
A NEW ARCHITECTURE FOR SECURE TWO-PARTY MOBILE PAYMENT
TRANSACTIONS

YUNPU ZHU
Bachelor of Science, Beijing Jiaotong University, 2002

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Yunpu Zhu, 2010

A NEW ARCHITECTURE FOR SECURE TWO-PARTY MOBILE PAYMENT
TRANSACTIONS

YUNPU ZHU

Approved:

Signature Date

Supervisor: Dr. Jacqueline E. Rice
Assistant Professor
Department of Mathematics and Computer Science
Faculty of Arts and Science

Committee Member: Dr. Brian Dobing
Associate Professor
Faculty of Management

Committee Member: Dr. Gongbing Shan
Associate Professor
Department of Kinesiology
Faculty of Arts and Science

Chair, Thesis Examination Committee:
Dr. Hadi Kharaghani
Professor
Department of Mathematics and Computer Science
Faculty of Arts and Science

I wish to dedicate this thesis to my beloved parents, Daping Zhu and Zehua
Feng, who have raised me to be the person I am today. Thank you for all the
unconditional love, guidance, and support that you have always given me.

iii

Abstract

The evolution of wireless networks and mobile device technologies has increased concerns

about performance and security of mobile systems. We propose a new secured application-

level architecture for a two-party mobile payment transaction that is carried out between a

resource-limited mobile device and a resource-rich computer server over wireless networks.

As an example of such transactions, the mobile banking transaction is focused on through-

out this thesis. The proposed architecture, namely SA2pMP, employs a lightweight cryp-

tography scheme (combining both a Public-key cryptography algorithm (ECDSA) and a

Symmetric-key cryptography algorithm (AES)), a multi-factor authentication mechanism,

and a transaction log strategy. The proposed architecture is designed to satisfy the four

properties of confidentiality, authentication, integrity and non-repudiation that are required

by any secure system. The architecture can be implemented on a Java ME enabled mobile

device. The security API library can be reused in implementing other two-party mobile

applications. The present study shows that SA2pMP is a unique lightweight security archi-

tecture providing comprehensive security for two-party mobile payment transactions. In

addition, simulations demonstrate that SA2pMP can be installed in resource-limited mobile

devices as a downloadable software application. The main contribution of the thesis is to

suggest a design for a security architecture for two-party mobile payment transactions, for

example, mobile banking. It suggests a four-layer model of mobile payment participants,

based on Karnouskos (2004). This model clarifies how participants are involved in a mo-

bile payment transaction. In addition, an improved model is suggested to guide security

aspects of system design, which is based on an Onion Layer Framework (Wei, C.Liu, &

Koong, 2006).

iv

List of Appended Papers

Parts of the thesis have been published in the following papers.

Paper A) Rice, J. E., & Zhu, Y. (2009, August). A proposed architecture for secure two-

party mobile payment. 2009 IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing.

Paper B) Zhu, Y. and Rice, J. E. (2009, August), A Lightweight Architecture for Secure

Two-Party Mobile Payment. 7th IEEE/IFIP International Conference on Em-

bedded and Ubiquitous Computing.

v

Acknowledgments

I would like to acknowledge many people for helping me during my master work.

I would especially like to thank my supervisor, Dr. Jacqueline E. Rice, for her generous

time and commitment. Throughout my master work, she encouraged me to develop inde-

pendent thinking and research skills. She patiently followed and sustained me in every step

of this work.

I am also grateful for having an exceptional master committee and wish to thank Dr.

Brian Dobing and Dr. Gongbing Shan for their support and greatly assisting me with

scientific writing.

Many people on the faculty and staff in University of Lethbridge assisted and encour-

aged me in various ways during my course of studies. I am grateful to Dr. Wendy Osborn,

Dr. Howard Cheng and Dr. Hua Li for all that they have taught and helped me. I was

also inspired pedagogically by Mrs. Nicole Wilson for whom I was a Teaching Assistant.

I thank Dr. Jo-Anne Fiske, Mrs. Kathy Schrage, and Mrs. Barbara Williams for their help

and encouragement.

I also give a special thanks to Dr. Hiroshi Shimazaki. It was a great honor for me to

serve as his last research assistant before the retirement. He is now an Aspiring Landscape

Painter.

Thanks to Uncle Zhong, Auntie Danhua and Sister Yunyan for their continuous en-

couragement and support. Thanks to Wen. Thanks to my friends for their friendship and

encouragement.

vi

Contents

Title Page i

Approval/Signature Page ii

Dedication iii

Abstract iv

List of appended papers v

Acknowledgments vi

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Current Limitations . 2
1.3 Problem Statement . 4
1.4 Research Scope . 4
1.5 Research Contributions . 5
1.6 System Development . 6
1.7 Thesis Outline . 7

2 Background 11
2.1 Wireless Network Technologies . 11

2.1.1 Mobile Phone Network . 12
2.2 Mobile Service Technologies . 17

2.2.1 Short Messaging Service . 17
2.2.2 Wireless Application Protocol . 18
2.2.3 Java ME . 19

2.3 Mobile Payment . 19
2.3.1 Mobile Payment Overview . 20
2.3.2 Mobile Payment Models . 21

2.4 Mobile Devices . 23
2.4.1 Mobile Devices’ Overview . 24
2.4.2 Mobile Operating Systems . 25

2.5 Java ME . 30

vii

2.5.1 Java ME: An Overview . 31
2.5.2 Connected Limited Device Configuration 32
2.5.3 Mobile Information Device Profile 33
2.5.4 MIDlets . 34
2.5.5 Record Management System . 34

2.6 Authentication . 35
2.6.1 Authentication: Definition . 36
2.6.2 Single-factor Authentication . 37
2.6.3 Multi-factor Authentication . 38

2.7 Cryptography . 38
2.7.1 Basic Cryptography Concepts . 39
2.7.2 Symmetric-key Cryptography . 40
2.7.3 Public-key Cryptography . 44
2.7.4 A Comparison of Symmetric-key and Public-key 52
2.7.5 Software Encryption . 53

3 System Analysis 55
3.1 Research Constraints . 55

3.1.1 Mobile Devices . 55
3.1.2 Two-party mobile payments . 56
3.1.3 Wireless Networks . 61
3.1.4 Application Layer . 62

3.2 Security Objectives . 63
3.3 System Analysis based on Security Map 65

3.3.1 Onion Layer Framework . 65
3.3.2 Security Map . 67

3.4 Analysis Result . 70
3.4.1 Cryptography Solutions . 70
3.4.2 Authentication Solutions . 73
3.4.3 Non-repudiation Solutions . 74
3.4.4 Implementation Proposal . 74

4 System Design 76
4.1 Security Architecture . 76

4.1.1 Security Architecture Notations 76
4.1.2 Network Module . 79
4.1.3 Lightweight Cryptography Scheme 80
4.1.4 Multi-factor Authentication Strategy 84
4.1.5 Distributed Transaction Log Strategy 86
4.1.6 Key Management . 88

4.2 Application Architecture . 94
4.2.1 Mobile Client Architecture . 96

viii

4.2.2 Server Architecture . 98

5 System Simulation 102
5.1 Simulation Environment . 102

5.1.1 Bouncy Castle . 104
5.2 Simulation Implementation . 105

5.2.1 Business Work Flow . 106
5.2.2 Data Transformation . 110
5.2.3 Cryptography Simulation . 113

5.3 Simulation Evaluation . 115
5.3.1 Time Delay Evaluation . 115
5.3.2 Code Size Evaluation . 124

6 System Comparison 126
6.1 Other Works . 126

6.1.1 J2ME application-layer end-to-end security architecture 127
6.1.2 Lightweight security for mobile commerce transactions 128
6.1.3 Internet Keyed Payment Protocols 131
6.1.4 Secure Electronic Transaction protocol 132

6.2 Architecture Comparison . 133
6.3 Time Delay Comparison . 139

7 Conclusions and Future Work 142

Glossary 157

References 158

Appendix 170

ix

List of Tables

2.1 Authentication methods and their properties. 37
2.2 Applications for DSA, RSA, and ECDSA. 48

3.1 The security properties (Merz, 2002). 63
3.2 Security, Technology and Solution. 71
3.3 Key size (bits): the comparison between (DSA or RSA) vs ECDSA (Boneh

& Daswani, 1999; Lopez & Dahab, 2000b). 72

5.1 The simulation environment. 103
5.2 Business Record in Transaction. 111
5.3 Cryptography Implementation. 114
5.4 The mobile device emulators. 114
5.5 The average time delay (ms). 121

6.1 Architecture Comparison. 135
6.2 The mobile device models employed in JASA, Kilas, and SA2pMP. 139
6.3 The time delay caused by ECDSA implementation: Kilas and SA2pMP. . . 141

x

List of Figures

2.1 The major mobile payment players (Karnouskos, 2004). 22
2.2 AES Shiftrows Transformation (Stallings, 2006). 43
2.3 Digital Signature (Stallings, 2006). 47

3.1 Four-layer structure of mobile payment participants. 57
3.2 (A) Four-party mobile payment model (Peiro, Asokan, Steiner, & Waidner,

1998). (B) Three-party mobile payment model (Ham, Choi, Xie, Lee, &
Kim, 2002). 59

3.3 Two-party mobile payment model. 60
3.4 The Three-layer network model for mobile payments. 62
3.5 An Onion Layer Framework for m-commerce security (Wei et al., 2006). . . 66
3.6 Security Map. 68

4.1 The network module of SA2pMP. 79
4.2 The lightweight cryptography scheme for SA2pMP. 81
4.3 The service chain in a mobile banking transaction. 87
4.4 The key management strategy for the digital signature. 89
4.5 (A) The private key stored in JAR. (B) The private key stored in RMS. . . . 93
4.6 The mobile banking process. 95
4.7 The mobile banking module. 96
4.8 (A) The mobile client architecture. (B) The mobile client work process. . . 97
4.9 The mobile banking platform server’s architecture. 99

5.1 The secured work flow between the mobile client and the bank server. . . . 107
5.2 The variables’ transformation process. 112
5.3 The time delay on Nokia S60 Emulator Platform (ms). 119
5.4 The time delay on Sony Ericsson Z800 Emulator Platform (ms). 120
5.5 The time delay on Sun WTK 2.5.2 QwertyDevice Emulator Platform (ms). . 120
5.6 The time delay evaluated based on Nielsen Criteria. 122
5.7 The time delay evaluated based on Roto and Oulasvirta Criteria. 123

6.1 The system architecture adopted from the LSM (Lam, Chung, Gu, & Sun,
2003). 129

xi

Chapter 1

Introduction

With the development of computer technologies and wireless communications, more peo-

ple are carrying mobile devices. Such devices are rapidly becoming both cheaper and more

powerful. A single mobile device can now be employed not only as a cell phone, but also

as a GPS, a camera, a music and video player, a text messenger and an Internet connection

device (Wilcox, 2005). However, security concerns have so far hindered mobile devices

from playing larger roles in financial transactions. The goal of this research is to design

and demonstrate a new and secure approach to support payment transactions over a mobile

device.

1.1 Motivation

Mobile networking applications allow customers to gain network access anytime and al-

most anywhere. “The number of people worldwide who possess mobile devices is hurtling

toward the two billion mark, and the amount continues to grow, and grow rapidly. It will

exceed the number of people who hold bank accounts. It will also exceed the number

of people who carry credit cards.” (Global Information Inc., 2005) Service providers will

compete in this marketplace by offering lower prices but, more importantly, more and better

services, including promising opportunities in financial services.

Within financial services, the mobile payment is the fundamental transaction and can

be defined as any payment transaction which involves a mobile device (Deans, 2004). With

the growing prevalence of electronic commerce, mobile commerce, and the widespread

use of mobile devices, mobile payments have already been predicted to have a bright future

1

in becoming a successful mobile service (Ondrus & Pigneur, 2005). “Eventually, mobile

device-based payment transactions will surpass card-based payment transaction.” (Bruene,

2007). Ultimately, mobile payments will allow users to pay anyone, anywhere at anytime

for any purpose.

1.2 Current Limitations

Security is always a challenge. According to the Unisys Security Index 2008 1, seventy one

percent of the 13,296 consumers surveyed in fourteen countries would not consider online

banking or shopping via mobile devices due to security concerns. Less than ten percent

of respondents currently employ mobile devices to perform money transfers, credit-card

transactions or deposits (Sacco, 2008). Secure strategies are essential to convince mobile

users and financial service providers to make use of mobile payment transactions.

Designing a security architecture to protect mobile payment transactions requires trade-

offs between security and practicality. A monetary transaction needs comprehensive pro-

tection for confidentiality, authentication, integrity and non-repudiation (Park & Song,

2001), which normally requires considerable computational resources. Unfortunately, mo-

bile devices have relatively limited computational resources (less memory, lower CPU

speed and an inconvenient I/O interface) compared to PCs (Lai, P.Lin, & Huang, 2006).

Therefore, designing a security architecture suitable for resource-limited mobile devices

and wireless networks is an important challenge to the success of mobile payment.

Currently several research projects, as well as products on the global level, aim to sup-

port emerging two-party mobile payment solutions (e.g., VISA and MasterCard, 1997;

Janson, 2007; Itani & Kayssi, 2004; Lam et al., 2003). Hardware and software providers
1The Unisys Security Index provides a recurring, statistical measure of consumer concern about four areas

of security: national, financial, Internet and personal safety. (http://www.unisyssecurityindex.com/)

2

for the mobile market, as well as mobile network operators (MNO) and financial service

providers, have attempted to specify guidelines for such systems (Karnouskos & Vilmos,

2004). However, no technique has yet been widely accepted for practical implementation.

One may argue that with improving technology it will soon be possible to transplant

heavyweight security architectures simply from PC applications to mobile devices. How-

ever, current top-end devices cost around $300 (MobileMentalism.com, 2009) which is

too expensive for many people, especially those from economically underdeveloped ar-

eas. Some software providers and cryptography scientists are taking a different approach,

looking for lightweight security strategies capable of running with limited computational

resources. These strategies are able to contribute security protection for payment transac-

tions; meanwhile, due to savings on computational resources, the strategies can be imple-

mented in most middle-end, or even low-end, mobile devices. These lightweight architec-

tures can be adapted to top-end mobile devices as well. The key problem of this approach

is how to balance security with practicality on mobile devices. Once this problem is solved,

the popularity of the technology will lead to a lower cost in building the architecture, and

may also contribute to forming a large global consumer market.

Another problem facing current two-party mobile payment systems lies in the mobile

service technologies employed in payment transactions. The existing mobile payment sys-

tems are mostly based on the Short Messaging Service (SMS) or the Wireless Application

Protocol (WAP) (Kuwayama, 2008). However, SMS and WAP have technical limitations

that make security architectures very difficult (refer to Subsections 2.2.1, 2.2.2). Although

SMS and WAP are likely to dominate mobile payments, the downloadable applications,

with their own verifiable security, offer the greatest promise for the future (Bhise, 2009).

3

1.3 Problem Statement

The objective of this thesis is to design and demonstrate a new security architecture for

two-party mobile payment transactions, carried out over resource-limited mobile devices

and wireless networks. In existing research focusing on security for mobile payment trans-

actions, there is no solution with an appropriate balance between security and practicality.

Some approaches are transplanted from PC-based security strategies, offering good security

protection, but are too computationally complex and too time-consuming to be applied to

resource-limited mobile devices. Other research offers more computationally lightweight

approaches; these solutions generally perform well on resource-limited mobile devices but

fail to provide comprehensive security for payment transactions. This thesis contributes a

solution offering a good balance between security issues and practical implementations.

A new security architecture is proposed to provide comprehensive security by satisfying

the four key requirements of confidentiality, authentication, integrity and non-repudiation

for two-party mobile payment transactions; meanwhile, it offers acceptable performance on

resource-limited mobile devices. The proposed architecture is computationally lightweight

and compatible with a wide range of mobile devices. The proposed architecture can also

be implemented as a downloadable application, which avoids limitations existing in SMS-

or WAP-based approaches.

1.4 Research Scope

The research aims to provide an application layer architecture for ensuring security during

a mobile payment transaction. A mobile payment transaction that has only two participants

is defined as a two-party mobile payment transaction. In this work a two-party mobile

4

payment transaction model is employed, in which payment transactions are carried out

between a resource-limited mobile device and a resource-rich business computer server

via a wide-ranging wireless network (Itani & Kayssi, 2004). Two-party mobile payment

transactions, as defined here, have a wide range of applications, such as mobile banking

or mobile stock trading. The mobile device is recognized as a resource-limited handheld

device, with wireless network connectivity, Internet function, lower-speed CPU and the

ability to run Java applications. The business server processing usually has none of these

limitations. Mobile Phone Networks are employed in this research to provide wide-range

wireless networks, such as the General Packet Radio Service (GPRS). In this thesis a mobile

banking scenario is used to demonstrate the architecture. The architecture is provided in

the form of an application package based on the Java ME platform, as Java ME is the

predominant mobile service technology and has been supported by a wide range of mobile

device operating systems for a number of years (Riggs & Vandenbrink, 2001).

1.5 Research Contributions

The thesis attempts to offer guidance in matters of designing an application architecture for

two-party mobile payment transactions over resource-limited mobile devices. The main

contribution is designing a practical security architecture on the application layer. The

proposed security architecture is for two-party mobile payment transactions, referred to as

SA2pMP. It employs a lightweight cryptography scheme combining a public-key cryptog-

raphy algorithm (ECDSA) and a Symmetric-key cryptography algorithm (AES), a multi-

factor authentication mechanism and a distributed transaction log strategy. SA2pMP sat-

isfies comprehensive security requirements (confidentiality, authentication, integrity and

non-repudiation) for a two-party payment transaction, and is suitable for the current resource-

5

limited environment of mobile devices and wireless networks.

The simulation demonstrates that the proposed architecture can be practically imple-

mented in a resource-limited mobile device. The proposed architecture employs a Java ME

based downloadable software application that can be easily installed in a wide range of

mobile devices without any hardware upgrading.

The thesis also contributes to the literature on security models. A Four-layer model

of mobile payment participants based on Karnouskos (Karnouskos, 2004) clarifies how

participants are involved in mobile payment transactions. An improved research model

based on Onion Layer Framework (Wei et al., 2006) is proposed.

1.6 System Development

To measure the practicality of the proposed architecture (SA2pMP), a two-party mobile

payment system (mobile banking) was simulated on an IBM IntelliStation M Pro PC, with

Pentium 4 CPU 2.80 GHz and 2 GB RAM. The operating system was Windows XP Pro-

fessional SP3.

Three Java ME enabled mobile device emulators, Nokia S60 Emulator (Nokia, 2009),

Sony Ericsson Emulator (Sony Ericsson, n.d.), and Sun WTK 2.5.2 CLDC simulator (Sun

Microsystems, 2009), were employed for simulation. A Java EE application based on

the Apache HTTP Server 2.2, cooperating with Tomcat 5.0, was developed as a banking

business service. MySQL Server 5.1 was used as the database server.

The program was developed using NetBeans IDE 6.02 and Eclipse SDK 3.4.13. The

implementation of cryptography algorithms was aided by the third party cryptography API
2http://www.netbeans.org/
3http://www.eclipse.org/

6

provider referred to as Bouncy Castle4.

The evaluation considered both the time delay and the code size. The evaluation on

the time delay shows whether the architecture performs efficiently enough to be accepted

by the public, while the evaluation on the code size determines if the architecture can

be implemented in limited storage in mobile devices. The detailed evaluation shows that

SA2pMP can be feasibly implemented on a Java ME enabled mobile device for secure

two-party mobile transactions such as mobile payments.

1.7 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 In this chapter, background knowledge is introduced. Since the development

of wireless network technologies leads the appearance and development of mobile pay-

ment transactions, wireless network technologies are introduced first, with a focus on the

mobile phone network. Several mobile service technologies are then introduced, including

SMS, WAP, and Java ME. Mobile service technologies provide the customer with options

in building mobile payment systems. In the next an overview of mobile payments and

mobile payment models is introduced. Since a mobile payment requires a mobile device,

a description of the current status of mobile devices is provided. Several operating sys-

tems for mobile devices are introduced as well. A section is provided especially for Java

ME since the proposed architecture is based on Java ME. This section provides a rela-

tively comprehensive introduction to Java ME, including the Connected Limited Device

Configuration (CLDC), the Mobile Information Device Profile (MIDP), the MIDlet, and
4http://www.bouncycastle.org

7

the Record Management System (RMS). This is followed by the topic of security. As

a strong authentication strategy is necessary for a payment system, related background

knowledge of authentication is introduced. Both Single-Factor Authentication (SFA) and

Multi-Factor Authentication (MFA) are described. Finally, background knowledge of cryp-

tography is introduced, including basic cryptography concepts, Symmetric-key cryptogra-

phy, and Public-key cryptography. Some cryptography algorithms that can be employed in

the proposed security architecture are also described, as is a comparison of these two cat-

egories. Since the proposed architecture is implemented with the software, the advantages

and limitations of software encryption are explained.

Chapter 3 This chapter analyzes security requirements and describes how the proposed

architecture is designed to provide comprehensive security for two-party mobile transac-

tions, with a focus on mobile payment transactions. A description of the scope and limita-

tions of this research is included. In the context of the system design, the mobile devices,

the two-party mobile payments, the wireless networks, and the application layer are clearly

defined. To clarify how participants are related to a mobile payment, a Four-layer model of

mobile payment participants is proposed. The security requirements which the architecture

needs to fulfill are then outlined. Based on an Onion Layer Framework (Wei et al., 2006)

and the security objectives (Merz, 2002), a security map is proposed to guide the present

research. The results of the requirement analysis are explained in this chapter. The tech-

nical solutions for system design are recommended from four perspectives: cryptography,

protection of authentication, protection of non-repudiation, and the proposed implementa-

tion.

Chapter 4 In this chapter a new Security Architecture for Two-party Mobile Payment

(SA2pMP) is presented. This begins with a description of a detailed network module.

8

There are three main security strategies involved in the SA2pMP security architecture: a

lightweight cryptography scheme, a multi-factor authentication strategy, and a distributed

transaction log strategy. Corresponding to these strategies, a key management strategy

is proposed to protect two pairs of keys for the cryptography algorithms. As the mobile

banking transaction is a typical two-party mobile payment, SA2pMP is explained in the

context of a mobile bank. For the readers’ convenience, the beginning of this chapter

describes the notations for this thesis.

Chapter 5 This chapter presents how the proposed architecture is simulated on PCs.

