Number of Blank Lines 0 13
Blank Lines Percentage 0% 12.38%

Comment Lines Percentage 17.59% 0.95%
Mixed Lines Percentage 18.52% 0%

the female written program, 5 mixed lines were found with the percentage of 1.59%.

The third male written program had a total of 108 lines and the third female written

program had a total of 105 lines. In the male written program, source code line percentage

was 63.89%, where in the female program the source code line percentage was 86.67%.

In the male written program, there were no blank lines. In the female written program,

there were 13 blank lines and the blank lines percentage were 12.38%. In the male written

program, the programmer used 19 comments and the percentage was 17.59%. On the other

hand, the female programmer used just 1 comment and the percentage was 0.95%. Finally,

in male written program, 20 mixed lines were found with the percentage of 18.52%, while

in the female written program, there were no blank lines.

From the visual comparison of three random programs of male and female program-

mers, we observed that there were significant differences in those five features. The visual

inspection seems to match the findings of the statistical analysis. Source code line percent-

age and mixed line percentage were higher in male written programs than in the female

written programs. Although in one male written program, the source code line percentage

and mixed line percentage was lower than the female written program. On the other hand,

the number of blank lines, blank line percentage, and comment line percentage were higher

in all the female written programs than the three male written programs.
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Table 4.10: First Canadian and Bangladeshi written Program

Feature Canadian
Written Program

Bangladeshi
Written Program

Total Number of Lines 248 236
Total Comment Lines 27 0

Comment Lines Percentage 10.89% 0%
Total Mixed Lines 13 0

Mixed Lines Percentage 5.24% 0%
Total Commentary Words 155 0

Total Functions 8 5
Average Function Lines 26.25 43

4.3.2 Canadian and Bangladeshi Written Programs

In this section we visually investigate the seven features which were found to be statisti-

cally significant in Canadian and Bangladeshi written programs. These seven features were

the number of comment lines, comment lines percentage, number of mixed lines, mixed

lines percentage, total number of commentary words, and total number of functions. For

visual inspection we randomly chose three Canadian written and three Bangladeshi writ-

ten programs from our collected C++ programs. Although we have chosen the programs

randomly, we selected the Canadian and Bangladeshi written programs to have the same

number of total lines for a better comparison of the two group of programmers. We did

a one to one comparison of Canadian and Bangladeshi written programs where both the

programs contained almost the same number of lines.

The first Canadian written program had a total of 248 lines and the first Bangladeshi

written program had a total of 236 lines. In the Canadian written program, 27 comment

lines were found with the percentage of 10.89%. In the Bangladeshi written program,

there were no comment lines. In the Canadian written program, there were 13 mixed lines

with the percentage of 5.24%. In the Bangladeshi written program, there were no mixed

lines. In the Canadian written program, we found total 155 commentary words, where in

the Bangladeshi written program we did not find any commentary words. In the Canadian
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Table 4.11: Second Canadian and Bangladeshi written Program

Feature Canadian
Written Program

Bangladeshi
Written Program

Total Number of Lines 133 136
Total Comment Lines 21 5

Comment Lines Percentage 15.79% 3.68%
Total Mixed Lines 10 0

Mixed Lines Percentage 7.52% 0%
Total Commentary Words 254 11

Total Functions 3 9
Average Function Lines 32.67 11.33

written program, the programmer used a total of 8 functions and the average number of

function lines was 26.25. In the Bangladeshi written program, the programmer used a total

of 5 functions and the average number of function lines was 43.

The second Canadian written program consisted of a total of 133 lines and the second

Bangladeshi written program consisted of a total of 136 lines. In the Canadian written pro-

gram, 21 comment lines were found with the percentage of 15.79%. In the Bangladeshi

written program, there were 5 comment lines with the percentage of 3.68%. In the Cana-

dian written program, there were 10 mixed lines with the percentage of 7.52%. In the

Bangladeshi written program there were no mixed lines. In the Canadian written program,

we found a total of 254 commentary words, where in the Bangladeshi written program we

found 11 commentary words. In the Canadian written program, the programmer used a

total of 3 functions and the average number of function lines was 32.67. In the Bangladeshi

written program the programmer used a total of 9 functions and the average number of

function lines was 11.33.

The third Canadian written program consisted of a total of 152 lines and the first

Bangladeshi written program consisted of a total of 156 lines. In the Canadian written

program, 46 comment lines were found with the percentage of 30.26%. In the Bangladeshi

written program, there was only one comment line and the percentage was 0.64%. In the

Canadian written program, there were 4 mixed lines with the percentage of 2.63%. In the
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Table 4.12: Third Canadian and Bangladeshi written Program

Feature Canadian
Written Program

Bangladeshi
Written Program

Total Number of Lines 152 156
Total Comment Lines 46 1

Comment Lines Percentage 30.26% 0.64%
Total Mixed Lines 4 4

Mixed Lines Percentage 2.63% 2.56%
Total Commentary Words 228 10

Total Functions 8 6
Average Function Lines 8.88 18.67

Bangladeshi written program, there were also 4 mixed line and the percentage was 2.56%.

In the Canadian written program, we found a total of 228 commentary words, where in the

Bangladeshi written program we found a total of 10 commentary words. In the Canadian

written program, the programmer used total 8 functions and the average number of function

lines was 8.88. In the Bangladeshi written program. the programmer used total 6 functions

and the average number of function line was 18.67.

From the visual comparison of three random programs of Canadian and Bangladeshi

programmers, we noticed that there were significant differences in those seven features.

We found that six features - number of comment lines, comment line percentage, number of

mixed line, mixed line percentage, total commentary words, and number of total functions

were all used more in Canadian written programs. In Bangladeshi programs, we found

that the number of average function lines are higher than Canadian programmer written

programs. Out of three programs, we found only one exception, where the number of total

functions was higher and the number of average function lines was lower in a Bangladeshi

written program.
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4.4 Relationship between Features

In this section, we examined the relationship between the features. We focused on iden-

tifying the pairs of features which are linearly dependent on each other in male and female

written programs and also in Canadian and Bangladeshi written programs. In order to find

out the strength of the relationship between features, we measured the γ value between each

pair of features. γ value is used to demonstrate the existence of a linear relationship between

two features. Based on the value of γ there are three possibilities [33]:

(i) γ = 0 represents that features are independent and they are not correlated with each

other;

(ii) γ > 0 represents that features are positively correlated. A higher value of γ shows

that there is a strong correlation between the given features; and

(iii) γ < 0 represents that features are negatively correlated. This means that as the

occurrence of one feature increases, the occurrence of the other feature decreases.

In Appendix C, we list γ values in a correlation matrix on the basis of the original fea-

ture frequencies in male written, female written, Canadian written and Bangladeshi written

programs. A correlation (γ) of greater than 0.5 indicates a strong linear relationship [6]. In

the following section we examine each pair of features with higher γ value in male written,

female written, Canadian written and Bangladeshi written programs.

From Appendix C we can see that in male written programs there are total 21 pairs of

feature which have γ value greater than 0.5. In female written programs there are total 31

pairs of feature which have γ value greater than 0.5. In Canadian written programs we found

that there are total 22 pairs of feature which have γ value greater than 0.5. In Bangladeshi

written programs there are 21 pairs of feature which have γ value greater than 0.5. Inter-

esting fact is that in all the four categories (male, female, Canadian and Bangladeshi) of

programs there are 12 pairs of feature which have γ value greater than 0.8. This indicates

that there exists a strong relationship between those features. These pairs of feature are:

• Total number of lines of a program has a strong relationship with the total number of
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source code line, the total number of physical executable code, the total number of

logical executable code and the total number of function lines of a program.

• Total number of source code line of a program has a strong relationship with the total

number of physical executable code, the total number of logical executable code and

the total number of function lines of a program.

• Total number of comment lines of a program has a strong relationship with the total

number of commentary words.

• Total number of mixed lines of a program has a strong relationship with mixed lines

percentage.

• Total number of physical executable code of a program has a strong relationship with

the total number of logical executable code and the total number of function lines of

a program.

• Total number of logical executable code of a program has a strong relationship with

the total number of function lines of a program.