The business scenario for implementing SA2pMP is a mobile banking transaction consist-

ing of money transfer. The hardware and software environment for system simulation is

described, followed by an introduction to the specific implementation. The specific eval-

uations on the time delay and the code size are also explained. Based on evaluations on

both the time delay and the code size, SA2pMP is demonstrated to have practical applica-

tions in Java ME enabled CLDC-1.1 mobile devices, although some visual or multi-modal

feedback needs to be considered for some applications.

Chapter 6 This chapter provides comparisons between SA2pMP and related work in

terms of security and practicality. A J2ME application-layer security architecture (JASA)

proposed by Itani and Kayssi (2004), a lightweight security mechanism (LSM) proposed by

Lam et al. (2003), the iKP protocols proposed by Janson (2007) and Bellare et al. (2000),

and SET (VISA and MasterCard, 1997) are first introduced as the comparable candidates,

followed by their advantages and limitations. Comparisons are made based on the archi-

tecture design, time delay and code size for measuring the security and practicality of the

architecture. Based on the comparison, the security and practicality advantages of SA2pMP

in protecting two-party mobile payment transactions over resource-limited mobile devices

9

are presented.

Chapter 7 This chapter is a conclusion with suggestions for areas of future work.

10

Chapter 2

Background

In this chapter background information is provided for wireless network technologies in

Section 2.1, mobile service technologies in Section 2.2, mobile payment in Section 2.3

and the current state of mobile devices in Section 2.4. A description of Java ME is pro-

vided in Section 2.5, followed by an introduction of authentication in Section 2.6. Finally,

cryptography is introduced in Section 2.7.

2.1 Wireless Network Technologies

The focus of this work is on transactions over wireless networks, which are normally pro-

vided by mobile network operators. Wireless networks are categorized as low-power, local-

area systems or high-power, wide-area systems (Pahlavan & Levesque, 2005). Wireless

local area networks (WLANs) are low-power, local-area systems. In contrast, high-power,

wide-areas systems are intended to serve large numbers of users who require portability

and mobility over wide areas. The mobile phone network (MPN) is the best example of the

high-power, wide-areas systems.

The wireless local area network (WLAN) is a wireless alternative to a computer local

area network (LAN) designed to provide coverage in a small area, such as a building,

home, or office. The main attraction is the flexibility and mobility supported by a WLAN.

Compared to MPN where a frequency (channel) is allocated, users in a WLAN have to

share frequencies (Ferro & Potorti, 2005).

Not constrained to voice data, data communication over MPN has visibly developed.

Since a MPN covers a wider area than a WLAN, mobile payment transactions with a MPN

11

can provide more convenience, mobility and portability than over a WLAN; therefore,

MPN is viewed as more suitable to support mobile transactions than WLAN.

Today MPN are based on either the Global System for Mobile Communication (GSM)

or its derivative standards (such as GPRS), or on the Code Division Multiple Access (CDMA).

A more specific introduction to MPNs is provided in the following.

2.1.1 Mobile Phone Network

Mobile applications need a wireless communication network. As one of two major types

of wireless networks, the mobile phone network (MPN) is believed to have a much higher

penetration than WLAN (Parson & Schaeffler, 2001).

MPN is a radio network consisting of a number of cells, each of which is served by one

or more fixed transmitters (Parson & Schaeffler, 2001). A mobile telephone or any other

mobile device that connects to an MPN will be recognized as a mobile station. A MPN

covers a wider area than a WLAN.

MPNs have evolved through several generations of mobile technologies, from first-

generation (1G) to second-generation (2G / 2.5G), and third-generation (3G). For example,

a large majority of Rogers’1 customers use the services on second-generation (2G / 2.5G)

MPNs. Some of the mainstream standards for second-generation technology are the Global

System for Mobile Communication (GSM), the Code Division Multiple Access (CDMA),

and the General Packet Radio System (GPRS). These commonly used standards support

mobile payment transactions in different levels.
1http://www.rogers.com

12

Global System for Mobile Communication

The Global System for Mobile Communication (GSM) is a second generation standard for

mobile communication developed by the European Telecommunications Standards Insti-

tute (ETSI) with final ownership belonging to the Third Generation Partnership Project

(3GPP) (Vyas & O’Grady, 2001). In GSM, the user is provided not only with a fre-

quency band over which to transmit but also a time interval during the communication.

GSM is the most widespread mobile standard currently utilized in Europe and the Asia-

Pacific region. Several companies have adopted GSM in the United States. In Canada, two

main carriers, Microcell (Fido)2 and Rogers Wireless (around 2001) operate with GSM

(CanadianContent, n.d.).

GSM is able to provide users several services as follows (Scourias, 2003):

• Telecommunication services: Currently the most basic telecommunication service

supported by GSM is the mobile telephone.

• Data Services:

– Internet Services: GSM users can send and receive data at rates up to 9.6 Kbps;

– Short Message Service: SMS is a bidirectional service for short alphanumeric

(up to 160 bytes) messages;

– Fax: Sending and receiving fax messages using a GSM phone and a laptop

computer;

– Secure LAN Access: Securing access to emails, faxes and file transfer to a cor-

porate LAN.

• Supplementary Services: Such services include call forwarding, call barring, caller

identification and multiparty conversation (Vyas & O’Grady, 2001).
2http://www.microcell.ca

13

GSM is limited in its low data transmission speed and low bandwidth of data services.

Other limitations include the fact that the charge for using GSM is based on the on-line

duration and reconnection is required for each session. These limitations make it diffi-

cult to use GSM as the main stream network environment for real-time mobile payment

transactions.

General Packet Radio Service

In contrast to GSM, the General Packet Radio Service (GPRS) charges only for data re-

ceived and has much more stable connectivity (McKitterick & Dowling, 2003). GPRS is

classified as a 2.5G technology, which means a technology between 2G and 3G. It is an ex-

tended service of the GSM network that offers the ability of surfing Internet using a phone

at a slightly higher speed than GSM. GPRS Internet surfing speeds range from 9.6 Kbps to

171.2 Kbps (McKitterick & Dowling, 2003). GPRS can be considered as an overlay net-

work on the GSM networks, adding the extra network elements on the GSM infrastructure.

A phone with support capacities and a subscription from a supporting network operator is

required to operate with GPRS.

The benefit of higher speed and more stable connectivity makes GPRS more suitable

for operating mobile applications in real time. GPRS applications include Internet access,

email, fax, unified messaging, and Short Messaging Service (SMS). The design of the

proposed architecture can be considered to run on a GPRS network environment. For more

details about GPRS, refer to Sanders, Thorens, Reisky, Rulik, and Deylitz (2003).

14

Code Division Multiple Access

As a competitor to GSM, Code Division Multiple Access (CDMA) is a proprietary stan-

dard for mobile communication3. CDMA was originally proposed by Qualcomm4, and

subsequently developed by Ericsson5. CDMA is a wide-band, spread spectrum technology,

which means a signal is transmitted on a bandwidth considerably larger than the frequency

content of the original information (Vyas & O’Grady, 2001). CDMA allows each user in

each cell to transmit on the same frequency channel and at the same time (Glisic & Leppa-

nen, 1997). A unique code is assigned to all conversation. CDMA has been the dominant

network standard for North America and parts of Asia. For example, some of largest mo-

bile carriers in Canada provide CDMA, such as Bell Mobility6, TELUS Mobility7, and

SaskTel8.

A CDMA call starts with a standard rate of 9.6 Kbps, which is then spread to a trans-

mitted rate of about 1.23 Mbps (McKitterick & Dowling, 2003). That means CDMA has

a higher speed than GSM in 2G technology. The benefit of higher speed makes CDMA an

option for running the proposed architecture.

Third Generation and Fourth Generation

Companies are introducing the third generation technology as 3G, a generic term for a

significant step in mobile technology development. The formal standard for 3G is the In-

ternational Mobile Telecommunications 2000 (IMT-2000) in the International Telecommu-

nication Union (ITU) family. The three optional modes for the 3G standard are Wideband
3GSM is an open standard
4http://www.qualcomm.com/
5http://www.sonyericsson.com
6http://www.bell.ca
7http://www.telus.ca
8http://www.sasktel.com/

15

Code Division Multiple Access (W-CDMA)9 (Europe and the Asian GSM countries), Code

Division Multiple Access (CDMA) (North America), and Time Division Duplex/Code Di-

vision Multiple Access (TDD/CDMA) (China) (McKitterick & Dowling, 2003). It is ex-

pected that IMT-2000 will provide higher transmission rates for 3G: a minimum speed of

2 Mbps for stationary or walking users, and 348 Kbps in a moving vehicle10 (ITU, 2005).

3G means not only an optimized voice service, but also well suited data communication.

With 3G, users get a better support on data communication, such as Internet, electronic

commerce, and multimedia communications.

1G, 2G, and 3G systems are likely to co-exist for some time. Following the paradigm

of generational changes, the fourth generation (4G) was foreseen to emerge between 2010

and 2015 as an ultra-high-speed broadband wireless network (Bohlin et al., 2004). A very

high-speed wireless access of 100 Mbps to 1 Gbps is expected to be provided by 4G mobile

communications systems (Adachi, Garg, Takaoka, & Takeda, 2005).

Higher transaction speed provides users better support for data communication. No

doubt, more mobile applications such as mobile commerce or multimedia communications

will move toward business success with the development of wireless network technologies.

We can assume that a mobile architecture designed for the previous generation can also

applied to present or future generations. The proposed architecture in this thesis is able

to run with good performance in 3G or 4G network environments, although it is designed

primarily for the current GPRS.

Different wireless network technologies support different mobile service technologies.

The different mobile service technologies are able to fulfill the requirement for mobile

payment applications at different levels. The following provides an introduction to mobile
9W-CDMA is also referred to as Universal Mobile Telephone System (UMTS).

10Second-generation systems only provide speeds ranging from 9.6 Kbps to 28.8 Kbps.

16

service technologies.

2.2 Mobile Service Technologies

Generational updates for wireless networks enable users to experience various mobile ser-

vices or applications. Some mobile services or applications offer the opportunity to carry

out various types of mobile transactions. This section introduces some popular mobile

service technologies, including SMS, WAP, and Java ME.

2.2.1 Short Messaging Service

Short Messaging Service (SMS) is a part of the GSM standard and responsible for sending

and receiving short text messages with a limited length to and from mobile phones. It is

also presented on most other digital cellular networks such as CDMA and tends to operate

in a similar fashion on each network. SMS enables two-way short messages to be sent

between GSM subscribers. Using gateways, it is also possible to interchange messages

with other systems such as Internet email and the Web.

Currently, SMS is one of the most common and affordable messaging tools for cus-

tomers. It is not necessary to install any additional software. The banks and other financial

sectors can easily send real-time messages to customers. SMS has already been employed

in banks to provide mobile services (GoMoNews, 2009a, 2009b; Kuwayama, 2008).

However, SMS has some limitations. SMS limits alphanumeric messages to 160 char-

acters and does not offer a secured environment (Mobile Marketing Association, 2009).

These limitations mean that SMS can only serve part of the banking business such as ad-

vertising or client alerts, but for business requiring high security SMS has poor performance

17

as it does not provide a secured environment.

2.2.2 Wireless Application Protocol

The Wireless Application Protocol (WAP) was developed by the WAP Forum11, which

has over 500 members. In June 1997, Unwired Planet12, along with Ericsson13, Nokia14,

and Motorola15 announced the formation of the WAP Forum (Mann, Sbihli, & NetLibrary,

Inc, 2002). WAP-2.0, as a re-engineering of WAP, was released in 2002. (More detailed

information about WAP can be found on each of the founder companies’ websites.)

WAP is an open standard for applications over wireless networks. It specifies a series

of protocols covering all the protocol layers from the transport to the presentation levels.

WAP provides a mechanism for displaying Internet information on a mobile phone or any

wireless device by translating Internet information into a format which can be displayed

in a resource-limited mobile device (Vyas & O’Grady, 2001). To access Internet content

the mobile device needs to be WAP-enabled, and Internet content should be described in

Wireless Markup Language (WML) format. A WAP gateway is also essential between the

client mobile device and the WML host server, with the goal to translate the WAP request.

WML is a mobile equivalent to HTML for web pages.

WAP enabled devices can be handheld digital wireless devices such as mobile phones,

pagers, two-way radios, smart phones, and communicators. WAP can work with most

wireless networks such as GSM, CDMA, and GPRS. It can also be built on any operating

system including PalmOS, EPOC, Windows CE, and JavaOS (WAP Forum, 2002).
11http://www.wapforum.org/what/technical.htm
12http://www.phone.com
13http://www.ericsson.com/se/
14http://www.nokia.com
15http://www.motorola.com

18

Although WAP is designed for handheld wireless devices ranging from low-end to high-

end, it has some technical limitations. Limited to simple layout of text, images, and input

controls, WAP has not provided the expected support for multimedia. Second, WAP is

an application which transmits a request to the server. When network connections are

dropped, developers have no control over the alert message. Thirdly, a WAP application

works only when the phone is connected to WML server, since the WAP browser relies on

a WML server to provide the WAP content. These limitations make it inappropriate for

implementing a security architecture on mobile devices.

2.2.3 Java ME

The Java Platform, Micro Edition (Java ME) was developed specifically for small mobile

devices ranging from smart cards to personal digital assistants (PDAs). Categorized as a

mobile service technology, Java ME has the benefit of being cross-platform, and is currently

the standard for all mobile devices. For these reasons, Java ME is employed to construct

the proposed architecture (see section 2.5 for details).

2.3 Mobile Payment

This thesis aims to provide an architecture for securing two-party mobile payment transac-

tions. However, the proposed architecture is suggested to extend to other two-party mobile

transaction applications. In this section an introduction focusing primarily on mobile pay-

ment transactions is provided with an overview of mobile payment, followed by an intro-

duction to some popular mobile payment models. Finally, some existing mobile payment

protocols are presented.

19

2.3.1 Mobile Payment Overview

A mobile payment can be defined as any payment transaction which involves a mobile

device (Deans, 2004). With the growing prevalence of electronic commerce, mobile com-

merce and the widespread use of mobile devices, mobile payments have already been pre-

dicted to have a bright future in becoming a successful mobile service (Ondrus & Pigneur,

2005).

In the financial industry, the number of people worldwide who possess hand-held de-

vices is beyond two billion, and the number continues to grow rapidly, exceeding the num-

ber of people with bank accounts and credit cards (Global Information Inc., 2005). Based

on a survey provided by Aite Group LLC. in March 2007, among twenty-two of the top 100

U.S. deposit institutions, over ninety percent of banks, consider client convenience to be a

top driver behind the adoption of mobile banking capabilities (Aite Group, 2007). Mobile

devices are playing an increasing role in consumers’ lives, and banks already recognize

the benefits of deploying mobile banking solutions, which increase their own competitive

capabilities. According to TowerGroup Inc.16, the number of people using their phones for

banking activities will be driven up to more than 53 million by 2013 (American Banker,

2009).

Although many observers are projecting that cell phones and PDAs will soon replace

wallets and pocketbooks (FSTC Press Releases, 2007), the mobile payment application

has not been as successful as anticipated. This can be partially explained by the youth of

the market and a lack of standards (Ondrus & Pigneur, 2005). Mobile payment system

designers are confronting a large challenge related to security.

In a general mobile payment service, both practicality and security are important fac-

tors. Therefore, an acceptable mobile payment platform should balance the requirements
16TowerGroup Inc. is an independent research firm owned by MasterCard Inc.

20

coming from both sides. Unfortunately there is currently no widely accepted protocol or

architecture for mobile payments.

2.3.2 Mobile Payment Models

Gao et al. (2005) Model

Existing mobile payment systems can be classified into two types (Gao, Cai, Patel, & Shim,

2005). The first type of mobile payment system is mobile point of sale (POS) system that

enables customers to purchase products on vending machines with their mobile devices.

The second type is account-based payment systems which can be mobile phone-based,

smart card, or credit card mobile payment systems, which is the focus of this research.

Karnouskos Model

Figure 2.1 depicts the parties involved in mobile payments (Karnouskos, 2004).

According to Karnouskos Model, the client receives the service of mobile devices from

the merchant. In most cases, the client pays the merchant for this service. The merchant

acts as an intermediary between the client and the service providers.

The transaction between the service provider and the client involves the other players.

The mobile network operators are in charge of the wireless network. They have a large

client base and influence all parties involved in a mobile payment. However, they cannot

be fully responsible for the mobile payment system, as they have limited experience in

payment services. The financial sector has the required experience with an understanding

of the complexities of financial transactions (Laukkanen & Lauronen, 2005). The main

21

Figure 2.1: The major mobile payment players (Karnouskos, 2004).

players in the financial sector include banks, credit card companies, and other financial

institutions (For example, PayPal17) (Herzberg, 2003).

The device manufacturers produce the mobile phones that are used by the customers.

They control the technology and capabilities of the end-device, which affects the imple-

mentation and deployment of the mobile payment services (Karnouskos, 2004). Device

manufacturers collaborate in defining mobile device capabilities, leading to the develop-

ment of devices such as mobile devices and PDAs (Herzberg, 2003).

Another player involved in mobile payment is the software provider. They contribute

to the implementation of a mobile payment infrastructure by producing standard compliant

software that will connect the different parts of the mobile payment process (Karnouskos,

2004). The government, the last player, is not directly involved with mobile payment but

sets standards and regulations for the other players in mobile payments (Karnouskos, 2004).
17http://www.paypal.com

22

According to (Karnouskos, 2004), to ensure that mobile payments are successful and

to maintain the efficiency of the services, all players must cooperate and stay open-minded

to the development of new technologies and models.

This work aims to design a security architecture for two-party mobile payments which

can be extended to ensure security for other two-party mobile transactions, rather than to

provide a transaction model for mobile payment; however, it is indispensable for the work

to clarify the transaction model between several parties involved in a mobile payment.

Although Karnouskos summarized the related parties in a mobile payment, they do not

clarify how these different participants are related to a mobile payment, and on which level

each participant is involved. This limitation leads this work to extend the model suggested

by Karnouskos (2004) to a Four-layer model of mobile payment participants. The Four-

layer model can be used to analyze the transaction relationship between the participants

involved in a payment transaction; meanwhile, it can also be employed to demonstrate

that this work on two-party mobile transactions can be extended to research on multi-party

mobile transactions, especially on mobile payment transactions.

The detail of the Four-layer model can be found in 3.1.2.

2.4 Mobile Devices

In a mobile application via wireless networks, a mobile device plays a vital role on the

client’s side of the transaction. In this section, an overview of mobile devices is provided,

followed by a introduction of popular mobile operating systems running in mobile devices.

23

2.4.1 Mobile Devices’ Overview

A mobile device is a wireless communication tool that offers users advanced computing

capabilities which are often same as a PC functionality (Nambiar, Lu, & Liang, 2004).

Normally a mobile device is the size of pocket, making it easy to carry.

Electronic commerce is used to share business information, maintain business relation-

ships, and conduct business transactions via telecommunications networks (Zwass, 1996).

A major factor that defines an electronic commerce system as being mobile is the support of

mobile devices as a transaction platform for end users (Lam et al., 2003). In order to attain

high penetration into mobile commerce, end user convenience is a major concern. Mo-

bile devices such as pocket PCs and smart phones are attractive options for the following

reasons (Ginevan, 2002):

• low-cost,

• low battery consumption,

• highly portable,

• wireless capability,

• reasonable computing and display capability for simple transactions, and

• instantaneous power up (no lengthy boot up latency).

Today a large number of different mobile devices exist, but most differences are ad-

dressed by the integration of Java Virtual Machines (JVM). The Java Platform, Micro

Edition (Java ME) allows a fast deployment of applications that “compile once and run

anywhere” (Tillich & Großschadl, 2004). Hence, most of today’s devices conform to Java

ME.

24

In this research, it is assumed that the mobile device is a Java-ME enabled phone. The

specific definition of mobile device in this research is given in subsection 3.1.1.

2.4.2 Mobile Operating Systems

A mobile operating system is an operating system for a mobile device, which provides a

software platform to run application programs. Although most mobile operating systems

have been in the alliance supporting Java, they have some differences in performance in

running Java applications. The proposed architecture in this research is built on mobile

devices with Java ME. The typical mobile operating systems include Symbian, Windows

Mobile, Palm, Linux, Android, iPhone OS and BlackBerry OS.

Symbian OS

Symbian OS is a proprietary operating system for mobile devices. It is associated with

libraries, user interface frameworks, and reference implementations of common tools for

programming. Originally it was produced by Symbian Ltd. owned by Nokia, Sony Erics-

son18, Panasonic19, and Samsung20. In 2009, the Symbian Foundation was established to

create an open and complete mobile software platform and to make it available at no charge

to users (Symbian Foundation, 2009).

There are multiple platforms based upon Symbian OS that provide a software develop-

ment kit (SDK) for application developers wishing to work on a Symbian OS device. The

main ones are UIQ (User Interface Quartz) and Nokia S60. Java ME applications for Sym-
18http://www.sonyericsson.com/
19http://www.panasonic.com/
20http://www.samsung.com/

25

bian OS are developed using standard techniques and tools such as the Sun Java Wireless

Tool kits (formerly the J2ME Wireless Tool kits). They are packaged as a Java Archive

(JAR) (and possibly with a Java Application Descriptor (JAD)) files. Since Symbian OS

offers good support for Java ME, a Nokia S60 emulator running with Symbian OS was

employed in the simulation to demonstrate the practicality of the proposed architecture in

this research.

See Symbian Foundation (2009) for further details regarding Symbian OS.

Windows Mobile OS

Windows Mobile is a lighter version operating system combined with a suite of basic appli-

cations for mobile devices based on the Microsoft Win32 API. Devices that run Windows

Mobile include Pocket PCs, Smartphone, and on-board computers for certain automobiles.

It is designed to be similar to Windows desktop versions. Additionally, third-party software

development is available for Windows Mobile. Windows Mobile 6.5 is the current version

with version 7 planned for release in the Spring 2010 (Chapman, 2009).

Windows Mobile operating system supports third party software development. Devel-

opers can choose several options to deploy a mobile application on Windows Mobile. The

development of the application normally uses Visual C++ and works with the .NET Com-

pact Framework. Microsoft21 usually releases Windows Mobile Software development kits

(SDKs) which work in collaboration with their Visual Studio development environment.

Windows Mobile also includes a Java Virtual Machine to support Java applications.

Microsoft licenses Windows Mobile to a large number of mobile computer or PDA
21http://www.microsoft.com

26

manufacturers that are mostly from the PC industry, such as HP22, Cisco23,Philips24, and

LG25. However, Windows Mobile has faced problems of simplicity, robustness, synchro-

nization and memory requirements (McKitterick & Dowling, 2003). As Windows Mobile

supports Java applications, the proposed architecture is able to be implemented in Windows

Mobile.

For more details see Microsoft Corporation (2009).