Besides these pairs of features in male written program we found that the total number

of blank lines has a strong relationship with blank line percentage (γ=0.93). In comparison

with male written programs, with female written programs we found that in female written

programs there are more strongly related features than the male written programs. Some of

the strongly connected features of female written programs are:

• Total number of lines and the total number of blank lines.

• Total number of lines and the total number of comment lines.

• Total number of lines and the total number of commentary words.

• Total number of functions and the total number of comment lines.

• Total number of function lines and the total number of comment lines.
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4.5 Comparison with Previous Work

As this research is based on the work of Naz [23], which categorized computer programs

according to the gender of the programmer, we compared the results of Naz’s work with the

results of ours. In order to find out the significance of our selected features, we performed

the same experiments as Naz did. We used the same 100 C++ programs as Naz’s work.

We used the same three learning classifiers of WEKA: Naive Bayes, K star and J48. We

kept the experimental environment unchanged except the feature set. Naz used 50 features

(described in Table 2.1), whereas we used our 16 features (described in section 3.3 ) to

classify the programs based on the gender of the programmer. The evaluation method for

this experiment was also cross validation as in Naz’s work. The result of this experiment is

shown in Table 4.13. The result of Naz’s work is shown in Table 4.14.

Comparing the results of the two tables indicates that the performances of our mod-

els were much better than Naz’s models. The K star model achieved the highest accuracy

(accuracy = 72%) and the highest f-measure (F-measure = 71.9%) among the three clas-

sification models in Naz’s work. In our experiment, the Naive Bayes model achieved the

highest accuracy (accuracy = 92%) and the highest f-measure (f-measure = 92%). In Naz’s

work, the J48 model achieved the lowest accuracy (accuracy = 63%), whereas the J48 model

achieved 89% accuracy in our experiment. In our experiment, the lowest accuracy was 79%

which was achieved by the K star model.

In Naz’s work among the 50 male written programs, at most 33 programs were classified

accurately by the K star and the Naive Bayes model. In our experiment, the Naive Bayes

model also accurately classified the highest number of male written programs, correctly

classifying 49 programs out of 50 male written programs. The K star model in Naz’s work

correctly classified 39 female written programs out of 50 female written programs, which

was the highest rating among the three models. In our experiment, the Naive Bayes model

once again performed the best, classifying 42 female written programs out of 50 programs

among the three models.

69



4.6. IMPACT OF REGION OF THE PROGRAMMER

Table 4.13: Result of this Research

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/50)

FP
(/50)

TN
(/50)

J48 89 89.4 89 89 42 3 47
Kstar 79 79.1 79 79 38 9 41

NB 92 92.6 92 92 43 1 49

Table 4.14: Result of Naz’s Work

Models Accuracy
(%)

Precision
(%)

Recall
(%)

F-measure
(%)

TP
(/50)

FP
(/50)

TN
(/50)

J48 63 63 63 63 33 20 30
Kstar 72 72.3 72 71.9 39 17 33

NB 66 66 66 66 33 17 33

Although the methodology was the same in both Naz’s and our experiment except for

the feature set, we achieved a much better performance from our models. This is likely due

to the significance of our feature set.

4.6 Impact of Region of the Programmer

In experiments 1 and 2, (described in section 3.4.3 and 3.4.5), while categorizing the

programs based on the gender of the author, we used the region of the programmer as a fea-

ture in the feature set. In section 3.3.1 we showed that inclusion of this feature improved the

performance of the model in predicting the gender of the author. In this section we further

discuss the impact of region of the programmer in identifying the gender of the program-

mer. In our dataset we had programs from two different regions: Canada and Bangladesh;

we performed two experiments with the programs of these two different regions. In both

experiments, the goal was to categorize the programs based on the gender of the author.

In both experiments, we used the same seven classification models and cross validation

technique to build and evaluate the models. In both experiments we used the same 15 fea-

tures (described in Section 3.3), and we excluded the region of the programmer from the

feature list. In the first experiment, the dataset was composed of 100 Canadian written pro-
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Table 4.15: 15 Features and Cross validation Technique

Classifaction Model

Experiment 1
with 100 Canadian
Written Progrmas

(Accuracy %)

Experiment 2
with 60 Bangladeshi
Written Programs

(Accuracy %)
Simple Logistic 90.8 65

Kstar 79 61.7
Bagging 91 63.3

Classification
Via Regression

90 56.7

DTNB 91 65
Random Forest 88 58.3

Bayes Net 90.6 66.7

grams, and in the second experiment, the dataset was composed of 60 Bangladeshi written

programs. The results of these two experiments are shown in Table 4.15.

From Table 4.15 we can see that machine learning models were more successful in

Canadian written programs rather than Bangladeshi written programs while categorizing

the programs based on the gender of the programmer. In Canadian written programs the

highest accuracy was 91%; this means 91% of the Canadian written programs were classi-

fied accurately based on the gender of the author. In Bangladeshi written programs high-

est accuracy was 65%; this means 65% of the Bangladeshi written programs were classi-

fied accurately. The lowest accuracy was 79% in Canadian written programs and 56% in

Bangladeshi written programs.

The reason behind this poor performance of the models in Bangladeshi written programs

is the overfitting of data. We noticed that all the models were biased towards the male class

label. Table 4.16 shows the performance of all the models in Bangladeshi male and female

written programs. From Table 4.16, we can see that all the models are extremely biased

towards the male class. For example, the DTNB model classified 39 (TP=39) male written

programs accurately out of 40 male written programs. However, this model misclassified

all the female written programs (FP=20) as male written programs. The Bagging model
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Table 4.16: Confusion Matrices of Experiment 2

Model TP
(/40)

TN
(/20)

FP
(/20)

FN
(/40)

Simple Logistic 38 1 19 2
Kstar 31 6 14 9

Bagging 36 2 18 4
Classification Via Regression 34 0 20 6

DTNB 39 0 20 1
Random Forest 30 5 15 10

Bayes Net 35 1 19 5

classified 36 (TP=36) male written programs accurately out of 40 male written programs.

Again, this model misclassified 18 female written programs (FP=18) as male written pro-

grams. One of the reasons behind the bias towards the male written programs is the lack of

female written programs in the dataset. We had only 20 female written Bangladeshi pro-

grams in our dataset. As the number of programs were very few, it was difficult to find the

significant differences among the Bangladeshi male and female written programs. This is

also reflected in the results.

Although everything was the same in both experiments, we experienced quite different

performance level from the models. This indicates that differences exist in the male and

female written programs based on the region of the programmers. For that reason we se-

lected region of the programmer as a feature while categorizing the programs based on the

gender of the programmer. In section 3.3.1 we found that inclusion of the region of the

programmer in the feature set improved the model performances, which helped to identify

the gender of the author more accurately.
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Chapter 5

Conclusion

This research is based on the work of Naz [23], which categorized computer programs on

the basis of the author’s gender. Naz used machine learning techniques to categorize the

male written and female written programs. Motivation for this work came from Argamon

et al. [4, 3, 16] who also used machine learning methods to categorize French and English

text documents according to the gender of the author. The goal of this research was to im-

prove the performance of the learning models, so that they can classify computer programs

according to the gender of the programmer more accurately than Naz’s work. Another

goal was to extend this approach to other sociological factors, in this case investigating the

effects of the region of the programmer on the use of programming language.

In [21], Misek-Falkoff indicated that techniques from natural languages can be used to

analyze computer programs. However, there are fewer linguistics variations in program-

ming language than in natural language, because programming language imposes strict

rules on the programmer while using the various elements of the programming language

such as keywords, operators, variables, and comments. The use of the programming ele-

ments also depends on the problem to be solved more than the choices of the programmer.

That is why, in order to find out the difference between male written and female written

programs, we emphasized the layout and structure of the program rather than the use of

different elements of the program. We selected the features for machine learning models

based on the layout and structure of a program, such as number of blank lines, number of

comment lines, number of mixed lines, and total number of functions used in a program.
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In this research we used several techniques from the field of machine learning and statis-

tics. Our dataset consisted of 160 C++ programs written by both male and female program-

mers. Among these 160 programs we had programmers from two regions: Canada and

Bangladesh. We used a set of features from the programming language to create a numer-

ical representation of computer programs. We used several machine learning techniques

to categorize the computer programs according to the gender and region of the program-

mer. We used machine learning techniques in different stages of our experiment such as

data processing, feature selection, model building, and model evaluation. We used seven

machine learning algorithms to build seven learning models to categorize the programs.