Palm

Palm OS is a proprietary, embedded operating system initially developed for PDAs by Palm

Computing, Inc. in 1996. It has been implemented on a wide range of mobile devices, such

as Smartphone, handheld gaming facilities, and GPS devices. Since 2007 Palm OS has also

been referred to as Garnet OS (ACCESS Press Release, 2007).

Palm OS is designed for ease of use with a touch screen-based graphical user interface.

It is provided with a suite of basic applications for personal information management. Palm

OS Garnet applications are primarily coded in C/C++. A Java Virtual Machine (JVM) was

previously available for the Palm OS platform; however in 2008 Palm Inc. announced

that JVM would no longer be supported by Palm OS. Many successful applications can be

installed on a Palm OS device. Especially in the US, the Palm OS has a particularly wide

acceptance (McKitterick & Dowling, 2003).

Refer to Palm official website26 for details.
22http://www.hp.com
23http://www.cisco.com
24http://www.philips.com
25http://www.lg.com
26http://www.palm.com

27

Linux

Linux is a Unix-like computer operating system. Linux is one of the most popular exam-

ples of free software and open source development, available for free to modify, use, and

redistribute. Linux is used as an operating system for a wide variety of computer hardware,

including desktop computers, supercomputers, video game systems and embedded devices

such as mobile devices.

ABI Research27 indicates that more than 127 million devices will be enabled with a

commercial Linux OS by 2012, up from 8.1 million in 2007 (ABI Research, 2007). Further-

more, device shipments which incorporate Linux as a real-time operating system (RTOS)

replacement are set to grow to more than 76 million units in 2012, up from nearly zero in

2007. Linux is currently rated as a low-cost for money, license-free solution for commer-

cial smart mobile phones, and for real-time operating system replacement in middle-tier

devices (ABI Research, 2008). On mobile phones, Linux distributions support many pro-

gramming languages, including C, C++, Java, and FORTRAN. The proposed architecture

in this research can be applied to Linux-based mobile devices.

Android

Android is a set of software including an operating system, a middleware and key mobile

applications for mobile devices (Open Handset Alliance, n.d.). It was initiated by Google28

and later developed by Open Handset Alliance29. Open Handset Alliance is a group of

hardware and software developers, including Google, NTT DoCoMo30, Sprint Nextel31,
27ABI Research is a market intelligence company specializing in global connectivity and emerging tech-

nology.
28http://www.google.com
29For more details about the Open Handset Alliance, refer to http://www.openhandsetalliance.com/
30http://www.nttdocomo.com/
31Sprint Nextel is a telecommunications company, based in Kansas, USA

28

and HTC32, whose goal is to create a more open cell phone environment.

As an operating system, Android is lightweight with full features. Android allows de-

velopers to program in the Java language, to control the device via Google-developed Java

libraries, and to run on the Linux 2.6 Kernel. One of the more exciting and compelling fea-

tures of Android is that third-party applications are executed with the same system priority

as those that are bundled with the core system in Android (DiMarzio, 2008). Android pro-

vides developers not only software development toolkits and a well-formed library, but also

a right to access to anything that the operating system can access. An adequate Java support

has the ability to enable the implementation of the proposed architecture in Android mobile

devices.

Refer to the Android Official website33 for details .

iPhone OS

The iPhone OS, also referred to as OS X iPhone, is the operating system developed by

Apple Inc. for the iPhone and iPod Touch. On March 17, 2009, Apple presented the

blueprint for iPhone OS 3.0 (Apple Inc., 2009).

The iPhone SDK was released on March 6th, 2008. It allows developers to develop

applications for the iPhone and iPod Touch, as well as test them in an “iPhone simulator”;

however, an iPhone Developer Program fee is charged for loading an application. Apple

has not announced that they will enable Java to run on iPhone. Although Sun Microsystems

announced plans to release a Java Virtual Machine (JVM) for the iPhone OS, based on the

Java Platform, Micro Edition (Java ME), which would enable Java applications to run on

the iPhone and iPod Touch (Krill, 2008), it is clear that running Java on the iPhone is not
32www.htc.com/
33http://www.android.com/about/

29

included in the iPhone SDK agreement. However, future support for Java ME on the iPhone

looks promising. This will enable the implementation of the proposed architecture on the

iPhone.

Refer to Apple inc. official website34 for details.

BlackBerry OS

BlackBerry OS, for BlackBerry smartphones, is the proprietary software platform of the

Canadian wireless device company, Research In Motion (RIM), for their BlackBerry Smart-

phones. The BlackBerry is primarily known for its ability to send and receive e-mail, al-

though it has other functions such as a phone, camera, and media player, and includes

maps, organizer, applications, games, and Internet (Research In Motion Limited, n.d.). The

BlackBerry OS supports MIDP-2.0 and WAP 1.2.

Since the BlackBerry OS supports a Java ME based application, it provides its Java API

for third-party developers, and allows them to build software applications. It supports the

proposed architecture. However, any application using certain restricted functions requires

a digital signature in order to guarantee an authorship of the application.

For more details, refer to BlackBerry35 and RIM36 official websites.

2.5 Java ME

Java is a programming language or a platform which was originally developed by Sun

Microsystems. Java applications are compiled into byte-code and are executed on a Java
34http://www.apple.com/
35http://www.blackberry.com
36http://www.rim.com

30

virtual machine (JVM). One of the advantages of a virtual machine is that the same code

can be executed in all environments where one is located. This advantage is referred to as

cross-platform. Java ME is the abbreviation of Java Platform, Micro Edition. Since the

security architecture implemented in Java ME is proposed in this research, it is necessary

to give a more detailed introduction to Java ME. Additionally, as the Record Management

System (RMS) will be used, an overview of RMS is also provided.

2.5.1 Java ME: An Overview

Java Platform, Micro Edition (Java ME), is a collection of technologies and specifications

that create a platform fitting the requirements for mobile devices such as consumer prod-

ucts, embedded devices, and advanced mobile devices (Sun Microsystems, n.d.-a).

Java ME technology was originally created in order to deal with the constraints asso-

ciated with building applications for small devices. For this purpose Sun Microsystems37

defined the basics for Java ME technology to fit such a limited environment and make it

possible to create Java applications to run on small devices with limited memory, display

and power capacity.

Java ME platform is a collection of technologies and specifications that can be com-

bined to construct a complete Java runtime environment specifically to fit the requirements

of a particular device or market. This offers a flexibility and co-existence for all players in

the system to seamlessly cooperate to offer the most appealing experience for the end-user.

The Java ME technology is based on three elements:

1. a configuration which provides the most basic set of libraries and virtual machine

capabilities for a broad range of devices,
37http://www.sun.com/

31

2. a profile which is a set of APIs that support a narrower range of devices, and

3. an optional package which is a set of technology-specific APIs.

A Java ME application environment includes both a configuration such as the Con-

nected Limited Device Configuration (CLDC) and a profile such as the Mobile Information

Device Profile (MIDP). In addition, optional packages provide capability in specific areas

of functionality, such as wireless messaging and multimedia capture and playback. CLDC

and MIDP is introduced in the following two subsections.

2.5.2 Connected Limited Device Configuration

The Connected Limited Device Configuration (CLDC), for small devices, specifies a frame-

work for Java ME applications targeted at devices with very limited resources, such as mo-

bile phones. A more capable configuration is called the Connected Device Profile (CDC),

which was developed under Java Community Process (JCP)38.

The JCP is an open organization inclusive of active members and non-member public

participants. It was established in 1998, and is responsible for the development of Java

technology and the approval of Java technical specifications.

Based on the CLDC definition, mobile devices are normally equipped with the follow-

ing capabilities (Java Community Process, n.d.-b):

• a 16-bit/32-bit processor,

• processor speeds starting from 8-32 MHz,

• at least 160 KB of non-volatile memory allocated for the CLDC libraries and virtual

machine,
38http://www.jcp.org

32

• low power consumption, usually operating on battery power, and

• connectivity to some kind of network, often with a wireless, limited (9600 bps or

less) bandwidth.

CLDC provides the basic set of libraries and virtual-machine features which are in every

implementation of a Java ME environment. Combined with some profiles, such as MIDP,

CLDC gives developers a reliable Java platform for developing applications for mobile

devices.

2.5.3 Mobile Information Device Profile

The Mobile Information Device Profile (MIDP) is another key element of Java ME. It

specifies a profile for the use of Java ME on mobile devices. It defines a platform for

dynamically and securely deploying optimized, graphical, networked applications.

MIDP-2.0 is backwardly compatible with MIDP 1.0, with the same target of small,

high-volume wireless devices and with the same objective to maintain a tight control on

growth in core APIs (Java Community Process, n.d.-a). MIDP focuses on mobile com-

merce and service-based applications. MIDP-2.0 has more advanced benefits of (Sun Mi-

crosystems, n.d.-c):

• rich user interface capabilities,

• multimedia and game functionality,

• extensive connectivity,

• over-the-air provisioning, and

• end-to-end security.

33

MIDP occupies the layer above CLDC, and define a standard Java runtime environment

for most mobile devices.

2.5.4 MIDlets

A MIDlet is a Java application, running on MIDP compliant devices (Debbabi, Talhi, &

Zhioua, 2007). Programmers writing a MIDlet are restricted to CLDC APIs, MIDP APIs

and optional packages. A MIDlet consists of at least one Java class which is derived from

the abstract class javax.microedition.midlet.MIDlet.

A group of MIDlets can be collected into one MIDlet suite. The MIDlet suite is pack-

aged and implemented into a mobile device as a single entry that can only be removed as

a group. MIDlets in the same MIDlet suite share static and runtime resources. Normally

a MIDlet suite is packaged in a Java Archive (JAR) file. The package information is pro-

vided in a Java Application Descriptor (JAD) file. A MIDlet is designed for simulating a

two-party mobile payment transaction to evaluate the proposed architecture.

2.5.5 Record Management System

MIDP specification requires that a platform provides persistent storage via nonvolatile

memory. The storage can be viewed as a simple record-oriented database, referred to as

the record management system (RMS) (S. Ghosh, 2002). RMS in MIDP manages several

Record Stores, which are simply flat files containing binary data. Every piece of data in a

record has an associated numeric record ID that is characteristic to each record store. Each

record store has a name that must be unique within MIDlet suite that created it. MIDlets

can access only record stores created by themselves or others in the same suite. When a

34

MIDlet suite is removed from a device, all its associated record stores are deleted.

The javax.microedition.rms package contains a RecordStore class that provides rudi-

mentary access to data in a record store. Record store implementation ensures no corrup-

tion of data will occur with multiple accesses. The record store is time-stamped to mark

the last modification time, and maintains a version which is an integer that is incremented

for each operation that modifies the contents of the record store. Each record in a record

store is an array of bytes and has a unique integer identifier. The RMS APIs (Mahmoud,

2000; Giguere, 2004):

1. allow MIDlets to manipulate (add and remove) records within a record store,

2. allow MIDlets in the same application to share records, and

3. support to prohibit sharing records between different applications (in MIDP-2.0).

RMS is a good choice of designers wanting to store persistent data in mobile devices.

In the proposed architecture, RMS is an option for storing the encryption key in the key

management strategy. Refer to Subsection 4.1.6 for design details.

2.6 Authentication

A mobile transaction system, particularly for banking payments, requires an advanced se-

curity architecture which implements a strong strategy to protect authentication. In this

section, an introduction to authentication is provided. Authentication is defined, followed

by an introduction to single-factor authentication (SFA) and multi-factor authentication

(MFA).

35

2.6.1 Authentication: Definition

In computer security, authentication is used to ensure that the communicating entity is who

they are claiming to be (Stallings, 2006). According to the Federal Information Processing

Standards (FIPS) 200, authentication verifies “the identity of a user, process, or device,

often as a prerequisite to allowing access to resources in an information system” (NIST,

2006).

Authentication is regularly confused with the related term of authorization. The dif-

ference between authentication and authorization is that authentication is the process of

verifying one’s identity while authorization is the process of verifying that a known entity

has the authority to perform certain operations. Based on authentication, systems or users

are offered different levels of authority (Krawetz, 2006).

Authentication can be accomplished by using any combination of three kinds of factors

(Maiwarld, 2004; Schneider, n.d.):

• something you have: ID card, security token, software token, phone, or cell phone,

• something you know: a password, pass phrase, or personal identification number

(PIN), or

• something you are: fingerprint or retinal pattern, DNA sequence (there are assorted

definitions for what is sufficient), signature or voice recognition, unique bio-electric

signals, or another biometric identifier.

A broad range of authentication methods and properties is shown in Table 2.1.

Categorization based on how many authentication factor(s) be employed, authentication

strategies can be divided into single-factor authentication and multi-factor authentication.

36

Table 2.1: Authentication methods and their properties.

Method Examples Properties
What you know ID,PIN, Shared, Forgotten

Password Easy to guess
What you have Cards, Badges, Lost

Keys Shared,Duplicated,
What you know and have PIN for ATM Shared, Weak PIN
Something unique Fingerprint, face, Not possible to share

voiceprint Repudiation unlikely;
Forging difficult;
Cannot be lost or stolen

2.6.2 Single-factor Authentication

Single-factor authentication (SFA) is a traditional security process that requires one of the

elements (something you have, something you know, or something you are) (Maiwarld,

2004) before granting access rights to the user.

Offering a password is the most basic method for single-factor authentication. Like the

Password Authentication Protocol (PAP), it offers a basic access strategy for logging onto a

network (Hassell, 2002). A table of usernames and passwords is stored on a server. When

users log on, their usernames and passwords are sent to the server for verification. SFA

security relies on the diligence of users, who should take additional precautions, such as

creating a strong password and protecting it from access by others. However, SFA security

has its limitations. “Something you have” can be stolen, while “Something you know”

can be guessed, shared or lost to other methods. “Something you are” is commonly the

strongest method; however, the implementation is costly and there is still the possibility of

access being compromised (EDS.com, n.d.).

37

2.6.3 Multi-factor Authentication

For applications that require greater security, it is advisable to implement multi-factor au-

thentication (MFA), which is sometimes referred to as a strong authentication.

In U.S. Government National Information Assurance Glossary (The United States Fed-

eral Government, 2006), strong authentication is defined as a “layered authentication ap-

proach relying on two or more authenticators to establish the identity of an originator or

receiver of information.” This means that a system with a strong authentication property

must require multiple factors for user authentication and use advanced technology to verify

a user’s identity. Financial sectors such as banks hold high risk systems.

Given the limitations of single-factor authentication, the logical alternative is two-factor

authentication, in which two of the elements are applied. An example is a system that is

employed to authenticate the automated teller machine (ATM) users (Firesmith, 2003). The

system combines a card (what you have) with a personal identification number (what you

know).

Requiring more than one factor significantly enhances security because single-factor

authentication by itself may not be sufficient to perform authentication that can be relied on.

Accordingly, properly designed and implemented multi-factor authentication methods are

more reliable. To offer secured and reliable services to their customers, financial systems,

such as payment systems, should employ multi-factor strategy for authentication.

2.7 Cryptography

Cryptography is the art and science of securing messages so unintended audiences cannot

read, understand, or alter the message (Tipton & Krause, 2003). A security architecture

38

must have a cryptography implementation, as cryptography helps provide confidentiality,

integrity and even non-repudiation. The goal for proposing the architecture is to design

a mobile payment security architecture which is able to be implemented practically on

resource-limited mobile devices and is compatible on wireless networks. The employment

of cryptography strategy contributes to sufficient security required by a monetary architec-

ture but often imposes computational requirements that cannot be met by resource-limited

environments. In this section basic cryptography concepts are introduced, followed by

Symmetric-key cryptography and Public-key cryptography. The representative algorithms

are introduced in these subsections. Symmetric-key cryptography and Public-key cryptog-

raphy are compared and finally the advantages in software implementation of cryptography

is analyzed.

2.7.1 Basic Cryptography Concepts

The fundamental objective of cryptography is to enable two parties to communicate over

an insecure channel while ensuring that a third party cannot understand what is being said

(Stinson, 2002). Modern cryptography concerns the construction of information systems

that are robust against malicious attempts to make these systems divert from their pre-

scribed functionality (Goldreich, 2005).

A pair of transformations exists in cryptography: encryption and decryption. Encryp-

tion converts a meaningful chunk of data (plaintext) to a meaningless chunk of data (ci-

phertext), which is unreadable to anybody except those possessing knowledge of the data

or its key, while decryption transforms the ciphertext back into the plaintext. Plaintext has

a wide range of meanings, such as a stream of bits, a text file, or a digitized voice or image

(Schneier, 1994). In this research, Plaintext is a text message.

39

A cryptography algorithm is a mathematical function which is used to perform en-

cryption and decryption. It can be implemented in software, or hardware, or both. The

cryptography algorithm used between communication parties should be the same. A com-

munication party is someone who sends, receives, or manipulates data. In a two-party com-

munication, a sender is the transmitter of data, who encrypts the plaintext and sends out the

ciphertext. A receiver is the intended recipient of information, who decrypts the ciphertext

and recovers the plaintext. The intruder, a third party who tries to recover the plaintext, is

one of the two most publicized threats to security (the other is viruses) (Stallings, 2006).

Most cryptographic systems incorporate random number algorithms. A random number

is seeded with a key, which is used by cryptography algorithms to vary the ciphertext. This

means that plaintext encrypted with different keys generates different ciphertexts (Krawetz,

2006). Without the correct key, the intruder cannot recover the plaintext.

Commonly, two forms of cryptography are in use: Symmetric-key cryptography and

Public-key cryptography. Subsection 2.7.2 provides an introduction to Symmetric-key

cryptography and subsection 2.7.3 gives a survey of Public-key cryptography.

2.7.2 Symmetric-key Cryptography

Symmetric-key cryptography works on the basis that the same key is shared between the

sender and the receiver. Alice (a sender) and Bob (a receiver) are used as an example to

describe a two-party communication with the Symmetric-key encryption:

1. Alice and Bob share a secret key.

2. Alice encrypts the plaintext with the key, and sends the ciphertext to Bob.

3. Bob decrypts the ciphertext using the same key.

40

The two primary types of Symmetric-key cryptography are stream ciphers and block

ciphers. A block cipher transforms a block of plaintext with a fixed size into a block

of ciphertext with equal length. A block size is typically of 64 or 128 bits (Stallings,

2006). The Advanced Encryption Standard (AES) is an example of block ciphers. A

stream cipher operates on data stream. It encrypts a digital data stream one bit or one byte

at a time. The Rivest Cipher #4 (RC4) is a stream cipher (Krawetz, 2006). The byte-by-

byte encoding method of stream ciphers is not suitable for software implementation. It

also affects significantly the throughput of hardware implementations. As a result, current

stream ciphers have been designed to support a certain length of plaintext to be encrypted

at a time.

Schneier (1994) outlines the advantages and disadvantages of block ciphers and stream

ciphers. The primary benefit of block ciphers is that the security is stronger in principle,

whereas stream ciphers are more easily analyzed mathematically and therefore less secure.

The main limitation of block ciphers is that the software and hardware implementations are

more complicated than stream ciphers. Because of the security concerns, block ciphers are

considered in the present study.

The main problem with Symmetric-key cryptography is that the sender and receiver

have to share the same secret key. If they are in separate physical locations, they must

trust a courier, or a phone system, or some other transmission medium to protect the secret

key. Anyone who overhears or intercepts the secret key in transition can read, modify, or

falsify messages encrypted with that key. Key management is in charge of the generation,

transmission and storage of keys. Because all keys in a Symmetric-key cryptography al-

gorithm must be kept secret, it is essential to also provide secure key management for a

Symmetric-key cryptography approach. Refer to (Stallings, 2006) for further information.

AES is a well-known Symmetric-key cryptography algorithm, and is described in detail

in the following subsection.

41

Advanced Encryption Standard

The Advanced Encryption Standard (AES), a typical symmetric-key cryptography algo-

rithm, was published by the National Institute of Standards and Technology (NIST) in

2001. It was intended to replace the Data Encryption Standard (DES), including Triple

DES as the approved standard for a wide range of applications and platforms (Stallings,

2006). AES was originally published as Rijndael algorithm (Daemen & Rijmen, 1999,

2006), and is named after its developers, Belgian researchers Rijmen and Daemen.

AES is a symmetric block cipher algorithm, with a fixed block size of 128 bits and a

cipher key size of 128, 192, or 256 bits. AES performs four operations on a 128-bit block

of data for a certain number of repetitions. The four operations are SubBytes, ShiftRows,

MixColumns, and AddRoundKey. The number of these repetitions depends on key size.

For example, an AES algorithm is implemented to encrypt plaintext block size of 128 bits,

with cipher key size of 256 bits, then 14 rounds of these four operations are required. Every

state of AES operation can be pictured as a 4 x 4 matrix of bytes. All the intermediate

results of the 128-bit block, as well as the input and the output block, are called states. At

each stage of the transformation, the block of data is transformed from its current state to

the new state according to the different operations.

SubBytes is a simple “table lookup” operation. It uses a substitution table (S-box) to

perform a byte-by-byte substitution of the block. S-box is a 16 x 16 matrix of bytes, which

contains a permutation of all possible 256 8-bit values. InvSubBytes is the inverse operation

of SubBytes.

ShiftRows is the forward shift row transformation. Each row of the state is shifted left

over a different number. Figure 2.2 depicts that the first row of state performed a 0-byte

circular left shift. The second row performed a 1-byte circular left shift. For the third row,

a 2-byte circular left shift is performed, and a 3-byte circular left shift is performed for the

42

fourth row of state. The inverse operation of ShiftRows, InvShiftRows shifts to the right on

decryption.

Figure 2.2: AES Shiftrows Transformation (Stallings, 2006).

MixColumns operates on each column individually. Each byte of a column is mapped

into a new value. Each column is treated as a polynomial over GF(28), and is multiplied

modulo (x4 +1) by the constant polynomial

a(x) = {03}x3 +{01}x2 +{01}x+{02} (2.1)

The inverse operation of MixColumns, InvMixColumns operation is a multiplication of

each column with

b(x) = a−1(x) mod (x4 +1) = {0B}x3 +{0D}x2 +{09}x+{OE} (2.2)

AddRoundKey performs a logical XOR of the 128 bits of state with the 128 bits of the

round key. The inverse operation of AddRoundKey is to forward another AddRoundKey

transformation, as the XOR operation is its own inverse.

43

The AES algorithm is required to be royalty-free for use worldwide and offers security

of a sufficient level to protect data for the next 20 to 30 years. AES is simple for the design

purpose, and supports a cipher key size varying from 128 bits to 256 bits. Although the

number of rounds is fixed in the specifications, this can be modified as a parameter in case

of security problems (Daemen & Rijmen, 1999). AES can be implemented on a Smart

Card using a short count of code and cycles (Sanchez-Avila & Sanchez-Reillol, 2001).