These seven models were the Bayes net, simple logistic, random forest, classification via

regression, bagging, K star, and DTNB models. Using these seven models, we performed

four different experiments with different numbers of features. In all the experiments we

used the cross validation technique to evaluate the models’ performance, because the cross

validation technique reduces the risk of incorrect generalization of the dataset [6, 12].

In the first and second experiment, we categorized the programs based on the gender

of the programmer. In the first experiment we used 16 features for the classification of

programs. We were able to classify 83.1% of the programs accurately based on the gen-

der of the authors. In the second experiment, we used an attribute evaluator to extract the

best features from the feature set. We reduced the number of features from 16 to 6 in this

experiment. Those six features were source code lines percentage, total blank lines, blank

lines percentage, comment lines percentage, total functions, and region of the program-

mer. Using these features we were able to classify the same 83.1% of programs accurately

based on the author’s gender. The t-test showed that, from these six features four features

(source code lines percentage, total blank lines, blank lines percentage, and comment lines

percentage) were statistically significant.

In the third and fourth experiment, our goal was to classify the programs based on the

region of the programmer. In the third experiment we used 15 features to classify the pro-
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grams. We achieved the best result of 92.5% accuracy, which means 92.5% of the programs

were accurately classified based on the region of the programmer. In the fourth experiment,

we used an attribute evaluator to extract the best features and to reduce the number of fea-

tures. We reduced the number of features from 15 to 7 for this experiment. Those 7 features

were total comment lines, comment lines percentage, total blank lines, blank lines percent-

age, total commentary words, total functions, and average function line. The t-test showed

that, from these seven features five features (total comment lines, comment lines percent-

age, total commentary words, total functions, and average function line) were statistically

significant. We achieved the best accuracy of 89.4% from this experiment. This means

89.4% programs were accurately classified based on the region of the programmer.

We also performed statistical analysis of the features of our experiments. As the dataset

of this study was small, therefore we tried to find out the significance of features by per-

forming some statistical analysis. We also performed visual analyses on some programs

to find out the difference of use of the statistically significant features among the different

groups of programmers. The observations from the feature analysis are given below:

• Within our dataset of 160 programs we found that there were five features which were

statistically significant while classifying the programs based on the gender of the

programs. These five features were the source code line percentage, number of blank

lines, blank lines percentage, comment line percentage, and mixed line percentage.

• From the visual analysis of the male written and female written programs, we found

that the percentages of mixed line and source code line were higher in male written

programs. On the other hand, the number of blank lines, percentage of blank lines,

and percentage of comment lines were higher in female written programs.

• When we categorized the dataset of 160 programs according to the region of the pro-

grammer, we found that there were seven features which were statistically significant.

These seven features were the number of comment lines, comment lines percentage,
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number of mixed lines, mixed lines percentage, total number of commentary words,

and total number of functions.

• From the visual analysis of the Canadian written and Bangladeshi written programs,

we observed that the number of comment lines, comment line percentage, number of

mixed lines, mixed line percentage, number of total commentary words, and number

of total functions were higher in Canadian written programs. In Bangladeshi written

programs we noticed that the average number of function lines were higher than in

Canadian written programs.

5.1 Future Research Directions

This research provides many possible directions for future research. Some of the poten-

tial research directions are given below:

• In this research we classified only programs written in C++ programming language.

In the future we would like to carry out this research in other programming languages.

• Our dataset consisted of 160 programs. Our future plan is to enlarge our dataset by

collecting programs from the open source program repository like Github. It would

be interesting to implement the existing models using a large dataset.

• For building the machine learning model in this research, we used supervised learn-

ing. It would be interesting to implement the unsupervised learning [33] method for

the classification of programs based on the gender and region of the programmer.

• In this study we used programs written by Canadian and Bangladeshi programmers

to classify the programs based on the region of the programmer. In the future we

would like to include programs written by programmers from several other countries

of the world. Open-source online program repositories are our main attraction for

this purpose.
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• In our dataset, all the programs were written by university-level students. In the future

we would like to carry out this research with the programs of experienced program-

mers. It would be intersecting to see how the level of experience of a programmer

affects the use of programming language.

• For this research we selected a set of features without considering or doing any re-

search on the connection of these features with the gender and region of a program-

mer. In the future, we would like to perform more detailed research on the features

of a programming language as they connect to gender and region of the programmer.

• As a form of statistical analysis, we only performed the t-test on the features of this

research. We would like to perform more statistical analysis such as principle com-

ponent analysis to find out the significance of the features.
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SECTION A: GENERAL - This information is collected under the authority of the Alberta Post-secondary 

Learning Act and will be used for administrative purposes associated with the ethical review of your human subject 

research protocol.  It will be treated in accordance with the privacy protection provisions of Part 2 of the 

Alberta Freedom of Information and Protection of Privacy Act (http://foip.alberta.ca/legislation/act/index.cfm). 

Questions about the collection, use or disclosure of your personal information collected on this form can be directed 

to Susan Entz, Animal Welfare & Human Subject Research Coordinator, Office of Research Services, University of 

Lethbridge, Lethbridge, Alberta   T1K 3M4, Phone:  (403) 329-2747 and Email:  susan.entz@uleth.ca. 
 

 

A1. Researcher/Applicant Information 

 

 Name:   Jacqueline Rice 

 Department:  Math and Computer Science 

 Telephone Number: 403 329-2783 (currently on sabbatical; email contact is preferable) 

 Email address: j.rice@uleth.ca 

  

 

 Are you:   Faculty   Staff   Graduate Student  

    

     Undergraduate Student  

 

 

A2. Co-Investigator’s Information 

 

 Name: 

 Department: 

 Telephone Number 

 Email address: 

 

 Are you:   Faculty   Staff   Graduate Student  

    

     Undergraduate Student  

 

 

A3. Student Thesis/Project Committee 

 

a) Is this research for an undergraduate or graduate thesis/project?   Yes    No 

 

b) If yes, please provide the names, departments and phone numbers of your Committee 

members. 

 

Name:    Department:    Telephone: 

 

1.   

2.
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A4. Title of Project: 

 

Indicate the title of your project.  If this project is funded, the title should be the same as the title 

of your funded research. 

 

Sociolinguistics in Computer Programming 

 

 

 

A5. Location of Research 

 

a) Indicate where the research will be conducted. 

 

University of Lethbridge (Canada), Lancaster University (UK), and universities in Bangladesh 

(via online survey). 

 

 

b) Does this project involve other centers, jurisdictions or countries?  If so, please provide a list 

of the other groups who will be reviewing this protocol.  (For example, the Lethbridge College 

Research Ethics Board must approve all posters to be posted on their campus.) 

 

 

Yes.  Lancaster University must also provide ethics approval for gathering data from their 

students. 

 

 

 

 

 

 

A6. Start/End Dates of Research Involving Human Subjects 

 

Please state the start and end dates of the research involving human subjects.  NOTE:  Research 

involving human subjects cannot begin until Human Subject Research Committee 

approval has been received. 

 

Start date (dd/mm/yyyy):  01/03/2012 (or as soon as ethics approval is obtained) 

 

End date (dd/mm/yyyy):  01/01/2018 
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A7. Funding 

 

a) Is the project funded?   Yes    No 

 

 

 Funding approved – please specify source(s) : 

 1. 

 2. 

 3. 

 

 Funding pending – please specify source(s): 

 1. 

 2. 

 3. 

 

b) Is the project part of a course?    Yes    No 

 Specify the course number and title:
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SECTION B: DETAILS ABOUT THE PROJECT  

 

 

B1. Purpose of Project  

 

Provide a brief and clear statement of the context and objectives of the project, including the key 

questions and/or hypotheses of the project (in two pages or less). 