When comparing speed and reliability in implementations, it has better performance in both

software and hardware than the other symmetric algorithms such as MARS (submitted by

IBM Research), RC6 (submitted by RSA Security), and Twofish (Schneier). (Dray, 2000;

IBM MARS Team, n.d.; Rivest, Robshaw, Sidney, & Yin, n.d.; Schneier et al., 1998).

AES also has other advantages mentioned below. The proposed architecture employs

AES as part of its cryptography solutions. (Refer to Subsection 3.4.1 for details.)

2.7.3 Public-key Cryptography

The concept of Public-key cryptography was proposed in 1976 by Diffie and Hellman

(Diffie & Hellman, 1976) in order to solve the key management problems. In their tech-

nique, each party gets a pair of keys, one of them is referred to as the public key and the

other as the private key. Each party’s public key is published while the private key remains

secret. It is not necessary to share the secret key between the sender and receiver. All

communications involve only public keys and no private key is ever transmitted. It is no

longer necessary to trust some communication channels to be secure against eavesdropping

or betrayal. The only requirement is that public keys are associated with their users in a

trusted manner (for instance, in a trusted database).

In Public-key cryptography the two-party communication encryption works as follows:

44

1. Alice gets Bob’s public key from the database.

2. Alice encrypts her message using Bob’s public key and sends it to Bob.

3. Bob then decrypts Alice’s message using his private key.

The public key is not always used for encryption. The private key can also be employed

to create ciphertext. In this scenario, anybody holding the public key can decode the ci-

phertext. This approach is commonly referred to as a digital signature. The sender cannot

falsely claim that they did not encode a plaintext, and all receivers know that the plaintext

is authentic (Krawetz, 2006).

A comprehensive approach therefore involves a sender who may use private and public

keys for encoding a message. The receiver’s public key ensures message confidentiality,

and the sender’s private key signs the encryption, which ensures non-repudiation. (Refer to

section 3.2 for information about confidentiality and non-repudiation.)

The digital signature is one application of Public-key cryptography, employing the pri-

vate key to encrypt a message or message digest, while making use of the public key to

decrypt the ciphertext. The following provides an introduction to digital signatures.

Digital Signature

A digital signature is not only used to protect data integrity but also used to achieve au-

thentication and non-repudiation (Stallings, 2006). A digital signature mechanism can be

employed to authenticate the identity of the sender of a message, and sometimes to ensure

that the original content of the message that has been sent is unchanged. Digital signatures

can protect the two parties against each other, because there is no complete trust between

sender and receiver. The digital signature approach is analogous to a handwriting signature

45

on a paper document (Stallings, 2006).

A digital signature uses a private key to encrypt the messages and a public key to decrypt

messages. By comparing the signature with the original message it is possible to see that

the message has not been changed and that it has been signed using a particular key-pair.

In digital signature schemes, three main properties are required:

• verification of the sender at the time of the signature,

• authentication of the content at the time of the signature, and

• verifiability by third parties to resolve disputes between sender and receiver.

Bob and Alice can again be used to illustrate this concept. Alice is supposed to send

a message to Bob. Alice has to provide Bob the assurance that the message is unchanged

from what she sent and that it is really from Alice. To do so, Alice uses her private-key

of a key pair to encrypt the message to produce a digital signature. Alice then sends the

message along with this digital signature. As discussed in 2.7.3, most digital signature

implementation in practice only signs the message digest, not the entire message.

Since Alice’s public-key is the only key that can decrypt that message, Bob constitutes

a successful decryption with Alice’s Public-key making a digital signature verification,

which means that Alice’s private key did encrypt the message. In practice, the message

digest which Bob makes the hash value A from the received message is compared with the

hash value B decrypted from the digital signature with Alice’s public-key. If these two hash

values match each other, the received message is successfully verified. In other words, the

message Bob received is unchanged from what Alice sent and the message Bob received

is really from Alice. Figure 2.7.3 illustrates the digital signature signing and verification

process.

A digital signature includes three process steps: a key generation process, a signature

signing process, and a signature verifying process.

46

Figure 2.3: Digital Signature (Stallings, 2006).

• A key generation algorithm selects a private key uniformly at random from a set of

possible private keys. The algorithm outputs the private key and a corresponding

public key.

• A signing algorithm produces a digital signature for the given message (or a message

digest) by a private key.

• A signature verifying algorithm outputs a Boolean value representing accept or reject,

with the input values of a given message (or a message digest), a public key, and a

digital signature.

Some public-key cryptography algorithms are suitable for digital signature and/or en-

cryption/decryption. Table 2.2 indicates the applications supported by the Digital Signa-

ture Algorithm (DSA), the Rivest-Shamir-Adleman algorithm (RSA) and the Elliptic Curve

Digital Signature Algorithm (ECDSA) discussed in this chapter.

47

Table 2.2: Applications for DSA, RSA, and ECDSA.

Algorithm Encrypt/Decrypt Digital Signature
DSA X

√

RSA
√ √

ECDSA X
√

Although the digital signature application is the only application for the public-key

cryptography algorithms considered in the present research, there are options for various

digital signature algorithms that can be implemented in the architecture. In the following

paragraphs, typical digital signature algorithms (DSA, RSA, and ECDSA) are introduced.

Because of the benefit of shorter key size and higher security level, ECDSA is employed in

the cryptography solutions of the proposed architecture. (The cryptography solutions are

described in detail in subsection 3.4.1.)

Digital Signature Algorithm In 1991, the National Institute of Standards and Technol-

ogy (NIST) published the Digital Signature Standard (DSS) in Federal Information Pro-

cessing Standard FIPS 186 (Stallings, 2006). An expanded version of DSS was published

as FIPS 186-2 in 2000 (see (NIST, 2000)). The DSS makes use of SHA to present a digital

signature technique, which is the Digital Signature Algorithm (DSA). Unlike RSA, DSA

only provide digital signature function used for encryption or key exchange.

DSA is based on the difficulty of computing discrete logarithms. The schemes on which

DSA is based are originally presented by ElGamal (1985)) and Schnorr (1991). Stallings

(2006) and NIST (2000) provides further details of DSA.

The Rivest-Shamir-Adleman Algorithm The Rivest-Shamir-Adleman algorithm (RSA)

is for Public-key cryptography. It was the first algorithm for digital signature and encryp-

tion/decryption. RSA has been widely employed in electronic commerce protocols. The

transaction in an electronic commerce is considered secure if given sufficiently long keys

48

and up-to-date implementations.

RSA was publicly developed in 1977 by Rivest, Shamir, and Adleman at MIT and then

published in 1978 (Rivest, Shamir, & Adleman, 1978). The security of RSA relies on the

fact that it is hard to factorize a product of two large prime numbers. RSA can be used to

implement digital signatures. The Security Division of EMC39 has published two different

signature schemes, RSASSA-PKCS1-v1 5 and RSASSA-PSS, in the PKCS#1 specifica-

tion (RSA Laboratories, 2002). RSASSA-PSS is the recommended algorithm as its encod-

ing uses a random value, therefore, it is more robust against attacks (RSA Laboratories,

2002).

RSA is a block cipher in which the plaintext and the ciphertext are integers between 0

and n−1 for some number n (Stallings, 2006). A typical size for the number n is 1024 bits.

The security of RSA with a key size of 1024 bits is equivalent to a symmetric setting of 80

bits (Barker, Barker, Burr, Polk, & Smid, 2007).

Refer to (Stallings, 2006; RSA Laboratories, 2002; Rivest et al., 1978) for further in-

formation of RSA.

ECDSA Elliptic curve cryptography (ECC) is an approach to Public-key cryptography

based on the algebraic structure of elliptic curves over finite fields (Koblitz, 1987). Com-

pared to RSA, ECC appears to provide equal security using much smaller key size (approx-

imately one-eighth the key size), thus reducing processing overhead (Stallings, 2006). For

example, a 160-bit ECC key provides the same level of security as a 1024-bit RSA key,

and 224-bit ECC is equivalent to 2048-bit RSA (Chang, Eberle, Gupta, & Gura, n.d.). This

means ECC offers faster computations, lower power consumption and memory, and band-

width savings. These properties are useful for mobile devices which are typically limited

in the CPU resources, power and network connectivity. Thus, ECC is theoretically more
39http://www.emc.com

49

suitable for securing mobile banking than RSA.

Elliptic curves used in cryptography are defined over two kinds of fields:

• prime curves: GF(p), p is a large prime number

• binary curves: GF(2m), 2m element are binary polynomials

Elliptic Curve DSA (ECDSA) is one approach to realize the Digital Signature Algo-

rithm (DSA). ECDSA was first proposed by Vanstone (1992), in response to NIST’s request

for public comments on the proposal for DSS. It was accepted in 1998 as an ISO (Inter-

national Standards Organization) standard (ISO 14888-3), accepted in 1999 as an ANSI

(American National Standards Institute) standard (ANSI X9.62), and accepted in 2000 as

an IEEE (Institute of Electrical and Electronics Engineers) standard (IEEE 1363-2000) and

a FIPS standard (FIPS 186-2) (Johnson, Menezes, & Vanstone, 2001).

Good overviews of elliptic curve cryptography can be further found in Koblitz, Menezes,

and Vanstone (2000) and Lopez and Dahab (2000a).

Hash Function

Hash functions are employed in conjunction with Public-key cryptography algorithms to

produce digital signatures. In the following an introduction to hash functions is provided.

When implementing a digital signature, it is unusual to encrypt a whole message for

security and performance reasons. The proposed architecture employs a hash function to

create a message digest, which is used to generate the digital signature for the message.

A hash function works on a message with an arbitrary length, and returns a fixed-size

hash value (Delfs & Knebl, 2002). This hash value is sometimes called message digest or

digital fingerprint. The ideal cryptography hash function has four characteristics:

50

• it should be simple to calculate the message digest for any given message,

• it should be computationally impractical to find a message with a given message

digest,

• it should be computationally impractical to alter a message without modifying its

message digest, and

• it should be computationally impractical to find two different messages with the same

message digest.

Hash functions are widely used currently. The message digest can be used in creating

digital signature schemes. For security and performance reasons, most digital signature al-

gorithms specify only to sign the digest of the message, not the entire message. In addition,

a hash function can be used to control the integrity of a message. Determining whether

any changes have been made to a message (or a file), for example, can be accomplished by

comparing message digests calculated before, and after, transmission or any other event.

Secure Hash Algorithm The Secure Hash Algorithm (SHA) is the most widely used

hash function. It was developed by NIST and published as FIPS 180 in 1993. In 1995,

a revised version was published as FIPS 180-1. This revised version is generally called

SHA-1 or Secure Hash Standard in the standards document. Currently the updated Secure

Hash Standard is FIPS 180-3, which was published in October 2008 (NIST, 2008).

SHA-1 is the most established of the SHA hash functions, and has been employed in

widely used security applications and protocols. SHA-1 calculates a condensed representa-

tion of a message. When a message of any length < 264 bits is input, the SHA-1 produces

a 160-bit message digest (NIST, 1995).

51

2.7.4 A Comparison of Symmetric-key and Public-key

The two commonly used categories are Symmetric-key cryptography and Public-key cryp-

tography. Each of them has its own advantages and limitations. In this subsection, a brief

comparison of these two cryptography categories is provided.

The main advantage of Public-key cryptography is increased security: only the private

key needs to remain secret (Mollin, 2003). In contrast, a Symmetric-key cryptography

system has to transmit the secret keys (either manually or via a communication channel);

therefore, it is possible for an intruder to discover the secret keys during their transmission.

A disadvantage of using Public-key cryptography for encryption is efficiency. There

are many popular Symmetric-key encryption algorithms significantly faster than any ex-

isting Public-key encryption algorithms such as DES. The trade-off process between oper-

ation speed and security level must be evaluated, particularly for resource-limited mobile

devices. The good news is that Public-key cryptography computation capabilities and op-

eration speed are increasing significantly with the development of mobile device manufac-

turing technology.

It is not necessary to choose between Public-key and Symmetric-key cryptography. A

hybrid of Public-key and Symmetric-key cryptography combines the benefits of both. One

type of hybrid cryptography involves a symmetric key algorithm being used to hide the ob-

ject while a public key mechanism is used to manage the keys of this symmetric algorithm

(Tipton & Krause, 2007). It is a good combination for implementing Public-key cryptog-

raphy along with Symmetric-key cryptography on the systems that make use of mobile

devices. In the proposed architecture, both Public-key and Symmetric-key cryptography

algorithms are employed.

As the present research is proposed on a software application level architecture, it is

52

necessary to explain the rationale for software implementation for cryptography.

2.7.5 Software Encryption

In this subsection an argument for the benefits of software encryption is explained.

It is necessary to consider hardware or software when an encryption is implemented or

integrated in an electronic commerce. Each cryptography algorithm, which can be imple-

mented in either hardware or software, has its related costs and benefits.

Generally, hardware encryption has better performance than software encryption. Un-

fortunately, there are several problems with implementing cryptography algorithms in hard-

ware. One problem is that cryptography hardware is not ubiquitous, cheap, or readily ex-

portable (Nahum, O’Malley, Orman, & Schroeppel, 1995). It is impractical to add more

than one piece of cryptography hardware to a given network facility, such as a mobile

device or a network server.

The software encryption is currently becoming prevalent in business applications. Any

encryption algorithm can be implemented in software. The advantages of software imple-

mentations relate to cost and portability. The software implementations can be inexpen-

sively implemented and copied on many computational facilities. Furthermore, regarding

mobile devices, almost all manufacturers support the standard of Java ME technology run-

ning on their products. The popularity of Java ME, the adoption of the security and Trust

Services API (Sun Microsystems, n.d.-b), and some third party security software develop-

ment kits (SDKs) contribute a good basis for software encryption.

This chapter provided background knowledge related to mobile transaction security.

The next chapter analyzes security requirements and explains the model for designing ar-

53

chitecture to provide comprehensive security for two-party mobile payment transactions.

54

Chapter 3

System Analysis

This chapter analyzes security requirements and describes how the proposed architecture is

designed to provide a comprehensive security for two-party mobile payment transactions.

Constraints and limitations of the present research are described in section 3.1, basic secu-

rity objectives which the proposed architecture is to protect are introduced in section 3.2,

and the security map model based on an Onion Layer framework is explained in section

3.3. Finally the strategy and solutions employed in the proposed architecture are suggested

in section 3.4.

3.1 Research Constraints

In this section, mobile devices, the payment type and the wireless network environment are

defined, followed by an explanation of the reason for the proposed architecture focusing on

the application layer security.

3.1.1 Mobile Devices

In this research, mobile devices are recognized as handheld devices with capabilities such

as General Packet Radio Service (GPRS) connectivity, Internet browsing, and basic compu-

tation. Smart phones or Personal Data Assistants (PDAs) are examples of mobile devices

in the present research. Another characteristic of mobile devices in this research is that

they are Java enabled. (Refer to section 2.4 for background knowledge of mobile devices.)

Based on MIDP-2.0 and CLDC-1.1, a suitable mobile device is assumed to possess a mini-

55

mum base memory of 192 KB and a 16/32 bit processor with a speed ranging from 8 to 32

MHz.

A mobile device is often viewed as a part of the identity of an individual (Roussos,

Peterson, & Patel, 2003). In this research we treat a mobile device in a similar way as,

for example, a credit card; that is, each person has their own credit card and would not

normally share it with anyone. It is assumed that the same situation will hold true for a

mobile device. In such a way a mobile device can be considered in a sense to be a suitable

personal identifier.

3.1.2 Two-party mobile payments

A mobile payment can be defined as any payment transaction which involves a mobile

device (Deans, 2004). Although much research on mobile payments places emphasis on

three parties or more (Peiro et al., 1998; Ham et al., 2002), the transaction between two

parties is the basic payment transaction. Therefore, the model on which the present research

focuses is the two-party mobile payment transaction.

Mobile Payment Participant Layers

Karnouskos (2004) outline a mobile payment model in which a group of payment partic-

ipants are involved. (Refer to Section 2.3 for details.) Although this model summarizes

a mobile payment in relation to several different participants, it does not clarify how the

various participants are related to a mobile payment, and on what level of involvement a

participant is related to a mobile payment.

To address this limitation these participants are categorized into four layers based on

56

how they are related to a mobile payment. These four layers include the direct payment

layer, the network layer, the technical component layer and the supervision layer. Figure

3.1 depicts the four layers of participants involved in the mobile payment process.

Figure 3.1: Four-layer structure of mobile payment participants.

• Direct Payment Layer: The client, the financial sector and the merchant are the di-

rect participants who are involved in a mobile payment. Therefore, there are three

participants in the direct payment layer.

• Network Layer: A mobile payment is based on a wireless network, which is main-

tained by the mobile network operator. The mobile network operator is located in the

network layer.

• Technical Component Layer: The software provider, the device manufacturer and the

service provider are located in the technical component layer. The software provider

57

produces software components that connect different participants in the direct pay-

ment layer in a mobile payment transaction, while the device manufacturer provides

the mobile devices as the client facility component. The service provider designs

the specific payment service component for the direct payment players. The tech-

nical components assist the execution of a payment transaction. These component

providers offer a technical environment to run mobile payment transactions.

• Supervision Layer: The government is not directly involved in mobile payments

but outlines standards and ordinances for all other participants. For example, the

government may prevent the service providers from holding a monopoly, and can

regulate the device manufacturer and the software provider to ensure compatibility

between devices (Karnouskos, 2004). Therefore, the government is located in the

supervision layer.

Based on the Four-layer mobile payment participant model, the mobile payment can be

categorized according to how many participants are involved in the direct payment layer.

X-Party Mobile Payment

The intent of a payment is to transfer monetary value from the payer to the payee (Peiro

et al., 1998). The immediate participants in a payment are located in the direct payment

layer in the Four-layer structure of mobile payment participants (see Figure 3.1). The

type of payment varies based on how many participants are involved in a specific payment

transaction. Defining a mobile payment model is generally based on the combination of

the participants in the direct payment layer.

In the literature there are several models for mobile payment transactions. This research

is not aim to make a review on every mobile payment model, so only three of which are

58

depicted in the thesis.

Four-party mobile payment model Peiro et al. (1998) propose a payment model which

is composed of four directly involved parties: the payer, the payee, the issuer (the payer’s

financial sector), and the acquirer (the payee’s financial sector). Figure 3.2 (A) illustrates

this four-party mobile payment model. The financial sectors may be banks, and the goal of

the payment is to transfer money from the payer to the payee.

(A) (B)

Figure 3.2: (A) Four-party mobile payment model (Peiro et al., 1998). (B) Three-party
mobile payment model (Ham et al., 2002).

Three-party mobile payment model A mobile payment model involving three parties

is specified by Ham et al. (2002). Figure 3.2 (B) illustrates this three-party mobile payment

model. The client, the merchant, and the financial sector communicate with each other,

exchanging information to conduct a payment transaction from the client to the merchant.

Two-party mobile payment model This thesis discusses a simple but special payment

model that involves only the client and the financial sector in the direct payment layer.

The model is referred to in this thesis as the two-party mobile payment model. Mobile

banking can be viewed as typical two-party mobile payments. Illustrated in Figure 3.1,

59

the financial sector and the client are bonded in a broken line boundary. It shows, in a

special context (such as mobile banking), only the financial sector and the client carrying

out payment transactions with each other. Therefore, three or four participants in the direct

payment layer are combined by several two-party models. Figure 3.3 illustrates the two-

party mobile payment model.

Figure 3.3: Two-party mobile payment model.

The detailed transaction process is varied among different X-party mobile payments;

however, the similar basic characteristic among different payment models is that the infor-

mation (monetary value, order information, or real goods) exchange takes place between

two parties. Thus, the discussion of the security architecture for two-party mobile payments

will contribute to realizing the security for other mobile payment models. Meanwhile, the

study of a two-party mobile payment can be extended to any two-party mobile transactions.

Although the present research outlined in this thesis is based on the direct payment

layer in the Four-layer structure depicted in Figure 3.1, participants of the other layers need

to be considered for a full-fledged payment system. From the perspective of the network

layer, the mobile network operator is a participant in the process of mobile payments. The

proposed security architecture is implemented for a mobile bank scenario in this research.

60

A mobile payment is one of the most characteristic mobile transactions focusing on

service in the financial field. The transaction model in mobile payments can be extended

and employed in other mobile transaction application areas, such as mobile stocks and

mobile games. Although this research targets a mobile payment transaction, the proposed

architecture is expected to serve in other mobile transaction applications.

3.1.3 Wireless Networks

In mobile payment transactions, mobile devices communicate with the payment service of

the financial section via wireless networks. Presently there are two common channels that

can be recognized as wireless networks, which include the wireless local area network and

the mobile phone network (Varshney & Vetter, 2000). Background on this area is given in

section 2.1.

The mobile phone network (MPN) is a radio network which consists of a number of

cells. Each cell is served by one or more fixed transmitters (Parson & Schaeffler, 2001).

A mobile telephone or any other mobile device that connects to a mobile phone network

is recognized as a mobile station. The mobile phone network is designed to cover a wider

area. At present, the HTTP(s) applications requiring Internet access can be operated on the

mobile phone network.

Considering the typical mobile payment user, the mobile phone network is believed

to have a much higher penetration compared to the WLAN (Parson & Schaeffler, 2001).

Therefore, the current research targets the more popularly used mobile phone network.

61

3.1.4 Application Layer

The current mobile payment network environment is depicted in a three-layer network

model (see in Figure 3.4). The bottom layer is a physical infrastructure layer, which sup-

ports mobile payment transactions with hardware facilities. The middle layer is a protocol

layer, which covers current network protocols such as HTTP or WAP. A business applica-

tion layer occupies the top layer, which contains the software application solutions.

Figure 3.4: The Three-layer network model for mobile payments.

This research aims to protect security for two-party mobile payments on the application

layer. Generally, to provide security for two-party transactions, the solution implementation

is able to reside on the application layer (Itani & Kayssi, 2004), where the architecture in

this thesis is proposed. The security architecture of the application layer is independent of

the security protocols of the other lower layers, and the application handles all the security-

62

related functions.

Another benefit in proposing the security architecture on the application layer is that

the proposed architecture enables mobile payment systems to make use of current network

infrastructures (such as network gateways and hardware facilities) and protocols (such as

HTTP and WAP) rather than modifying them.

3.2 Security Objectives

In the scope of this research as defined above, the security objectives which an advanced

security system must fulfill are discussed in this section.