 
The purpose of this study is to investigate the utilization of socio- and corpus-linguistics research 

approaches and practices in application to artificial (i.e. computer programming) languages.  The goal of 

using these approaches is to identify information about the programmers or their sociological 

characteristics that could be used to improve current approaches to the development of computer 

programs.  Futhermore, information may be extracted that could prove useful in computer science 

education, in much the way that applied linguistics techniques may be used in teaching English as a 

second language.  Key questions include “Are gender differences apparent in how people use computer 

programming languages?” and “Do other sociological characteristics such as level of experience or first 

language spoken affect how people use computer programming languages”. 

 

 

 

B2. Description of Subjects 

 

a) Indicate who you will recruit as potential participants in this study (e.g. undergraduates, 

school children, seniors) including any inclusion or exclusion criteria (e.g. over 65 years of age, 

self-identified as gay, speaks Blackfoot, speaks English), and the number of participants 

required. 

 

 

The initial subjects will include students writing computer programs as part of their course work.  

I also intend to expand the study to include professionals who have submitted work to open 

source projects.  I hope to have at least 30 participants from each group (30 students and 30 

professionals).   Although this study is examining how people use programming languages, part 

of the analysis may examine links to natural language, thus there is interest in whether the 

participants’ first language is English or some other language.  All participants will be of the age 

of majority (that is, able to legally give informed consent to participate in this study). 

 

Participants will be recruited from the courses CPSC1620 and CPSC2620, currently being 

offered (Spring 2012).  This should give me a large enough pool (I estimate that this is a total of 

approx. 80 students) that even if a significant portion of students choose not to participate, my 

goal of 30 should be reached. 

 

2016 update: our data is significantly gender-skewed, and so we are still seeking additional 

participants to provide enough data for machine learning analysis.  Since my new research 

assistant has connections to Bangladesh he intends to recruit participants from several 

universities of Bangladesh through an online survey. This should provide a large enough pool 

(we estimate 200 students) that even if a significant portion of students choose not to participate, 

our goal of 100 additional samples should be reached. 
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b) If the participants or facilities will be offered compensation or credit for participating in the 

research, provide details.  Specify the amount, what the compensation is for, and how payment 

will be determined for subjects who do not complete the study.   

 

No compensation will be offered.
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B3. Recruitment of Subjects 

 

 

a) Briefly describe how subjects will be recruited and who will do the recruiting.  Researchers 

should avoid recruiting their own students.  If this is unavoidable, researchers should provide the 

name of a research assistant, not associated with the course, who will do the recruiting and obtain 

consent when the researcher is not present. 

  

If posters, newspaper advertisements, radio announcements or letters of invitation are being 

used, append these to this application.   

 

Students will be recruited through their instructors or by myself.  I will not be recruiting any 

students from my own courses; however the instructors of these courses will give a brief, oral 

introduction to my project, followed by which they will circulate to the course mailing lists a 

recruitment email from me.  That is, I will write the email and send it to the instructors, so that I 

do not need access to the course mailing lists.   The email will contain the information attached 

to this application (the “Project Information Sheet” and accompanying questionnaire), so that 

students are aware of exactly what is required of them before agreeing to participate.  I have 

asked two of my colleagues (the instructors of CS1620 and CS2620) if they would be willing to 

do this for me, and they have agreed to do so pending approval of this ethics review. 

 

Professionals will be recruited via email.  Email addresses and contact information of the authors 

is often available as part of contributions to open source software (i.e. the information is made 

publically available as part of their contribution to the software project).   I will look at a variety 

of well-known open-source projects such as Firefox and OpenOffice to determine whether the 

language used is appropriate for this study.  For appropriate projects I will email individual 

contributors who have made their contact information public.  The email will be similar to that 

sent to students, except of course any mention of grades and assignments will be removed and 

replaced with appropriate wording referring to their open source contributions. 

 

My research assistant will contact the instructors of computer science departments in several 

Bangladeshi universities to request that they forward an email invitation their students that 

invites them to participate in the online survey. I will not be recruiting any students from my own 

courses; however the instructors will give a brief, oral introduction to my project, followed by 

which they will circulate to the course mailing lists a recruitment email (see attached). The email 

will contain the information attached to this application (the “Project Information Sheet” and 

accompanying online questionnaire link), so that students are aware of exactly what is required 

of them before agreeing to participate. 

 

 

b) When and how will people be informed of the right to withdraw from the study? What 

procedures will be followed for people who wish to withdraw at any point during the study? 

What happens to the information contributed to the point of withdrawal? 
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All participants will be given a consent form and information letter explaining their right to 

decline participation or withdraw at any point.  If a participant chooses to withdraw then any 

information related to that participant will be removed from the study and the data destroyed.  

 

 

c) Indicate how subjects can obtain feedback on the research findings. 

 

All publications based on this study will be made available to the subjects.  My contact 

information will be provided in the letter of information, and participants can contact me to get 

an executive summary before publication if they so wish. 
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 9 

 

B4. Description of Research Procedures 

 

Provide a summary of the design and procedures of the research.  Provide details of data 

collection, and time commitment for the subjects, etc.  NOTE: all study measures (e.g. 

questionnaires, interview guides, surveys, rating scales, etc.) must be appended to this 

application.  If the procedures include a blind, indicate under what conditions the code will be 

broken, what provisions have been made for this occurrence, and who will have the code. 

 

Data collection will consist of two parts:  computer programs generated as part of their course 

work will constitute one part of the data, and a questionnaire will constitute the other part.  The 

questionnaire should take less than 10 minutes to complete.    The instructor of the course(s) will 

provide the programs for all students who agree to participate in the study.  Participation will not 

have any impact on the students’ grades.  I am not connected in any way to the courses which I 

am suggesting provide the data, and there is no potential of conflict of interest between myself 

and the students, or between myself and the instructors.   

 

The instructors of the courses will provide an oral overview of the study to their students, 

followed by which the information letter, consent form, and questionnaire will be circulated to 

all students via email.  Students will have the opportunity to respond or not in a confidential 

setting.  That is, because they are receiving the invitation via email, there will be no way that 

another individual (other than myself) will know if they have responded to the invitation. Only 

students who sign and submit the consent form will have their data used in the study.   

 

Participants who agree to be involved in this study will respond with their agreement and 

answers to the questionnaire via email to me.  When their email is received I will a) respond to 

the student with an acknowledgement of their participation in the study (this allows students to 

reconsider their agreement, should they wish to do so), b) process their answers (see following 

paragraph), c) delete the email, and then d)  inform the instructors that I have received 

permission from the student to view their work.  The instructors in question have agreed to then 

release the work to me.    The acknowledgement email will remind the student that they can 

withdraw from the study at any time should they wish to do so. 

 

Because it is essential to link the programs with the questionnaire data, when the questionnaires 

are received I will record the data in a database with a computer-generated unique identifier 

replacing the participant’s name.  This unique identifier will then be used as the file-name for the 

program submitted by that participant, thus removing any need for the names to be stored. 

 

At this point in the research various options for analysis of the data have been proposed, 

although final decisions have not yet been made on how the data will be analysed.  I anticipate 

the development of computer programs to count various metrics in the code, such as average line 

lengths, average identifier  (word) lengths, numbers of semi-colons, and other computer-

language related metrics.  I am also planning to use programs such as WMatrix 

(http://ucrel.lancs.ac.uk/wmatrix/) and CQP (http://cqpweb.lancs.ac.uk/) for analysis of the 

natural language portions of the programs such as comments.  Concordance of various tokens is 

of interest, as is examining whether identifiers are from the dictionary, or close to words from the 

dictionary.  
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B5. Privacy Protection 

 

The next set of questions deals with anonymity and confidentiality.   Refer to the brief 

descriptions below to assist you in answering these questions.   

 

a)   Anonymity refers to the protection of the identity of participants.  Anonymity protection can 

be provided along a continuum, from “complete” to “no” protection, where complete 

protection means that no identifying information will be collected.  We remind applicants that 

university researchers should treat any personal information in accordance with the privacy protection provisions 

of Part 2 of the Alberta Freedom of Information and Protection of Privacy Act 

(http://foip.alberta.ca/legislation/act/index.cfm).  If you have any questions about the collection, use, or disclosure of 

personal information under the Act, please contact Karen Mahar, FOIP Coordinator, The University of Lethbridge, 

4401 University Drive, Lethbridge, Alberta   T1K 3M4, Phone: (403) 380-1811, Email: karen.mahar@uleth.ca. 

 

1. Will the anonymity of the participants be protected? 

  

  Yes (completely)   Yes (partially)    No  

 

2. If “yes”, explain how anonymity will be protected, and describe how this will be explained in 

the consent process. 

 

All names will be removed from the data collected; however since I am collecting information 

such as gender and years of experience, this has the possibility to identify an individual if, for 

instance, there are very few women in a class.  However individual information will not be 

identified in any publications in order to maintain the individual’s anonymity. 

Names must be initially given, and indeed identity is linked to responses that are given via email.  

However this is strictly for linking the questionnaire information to each computer program  that 

is submitted, and as described in Section B4 these names will then be removed and the original 

data with the name attached will be destroyed. 

 

3. If “no”, justify why loss of anonymity is required, and describe how this will be explained in 

the consent process. 

 

 

b)  Confidentiality refers to the protection, access, control and security of the data and 

personal information.   

 

Confidentiality or non-disclosure agreements are recommended for all the individuals involved 

with the project (e.g. transcriptionists, research assistants, co-investigators, etc.).   

 

1. How will confidentiality be protected and how will this be explained in the consent process?  

Specify which personnel will have access to the listing of names and study ID numbers as well 

as other study information collected (use job titles rather than individual names.)  Provide details 

on the location, manner of storage, and the proposed retention period of the information 

collected. 

 

The only personnel with full access to this information will be myself and a graduate student.  

Data will be stored on university computing resources, with the appropriate firewalls and other 

security measures in place.  Data from this study will only be accessible through the use of a 90
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password, available only to myself, the graduate student and administrators of the computing 

resources.  The graduate student and myself will also sign a non-disclosure agreement. 

 

The primary role of the graduate student will be to design the software for processing the 

computer programs.  Identification and computation of the metrics described in section B4 will 

be quite complex, and this will be a task well-suited to a graduate student.  In addition, the 

graduate student must examine the other tools (WMatrix and CQPWeb) to see how the text 

(computer programs) will need to be processed in order to use these tools to process the data; this 

too will involve the development of fairly complex software.  Finally, the graduate student will 

be aiding in analysis of the results, and refinement of the analysis approach.  My goal is to link 

the style shown in the use of programming language to the sociological characteristics of the 

individuals, and the graduate student will be involved (with me) in tabulating the results of the 

metric measurements and determining whether there are any correlations with the data given in 

the questionnaires.
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B6. Potential Risks and Benefits 

 

 

To facilitate Human Subject Research Committee review and to determine 

whether the study involves more than minimal risk, please respond to the 

following questions.  Does this project involve… 

Check those that 

apply 

1.  Collection of data through invasive clinical procedures that are not required 

for normal patient care. 

 

2.  Collection of data through noninvasive clinical procedures involving imaging 

or microwaves that are not required for normal patient care. 

 

3.  Collection, use, or disclosure of health information or biological samples 

where the researcher is requesting that the requirement for informed consent 

be waived. 

 

4.  Any procedures involving deception or incomplete disclosure of the nature of 

the research for purposes of informed consent. 

 

5.  Any possibility that a breach of confidentiality could place subjects at risk of 

Criminal or civil liability or be damaging to subjects’ financial standing, 

Employability or reputation. 

 

6.  Research questions or procedures that might be expected to cause subject 

psychological distress, discomfort or anxiety beyond what a reasonable 

person might expect in day to day social interactions (e.g., questions that raise 

painful memories or unresolved emotional issues). 

 

7.  Research questions that involve sensitive issues (e.g. sexual orientation or 

practices, etc.). 

 

8.  Investigations in which there is a previous or existing relationship between the 

investigator and subjects (e.g., manager/employee, therapist/client, 

teacher/student). 

 

9. Investigations in which there is a conflict of interest between an investigator 

and the sponsor of the investigation. 

 

10. Any other non-therapeutic risks that arise from procedures not directly related 

to patient care. 

 

 

 

 

a) Outline any risks of potential physical or emotional harm or discomfort to the subjects, and 

describe how the anticipated benefits outweigh the potential risks. 

 

 

 

No risks to the subjects are anticipated. 
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b) Indicate the steps taken to inform subjects of the possible consequences of releasing 

information in the public domain, and describe how subjects will be given an opportunity 

to review material before it is released. 

 

 

Publication of this material will maintain anonymity of the individuals, thus no consequences 

to the subjects are anticipated.    My contact information as well as an executive summary 

will be made available to participants who wish to review the results before publication. 

 

 

c) Outline the exit strategy for termination of the study.  Some types of research involve 

intense or lengthy contact between a researcher and the study participant(s), which may 

result in a close personal relationship, especially if the research itself involves matters 

close to the heart of participants.  For this section, applicants should consider the 

possibility that a strategy may be required for participants who have difficulty in 

disengaging from the project after their role is completed or the project has terminated.  If 

this does not apply to your research, please indicate n/a.  If the research involves 

vulnerable populations, carefully clarify the boundaries between the researcher and 

participants.   

 

No exit strategy is needed for this study. 

 

 

 

 

 

 

 

B7. Obtaining Consent 

 

Advise the Committee how informed consent will be obtained. The Tri-Council Policy Statement 

ensures that informed consent be obtained in writing from all subjects or, when appropriate from 

parents or legal guardians, unless there is a good reason for not doing so.  If a consent form will 

be used, attach copies for the Committee.  The Human Subject Research - Sample Letter of 

Consent is available from the Office of Research Services or our web site under Certification at:  

http://www.uleth.ca/rch/funding/online_forms.cfm.  Please ensure that the reading level of the 

consent form is appropriate to the population involved. 

 

 

a) Clearly detail who will be obtaining consent and the procedures for doing so.  If appropriate, 

specify whether subjects will be randomly assigned to groups before or after consent has been 

attained. 

 

The instructor of the course will provide an overview of the study, followed by which an 

information letter, consent form, and questionnaire (so that the students can see what is involved 

before agreeing to participate) will be circulated via email (to maintain confidentiality).  

Circulating the information via email is a more confidential approach as it allows the potential 

participant to respond (or not) while at home, or in some other private setting, rather than having 

them submit a paper response in a public setting.   The researcher will be the collection point for 
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the consent forms.  Email responses will obviously not be anonymous, but as described in 

Section 4B, the email responses will be destroyed once the data has been anonymised and 

recorded.  The consent form and accompanying letter are attached to this application. 

 

 

b) If the subjects are not able/competent to give fully informed consent (cognitive impairment, 

age, etc.), or if there are significant power differences in operation (professor/student, 

employer/employee, political or economic minorities, etc.), please specify, and describe steps 

you will take to obtain free and informed consent.  If participants are not competent to consent, 

specify who will consent on their behalf. 

 

 

All subjects are anticipated as being able to give informed consent for this study. 

 

 

c) Do any of the procedures include the use of deception or partial disclosure of information to 

subjects?   If yes, provide a rationale for the deception or partial disclosure.  Describe the 

procedures for debriefing the subjects. 

 

 

No deception/partial disclosure is being used in this study. 

 

 

 

 

 

 d) For the letter of consent/consent form:  

 

1. Extend an invitation to participate in the research project. 

 

2. Provide a brief description of the project, including the purpose of the research, and a 

description of what is expected of the participant (e.g, the time commitment and the 

frequency of contact).  

 

3. Describe the risks and discomforts (e.g. distress, inconvenience, psychological or social 

discomforts, fatigue, or physical safety issues).  If the research project has the potential to 

identify upset, distressed or disturbed individuals, describe what arrangements will be 

made to assist these individuals, if need be.    

 

4. Describe the benefits, including an explicit statement if there are no potential benefits to 

the participants (e.g. “You will not benefit directly from participation in this research”). 

 

5. Provide assurance of anonymity and confidentiality – this statement should describe the 

steps taken to ensure anonymity and confidentiality, and should include information 

regarding who will have access to the data collected.  NOTE:  Participants should be 

advised that their privacy cannot be guaranteed when electronic surveys are used. 

 

6. Outline compensation for participation in the research project, if applicable.  
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7. Provide a non-coercive disclaimer – this statement should indicate that participation is 

voluntary, and that refusal to participate will not initiate prejudice, penalty or loss of 

benefits to which the subject is otherwise entitled. 