In order for payment transactions over mobile networks to gain public trust, a secure

commercial information exchange is necessary. Four properties are essential for a secured

transaction: confidentiality, authentication, integrity, and non-repudiation (Park & Song,

2001). Adopted from Merz (2002), Table 3.1 describes security objectives and some en-

abling technologies.

Table 3.1: The security properties (Merz, 2002).

security objectives Definition Technology
Confidentiality Property ensuring that transaction Encryption

information can not be viewed by
unauthorized persons

Authentication Property ensuring that the transaction Possession
information actually originates from the Knowledge
presumed transaction partner Property

Integrity Property ensuring that the transaction Digital Signatures
information remains intact during
transmission and can not be altered

Non-repudiation Property ensuring that nobody is able Digital Signature
to claim that the transaction on his/her
behalf was made without their knowledge

63

The information in the table is explained as follows:

• Confidentiality: Confidential information must be protected from viewing by an

unauthorized party. A system providing confidentiality removes the risks from an

eavesdropper or attacker. For example, if a short message is sent in plain text, any-

body who can intercept the message may read it, whereas an encrypted short message

ensures that the message cannot be read. Confidentiality ensures that the operation

remain private (Krawetz, 2006).

• Authentication: Authentication ensures two parties gain the right to access a system

to take part in a transaction. The purpose is to prevent anyone impersonating anyone

else. For a network communication system it is important to ensure authentication as

the two parties are not directly connected.

• Integrity: The information and systems must be guaranteed against corruption by

outside parties. With integrity the transaction information persists intact and non-

altered during transmission. A system with a high level of integrity should be difficult

to tamper with or to alter.

• Non-repudiation: The user must not be able to deny the performed transaction and

must provide proof in case that this situation occurs. Non-repudiation ensures that

the originator cannot falsely refuse or deny a transaction. Non-repudiation is an

indispensable security requirement for systems in electronic business and mobile

commerce where disputes of transactions can occur.

The goal of this research is to enable an architecture that fulfills these four security

requirements. The next section explains how to choose technologies and solutions to fulfill

these requirements.

64

3.3 System Analysis based on Security Map

This section explains how the choice of technical solutions is made. Since a secured pay-

ment system needs to fulfill at least four security requirements, it is important to find a

series of components furnishing the system with that security protection. Many researchers

make use of an “Onion Layer” model to analyze a security system. One of the Onion Layer

models is the Onion Ring framework proposed by Wei et al. (2006). Adopting the Onion

Ring framework, this thesis proposes a security map to guide the research activity and sys-

tem design. The Onion Layer Framework is described in Subsection 3.3.1; the proposed

security map and how the security map works are described in Subsection 3.3.2.

3.3.1 Onion Layer Framework

The Onion Ring Framework, an Onion Ring m-commerce security framework, is based on

VAX/OS architecture which is a popular operating system with a multi layered architecture

(Wei et al., 2006). This five-layer framework is proposed for analyzing and improving

mobile commerce security requirements and performance. It is employed as a perspective

in building the security map in the research, and provides several starting points in order to

reach proper solutions for security. The Onion Ring offers a good security performance by

coordinating and pairing access authority to increasing levels of accountability (Wei et al.,

2006). Figure 3.5 depicts an Onion Layer m-commerce security framework adopted from

Wei et al. (2006). The five layers include the security of mobile devices, language, wireless

communication access control, access management, and transactions.

According to Wei et al. (2006):

• The mobile device security layer is used to implement a security strategy for all mo-

bile communication devices. A mobile device has limitations such as being suscepti-

65

Figure 3.5: An Onion Layer Framework for m-commerce security (Wei et al., 2006).

ble to power outages, and having narrow bandwidth and low computational capacity.

This research aims to find solutions that can be used to heighten security enforcement

in this layer. As a mobile device is always utilized as a front-end facility involved

in securing payment transactions, it is vital to design authentication strategies, se-

cured channels, user-friendly payment schemes and receipt delivery in development

of mobile devices (Thanh, 2000).

• The language security layer concerns the programming language used. A secure

programming language in m-commerce requires and ensures that all programming

codes have restricted access to operations that can affect the environment (Wei et al.,

2006). Java is classified as a secure language as it is an object-oriented programming

language which permits libraries to offer secure interfaces to incoming code. In

addition, Java has a byte-code verifier which can be used in checking a program at

load time.

66

• The wireless communication access control security layer is intended to restrain mo-

bile devices from accessing wireless communication channels. Currently, some tech-

nologies have been employed to enhance security in this layer. Secure Sockets Layer

(SSL) over Global System for Mobile (GSM) mentioned by Vihinen (2004) is a good

example of security protection in this layer. The HTTP combined with SSL as Hy-

pertext Transfer Protocol Secure (HTTPs) also provides a security strategy in this

layer.

• The access management security layer can restrict resource access, audit mobile pay-

ment actions, and provide non-repudiation of transactions. A variety of technologies

that can support security functions can be utilized in this layer. Multiple authentica-

tion strategy system is one candidate choice.

• Transaction security concerns application level transaction security. At the applica-

tion level much progress can be made toward achieving transaction security by offer-

ing users authentication, logging the transaction information, and generating digital

confirmation.

The Onion Layer Framework provides programmers or system architects a starting

point to design a secured system or architecture. Some security technologies and solutions

are also suggested in the Onion Layer framework.

3.3.2 Security Map

In this subsection, a security map is proposed on the basis of the Onion Layer framework

in order to find proper technologies and solutions that are employed in designing the archi-

tecture in the present research.

67

Illustrated in Figure 3.6, the X-axis parameterizes the Onion Layer framework dis-

cussed in Subsection 3.3.1, the Y-axis represents the four security objectives explained in

Section 3.2, and each black spot on the grid represents a security component.

Figure 3.6: Security Map.

• Onion Layer Framework: Presently there are various security technologies. To

choose these security technologies, the five layers in the Onion Layer is used as

the starting-point. In Figure 3.6, the X-axis represents the five layers outlined in the

Onion Layer framework.

• Security Objectives: The present research goal is to enable the proposed architecture

68

protect the four objective security properties described in section 3.2. The Y-axis in

Figure 3.6 represents four objective security requirements. A secured architecture

should be able to meet these security requirements. The Y-axis represents the four

security properties.

• Security component: A potential secured technology employed in a secured system is

denoted as a black spot. Each spot is placed at a cross point in the security map. The

process of placing a spot at the cross point identifies a process looking for the suit-

able security technology for that requirement in a system. For example, researchers

are looking for technologies to fulfill the security requirement on non-repudiation.

The process on the security map is to place big back spots on the line signed by non-

repudiation in the Y-axis. In the X-axis, there are five fields which are considered

to be candidate solutions. In the access management security layer, as a public-key

cryptography solution (digital signature) ensures non-repudiation, a spot is placed on

the cross point of the non-repudiation line and the access line. In the same way, writ-

ing a log in the transaction security layer can be employed to meet the requirement of

non-repudiation, and so a dot can be placed on the cross point of the non-repudiation

line and the transaction line.

When the proper solutions for building a system are chosen, it is necessary to consider

the actual running environment of the system. A payment transaction system runs in a

computational environment, which includes several computational resources, such as mo-

bile device CPU, memory, and the bandwidth of wireless networks. A proper design needs

to consider these environmental factors. Since the proposed architecture is implemented for

financial transactions over mobile devices, which are resource-limited facilities, designing

a lightweight architecture that will run efficiently and feasibly is the goal of the present

research.

69

As illustrated in Figure 3.6, the research activity can be viewed as a process of mapping

secure solutions on the security map to meet the objective security requirements. Secure

technologies are chosen from the collection mentioned in the Onion Layer framework (X-

axis). The potential secured technologies can be utilized to meet one or more security ob-

jectives (Y-axis). The chosen technologies or solutions (security components) are restricted

by the particular resource environment. The most appropriate technologies are combined

to build the proposed architecture.

3.4 Analysis Result

This section describes the result of system analysis based on the security map.

Linck, Pousttchi, and Wiedemann (2006) details a number of concerns from clients re-

garding security in mobile payments. Table 3.2 is a summary of security objectives coming

from these concerns, and technologies recommended for addressing them. The third col-

umn describes the specific solutions proposed in the architecture for addressing each of the

concerns. The fourth column describes which layer the solution belongs to.

As depicted in Table 3.2, the proposed architecture employs a combination of partic-

ular security solutions to provide comprehensive security, which are explained from the

perspectives of cryptography solutions, authentication solutions and non-repudiation solu-

tions in the following.

3.4.1 Cryptography Solutions

The cryptography algorithm implementations need to be lightweight in function in the

resource-limited environment.

70

Table 3.2: Security, Technology and Solution.
Security Technology Solution Onion Layer

Objectives Number
Authentication Possession mobile device 1⃝

Knowledge PIN 3⃝
Property userid/password 4⃝

Digital Signature 4⃝
Integrity Digital Signature ECDSA 4⃝

Non-repudiation Digital Signature 4⃝
Log Business Transaction Log 5⃝

Confidentiality Encryto/Decrypto AES 4⃝

1 Column Onion Layer Number represents the layers in Onion Layer Framework:
1⃝ mobile device security, 2⃝ language security, 3⃝ wireless communication
access control security, 4⃝ access management security, 5⃝ transaction security;

2 PIN: Personal Identification Number;
3 ECDSA: Elliptic Curve Digital Signature Algorithm;
4 AES: Advanced Encryption Standard

Digital Signature Solution

First of all, the implementation of a digital signature aims to ensure the property of in-

tegrity and non-repudiation. A digital signature also assists in providing authentication.

The experiments mentioned in Stallings (2006), Jurisic and Menezes (1997) and Chang et

al. (n.d.) demonstrate that there is a computational benefit in using Elliptic Curve Cryp-

tography (ECC) with a shorter key length than RSA. (For background knowledge of ECC,

refer to 2.7.3). According to Lopez and Dahab (2000b), Boneh and Daswani (1999) and

Z. Li, Higgins, and Clement (2001), the performance of RSA digital signature and ECDSA

with software implementation on PCs and mobile devices, indicated that ECDSA is more

suitable than other public-key cryptography algorithms for the resource-limited environ-

ment. In addition, the result mentioned by Boneh and Daswani (1999); Lopez and Dahab

(2000b) demonstrates that ECDSA (with 163 bits key) is faster than RSA (with a 1024

bit key) in overall timing. As SA2pMP aims to secure mobile payment transactions over

71

mobile devices, the employment of ECDSA is an advantage.

Table 3.3: Key size (bits): the comparison between (DSA or RSA) vs ECDSA (Boneh &
Daswani, 1999; Lopez & Dahab, 2000b).

Security Bits DSA or RSA ECDSA
80 1024 160 - 223
112 2048 224 - 255
128 3072 256 - 383

Table 3.3 compares key sizes of DSA or RSA, and ECDSA. The first line in Table 3.3 is

an example. To arrive at the security level which DSA or RSA implements with a key size

of 1024 bits, ECDSA only needs a 160-to-233-bit long key for implementation. As ECDSA

has the advantage in small key size offering an equal security level when compared to RSA

and DSA, it has been chosen as the digital signature algorithm in the proposed architecture.

Data Encryption Solution

Data encryption is employed to maintain confidentiality. A symmetric-key cryptography

algorithm is employed because it is much faster than a pubic key cryptography algorithm

(refer to 2.7 for background information).

The primary advantage of public-key cryptography is its increased security and conve-

nience: private keys never need to be transmitted or revealed to anyone. In a symmetric-key

cryptography system, in contrast, the secret keys must be transmitted (either manually or

through a communication channel). A limitation of using the existing public-key cryptog-

raphy algorithms for encryption is the speed. However, there are many popular symmetric-

key encryption algorithms (such as DES and AES), which are significantly faster than any

existing public-key encryption algorithms. Choosing an encryption algorithm for resource-

limited mobile devices is a trade-off process that depends on memory size, operation effi-

72

ciency, running speed, and security level. Since the digital signature is a choice made for

this research to ensure the properties of authentication, integrity, and non-repudiation in a

payment transaction, size and efficiency are given high priority. AES is then employed in

SA2pMP to realize the encryption and decryption functions. The benefit of AES in speed

allows adequate performance of the symmetric-key cryptography algorithm even in mobile

devices. The particular solution chosen for SA2pMP is AES (Refer to 2.7.2).

3.4.2 Authentication Solutions

The proposed architecture provides a strong authentication strategy by employing multiple

factors. Based on the analysis by Schneider (n.d.), human authentication factors can be

categorized as follows (Layer number is referred to Table 3.2 and Figure 3.6).

• Something you have: Mobile devices, as physical objects, are possessed by users.

The factor occupies the layer of 1⃝ mobile device security in the Onion Layer Frame-

work.

• Something you know:

1. A password for transactions is offered by banks. Bank transactions need the

client account. Layer 4⃝ access management security covers the security factor

of username/password.

2. A Personal Identification Number (PIN) is offered by mobile network opera-

tors or mobile device providers. For example, the Subscriber Identifier Module

number of a given mobile device can be used as a PIN. PIN authentication is

part of the layer 3⃝ wireless communication access control security.

73

• Something you are or do: This makes use of behavioral and physiological charac-

teristics of the principal (Schneider, n.d.). A digital signature can be categorized

as a behavior. The employment of digital signature occupies the layer of 4⃝ access

management security.

As described above, the proposed security strategy entails a multi-factor process which

provides strong authentication security. Subsection 4.1.4 describes details of designing

multi-factor authentication strategy.

3.4.3 Non-repudiation Solutions

A complete payment system should provide appropriate dispute management services (Peiro

et al., 1998). Mobile payment transactions need to avoid false repudiation, which can be

achieved by recording a transaction log. A distributed transaction log strategy is employed

in the proposed architecture. Further details in design is offered in subsection 4.1.5. In prac-

tice, the digital signature’s implementation also contributes to ensuring non-repudiation.

3.4.4 Implementation Proposal

As described in section 3.5, Java is a secured programming language suggested by layer

2⃝ in the Onion Layer Framework. The proposed architecture, which employs a typical

client/server (mobile device/mobile payment server) prototype, makes use of Java. The

most widely supported mechanism for Java deployment on mobile devices is Java Plat-

form, Micro Edition (Java ME) (Sun Microsystems, n.d.-a). The basic set of application

programmer interfaces (APIs) is defined in CLDC 1.0 (Sun Microsystems, 2000a) and 1.1

(Sun Microsystems, 2003). MIDP is available in version 1.0 (Sun Microsystems, 2000b)

74

and version 2.0 (Java Community Process, 2002). CLDC and MIDP compose a Java run-

time environment for Java-enabled mobile devices. The proposed architecture is imple-

mented in Java ME (CLDC and MIDP) on a mobile client, with a server support, probably

implemented in Java Platform, Enterprise Edition (Java EE).

Java ME has been selected for implementing the proposed architecture for the following

additional characteristics:

1. The client software can run on mobile devices while the client is off-line. In other

words, messages need to occupy network bandwidth only after they are processed.

This method reduces the cost and the time required for network connection.

2. Although mobile devices are still recognized as having limited power, computa-

tional ability and resources as compared with desktop computers, they are devel-

oping rapidly in all these areas. It is reasonable to believe that mobile devices will

have enough computational ability to carry out off-line transactions and handle more

complex security algorithms.

3. Java ME is a standard technology, which has the advantage of running cross-platform.

A popular group of smart mobile devices support Java ME, so an architecture based

on Java will have broad market compatibility.

This chapter offers an analysis of a combination of technologies to be employed for

building the security architecture. In the next chapter, details for the system design are

discussed.

75

Chapter 4

System Design

This chapter proposes a new security architecture for Two-party Mobile Payment trans-

actions (SA2pMP). There are three main security strategies involved in SA2pMP security

architecture: a lightweight cryptography scheme, a multi-factor authentication strategy, and

a distributed transaction log strategy. Corresponding to these strategies, a key management

solution is proposed to protect two pairs of keys for cryptography algorithms. As the mo-

bile banking transaction typically involves two parties, SA2pMP is depicted in the context

of a mobile bank. Section 4.1 introduces the security architecture of SA2pMP and Section

4.2 introduces the application architecture for a mobile bank. As the proposed architecture

is designed for a specific scenario of mobile banking, the term bank is used to represent the

financial sector for convenience.

4.1 Security Architecture

This section describes the security architecture of SA2pMP. In the following, the notations

for this research is defined first, and then the network module of SA2pMP is described. The

design of the lightweight cryptography scheme, the multi-factor authentication strategy,

and the distributed transaction log strategy are introduced, followed by a description of the

key management solution.

4.1.1 Security Architecture Notations

In this subsection, general notations employed in the rest of this thesis are defined.

76

• Bank: Denotes a server computer held by the financial service participant in the

transaction.

• Client: Denotes the person using a mobile device on the client side of the transaction.

• ClientDevice: Denotes the mobile device used by the client to carry out their mobile

banking transaction.

• IDC: Denotes the identity information of the client. IDC = (SIM + PHID + ACCID).

• added identi f ier: Denotes the identity information of the client, formulated by IDC.

The added identi f ier is a combination of the SIM, PHID, and ACCID.

• TimeStamp: Denotes a time stamp.

• Gateway: Denotes the wireless gateway offered by a mobile network operator.

• Session: Denotes the HTTP session set up between Bank and ClientDevice.

• X : Denotes any participant involved in a mobile payment transaction. The X may be

ClientDevice or Bank in the context of the research.

• RKS: Denotes X’s private key which is used to generate the digital signature and to

sign the data transferred in transaction.

• PKS: Denotes X’s public key which is used to verify the digital signature in the

transaction.

• [RKS,PKS]: Denotes a digital signature key pair including a private key and a public

key.

• DS: Denotes the digital signature.

• DSign: Denotes the signing process for the digital signature.

77

• DVeri f y: Denotes the verification process for the digital signature.

• Veri f y: Denotes the process for verifying the transaction’s authentication.

• PWD: Denotes the password of the mobile device client Client, which is known only

to Client and is verifiable by Bank. For example, the debit card has its password.

• PHID: Denotes PHone IDentifier, such as the mobile phone serial number.

• ACCID: Denotes the Client’s bank account number, or ACCount IDentifier.

• PIN: Denotes the Client’s Personal Identifier Number in the mobile device.

• SIM: Denotes the Subscriber Identifier Module number of ClientDevice. Normally

SIM is offered by the related mobile network operator. For authentication purposes

this is considered to be a physical characteristic of ClientDevice.

• T D: Denotes the transaction data transferred in the transaction. T D is plain text.

• KE : Denotes the secret key for the symmetric-key cryptography algorithm.

• Encrypt: Denotes the encryption process in the symmetric-key cryptography algo-

rithm.

• Decrypt: Denotes a decryption process in the symmetric-key cryptography algo-

rithm.

• Yes/No: Denotes the transaction’s status: approved or rejected.

• msg: Denotes a message.

• h(msg): Denotes a one-way hash function for the message msg, such as SHA-1.

• T Log: Denotes the transaction log recording the transaction history in detail.

78

4.1.2 Network Module

In this subsection, the details of the network module of SA2pMP are described in detail.

Figure 4.1: The network module of SA2pMP.

There are two parties involved in a normal banking transaction, the client and the bank.

A client in a mobile banking transaction is also the mobile device holder. The mobile de-

vice communicates with the bank’s mobile server via HTTP(s). As illustrated in Figure

4.1, a mobile device connects to a network gateway through a wireless network, which

is served by a mobile network operator. For example, Rogers provides its users with data

services, which enables the mobile devices to access HTTP applications through their wire-

less networks. Wired networks connect banking systems with wireless network gateways.

Except for constraints in network bandwidth and mobile devices, the physical network in-

frastructure is transparent to the mobile banking platform. Since SA2pMP is designed for

79

the application layer, it focuses on the security of the business application layer in the three

layer network model for mobile payment which is illustrated in Figure 3.4. In other words,

SA2pMP does not make any modification to the other two layers, the protocol layer and the

physical infrastructure layer .

Mobile payments are assumed to be based on wireless networks; however, communi-

cation is achieved both by wireless and wired networks. The wireless network gateway is

a “bridge” linking wireless and wired networks. SA2pMP focuses on the area in the bro-

ken line boundary in Figure 4.1. The transaction log is physically located on the wireless

network gateway, which is explained in subsection 4.1.5.

4.1.3 Lightweight Cryptography Scheme

SA2pMP employs a lightweight cryptography scheme. The symmetric-key cryptogra-

phy algorithm (AES) contributes to the encryption, while the digital signature algorithm

(ECDSA) is used to sign the digital signature for the transaction information. As illus-

trated in Figure 4.2, the plaintext message is signed before being encrypted, which can

be referred to as “Sign-and-Encrypt”. Signing and encryption are not independent of one

another. When signing and encryption are combined, the signature layer should somehow

depend on the encryption layer, so as to reveal any tampering with the encryption layer

(Davis, 2002).

Conceptually, the independent operation makes it easy for users and programmers to

layer cryptography operations and to avoid constraining application designs of the devel-

opers. However, such independent operations make it hard to fulfill the recipient’s secu-

rity expectations. For a suitable combination, the signature layer and the encryption layer

actually need to refer to each other. The recipient needs proof that the signer and the en-

80

Figure 4.2: The lightweight cryptography scheme for SA2pMP.

81

crypter were the same sender (Davis, 2002). In SA2pMP the digital signature layer and

the encryption layer are not independent, as these two layers are connected to each other

by employing an added identifier. The other reason to cross between the signature layer

and the encryption layer is to ensure the message is sent from the appointed client to the

appointed server.

As illustrated in Figure 4.2, the communication layer refers to an open, public wireless

network environment over which data are transferred. The public wireless network envi-

ronment is a network environment which is not secure enough for payment transactions.

During a transaction, the transaction message is transferred in this unsecured network. The

public key employed in digital signature does not need to be encrypted; the public key can

be transferred over an open wireless network. The transaction information, denoted as msg,

needs to be kept away from third party eavesdropping, so both the signature layer and the

encryption layer are employed to process msg. For these reasons, SIM, PHID, and ACCID

are combined as the added identifier, which is then signed along with the message.

After the signing process, the message is encrypted by the encryption secret key KE .

The process is described by Equation 4.1.

ClientDevice : Encrypt(DSign(msg, IDC),KE) (4.1)

In Figure 4.2, the added identifier is represented by IDC. SIM ensures that the holder of

the mobile device possesses the right to access wireless network resources; SIM, together

with PHID, assures that the sender of the message is the appointed ClientDevice. ACCID

identifies the unique character of the client for the bank and each client has a bank account.

Meanwhile, ACCID is employed to identify the banking server, as banks have the informa-

tion included in their account numbers. Equation 4.2 describes IDC. It should be noted that

the + operator in Equation 4.2 denotes simple concatenation of the strings.