 

8. Provide an option to withdraw – this statement should indicate that participants may 

discontinue participation at any time without prejudice, penalty or loss of benefits, and if 

they choose to withdraw, that they will be consulted regarding what should be done with 

their data. 

 

9. Indicate the instances when the researcher may be obligated by law to report, to law 

enforcement or another agency, information revealed as a result of the research.  NOTE:  

Questions likely to result in reportable activities must be flagged for the respondent, 

and the respondent must be given the option to skip these questions. 

 

10. Provide a brief description of the anticipated use of the data. 

 

11. Provide information on how participants will be informed of the results of the research. 

 

12. Provide the name of the researcher, along with their institutional affiliation, and contact 

information for questions/clarification about the research project.  Also include the 

following statement: “Questions regarding your rights as a participant in this research 

may be addressed to the Office of Research Services, University of Lethbridge (Phone:  

403-329-2747 or Email:  research.services@uleth.ca).” 

 

e) For telephone surveys, informed consent should take place in the form of a verbal 

explanation of the above points.  Append the “script” for this explanation to this application. 

 

f) For anonymous questionnaires, include a cover letter that includes all the information 

normally provided in a consent form. Append a copy of this cover letter to this application. 

 

B8. Continuing Review 

 

Propose a process for continuing review if the research is ongoing. Continuing review should 

consist of, at least, the submission of a succinct annual status report. Notify the Committee when 

the research concludes. 

 

 

 

The protection of human subjects will be assured in accordance with the Tri-Council Policy 

Statement or with other guidelines if these have been agreed upon as more appropriate. 

 

 

 

 
_________________________________ 

Signature of Researcher/Applicant   Date: April 22 2016 
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When the Researcher/Applicant is a student, the supervisor must sign the following 

statement: 

 

“I have reviewed this application and I deem it ready to submit to the Human Subject 

Research Committee for review.” 

 

__________________________________  ______________________________ 

Signature of Supervisor    Date 

 

 
(Revised January 20, 2012) 
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EMAIL INVITATION: 

 

 

Dear student, 

 

you are invited to participate in an online survey about the use of programming language.  This 

survey is not required, and your submission will be anonymous.  More information about the 

project is in the attached document, but if you have any questions please contact the primary 

investigator on this research, Dr. Jacqueline Rice (j.rice@uleth.ca).   

 

In order to participate in the study please go to https://www.surveymonkey.com/r/68LKRN5. 

 

Your time is very much appreciated.   

 

Sincerely, 

 

Dr. Jacqueline E. Rice 

Associate Professor of Computer Science 

University of Lethbridge 
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 Project Information Sheet: 

Sociolinguistics in Computer Programming 
 

I would like to invite you to be a participant in a study combining the fields of linguistics and 

computer science. 

 

The purpose of the study is to investigate how analytic tools from the field of linguistics might 

be applied to samples of computer programs.  We hope this will allow us to identify how 

information about the programmers or their sociological characteristics might be used to improve 

current approaches to the development of computer programs.  In addition, information from this 

work may also be used in improving computer science education practices, in much the way 

applied linguistics has been used in teaching English as a second language.    

 

Should you agree to participate your participation in this study will consist of submitting a 

program of your choice, as well as completing a short follow-up questionnaire. The 

questionnaire should take less than 10 minutes to complete and is attached to this letter.   

  

Your name will be removed from the data gathered during this study, and the data gathered will 

be used only for research and teaching publication purposes. There are no anticipated risks to this 

study.  Anonymised data will be stored on a secure password-protected system to maintain 

participants’ confidentiality.  A student may be aiding me in this study, and she/he will also have 

access to the data that you submit.  Both the student and I will sign a confidentiality agreement.  

Although there is no direct benefit to the participants, information from this study will be used to 

advance the field of computer science.   

 

Participation is entirely voluntary, and you may withdraw at any time.  Should you wish to 

withdraw the data you have submitted to us will be destroyed.  To withdraw from the study, ask 

any further questions about the study, or to request an executive summary before the results are 

published please contact me: 
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Dr. Jackie Rice  

j.rice@uleth.ca  

Associate Professor, Dept. of Math and Computer Science, University of Lethbridge, 

Lethbridge, AB, Canada 

 

Questions regarding your rights as a participant in this research may be addressed to the 

Office of Research Services, University of Lethbridge (Phone:  403-329-2747 or Email:  

research.services@uleth.ca).

99



 20 

The following pages, along with the project information sheet, will be presented 

to the participants who choose to complete the online survey: 

 

Consent 

 

 

YES/NO    I have read and understood the project information sheet. 

 

YES/NO I understand the nature of this study and agree to participate. 

 

YES/NO   I understand that I can withdraw at any time. 
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1. What is your gender? 

 

2. What is the name of your university? 

 

3. Provide your valid email address. 

 

4. What is your gender? 

 

5. What was the first computer programming language that you learned? 

• C 

• C++ 

• Java 

• Python 

• Other (please specify): ________________________ 

 

6. How many years of experience would you say you have as a programmer? 

• Less than 1 

• 1 

• More than 1 (please specify): ____________________ 

 

7. Provide your code here (a box for pasting in your code will be provided in the 
online survey). 

 

End of survey.  
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Frequency of Features

Frequency of Features in Female Canadian Written Programs
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

11.  302 68.21 51 16.89 14.90 11 

12.  172 97.09 0 0.00 2.33 9 

13.  134 66.42 12 8.96 24.63 6 

14.  314 76.43 23 7.32 14.65 11 

15.  152 55.26 18 11.84 30.26 8 

16.  739 56.02 114 15.43 23.27 17 

17.  289 87.54 22 7.61 4.15 11 

18.  83 49.40 15 18.07 32.53 5 

19.  139 56.12 34 24.46 19.42 6 

20.  262 80.53 51 19.47 0.00 3 

21.  221 71.04 34 15.38 13.57 3 

22.  121 74.38 31 25.62 0.00 8 

23.  167 95.81 0 0.00 2.99 8 

24.  96 71.88 27 28.12 0.00 6 

25.  216 87.96 11 5.09 6.94 11 

26.  587 62.52 108 18.40 16.87 15 

27.  183 71.04 22 12.02 16.94 5 

28.  89 67.42 23 25.84 6.74 6 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

29.  163 74.85 33 20.25 4.91 7 

30.  74 64.86 17 22.97 12.16 5 

31.  119 72.27 27 22.69 5.04 9 

32.  273 87.91 24 8.79 3.30 12 

33.  474 81.65 48 10.13 4.01 10 

34.  205 87.80 0 0.00 11.71 9 

35.  318 71.07 24 7.55 10.38 10 

36.  88 72.73 15 17.05 10.23 1 

37.  64 51.56 24 37.50 10.94 1 

38.  320 61.88 38 11.88 26.25 18 

39.  380 52.63 72 18.95 28.16 17 

40.  82 70.73 16 19.51 9.76 1 

41.  56 71.43 10 17.86 10.71 1 

42.  109 62.39 34 31.19 6.42 6 

43.  148 62.16 22 14.86 22.97 8 

44.  172 48.26 46 26.74 25.00 9 

45.  255 87.06 0 0.00 6.67 9 

46.  105 86.67 13 12.38 0.95 8 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

47.  461 77.22 0 0.00 22.78 27 

48.  166 91.57 0 0.00 8.43 3 

49.  180 90.00 0 0.00 1.11 6 

50.  260 100.00 0 0.00 0.00 3 

TOTAL 

COUNT 

FOR ALL 50 

FILES 

10960 73.61 1348 12.30 12.36 422 
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Frequency of Features in Male Canadian Written Programs 

Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

1.  40 100.00 0 0.00 0.00 2 

2.  281 88.61 0 0.00 8.54 12 

3.  248 83.87 0 0.00 10.89 8 

4.  222 91.89 0 0.00 2.25 14 

5.  294 72.79 1 0.34 7.48 7 

6.  893 93.84 0 0.00 4.48 8 

7.  67 94.03 0 0.00 2.99 1 

8.  108 63.89 0 0.00 17.59 4 

9.  118 75.42 0 0.00 24.58 2 

10.  133 76.69 0 0.00 15.79 3 

11.  100 94.00 0 0.00 5.00 2 

12.  181 95.58 0 0.00 3.87 5 

13.  238 97.90 0 0.00 1.26 12 

14.  131 70.99 1 0.76 12.98 5 

15.  225 79.11 0 0.00 19.56 11 

16.  244 97.95 0 0.00 2.05 11 

17.  99 100.00 0 0.00 0.00 9 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

18.  328 64.02 0 0.00 18.90 11 

19.  325 93.23 0 0.00 6.77 12 

20.  256 97.27 0 0.00 2.73 11 

21.  268 66.79 1 0.37 32.84 11 

22.  173 72.83 0 0.00 27.17 6 

23.  181 100.00 0 0.00 0.00 3 

24.  103 75.73 0 0.00 24.27 4 

25.  125 71.20 0 0.00 28.80 5 

26.  94 77.66 0 0.00 22.34 4 

27.  128 79.69 0 0.00 20.31 4 

28.  193 73.58 0 0.00 21.76 5 

29.  143 84.62 0 0.00 15.38 5 

30.  122 71.31 0 0.00 26.23 4 

31.  65 100.00 0 0.00 0.00 2 

32.  41 73.17 0 0.00 26.83 1 

33.  248 96.37 0 0.00 3.63 12 

34.  181 85.64 0 0.00 14.36 11 

35.  277 70.76 0 0.00 24.55 11 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

36.  302 76.82 0 0.00 23.18 11 

37.  76 100.00 0 0.00 0.00 7 

38.  181 80.66 0 0.00 17.13 5 

39.  182 96.70 0 0.00 1.65 11 

40.  148 81.76 0 0.00 14.19 9 

41.  290 87.93 0 0.00 8.62 11 

42.  141 93.62 0 0.00 6.38 11 

43.  266 73.68 0 0.00 22.93 11 

44.  116 100.00 0 0.00 0.00 7 

45.  323 95.36 0 0.00 2.79 7 

46.  151 90.73 0 0.00 3.31 11 

47.  191 78.53 0 0.00 14.14 10 

48.  144 86.11 0 0.00 9.72 5 

49.  380 74.47 0 0.00 25.53 12 

50.  205 86.34 0 0.00 6.34 10 

TOTAL 

COUNT 

FOR ALL 50 

FILES 

9,969 84.65 3 0.03 12.03 376 
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Frequency of Features in Female Canadian Written Programs 

Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

1.  287 80.84 55 19.16 0.00 5 

2.  206 90.78 19 9.22 0.00 8 

3.  106 92.45 5 4.72 2.83 4 

4.  101 100.00 0 0.00 0.00 1 

5.  290 80.69 56 19.31 0.00 5 

6.  97 87.63 11 11.34 1.03 1 

7.  649 86.29 89 13.71 0.00 5 

8.  129 86.82 17 13.18 0.00 1 

9.  107 86.92 14 13.08 0.00 2 

10.  1,677 84.68 237 14.13 1.19 20 

11.  102 76.47 24 23.53 0.00 1 

12.  297 95.62 11 3.70 0.67 6 

13.  105 86.67 14 13.33 0.00 1 

14.  101 88.12 12 11.88 0.00 7 

15.  91 81.32 7 7.69 7.69 1 

16.  295 75.93 41 13.9 10.17 13 

17.  90 72.22 14 15.56 12.22 2 

109



Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

18.  178 82.58 31 17.42 0 18 

19.  95 90.53 9 9.47 0 6 

20.  124 83.06 21 16.94 0 1 

TOTAL 

COUNT 

FOR ALL 20 

FILES 

5,127 85.10 687 13.40 1.44 108 
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Frequency of Features in Male Bangladeshi Written Programs 

Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

1.  196 45.41 106 54.08 0.00 1 

2.  115 91.30 10 8.70 0.00 1 

3.  116 87.93 13 11.21 0.86 7 

4.  152 69.74 33 21.71 0.00 6 

5.  312 59.94 125 40.06 0.00 1 

6.  236 98.31 4 1.69 0.00 5 

7.  220 86.36 21 9.55 0.45 11 

8.  137 86.13 4 2.92 10.95 1 

9.  140 80.71 24 17.14 0.00 1 

10.  104 85.58 5 4.81 9.62 4 

11.  311 93.57 20 6.43 0.00 1 

12.  56 69.64 13 23.21 1.79 3 

13.  156 77.56 30 19.23 0.64 6 

14.  100 79.00 11 11.00 10.00 6 

15.  118 70.34 30 25.42 4.24 6 

16.  143 91.61 12 8.39 0.00 5 

17.  536 79.48 53 9.89 10.26 10 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

18.  101 89.11 3 2.97 7.92 1 

19.  109 76.15 17 15.60 2.75 3 

20.  110 78.18 24 21.82 0.00 6 

21.  98 78.57 11 11.22 10.20 1 

22.  135 100.00 0 0.00 0.00 1 

23.  119 93.28 7 5.88 0.84 1 

24.  136 80.88 22 16.18 2.94 5 

25.  107 85.05 16 14.95 0.00 7 

26.  120 65.00 16 13.33 10.00 6 

27.  124 83.06 21 16.94 0.00 1 

28.  647 55.33 269 41.58 0.93 7 

29.  101 88.12 12 11.88 0.00 7 

30.  125 84.00 18 14.40 0.00 7 

31.  227 91.19 20 8.81 0.00 2 

32.  153 100.00 0 0.00 0.00 1 

33.  119 73.95 29 24.37 0.84 8 

34.  101 88.12 12 11.88 0.00 7 

35.  198 82.83 34 17.17 0.00 13 
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Programs 

Total 

Number of  

Lines 

Source 

Code 

Lines 

Percentage 

Total 

Number of 

Blank 

Lines 

Blank 

Lines 

Percentage 

Comment 

Lines 

Percentage 

Total 

Number of 

Functions 

36.  214 95.33 1 0.47 2.34 7 

37.  227 91.19 20 8.81 0.00 2 

38.  244 95.08 12 4.92 0.00 1 

39.  136 86.03 14 10.29 3.68 9 

40.  373 88.47 42 11.26 0.27 1 

TOTAL 

COUNT 

FOR ALL 40 

FILES 

7172 80.98 1134 15.81 2.16 179 
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Appendix C

Relationship of Features

In the following Tables, we present four correlation matrix computed for male written,
female written, Canadian written and Bangladeshi written programs. The matrix is sym-
metric, so the diagonal values in the matrix are always 1. These values represent that there
is a strong relationship between the same features which is of no interest. The values above
and below the diagonal are the same. Thus, we report the values only below the diagonal.

114



Correlation Based on Raw Frequency of Features in Male-Authored Programs 

 

Features 
Total 

Lines 

Total 

Source 

Code 

Lines 

Source 

Code 

Lines 

Percent

-age 

Total 

Blank 

Lines 

Blank 

Lines 

Percent

-age 

Total 
Comment 

Lines 

Total 
Comment 
Lines 

Percent

-age 

Total 

Mixed 

Lines 

Mixed 

Lines 

Percent

-age 

Total 

Comme

-ntary 

Words 

Physical 

Executa

-ble 

Line of 

Code 

Logical 

Executa

-ble 

Line of 

Code 

Total 
Function 

Total 
Function 
Lines 

Average 

Function 

Lines 

Total Lines 1               

Total Source 

Code Lines 
0.98 1              

Source Code 

Lines 

Percentage 

0.00 0.18 1             

Total Blank 

Lines 
0.06 -0.01 -0.33 1            

Blank Lines 

Percentage 
0.01 -0.05 -0.30 0.93 1           

Total 

Comment 

Lines 

0.42 0.25 -0.71 0.20 0.12 1          

Total 

Comment 

Lines 

Percentage 

-0.03 -0.19 -0.90 0.14 0.11 0.77 1         

Total Mixed 

Lines 
0.29 0.19 -0.40 0.41 0.34 0.17 0.01 1        

Mixed Lines 

Percentage 
0.07 -0.03 -0.47 0.44 0.45 0.07 0.03 0.89 1       

Total 

Commentary 

Words 

0.47 0.30 -0.68 0.26 0.18 0.81 0.58 0.53 0.39 1      

Physical 

Executable 

Line of Code 

0.99 1.00 0.13 0.03 -0.02 0.26 -0.18 0.28 0.06 0.35 1     

Logical 

Executable 

Line of Code 

0.98 0.98 0.11 0.02 -0.03 0.28 -0.16 0.29 0.06 0.38 0.99 1    

Total 

Functions 
0.48 0.46 0.10 0.01 -0.03 0.29 -0.12 0.14 0.02 0.27 0.46 0.47 1   

Total Function 

Lines 
0.96 0.97 0.09 -0.07 -0.07 0.32 -0.10 0.17 -0.01 0.35 0.97 0.96 0.42 1  

Average 

Function Lines 
0.69 0.72 0.09 -0.09 -0.06 0.10 -0.08 0.07 -0.04 0.15 0.71 0.70 -0.21 0.77 1 
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Correlation Based on Raw Frequency of Features in Female-Authored Programs 