82

IDC = (SIM+PHID+ACCID) (4.2)

Digital Signature Layer

SA2pMP employs a digital signature to protect authentication, integrity, and non-repudiation

for a mobile banking system. A digital signature is a public-key cryptography algorithm,

which makes use of a private key to encrypt messages and a public key to decrypt them.

Normally an encryption process is referred to as a signing process for the digital signature

algorithm, while a decryption process is referred to as a verification process. (Refer to 2.7.3

for background knowledge of digital signature.)

Compared to desktop computers, mobile devices are viewed as resource-limited in com-

puting capability, CPU processor speed, memory and battery life. Factors such as the cryp-

tography’s key size and the computing efficiency need to be considered when choosing a

proper digital signature algorithm to implement in the proposed architecture. The advan-

tages of ECDSA in short key size and high-security enable it to be employed naturally in

resource-limited environments. Refer to Subsection 3.4.1 for details.

ECDSAprime192 is employed in SA2pMP. The implementation of ECDSA uses ellip-

tic curves over the prime field Zp with the key size of 192-bit. Fernandes (1999) suggests

that prime curves are best for software applications. The key size has been chosen for this

research based on recommendations by Lenstra and Verheul (1999) and JSR177 (Sun Mi-

crosystems, n.d.-b). The SHA-1 algorithm is employed for generating the message digest.

ECDSAprime192 has an equal security level to DSA with key size of 1024-bit.

83

Encryption Layer

SA2pMP utilizes a symmetric-key cryptography algorithm to ensure a secured channel and

to protect confidentiality. To encrypt a plain-text message, the symmetric-key cryptography

algorithms paralleled with the public-cryptography algorithms are chosen for the proposed

architecture. SA2pMP employs AES (with the key size of 256 bits) as the encryption algo-

rithm to protect confidentiality.

Compared to the public-key cryptography algorithms, AES has a smaller size and a

better operational speed. In the group of symmetric-key cryptography algorithms, AES

possesses obvious advantages (see 2.7.2), such as simplicity in design, variant cipher key

size, better performance in speed, and reliability in both software and hardware (Dray,

2000). For ensuring the security of the secret key, AES is a suitable implementation for

SA2pMP. (Subsection 3.4.1 explain the rationale for the choice.)

To protect the security of secret key, the strategy of Java package security or separated

hardware is suggested. The secret key security is introduced in subsection 4.1.6.

4.1.4 Multi-factor Authentication Strategy

Authentication is concerned with assuring that the communicating entity is the one that it

claims to be (Stallings, 2006). SA2pMP provides a strong authentication by a multi-factor

authentication strategy which offers four factors for protection. The numbers 1⃝ 2⃝ 3⃝ 4⃝

refer to the security layers in the security map. For details of the security layers, refer to

Table 3.2 and Figure 3.6.

• Something you have: Mobile devices, as physical objects, are possessed by users.

Currently a mobile device can be viewed as an identifier for a particular individual, in

that each individual is generally the owner of the mobile device which is not usually

84

shared with others (Roussos et al., 2003). This factor lies in Layer 1⃝ of mobile

device security.

• Something you know: The PIN is offered by mobile network operators or mobile

device providers. A PIN is used to identify a particular individual, such as the Inter-

national Mobile Equipment Identity (IMEI), which is used to identify valid devices

connected to mobile phone networks; a Subscriber Identity Module (SIM) on a re-

movable SIM Card is used to identify a network subscriber in mobile devices. In

particular, the IMEI identifies a mobile device, while the SIM identifies an avail-

able network. PIN authentication lies in Layer 3⃝ of wireless communication access

control security.

• Something you know: Banks require a password in order for clients to participate

in banking transactions. Bank transactions are accountable. Clients have their own

username/password to access the banking service. Layer 4⃝ of access management

security covers the security factor of username and password.

• Something you are or do: Digital signature. Implementing a digital signature con-

tributes to authentication protection. The strategy of digital signature lies in Layer

4⃝ of access management security.

As described above, these four factors are independent of each other. A mobile device

acts as a physical characteristic of the client. The username/password is the property in

the banking business field, and the mobile phone number is provided by the wireless net-

work providers. A digital signature acts as an identifying characteristics of the client. All

these factors in different fields contribute to a strong authentication strategy. Meanwhile,

the solution of username and password is employed to determine the client identity. The

relationship between client and business operations provides the functions to ensure access

85

control.

4.1.5 Distributed Transaction Log Strategy

Since a mobile device is considered as an access facility to Internet, the structure on the

Internet side is similar between mobile payments and Internet payments. The main addition

is the mobile network operator. Therefore, all participating entities can be synthesized into

a service chain, in which each entity contributes services (such as network or finance) to

a mobile payment transaction. Figure 4.3 depicts the service chain for the mobile banking

transaction.

As depicted in Figure 4.3, a business transaction between the client and the bank is

actually served by a service chain including the mobile network operator and the bank.

The role of the mobile network operator is essential for a mobile commerce transaction.

Based on where it stands in the service chain, the role of mobile network operator can vary

from a simple mobile network provider to an intermediary, portal or trusted third party

(Tsalgatidou & Veijalainen, 2000). In this service chain the mobile network operator tech-

nically provides a communication channel. Each communication massage is transferred

through a wireless network gateway.

Since each entity in the service chain contributes services to the business transaction, it

correspondingly profits from the service it provides. The relationship between the mobile

network operator and the bank can be referred to a relationship between “cooperator and

monitor”. The bank needs to cooperate with the mobile network operator in order to realize

a mobile banking business. Since the mobile network operator obtains other revenue (such

as network service fees) than the bank in the service chain, it can serve as a third audi-

tor party (TAP) auditing every business transaction. In other words, the mobile network

86

operator can function as a monitor.

Figure 4.3: The service chain in a mobile banking transaction.

Based on the business model of “cooperator and monitor”, this thesis suggests a dis-

tributed transaction log strategy to additionally contribute to ensuring non-repudiation for

a mobile payment transaction (In the lightweight cryptography scheme of SA2pMP, the

digital signature is employed partly to provide non-repudiation. Refer to subsection 4.1.3

for more details).

The distributed transaction log strategy is a defensive security mechanism to protect

clients and banks from a false repudiation. If the client or bank refuses to admit participat-

ing in a mobile payment transaction, the transaction log can be used to judge whether, when

and how the transaction happened. The transaction log is recorded by a business transac-

tion log server. Because it is part of the business layer, the business transaction log server

is a part of SA2pMP server architecture. In other words, the business transaction log server

is a logical component of the bank server architecture. Physically the business transaction

87

log server is maintained by the mobile network operator. Since this physically-distributed-

but-logically-integrated transaction log strategy utilizes the mobile network operator as a

monitor, the transaction log must be trusted not only by the bank but also by the client.

The distributed transaction log strategy focuses on the way that the transaction log is

integrated logically and distributed physically. It can be argued that logical integration

benefits bank management, while physical distribution ensures that there is more trust in

the monitor. As shown in Figure 4.1, the transaction log can be viewed as a part of mobile

banking platform, while it is physically located on the network gateway.

4.1.6 Key Management

Key management concerns secure generation, distribution, and storage of keys (RSA Lab-

oratories, 2000). Secure methods of key management are important to a secured mobile

payment system. When the key is randomly generated, impersonation of the key must be

prevented. In practice, most attacks on public key systems are aimed at key management,

rather than at the cryptography algorithm (RSA Laboratories, 2000). This means that a

secured mobile payment structure should pay particular attention to a trusted key manage-

ment strategy.

In SA2pMP, the two key pairs required are used both for the digital signature and in

encryption. Figure 4.4 illustrates the key management strategy for digital signature.

Key Generation

Digital Signature Key Generation SA2pMP employs a digital signature to ensure non-

repudiation during the transaction. Because it uses public-key cryptography, a digital sig-

88

Figure 4.4: The key management strategy for the digital signature.

89

nature does not share anything secret between the two partners. The digital signature al-

gorithm needs a key pair ([RKS,PKS]). The private key (RKS) is used for signing and the

public key (PKS) is used for verification. To keep the private key secret, the key pair is

generated by the mobile device on the client side of the transaction. To enable a transaction

model that is more compact and in which only two parties are involved, SA2pMP does not

make use of a trusted third party (TTP) for key generation.

When a client starts to use the mobile payment application, there is no key existing

in the system. Before processing any transactions, the key generation is initialized. A

Key Management Module (KMM) (illustrated in Figure 4.8 A) in the mobile payment

application is in charge of initializing key management functions. At this moment, the

KMM asks for the key generation, which is used to generate the key pair. This calls the

key distribution and the key store function. After the first transaction, except for when the

system asks for a renewed key pair, the KMM will not need to operate.

The KMM functions separately from the mobile payment transaction, which means the

key management can run off-line. Without communication requirements, the process of

key management does not occupy any network resources. By the time any transaction is

operating, the key management’s function should be completed. Therefore, the key man-

agement function will not compete for computational resources with the mobile payment

transaction function.

Encryption Key Generation For the symmetric key algorithm, the operations for both

encryption and decryption need two parties sharing the same secret key (KE). The encryp-

tion key is generated by the banking server. After the generation of a key pair, the structure

needs to distribute the private and the public keys separately to different key storages.

90

Key Distribution

Digital Signature Key Generation As ECDSA is a public-key cryptography algorithm

which is implemented as the digital signature in the proposed architecture, it is acceptable

that the public key is transferred over the wireless network (Menezes, Oorschot, & Van-

stone, 1996). Once the key pair is generated, the public key is transferred to the Authen-

tication Server, which is a part of the bank server. The transfer operation is via HTTP(s)

through a wireless network. This distribution is initiated by a client application.

The private key is stored in the mobile device. As the private key is needed in generating

a digital signature, impersonation and attack on this key must be prevented. The strategy

should ensure that the private key is and only can be accessed by the application program

itself. Due to this requirement, considering the prerequisite of mobile devices and Java

ME, two strategies (File-Stored-in-JAR and Record-Stored-in-RMS) are proposed, which

are introduced in the following.

Encryption Key Generation For encryption the secret key is not allowed to be trans-

ferred over the open wireless network, because it is easily intercepted by attackers. The

secret key is stored in the program application JAR package, which is secured by the Java

file security standard. After a client registers a payment service with their bank they will

download the application package along with the encryption secret key from the mobile

banking platform server.

Key Storage

Digital Signature Key Storage After the public key and the private key are distributed

to both the server and the client, they are stored separately and securely. The public key

91

is transferred to the authentication server in the mobile banking platform server, and then

it is stored in the Public Key Depository. The public key depository is a structured data

storage file. For example, a database can be used as a secured public key depository, which

is suggested in the proposed structure. The public key is stored, along with the client in-

formation (such as the account number and the mobile device tracking number) and key

expiration information. This information is used to manage the key, assisting the authen-

tication server to verify digital signatures in the mobile payment transactions. The Public

Key Depository is part of the authentication server in the bank server. The local server

security infrastructure is not within the scope of the present research.

On the client side, the private key is stored in the mobile device. The principle of

private key storage is to keep it from being revealed to an attacker. The File-Stored-in-

JAR (Figure 4.5 A) is used to store the private key in the same JAR package with the

application program. SA2pMP is designed for a Java ME enabled mobile device, and the

client application is a Java ME program. The Java ME application is packaged inside a

Java archive (JAR) which contains the application’s class and the private key. The JAR

package file is downloaded to mobile devices, along with the Java application descriptor

file. The private key, as the output of the key generation function, is exported and stored

in a dedicated folder in the JAR package. Usually a Java ME application downloaded to

mobile devices only includes class files, as well as the source files obfuscated. It is difficult

to decompile and reverse the application program. Putting the private key in JAR package

ensures the privacy of this Key and prevents direct exposure to an attacker.

Record-Stored-in-RMS (Figure 4.5 B) is another way to store the private key in the mo-

bile device. RMS is the Record Management System, which is a key subsystem of MIDP in

the Java ME standard (Giguere, 2004). With RMS, an MIDP application can use on-device

data persistence. RMS provides the structure for on-device persistent data storage. Further-

more, RMS cannot be accessed by other applications besides the one that created it. The

92

strategy of Record-Stored-in-RMS only permits the mobile payment client application to

access the private key, and thus prevents illegal attack from any other application program.

Therefore, the security of the private key is ensured.

(A) (B)

Figure 4.5: (A) The private key stored in JAR. (B) The private key stored in RMS.

Encryption Key Storage Although the encryption/decryption processes require that the

mobile device and the banking server share the same secret key, the two copies are stored

separately. On the banking server, the shared secret key is stored in the database, which

is assumed to be secured by other computer security strategies such as in the database

management system. In the mobile device, the secret key is stored in a JAR file or in RMS,

which is secured by the Java file security standard. Additionally, the obfuscation renames

classes, methods, and fields (Ortiz, 2009) to contribute to file security as well. Alternatively,

a tamper-resistant hardware (RSA Laboratories, 2000) might be another choice for storing

the Key. In fact, tamper-resistant hardware devices have been used extensively in financial

93

and government systems (Lam et al., 2003). (RSA Laboratories (2000) offers an review of

tamper-resistant hardware devices.)

Key Renewal

Each key pair has an expiration time. The expiration time defines a period over which

the key is valid. The expiration time limits the use of keys to fixed periods, after which

the keys must be replaced. An expiration time must be chosen properly and distributed in

an authenticated network channel. The key pair renewal process is initiated in the mobile

banking platform server. The Public Key Depository records expiration information for the

public key, which is used to determine whether the key pair needs to be replaced. Once

Key Pair Renewal is decided, an alert (such as a short message) is sent to the mobile device

to signal the client to generate a new key pair, in order to continue ensuring secured mobile

payment transactions. If there is another request, such as the client requesting a renewal of

the key pair, or there is a system update requirement, these situations have higher priority

than expiration time in the key pair renewal process. The key renewal process can then be

initiated, before the expiration time.

The security architecture has been described. To simulate the performance of security,

the security architecture is implemented as part of a mobile banking application system.

4.2 Application Architecture

In this section, SA2pMP is discussed in the context of a mobile bank, and the application

architecture of mobile banking platform is described. Two parties in a mobile banking

94

transaction communicates with each other via HTTP(s). The mobile banking platform

(MBP) server on the bank side is a principal entity providing the web service and infor-

mation exchange channel for the client. MBP is a subsystem of the complete banking

infrastructure, communicating with the core bank. Figure 4.6 illustrates the general mobile

banking process.

Figure 4.6: The mobile banking process.

Both MBP and the core banking system belong to the overall banking infrastructure.

They are linked to each other via an internal network. Therefore, the transaction between

MBP and the core banking system is internal. As in Figure 4.7, the mobile banking system

is divided into a mobile client and a banking server.

95

Figure 4.7: The mobile banking module.

4.2.1 Mobile Client Architecture

The mobile client application is built on Java ME enabled mobile devices. Figure 4.8 (A)

illustrates the architecture of the mobile client application. Figure 4.8 (B) illustrates the

process by which the four modules cooperate with each other and work corresponding to

clients’ requests.

The mobile client system consists of four modules: the Business Logic Module (BLM),

the Security Module (SM), the Communication Module (CM) and the Key Management

Module (KMM).

• Business Logic Module: BLM is in charge of all business functions between banks

and clients. Clients can make their own business item list according to their individ-

ual requirements.

• Security Module: SM is responsible for security issues. The main security architec-

96

(A) (B)

Figure 4.8: (A) The mobile client architecture. (B) The mobile client work process.

ture of SA2pMP is realized in SM. After the client’s request is processed in BLM, an

information message is generated. This message is processed with digital signature

and encryption in SM. Following the rules of ECDSA, the private key can be read

from KMM, and be used to sign a digital signature on the original message. After

signing, the encryption is executed. The encrypted message is then sent by the CM

to the mobile banking platform server.

• Communication Module: CM is the module in charge of network communication.

HTTP(s) over wireless networks is used. CM handles information exchange between

a mobile client application and a mobile banking platform server.

• Key Management Module: KMM is in charge of key management. Since a digital

signature is employed in SA2pMP, the private key must be kept secured and confi-

dential. KMM generates the digital signature key pair which is comprised of a private

97

key and a public key. It then distributes the public key to the mobile banking plat-

form server. KMM stores the private key in the record store or in the JAR package.

The private key is used for signing a digital signature. The encryption/decryption

key pair remains the same for both in the mobile client application and the mobile

banking platform server. KMM stores the encryption key in the record store or in the

JAR package. Tamper-resistant hardware is also an option. KMM is also in charge

of renewing the key pair when the mobile device receives a renewal request for the

key pair.

4.2.2 Server Architecture

The Mobile Banking Platform Server consists of the Business Logic Server (BLS), the

Authentication Server (AS), the Key Management Server (KMS), and the Business Trans-

action Log Server (BTLS). Figure 4.9 illustrates the architecture of the mobile banking

platform server.

• Key Management Server: KMS in the mobile banking platform server is in charge

of the storage of the public key, and initializing renewal process of a key pair. If

the clients decide to use a mobile banking service, the first step is to invoke KMS

module in the mobile client to generate the key pair in addition to installing the client

application software. Distributing the key is a separate procedure from business op-

erations. For the key pair of the digital signature, the public key is sent from the

mobile client to the mobile banking platform server while the private key is stored in

the mobile client. After receiving the public key, KMS stores it, as well as the client

personal information. During the payment transaction, when key verification proce-

dures ask for a public key, it is provided by KMS. KMS is responsible for generating

98

Figure 4.9: The mobile banking platform server’s architecture.

99

the encryption and decryption public key, saving one copy in the server and sending

the other one to the mobile device. The key pair has a life cycle. When the key pair

needs renewing, KMS is responsible for sending a command to initiate a renewal

procedure in the mobile client application.

• Authentication Server: AS provides the authentication service for the mobile banking

platform server. The following security duties are operated in AS:

1. Checking for username/password legality during log on,

2. Verification of the digital signature, and

3. Decryption of message(s).

Any message passing through the AS is a legal business message, so it can be sent to

BLS for processing.

• Business Logic Server: BLS handles all legal business requests. BLS interacts with

the regular bank to process business logic and to exchange business information.

When BLS has finished processing a business job, it responds by sending the result-

ing information to the client’s mobile device.

• Business Transaction Log Server: BTLS is the component realizing the distributed

transaction log strategy, which contributes to maintain non-repudiation. It creates and

maintains the log files for transactions. BTLS is indicated by a broken line boundary

in Figure 4.9, as BTLS is located in the mobile banking platform server logically

rather than physically. The transaction log is physically positioned on the wireless

network gateway. As shown in Figure 4.1, the network gateway is a physical facility

maintained by the mobile network operator.

100

SA2pMP is an architecture proposed in this thesis for protecting the security for two-

party mobile payment transactions. To evaluate SA2pMP’s performance in security and

practicality, a series of simulations are conducted. In the next chapter, details for system

simulation are introduced.

101

Chapter 5

System Simulation

In this chapter the system simulation is explained. A mobile bank is employed as a scenario

for system simulation. The proposed architecture, SA2pMP is implemented to facilitate a

“money transfer” banking transaction. The hardware and the software environments for

system simulation are described in Section 5.1, followed by an introduction of the specific

implementation in Section 5.2. Finally, the evaluation of the system simulation is described

in section 5.3.

5.1 Simulation Environment

In this section, the computer environment for simulating SA2pMP is described.

As illustrated in Table 5.1, the present simulation is operated on an IBM IntelliStation M

Pro PC, with Pentium 4 CPU 2.80 GHz and 2 GB RAM. The operating system is Windows

XP Professional SP3.

Since the goal of the implementation is to enable SA2pMP to run on a typical Java ME

enabled mobile device, three mobile device emulators were chosen for the simulation. All

three support Java ME. These mobile device emulators are the Nokia S60 Emulator (Nokia,

2009), the Sony Ericsson Emulator (Sony Ericsson, n.d.), and the Sun WTK 2.5.2 CLDC

simulator (Sun Microsystems, 2009). The simulators support the Device Configuration of

CLDC-1.1 and the Device Profile of MIDP-2.0. For the simulated banking server, a Java

Platform, Enterprise Edition (Java EE) application is implemented on an Apache HTTP

Server 2.2, cooperating with Tomcat 5.0. A MySQL Server 5.1 serves as the database

server.

102

Table 5.1: The simulation environment.

Item Requirements

Hardware IBM IntelliStation M Pro:
Pentium 4 CPU 2.80GHz
RAM 2.00GB

Operating System Windows XP Professional SP3

Banking Server Apache HTTP Server 2.2
Tomcat 5.0
MySQL Server 5.1

Mobile Client Nokia S60 Emulator and

Sony Ericsson Emulator and

Sun Java Wireless Toolkit 2.5 for CLDC Simulator:
Device Configuration as CLDC-1.1
Device Profile as MIDP-2.0

Development Tools NetBeans 6.0
Eclipse 3.4.1
BouncyCastle 1.41

103

The simulation system was developed on NetBeans IDE 6.01 and Eclipse SDK 3.4.12.

NetBeans IDE 6.0 was used as it integrates well with the emulators. In addition, the visual

MIDlet designer in NetBeans IDE 6.0 enables developers to design a business logical pro-

cess easily. The implementation of cryptography algorithms (AES, SHA-1 and ECDSA)

was done with help from the third party cryptography API provider Bouncy Castle3. Sub-

section 5.1.1 gives a brief introduction to Bouncy Castle.

5.1.1 Bouncy Castle

Sun Microsystems provides cryptography support through the Java Cryptography Architec-

ture (JCA) and the Java Cryptography Extension (JCE). However, JCA and JCE are some-

times too heavyweight for an MIDP application (S. Li & Knudsen, 2005). The Bouncy

Castle cryptography API provider is an appropriate choice for providing lightweight cryp-

tography for Java ME.

Bouncy Castle is an open-source collection of lightweight cryptography APIs. It pro-

vides APIs for both the Java and the C# programming languages. One of the original design

considerations for Bouncy Castle came from one of the developers who are active in Java

ME development, and as a result there are two distinct library sets. At this time, the newest

versions are Java version 1.43 and C# version 1.4. As the security architecture outlined

in this thesis is designed for Java ME enabled mobile device, the discussion is focused on

Java version of Bounce Castle API.

The Bouncy Castle Java ME supported package contains the implementation of the

Bouncy Castle lightweight API, as well as two core Java classes which are not supported in
1http://www.netbeans.org/
2http://www.eclipse.org/
3http://www.bouncycastle.org

104

Java ME/CLDC: java.math.BigInteger and java.security.SecureRandom (Rittinghouse &

Ransome, 2004). These two classes have the same names as the core classes in Java SE but

function differently to the core Java classes in Java SE. A collision will occur when JDK is

used to compile the code importing these two classes. To avoid this collision, one method

is to employ some software such as Proguard4 to make an obfuscation on the code. The

compiler is able to find the target classes without confusing the different classes with the

same name, then avoids the conflict that occurred.

In developing SA2pMP, the Bouncy Castle Cryptography with version of 1.42 was

employed. The implementation of cryptography algorithms makes use of the Java ME

lightweight API package in Bouncy Castle. Proguard is employed in the development as

indicated above. Proguard 4.0 has already been bundled in NetBeans IDE, so this was an

easy choice.

5.2 Simulation Implementation

A mobile bank is employed as a scenario for system simulation. The banking transaction

of money transfer is assumed to describe how the system works. Readers should notice that

in the following:

• “−>” means a data transfer process.

• “+” means a data combination operation. In this implementation, most + operations

denotes simple concatenation of the strings.
4http://proguard.sourceforge.net/

105

5.2.1 Business Work Flow

The work flow in a money transfer transaction is explained in this subsection. Figure 5.1

illustrates the work flow. The notation can be referred to in Subsection 4.1.1.

As both encryption key and public key pairs are needed for the cryptography calcula-

tion, they must be generated and distributed before initiating a specific transaction.

1. Bank generates a secret key for AES algorithm encrypting or decrypting a message,

then stores one copy locally and sends one copy to ClientDevice, where the encryp-

tion key is stored. The process distributing the encryption key must be kept secure

from eavesdropping. (The distribution method of the encryption key is suggested in

Subsubsection 4.1.6.) The encryption key’s distribution process is explained in 4.1.6.

Bank : Generate(KE),StoreServer(KE) (5.1)

Bank−>ClientDevice : KE (5.2)

ClientDevice : StoreClient(KE) (5.3)

2. ClientDevice generates a public key pair for the ECDSA algorithm. The private key

is stored locally by ClientDevice for signing a digital signature, while the public key

is distributed to and stored by the Bank for verifying the digital signature. The public

key can be distributed in a public wireless network environment.

ClientDevice : Generate([RKS,PKS]),StoreClient(RKS) (5.4)

ClientDevice−> Bank : PKS (5.5)

Bank : StoreServer(PKS) (5.6)

Figure 5.1 illustrates the steps for carrying out a transfer transaction. These steps are

106

Figure 5.1: The secured work flow between the mobile client and the bank server.

107

described as follows:

1. To initiate a banking transaction, Client uses ClientDevice to send the authentication

information to Bank. All information must be encrypted.5

ClientDevice : msgAuth = Encrypt(ACCID,PWD, IDC) (5.7)

ClientDevice−> Bank : msgAuth (5.8)

2. Bank performs an authentication verification to decide whether it will allow ClientDevice

to perform the transaction or not.

Bank : (ACCID,PWD, IDC) = Decrypt(msgAuth) (5.9)

Bank : Veri f y(ACCID,PWD, IDC) (5.10)

3. Bank responds with an authentication confirmation to ClientDevice. The autho-

rized transaction list (Bizlist) is downloaded by ClientDevice if the access is au-

thorized. Meanwhile, an HTTP communication session is set up between Bank and

ClientDevice. The IDC along with a time stamp, TimeStamp, is inserted into Session

as a session key. This session key is used to identify that a transaction is processed

between Bank and ClientDevice at a specific time.

Bank−>ClientDevice : (AuthCon f irm,Bizlist) (5.11)

Session : (IDC,TimeStamp) (5.12)

4. Client provides the money transfer transaction information and input it into ClientDevice.
5Readers should notice that ACCID is also referred in IDC (refer to Equation 4.2). To access to Bank,

ACCID and PWD are necessary for authentication. IDC is an added identifier to keep the information of
ACCID and PWD is sent from the registerred ClientDevice through the pre-defined network environment.

108

ClientDevice generates a string-based message containing the transaction informa-

tion.

ClientDevice : msg <−T D (5.13)

5. The transaction message is hashed with SHA-1 to generate a message digest h(msg),

which is then signed with a digital signature using an ECDSA private key, along with

IDC.

ClientDevice : DS = DSign(IDC,h(msg),RKS) (5.14)

6. The transaction message and the digital signature are encrypted with an AES secret

key.

ClientDevice : crypto msg = Encrypt(DS+msg,KE) (5.15)

7. The encrypted message is sent from ClientDevice to Bank.

ClientDevice−> Bank : crypto msg (5.16)

8. Bank decrypts the encrypted message sent from ClientDevice. As a symmetric-key

cryptography algorithm is utilized, Bank decrypts the message with the same secret

key.

Bank : DS+msg = Decrypt(crypto msg,KE) (5.17)

9. Bank processes the decrypted message, separating the digital signature and the trans-

action message. The public key for the digital signature algorithm is employed in

verification. The transaction message is hashed in Bank to get the message digest,

109

which is used to compare with the digital signature verification’s product.

Bank : Yes/No = DVeri f y(DS,h(msg),PKS) (5.18)

10. If the verification process in formula 5.18 responds with “TRUE”, it means the mes-

sage is valid, as it is sent from the identified ClientDevice. Afterwards, Bank pro-

cesses the money transfer transaction as requested by ClientDevice.

Bank : BizTransaction (5.19)

11. Once the bank transaction processing is finished, Bank sends back a confirmation of

transaction completion. At the same time, the transaction log is recorded physically

on the wireless Gateway:

Bank−>ClientDevice : BizCon f irm (5.20)

Gateway : T Log (5.21)

After ClientDevice finishes all the transactions, Client must log out from Bank applica-

tion. ClientDevice disconnects the communication with Bank, and the Session is released.

5.2.2 Data Transformation

Corresponding to the money transfer transaction work flow, several business parameters,

as the examples shown in Table 5.2, are defined for the use of security and business logic.

Figure 5.2 illustrates the variable transformation process crossing the signature layer and

the encryption layer in the lightweight cryptography scheme (refer to subsection 4.1.3 for

110

details of the lightweight cryptography scheme for SA2pMP). In this subsection, the process

of the data transformation is described along with the process that ClientDevice uses send

to the transaction information to Bank.

Table 5.2 describes a business record in a money transfer transaction. In the money

transfer transaction, the following information needs to be recorded.

• F Acc ID denotes the ID number of the bank account from which the money will be

transferred.

• T Acc ID denotes the ID number of bank account to which the money is transferred.

• Amount denotes the amount of money transferred.

• Time denotes the time when money transfer transaction is initiated.

Table 5.2: Business Record in Transaction.
Business Record

F Acc ID = 123456789
T Acc ID = 987654321 Digital
Amount = 500 Signature
Time = 200906061220

After ClientDevice submits a business record containing the transaction information,

the variable of RawText is employed to connect all business record parts to a string. Each

variable is linked with the symbol of “&”.

RawText = F Acc ID+T Acc ID+Amount +Time (5.22)

Next, RawText is added with IDC, which is used to identify the given mobile device and

a specific bank account.

PlainText = RawText + IDC (5.23)

111

Figure 5.2: The variables’ transformation process.

112

The digital signature is produced by PlainText and the private key for digital signature.

PlainText needs to be hashed to a message digest, which is used to create a digital signature

with the private key. In the present simulation, SHA-1 is employed to hash PlainText to

generate a message digest. Then, ECDSA on prime integer with the key size of 192 bits

(ECDSAprime192), is used to calculate the digital signature.

TempText = PlainText +DSign(h(PlainText),RKS) (5.24)

The signed message TempText is next encrypted using a symmetric encryption opera-

tion. AES256 is employed as the symmetric-key cryptography algorithm in the implemen-

tation.

EnText = Encrypt(TempText,KE) (5.25)

The EnText is finally sent to Bank via HTTP(s) through the wireless network.

5.2.3 Cryptography Simulation

SA2pMP employs a lightweight cryptography scheme, in which a lightweight digital signa-

ture algorithm is combined with a symmetric key encryption algorithm in accordance with

the rule of “Sign-and-Encrypt”. Table 5.3 describes the specific parameters for cryptogra-

phy algorithms implemented in SA2pMP. AES256 is the AES algorithm with the key size

of 256 bits. It is used to provide encryption and decryption functions. SHA-1 is employed

to generate a message digest for the plain text message. The message digest is used to gen-

erate a digital signature. Signing and verifying the digital signature makes use of ECDSA

algorithm over prime curves with the key size of 192 bits, namely ECDSAprime192. For

113

background on the cryptography algorithms, refer Section 2.7.

Table 5.3: Cryptography Implementation.

Algorithm Type Key Length
AES256 Encryption 256 bits
SHA-1 Message Digest

ECDSAprime192 Digital Signature 192 bits

The performance of the cryptography implementation is evaluated on three different

emulator platforms: the Sun Java Wireless Toolkit 2.5.2 for CLDC, the Sony Ericsson

SDK 2.5.0.3 for the Java ME Platform, and the Nokia S60 3rd Edition FP1 SDK for MIDP.

Table 5.4 summarizes the information for the emulator devices, the configurations, and the

profile.

Table 5.4: The mobile device emulators.
Emulator Platform Device Configuration Profile
Sun WTK
2.5.2 QwertyDevice CLDC-1.1 MIDP-2.0
Nokia
S60 3rd S60Emulator CLDC-1.1 MIDP-2.0
Sony Ericsson Sony Ericsson
SDK 2.5.0.3 Z800 CLDC-1.1 MIDP-2.0

As defined in MIDP-2.0 and CLDC-1.1, these mobile devices must possess a minimum

base memory of 192 KB and a 16/32 bit processor with a speed of 8-32 MHz. In the

real world, Sony Ericsson Z800 has 6 MB phone memory and 1 GB Memory Stick support

(Sony Ericsson, n.d.). There are currently several models of mobile devices using the Nokia

S60 3rd platform. Nokia N80/N91 are S60 series mobile devices.

The same MIDlet was run in three emulator platforms in order to measure the time delay

caused by cryptography operation. In developing a money transfer transaction, PlainText

with 312-bit length was used.

114

5.3 Simulation Evaluation

The practicality of SA2pMP was evaluated based on the processing time delay caused by

the cryptography operations and the code size of the MIDlet suite in a mobile device. The

evaluation of the time delay shows whether the architecture performs efficiently enough to

receive wide acceptance, while the evaluation on the code size determines if the architecture

can be implemented in limited storage in mobile devices.

5.3.1 Time Delay Evaluation

In this subsection, the results from the simulation in three emulator platforms are analyzed.

The time delay criteria is discussed, the method employed in evaluation is described, and

finally, the evaluation process and results are explained.

Time Delay Criteria

If the extra time delay caused by protecting security takes too long, frustration with the

system results. What “too long” means depends on the participants’ experience of a given

situation and on the type of application.

Miller (1968) proposed a 2-second rule based on the theory of limitations in human

short-term memory. According to the rule, short-term memory plays a critical role in hu-

man information processing. An individual becomes aware of the wait period after approx-

imately 2 seconds. Thus, to maintain uninterrupted information processing, the 2-second

rule is recommended (Nah, 2004). Specifically, there are several rules regarding the time

limitations in computer and mobile facility response.

115

The Criteria of Nielsen (1995) Based on Miller’s argument, Nielsen (1995) suggested

a 10-second rule for computer response. This 10-second rule is widely used in industry

when a performance or a user interface is required. Nielsen’s criteria can be categorized as

follows:

• 100 milliseconds is the time limit for people to feel that the system is reacting instan-

taneously;

• 1,000 milliseconds is the time limit for people to think that the system stayed unin-

terrupted. Normally, no special feedback is necessary during delays of longer than

100 but shorter than 1000 milliseconds;

• 10,000 milliseconds is the time limit for keeping the client’s attention focused. If

there are longer delays than 10,000 milliseconds, people want to perform other tasks

while waiting for the computer to finish.

The Criteria of Roto and Oulasvirta (2005) According to Nielsen (1995), people usu-

ally wait 10 seconds for a response in a laboratory environment, after which they turn to

other tasks. However, there was still an open question how soon the attention typically

shifted in a mobile environment.

Roto and Oulasvirta (2005) conducted a user study with 27 participants to discover

the point at which visual feedback stops reaching the user in a mobile context. The re-

searchers examined the participants’ attention during page loading to the phone and the

environment in several different everyday mobility contexts, and made a comparison be-

tween these practical contexts to the laboratory context. Summarizing from the experiment,

Roto and Oulasvirta (2005) argued that:

• People rarely move their focus of attention away from the dialogue within the first

2,000 milliseconds, so non-visual feedback is not required for a short time delay.

116

• Visual attention switched away from the mobile browser normally between 4,000

milliseconds and 8,000 milliseconds in the mobile context. Multi-modal feedback is

recommended for delays of more than 4,000 milliseconds in mobile applications.

In the following, the practicality of the system and the reaction of users are evaluated

based on the 10-second rule (Nielsen, 1995) and the study (Roto & Oulasvirta, 2005) on

mobile Human Computer Interaction (HCI).

Time Delay Evaluation Method

Regarding with a mobile payment system implementing SA2pMP architecture, the total

time delay T can be calculated as the following equation.

T = TCBiz +TCSec +TCom +TSSec +TSBiz (5.26)

TCBiz denotes the time delay caused by the business computation on ClientDevice. TCSec

denotes the time delay caused by the security computation on ClientDevice. Most of this

time delay is caused by cryptography computations, including signing a digital signature

and performing the encryption on ClientDevice. TCom denotes the time delay caused by

HTTP(s) communication via wireless networks. TSSec denotes the time delay caused by

the secure verification process and the decryption process on Bank. TSBiz denotes the time

delay caused by the specific business processing computation on Bank. Since Bank is

built on a resource-rich computer server platform, there is a high computational speed.

Furthermore, the distributed transaction log is written simultaneously. Considering these

issues, the operation on Bank is assumed to be instantaneous. As the time delays of TCBiz

and TCom are not caused by the security modules, they can be excluded from extra time

delay caused by providing security. For these reasons, the extra time delay due to security is

117

focused on the delay caused by protecting security on ClientDevice, namely TCSec. Coupled

with equation 5.24 and equation 5.25, TCSec can be calculated as follows:

TCSec = Timeencrypt(DSign(msg)+msg) (5.27)

= Tencrypt +TDSign +T+ (5.28)

In equation 5.27, Tencrypt is the time delay for the encryption process or the decryption

process, while TDSign represents the time delay caused by signing or verifying a digital

signature, and T+ denotes a set of operations for formatting the string-based message. For

example, when a mobile device begins a transaction, which is sending the message from

a mobile device to a server, the operations related to security include formatting a new

message string, signing a digital signature, and encrypting a plain text message. The entire

time delay for security (TCSec) is described by these three parameters.

Time Delay Evaluation

In SA2pMP, AES256 is employed for encryption and decryption, while ECDSAprime192

is used for signing a digital signature. In ten practical system simulations (refer to 5.2.3) on

three different emulators, the time delays of both the AES256 encryption and decryption

are less than 1 millisecond. Based on this experimental result, the encryption is considered

to be instantaneous (Tencrypt ≈ 0). The time delay of T+ is caused by a string formatting

operation. In the simulation, this part of time delay was less than 1 ms. As T+ ≈ 0, the

formatting operation was considered to be instantaneous as well.

Therefore, the operation for digital signature consumes almost all time delay for secu-

rity on the mobile client device. Thus, TDSign is considered to be the significant factor of

118

the time delay for security. Another reason for using TDSign to represent the entire security

time delay is for the convenience in comparing the implementation of the digital signature

to other work. The time delay comparison can be found in section 6.3.

Based on the evaluation method explained above, the simulation and evaluation results

can be described in the following.

Figures 5.3 - 5.5 illustrate the time delay measured on the Nokia S60 emulator plat-

form, the Sony Ericsson Z800 emulator platform, and the Sun WTK 2.5.2 QwertyDevice

emulator platform.

Figure 5.3: The time delay on Nokia S60 Emulator Platform (ms).

Table 5.5 shows the calculation of the average time delay on these three different em-

ulator platforms. The simulation on Nokia S60 is the most positive. The average time

delay of signing on the Nokia S60 is 524.1 ms, which is much better than the data on the

Sony Ericsson Z800 (3080.3 ms) or the Sun WTK QwertyDevice (3178.5 ms). The same

situation occurs with the verification process: the average time delay for verification on the

119

Figure 5.4: The time delay on Sony Ericsson Z800 Emulator Platform (ms).

Figure 5.5: The time delay on Sun WTK 2.5.2 QwertyDevice Emulator Platform (ms).

120

Nokia S60 is 702 ms, which is much better than on either the Sony Ericsson Z800 (4024.8

ms) or the Sun WTK QwertyDevice (4185.1 ms).

Table 5.5: The average time delay (ms).

Nokia S60 Sony Ericsson Z800 Sun WTK QwertyDevice
Sign 524.1 3080.3 3178.5
Verify 702 4024.8 4185.1

The criteria of Nielsen (1995) and the criteria of Roto and Oulasvirta (2005) are used

to evaluate the average time delay in the simulation. Figure 5.6 illustrates the evaluation

results based on the criteria of Nielsen (1995). In Figure 5.6, the lowest area shows the

time delay is less than 100 milliseconds, while the middle area indicates the time delay

is between 100 milliseconds and 1,000 milliseconds, and the top area indicates the time

delay is between 1,000 milliseconds and 10,000 milliseconds. The time delay on the Nokia

S60 is between 100 milliseconds and 1,000 milliseconds, which means the system seems

uninterrupted to clients and no special feedback is necessary based on the criteria of Nielsen

(1995). The time delay on the Sony Ericsson Z800 or the WTK QwertyDevice is between

1,000 milliseconds and 10,000 milliseconds, which means the system still keeps clients’

attention focused.

Figure 5.7 illustrates the evaluation result based on the criteria of Roto and Oulasvirta

(2005). The lowest area indicates the time delay is less than 2,000 milliseconds, while the

middle area indicates the time delay is between 2,000 milliseconds and 4,000 milliseconds,

and the top area indicates the time delay is more than 4,000 milliseconds. Based on the

criteria of Roto and Oulasvirta (2005), the time delay for the Nokia S60 is less than 2,000

milliseconds, which means the system maintain focus by client and non-visual feedback is

unnecessary. The time delay caused by the signing operation on the Sony Ericsson Z800

or the WTK QwertyDevice is between 2,000 milliseconds and 4,000 milliseconds, which

means the system needs some visual feedback to maintain client attention. The time delay

121

caused by verifying operation on the Sony Ericsson Z800 or the WTK QwertyDevice is

above 4,000 milliseconds, which means that the clients’ visual attention wanders from the

mobile screen.

Figure 5.6: The time delay evaluated based on Nielsen Criteria.

Although the software application architecture is designed for a standard JVM, differ-

ent mobile devices have different implementations for efficiency and optimization. This is

shown in the simulation. The Symbian-based Nokia S60 has a more efficient implementa-

tion than the Sony Ericsson Z800.

In summary, evaluating the extra time delay based on the measurements respectively

offered by Nielsen and Roto, SA2pMP is practical for implementing on mobile devices,

122

Figure 5.7: The time delay evaluated based on Roto and Oulasvirta Criteria.

123

although some visual or multi-modal feedback needs to be considered.

5.3.2 Code Size Evaluation

Another perspective evaluation for practicality is based on the code size. Currently the

Java ME MIDP (2.0, 2.1) standard does not allow sharing of libraries among different

MIDlet suites. Each MIDlet suite should have its own library. A MIDlet suite with an API

library implementation normally has a large JAR-file. Mobile devices usually have their

own size limitation for implementing MIDlet suites. For example, CLDC-1.0 specifies that

the minimum base memory available for the Java platform is 160 KB, while CLDC-1.1

defines that the minimum base memory available for the Java platform is 192 KB (Java

Community Process, n.d.-b). When the code size or the file stored in the mobile device is

larger than the memory size, there will be problems. Furthermore, because the code needs

to be loaded into memory to start a program, the size of code in the MIDlet may cause the

program to have slower initiation. Thirdly, a large JAR-file also increases the download

time if the application is installed over-the-air (OTA).

The Bouncy Castle API library, which is employed in developing the proposed archi-

tecture, contains different code used for different cryptography algorithms. The size of

the completed API library is too large to be stored in some mobile devices. For example,

cldc classes.zip in Bouncy Castle 1.4.2 Java API package is 939 KB in size. As imple-

menting SA2pMP only relates to the digital signature and the symmetric-key cryptography

algorithm, the JAR-file size will shrink if the unused code of the Bouncy Castle API library

is not contained in MIDlet suites.

Code obfuscation is the process of “obscuring” Java classes with the purpose of making

reverse-engineering more difficult. Obfuscation typically entails renaming classes, meth-

124

ods, and fields to use shorter names, effectively reducing the size of the Java class (Ortiz,

2009). Proguard was utilized as an obfuscator in the present simulation.

In the simulation, the mobile client application, MoBankClient.jar is 130 KB in size,

which is quite feasible for a CLDC-1.1 platform. Only a small part of the security package

is added in this JAR-file. That means the API library designed in this research meets the

requirement for code size, and the implementation on CLDC-1.1 mobile devices can be in

practice.

In this chapter, the system simulation, and the evaluation for both time delay and code

size are provide. In the following chapter, SA2pMP is compared to related work from the

aspects of the architecture and time delay.

125

Chapter 6

System Comparison

In this chapter, SA2pMP is compared to some existing mobile payment architectures in

terms of security and practicality. To make this comparison, other works are first introduced

in section 6.1, followed by an architecture comparison in section 6.2. Finally, the time delay

comparison is made in section 6.3.

6.1 Other Works

Mobile payments can be viewed as an extension of electronic payments. Existing secured

architectures have been used to support electronic payments over Internet, such as E-cash

for electronic cash (A. Ghosh, 1998), eCheck for electronic cheque (Anderson, 1998),

and Secure Electronic Transaction (SET) for credit card payments (VISA and MasterCard,

1997). SET-based protocols are secure but not convenient because SET was originally de-

signed for electronic payments over a wired network, and intermediary agents are required.

E-cash, eCheck, and SET are standards for Internet payment protocols; they cannot be

directly adopted for mobile payments as they do not address the limited resources of the

mobile devices such as lower power, lower transmission rate, and less memory.

This section provides an investigation of other architectures proposed for ensuring se-

curity for mobile payment applications. These architectures are JASA, LSM, SET, and

iKP.

126

6.1.1 J2ME application-layer end-to-end security architec-

ture

A J2ME application-layer security architecture called JASA, a security architecture based

on the Java 2 Platform, Micro Edition (J2ME) was developed by Itani and Kayssi (2004).

to ensure end-to-end security for m-commerce. JASA uses pure Java components to pro-

vide end-to-end security between a wireless J2ME-based client and J2EE-based servers.