 

 

 

Features Total 

Lines 

Total 

Source 

Code 

Lines 

Source 

Code 

Lines 

Percent

-age 

Total 

Blank 

Lines 

Blank 

Lines 

Percent

-age 

Total 
Comment 

Lines 

Total 
Comment 
Lines 

Percent

-age 

Total 

Mixed 

Lines 

Mixed 

Lines 

Percent

-age 

Total 

Comme

-ntary 

Words 

Physical 

Executa

-ble 

Line of 

Code 

Logical 

Executa

-ble 

Line of 

Code 

Total 
Function 

Total 
Function 
Lines 

Average 

Function 

Lines 

Total Lines 1               

Total Source 

Code Lines 
0.94 1              

Source Code 

Lines 

Percentage 

0.11 0.41              

Total Blank 

Lines 
0.58 0.32 -0.52 1            

Blank Lines 

Percentage 
-0.36 -0.55 -0.75 0.45 1           

Total 

Comment 

Lines 

0.72 0.47 -0.43 0.65 -0.05 1          

Total 

Comment 

Lines 

Percentage 

0.13 -0.11 -0.75 0.30 0.16 0.67 1         

Total Mixed 

Lines 
0.58 0.47 -0.04 0.39 -0.21 0.44 0.04 1        

Mixed Lines 

Percentage 
0.29 0.26 0.04 0.07 -0.29 0.16 -0.03 0.86        

Total 

Commentary 

Words 

0.69 0.44 -0.36 0.66 -0.02 0.89 0.49 0.67 0.33 1      

Physical 

Executable 

Line of Code 

0.94 1.00 0.39 0.34 -0.54 0.48 -0.11 0.53 0.31 0.48 1     

Logical 

Executable 

Line of Code 

0.94 0.97 0.36 0.40 -0.50 0.48 -0.11 0.58 0.35 0.52 0.98 1    

Total 

Functions 
0.75 0.74 0.10 0.26 -0.34 0.60 0.20 0.22 0.08 0.42 0.72 0.67 1   

Total Function 

Lines 
0.95 0.97 0.31 0.46 -0.45 0.51 -0.08 0.55 0.30 0.52 0.98 0.98 0.65 1  

Average 

Function Lines 
0.07 0.15 0.28 -0.01 -0.14 -0.15 -0.28 0.04 -0.01 -0.08 0.15 0.13 -0.40 0.23 1 
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Correlation Based on Raw Frequency of Features in Canadian-Authored Programs 

 

Features 
Total 

Lines 

Total 

Source 

Code 

Lines 

Source 

Code 

Lines 

Percent

-age 

Total 

Blank 

Lines 

Blank 

Lines 

Percent

-age 

Total 
Comment 

Lines 

Total 
Comment 
Lines 

Percent

-age 

Total 

Mixed 

Lines 

Mixed 

Lines 

Percent

-age 

Total 

Comme

-ntary 

Words 

Physical 

Executa

-ble 

Line of 

Code 

Logical 

Executa

-ble 

Line of 

Code 

Total 
Function 

Total 
Function 
Lines 

Average 

Function 

Lines 

Total Lines 1               

Total Source 

Code Lines 
0.95 1              

Source Code 

Lines 

Percentage 

0.03 0.28 1             

Total Blank 

Lines 
0.38 0.15 -0.56 1            

Blank Lines 

Percentage 
-0.13 -0.27 -0.68 0.69 1           

Total 

Comment 

Lines 

0.60 0.36 -0.50 0.45 0.01 1          

Total 

Comment 

Lines 

Percentage 

0.04 -0.15 -0.72 0.14 0.05 0.69 1         

Total Mixed 

Lines 
0.39 0.30 -0.14 0.09 -0.18 0.28 0.03 1        

Mixed Lines 

Percentage 
0.12 0.07 -0.12 -0.11 -0.25 0.08 0.02 0.87 1       

Total 

Commentary 

Words 

0.60 0.37 -0.41 0.42 -0.04 0.86 0.51 0.56 0.31 1      

Physical 

Executable 

Line of Code 

0.95 1.00 0.26 0.15 -0.28 0.37 -0.15 0.38 0.14 0.41 1     

Logical 

Executable 

Line of Code 

0.95 0.98 0.23 0.19 -0.26 0.38 -0.14 0.40 0.15 0.44 0.98 1    

Total 

Functions 
0.64 0.59 0.04 0.23 -0.12 0.50 0.06 0.15 0.02 0.37 0.58 0.56 1   

Total Function 

Lines 
0.95 0.97 0.17 0.24 -0.18 0.41 -0.09 0.30 0.07 0.43 0.97 0.97 0.53 1  

Average 

Function Lines 
0.33 0.41 0.16 0.03 -0.04 -0.06 -0.19 0.05 -0.04 0.00 0.40 0.38 -0.33 0.48 1 
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Correlation Based on Raw Frequency of Features in Bangladeshi-Authored Programs 

Features 
Total 

Lines 

Total 

Source 

Code 

Lines 

Source 

Code 

Lines 

Percent

-age 

Total 

Blank 

Lines 

Blank 

Lines 

Percent

-age 

Total 
Comment 

Lines 

Total 
Comment 
Lines 

Percent

-age 

Total 

Mixed 

Lines 

Mixed 

Lines 

Percent

-age 

Total 

Comme

-ntary 

Words 

Physical 

Executa

-ble 

Line of 

Code 

Logical 

Executa

-ble 

Line of 

Code 

Total 
Function 

Total 
Function 
Lines 

Average 

Function 

Lines 

Total Lines 1               

Total Source 

Code Lines 
0.98 1              

Source Code 

Lines 

Percentage 

-0.05 -0.10 1             

Total Blank 

Lines 
0.79 0.69 -0.12 1            

Blank Lines 

Percentage 
0.12 0.00 -0.23 0.60 1           

Total 

Comment 

Lines 

0.37 0.33 0.15 0.20 -0.09 1          

Total 

Comment 

Lines 

Percentage 

-0.06 -0.10 0.29 -0.12 -0.17 0.70 1         

Total Mixed 

Lines 
0.07 -0.01 -0.10 0.31 0.27 0.08 0.10 1        

Mixed Lines 

Percentage 
-0.08 -0.12 -0.09 0.01 0.15 0.04 0.16 0.86 1       

Total 

Commentary 

Words 

0.06 0.00 0.16 0.07 0.01 0.66 0.74 0.44 0.47 1      

Physical 

Executable 

Line of Code 

0.99 1.00 -0.03 0.69 0.00 0.34 -0.08 0.00 -0.11 0.03 1     

Logical 

Executable 

Line of Code 

0.99 0.99 -0.03 0.71 0.02 0.32 -0.09 0.01 -0.11 0.01 1.00 1    

Total 

Functions 
0.50 0.50 -0.13 0.36 0.07 0.33 0.02 0.13 0.05 0.22 0.49 0.48 1   

Total Function 

Lines 
0.90 0.89 -0.02 0.72 0.08 0.25 -0.07 0.09 -0.04 0.06 0.90 0.89 0.53 1  

Average 

Function Lines 
0.12 0.11 0.21 0.11 -0.02 -0.09 -0.09 -0.10 -0.15 -0.12 0.12 0.11 -0.42 0.22 1 
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