The architecture can be implemented with the available limited resources of a Java MIDP

device. As SA2pMP, JASA was designed for the application layer, so it does not require

any modification of the underlying protocols or infrastructure.

JASA consists of a client application and a server. The client application complies with

the MIDP 1.0 specification. The architecture can be employed in the current wireless net-

work environment via HTTP because MIDP on top of CLDC provides an HttpConnection

interface (for more details about MIDP and CLDC, refer to section 2.5).

Encryption and decryption operations and services in JASA are based on the AES al-

gorithm. The SHA-1 algorithm performs the hashing operations to ensure integrity of data

during transportation over the network. At the client end, the MIDP application is pack-

aged inside a JAR file which contains the application class and resource files. The JAR file

can be downloaded to the mobile device, along with the JAD file. The server application,

specified with J2EE, is packaged in a web archive (WAR) file and deployed on the J2EE

application server. As JASA employs AES, a symmetric ciphering algorithm, the server

and the client application share the same key for encryption and decryption.

The performance of JASA was measured on the Sony Ericsson P800 Java phone, while

the server application was tested using the J2EE server version 1.3.1 running with Windows

2000. A GPRS connection was utilized to perform the HTTP interactions between the

client and the server. Itani and Kayssi (2004) claimed that the AES encryption operation

127

runs at over 165 Kbits/s on the Java phone, and the AES decryption operation runs at over

105 Kbits/s on the Java phone.

One limitation of JASA is that AES is a symmetric ciphering algorithm, meaning that

the server and the client share the same key. Thus JASA can provide good end-to-end

client authentication, data confidentiality, and integrity. However, the employment of AES

is not able to guarantee non-repudiation in the transaction between the two parties, as AES

is a symmetric-key cryptography algorithm. For background knowledge of AES, refer to

Subsubsection 2.7.2.

6.1.2 Lightweight security for mobile commerce transactions

Lam et al. (2003) proposed a lightweight security mechanism (LSM) for protecting elec-

tronic transactions over handheld devices. In their research, the wireless network over

which the mobile commerce transactions take place is the mobile phone network. The

concept of a wireless protocol gateway was introduced in their proposal. A wireless pro-

tocol gateway serves as a wired agent for the handheld devices. As illustrated in Figure

6.1, handheld devices are connected to the application sever though the wireless protocol

gateway. In other words, they are connected to the gateway via the mobile phone network

and the gateway is connected to the application server via a fixed line network.

To overcome intensive computation on resource-limited mobile devices, LSM utilized a

wireless protocol gateway. LSM is located on the layer above the Transport Layer Security

protocol (TLS) and it presumes that the mobile handheld device supports plug-in or applet

implementations in an Internet browser environment. Catering to the limited resources of

mobile devices, LSM employs the Wireless Transport Layer Security protocol (WTLS) as

defined by WAP Forum (The Open Mobile Alliance Ltd, n.d.). As illustrated in Figure

128

Figure 6.1: The system architecture adopted from the LSM (Lam et al., 2003).

6.1, the WAP Gateway plays an agent role to “translate WTLS-protected traffic to TLS-

protected traffic”(Lam et al., 2003).

According to Lam et al. (2003), LSM is divided into two parts. For communications be-

tween the handheld device and the wireless protocol gateway, LSM uses an authentication

protocol that requires sharing a symmetric secret key. This protocol intends to guarantee

a secure connection between the handheld device and the wireless protocol gateway. The

wired network communication between the wireless protocol gateway and the application

server requires more complex transaction protocols. LSM employs a combination of a

public-key cryptography mechanism and a simple password authentication solution. Lam

et al. (2003) suggested the use of some tamper-resistant hardware device in order to ensure

non-repudiation.

LSM meets the security requirements of mobile commerce in authentication, confiden-

tiality, integrity and non-repudiation. The combination of the wireless protocol gateway

129

and the end-to-end security mechanism plays a role as an effective balance between high

computational requirements and good security protection. However, there are still some

limitations in this proposal.

One requirement of LSM is that the wireless protocol gateway shares many cryptogra-

phy calculation duties with mobile devices. The wireless protocol gateway is responsible

for maintaining a network communication channel, and an agent between the wired and

wireless networks. More importantly, the wireless protocol gateway can be viewed as a

part of mobile devices, with extensive computational capability. Much cryptography com-

putation is performed in the wireless protocol gateway. This approach leads to a limitation

for LSM that a security gap can exist in the wireless protocol gateway. The wireless gate-

way receives the traffic from handheld devices, decrypts the traffic with the symmetric key

and encrypts them again using public-key cryptography, then sends the data to the applica-

tion server. This can result in the exposure of the data at the wireless protocol gateway.

Another limitation is caused by the approach in which the mobile transaction is imple-

mented on the mobile phone network. The mobile phone network is provided by mobile

network operators, while mobile application services are offered by application providers.

Financial service providers may not want mobile network operators to be excessively in-

volved in their security strategy. However, LSM employs the wireless protocol gateway as

a rich resource for performing intensive cryptography computations. This approach cannot

avoid a high involvement of a third party, which undoubtedly increases the difficulties of a

suitable collaboration among enterprise systems.

130

6.1.3 Internet Keyed Payment Protocols

Internet Keyed Payment Protocols (iKP) is a group of secure payment protocols developed

by IBM Research Division (Janson, 2007; Bellare et al., 2000). All iKP protocols are based

on RSA Public-key cryptography. The number of public keys, which is referred to as (i),

varies according to the participants in a specific business requirement. The i is mirrored in

the name of the individual protocols: 1KP, 2KP, and 3KP. The simplest protocol, 1KP, only

asks for the acquirer to hold one public key (Janson, 2007). The main reason for designing

these three variants was to enable gradual deployment.

Originally iKP was designed to suit any browser, server and platform. Now it is com-

patible with the existing card-based business models and payment system infrastructures.

There are several participants involved in iKP:

• Buyer, who makes the actual payment,

• Merchant, who will receive the payment, and

• Acquirer Gateway, which plays a role as an intermediary between the electronic

payment world and the existing payment infrastructure, and authorizes transactions

using the latter.

Initially, iKP was designed for implementation in software. Now all iKP protocols can

be implemented in either software or hardware. In fact, in 1KP and 2KP the buyer does

not even need a personalized payment device: only credit card data and a PIN (if present)

must be entered to complete a payment. However, to fulfill the increased requirement for

security, it is obviously desirable to use a tamper-resistant device to protect the PIN and the

secret key of the buyer (Bellare et al., 2000).

131

6.1.4 Secure Electronic Transaction protocol

The Secure Electronic Transaction protocol (SET) specification is an open encryption and

security specification designed to protect credit card transactions on Internet. SET’s devel-

opment was led by VISA1 and MasterCard2. Various well-known companies were involved

in the development of SET, including IBM3, Microsoft4, Netscape5, RSA6, and VeriSign7.

Currently the major supporters are VISA and MasterCard. As a standard protocol SET

has been primarily defined to ensure the security of credit card payments on Internet, al-

though the transaction flow and implementation of security can also be applied to wireless

networks.

SET is very similar to iKP, especially the 3KP variant. The buyer, the merchant and

the acquirer are all involved in the payment transactions. SET is not actually a payment

system itself, but a set of security protocols enabling users to employ the existing credit

card payment infrastructure on an open network, like Internet, in a secure environment. In

general, SET includes three services:

1. providing a secure communications channel among all parties involved in a transac-

tion;

2. ensuring trust through the use of the digital certificates; and

3. ensuring privacy because the information is only available to parties in a transaction

when and where necessary.

There are several key components of the SET protocol (VISA and MasterCard, 1997).
1http://www.visa.com/
2http://www.mastercard.com/
3http://www.ibm.com/
4http://www.microsoft.com
5Netscape became a holding company of AOL in 1998
6RSA is the security division of EMC, http://www.rsa.com/
7http://www.verisign.com/

132

• The Cardholder Application, also referred to as a digital wallet, is held by an online

consumer and packages a digital signature and credit card information that ensures

the identity and safeguards the financial information through an encryption system.

• The Merchant Server component is the verification product held by the merchant to

process the online card payment.

• The Payment Gateway component is supported by an acquiring bank or other trusted

third party who can process the merchant’s verification and the client’s payment in-

formation and filters them to their appropriate financial institutions.

• The Certificate Authority component, run by a financial institution, is the trusted

agent that issues the digital certificates and is responsible for ensuring that all users

of digital certificates are in fact secure and trustworthy clients.

Details of the SET specification can be referred to (VISA and MasterCard, 1997).

Both SET (VISA and MasterCard, 1997) and iKP (Janson, 2007) are credit-card pay-

ment protocols that were designed originally for electronic commerce. Although they have

been successfully implemented for e-commerce on wired networks, they are too heavy-

loaded to operate on resource limited mobile devices and network environments such as

mobile devices and wireless networks. SET and iKP are comprehensive architectures, not

specifically designed for two-party payment transactions; this makes SET and iKP too com-

plex for efficient and realistic implementations of two-party mobile payment transactions.

6.2 Architecture Comparison

A comparison of SA2pMP with the other existing security architectures for mobile pay-

ment is provided in this section. JASA proposed by Itani and Kayssi (2004) provides

133

end-to-end client authentication, and data confidentiality and integrity; however, it cannot

guarantee non-repudiation during transactions. SET (VISA and MasterCard, 1997) and

iKP (Janson, 2007) are two practical credit-card payment protocols, which were designed

originally for electronic commerce. Although they have been successfully implemented

for e-commerce on a wired network, their computations are too heavyweight to operate

in a resource-limited environment. Lam et al. (2003) proposed LSM, which made use of

a wireless protocol gateway to maintain a security for mobile commerce. However, the

transaction data are possibly exposed to intruders at the wireless protocol gateway, as the

data are decrypted and then re-encrypted there. Additionally, the intensive computation at

the wireless protocol gateway, which is maintained by the mobile network operator, leads

to an excessive involvement of the third party for a two-party (such as client and bank)

payment transaction.

The proposed architecture, SA2pMP, is compared to JASA (Itani & Kayssi, 2004), LSM

(Lam et al., 2003), SET and iKP (VISA and MasterCard, 1997; Janson, 2007) in eight di-

mensions in Table 6.1. “Targeted to M-Payment” evaluates if the architecture is designed

for payment transactions over a mobile environment; “Targeted to 2-Party” shows if the

architecture is proposed for a transaction in which only two parties are involved; “Cryptog-

raphy Algorithm” compares which cryptography algorithm(s) are employed in the archi-

tecture; “Authentication Strategy” shows whether the architecture realizes a single-factor

authentication or a multi-factor authentication; “Non-repudiation” indicates if the architec-

ture addresses the problem of false denial or repudiation; “Java ME Enabled” describes

the implementation approach; “Computational Requirements” indicates whether the archi-

tecture’s computational requirement can be handled in a resource-limited mobile device;

and “3rd-Party involvement” evaluates the level to which the architecture requires the third

party to be involved.

As illustrated in Table 6.1, the comparison can be explained as follows:

134

Table 6.1: Architecture Comparison.
!!!!!!!!!!!!Fields

Architecture JASA SET and iKP LSM SA2pMP

Targeted to M-Payment
√

No
√ √

Targeted to 2-Party
√

(1)KP
√ √

Cryptography AES RSA RSA ECDSA
Algorithm AES

Authentication SFA SFA SFA MFA
Strategy

Non-Repudiation No
√ √ √

Java ME Enabled
√

- -
√

Computational Light- Heavy- Light- Light-
Requirements weight weight weight weight

The 3rd-Party Low High High Medium
Involvement

1 SFA: Single-factor Authentication;
2 MFA: Multi-factor Authentication;

135

• In comparing the employment of cryptography algorithms, JASA utilizes AES, while

LSM, SET and iKP employ RSA as the cryptography algorithm. AES is a Symmetric-

key cryptography algorithm. Although AES has a better computational speed than

Public-key cryptography algorithms (such as RSA), it is difficult to ensure non-

repudiation for systems which employ it. RSA, as a Public-key cryptography al-

gorithm, is able to fulfill the security requirements for authentication, integrity, con-

fidentiality, and non-repudiation. However, RSA is too computationally heavyweight

to be implemented in a resource-limited mobile device. SA2pMP introduces an inte-

grated scheme combining both AES and ECDSA.

• Comparing authentication strategy, JASA, LSM, SET and iKP all utilize single-factor

authentication, which is not enough to secure a financial application, but SA2pMP

implements a multi-factor authentication strategy. The multiple factors are consti-

tuted by the technical properties in possession of a mobile device, in the knowledge

of the personal identifier of the mobile device, and in the business transaction’s ac-

count information. The combination of these multiple factors provides a strong au-

thentication strategy. Additionally, the digital signature contributes to maintaining

authentication in SA2pMP.

• From the perspective of computational requirements, JASA has the advantage in

computational speed and resource requirement over AES; therefore, JASA can be

viewed as lightweight in computational requirement. LSM utilizes the wireless pro-

tocol gateway as the agent of the mobile device. Therefore, it changes the wireless

network to the wired network and changes the resource-limited mobile devices to

resource-rich ones. The intensive computing is translocated from mobile devices to

the wireless protocol gateway. The real computational requirement for mobile de-

vices is not high. Therefore LSM is also lightweight in computational requirements.

136

SET and iKP were not originally designed for mobile commerce; the computational

requirement is high. For this reason, SET and iKP are too heavyweight for the mobile

payment activities. SA2pMP balances the security and the computational complexity

and requirements, AES is chosen to realize a symmetric-key cryptography algorithm,

which is faster and computationally lighter compared to the public-key cryptogra-

phy algorithm. ECDSA is a digital signature algorithm based on the elliptic curve.

ECDSA is believed to be more suitable for resource-limited mobile devices, as it pro-

vides equal security level with the shorter key size. Hence, SA2pMP is lightweight

in computational requirements, without losing assurance in security.

• The design of each architecture has its target. JASA and LSM were designed for

transactions in which only two participants are involved. SET is not designed for

two-party payment transactions.The buyer, the merchant, and the financial services

are all involved. iKP includes a series of protocols, in which 1KP is able to be applied

for a two-party transaction. SA2pMP aims to maintain comprehensive security for

two-party mobile payments. Although the network gateway is physically involved in

SA2pMP, only two parties (client and financial service) participate in business trans-

actions. Moreover, JASA, LSM, and SA2pMP are designed for payment transaction

on mobile devices and over wireless networks, while SET and iKP were originally

developed for electronic commerce over PCs and wired networks.

• Non-repudiation is a key requirement for comprehensive security. In all architec-

tures listed in Table 6.1, only JASA did not suggest approaches to solve the false

repudiation problem. LSM, SET and iKP made use of cryptography algorithms to

maintain non-repudiation. Besides the employment of digital signature, SA2pMP uti-

lizes a distributed transaction log strategy to provide a defensive approach to ensure

non-repudiation.

137

• A mobile payment transaction have to cross different enterprises. An inter-enterprise

transaction should not only support efficient collaboration, but also respect each en-

terprise protecting self-determination and privacy (Biennier & Favrel, 2005). In the

mobile payment transaction, the financial service cooperates with the other support-

ing services, such as the mobile network operator. The models of the inter-enterprise

business collaboration employed in these architectures are not same. In the case

in this research, the collaboration between the financial service and the third party

(such as the mobile network operator or TTP) is evaluated based on the third party’s

involvement. LSM stores its cryptography key pair in the network protocol gateway.

One limitation is that this approach leads to an excessive involvement of the third

party (the mobile network operator). The key pairs are essential to a cryptography

strategy. Positioning key pairs with a third party rather than with one of the two

participants of a transaction makes this third party important in the system. This

excessive involvement of the third party will cause an excessive dependence on the

third party. SET and iKP require high third-party involvement, as they rely on TTP to

offer the key pairs. As JASA did not employ any third party in its architecture, it has

low third-party involvement. SA2pMP utilizes the network gateway in its distributed

transaction log strategy. The point is that SA2pMP treats the network gateway as the

third trusted party for monitoring or auditing payment transactions. This approach

avoids the third party’s excessive involvement, but it still contributes to ensuring non-

repudiation.

• Regarding the implementation, both JASA and SA2pMP mainly make use of Java

ME to develop a software architecture. LSM, SET and iKP were designed to be

suitable to any browser, server and platform. The development of LSM, SET and

iKP can be with software, hardware, or a combination of software and hardware.

138

6.3 Time Delay Comparison

In this section a comparison from the implementation perspective is provided. The time

delay during the cryptography computation is compared, and it is shown that SA2pMP has

the advantage in operating feasibly on resource-limited mobile devices.

As SA2pMP employs the lightweight cryptography scheme combining ECDSA and

AES, the computational time delay of AES is compared with JASA (Itani & Kayssi, 2004),

then the computational time delay of ECDSA is compared with the result provided by

Kilas (2009) (we use Kilas to represent the Kilas work). Kilas evaluated the practicality

of digital signatures on Near Field Communication (NFC) tags in a Java-powered mobile

phone. Although SA2pMP has different goal than does Kilas, it is possible to compare the

time delay as both employed an ECDSA implementation.

Comparison the related works in terms of time delay is difficult. First, the simulation in

this thesis is on PCs, while JASA and Kilas are based on actual devices. Second different

brands or series of mobile devices were employed in the experiment. Table 6.2 depicts

the models and technical specifications of the various mobile devices employed. Although

mobile device manufacturers support unified standards such as MIDP and CLDC, they add

unique features and functions that support their own branded mobile devices more effi-

ciently. Therefore, different models may function differently, and cause further difficulty

in the comparison.

Table 6.2: The mobile device models employed in JASA, Kilas, and SA2pMP.

Model Technical Specifications
JASA Sony Ericsson P800 MIDP-1.0, CLDC-1.0
Kilas Nokia 6131 NFC MIDP-2.0, CLDC-1.0

Sony Ericsson Z750 trial MIDP-2.0, CLDC-1.1
SA2pMP Nokia S60 Emulator MIDP-2.0

Sony Ericsson Z800 Emulator MIDP-2.0, CLDC-1.1

139

Although it is impossible to make use of current data comparing SA2pMP with the other

two related works, a rough evaluation of time delay is made.

If the AES implementation in JASA is examined, the AES encryption operation with

key size of 128 bits ran at over 165 Kbits/s on the Java phone, and the decryption operation

with key size of 128 bits ran at over 105 Kbits/s (Itani & Kayssi, 2004). In SA2pMP, AES

encryption and decryption, both with the key size of 256 bits, cost less than 1 millisecond.

As the plaintext is of 312-bit length (refer to subsection 5.2.3), the encryption speed can be

roughly evaluated as:

Speed(Encrypt) = Length(plaintext)/Tencrypt > 312Kbits/s (6.1)

Based on Formula 6.1, SA2pMP encryption speed (> 312Kbits/s) is clearly higher

than JASA (165Kbits/s). With the same evaluation method, the decryption speed (>

312Kbits/s) of SA2pMP is also higher than JASA (105Kbits/s).

There are several different Java ME implementations for ECDSA designed by e.g.

Tillich and Großschadl (2004); Zheng, Shao, Huang, and Yu (2008); Kilas (2009). As

the platforms in which ECDSA is implemented are not the same, a strict comparison is

difficult to make. Tillich and Großschadl (2004) and Zheng et al. (2008) suggested that

ECDSA could be performed faster, while the emulation data provided by Kilas (2009) are

less efficient than the data in the simulation of SA2pMP on the Nokia S60 emulator. A

comparison of ECDSA’s implementation is made between Kilas and SA2pMP. Both Kilas

and SA2pMP employ a 192-bit key for signing and verification. As both Kilas and SA2pMP

used SHA-1 to generate the message digest before the operation of signing and verification,

they sign or verify a digital signature for the same sized message. The average time delay

on different emulators is compared in Table 6.3.

As depicted in Table 6.3, the simulation on the Nokia S60 Emulator had the best per-

140

Table 6.3: The time delay caused by ECDSA implementation: Kilas and SA2pMP.

Kilas SA2pMP
Emulator Nokia S60 Sony Ericsson Z800 Sun WTK

Emulator Emulator Emulator
Signing 1088 524.1 3080.3 3178.5

Verification 2603 702 4024.8 4185.1

formance in all experimental implementations, when examining with both signing and

verification calculations. The data from Kilas are better than SA2pMP according to the

experiments on Sony Ericsson Z800 Emulator and Sun WTK 2.5.2 Emulator.

Although a strict comparison of time delay cannot be made due to the restrictions of

experimental facility and environment, the result still shows some interesting information.

Java ME allows developers to create an application compatible over numerous devices with

the same piece of code. However, it varies in performance in that the application performs

particular tasks differently on different platforms. The reason lies in the wide deviation of

processor platforms, virtual machine (VM) implementations, and device memory capabili-

ties (Yi, Reddy, & Ang, 2002). Table 6.3 reflects different mobile device manufacturers add

characteristic functions and contribute different optimization to their own branded mobile

devices. Clearly, Nokia S60 has the most positive performance in supporting the cryptog-

raphy computation based on Table 6.3.

In this chapter, a comprehensive comparison of SA2pMP to the related approaches is

provided. In combination with the result from the evaluation in Chapter 5, the thesis sup-

ports the belief that SA2pMP has it own advantages in security and practicality as an im-

plementation for a two-party mobile payment. The thesis is concluded in the next chapter.

141

Chapter 7

Conclusions and Future Work

With the evolution of technologies in wireless networks and mobile devices, an increasing

number of people are becoming users of mobile applications, on account of the advantages

in convenience and portability. Mobile payment, as an important mobile application in the

financial field, is attracting wide attention from researchers, developers, bankers, merchan-

disers, and clients. However, it has not yet become a mainstream approach for making

payments. Non-secured mobile payments are simply not acceptable.

The goal of mobile payment research to enable payment transactions to operate on mo-

bile devices and wireless networks. Although the technologies in these two fields have

improved and are experiencing a significant development, mobile devices and wireless net-

works are still “resource-limited” compared to PCs and fixed-line networks. The difficulty

in building mobile payment systems lies in how to provide payment transactions with se-

curity and practicality.

In this respect, the focus of this research is mobile transaction security. The goal is

to design a security architecture for two-party mobile payment transactions. A wide in-

vestigation of security issues on mobile transactions is provided, particularly focusing on

mobile payments. The Four-layer mobile payment participant model on the basis of the

model suggested by Karnouskos (2004) clarifies how participants are involved in mobile

payments. Based on the Onion Layer Framework, a security map is proposed to guide

the present research analysis activities. Finally a new security architecture for two-party

mobile payment referred to as SA2pMP is proposed.

SA2pMP operates on Java-enabled mobile devices with Internet browser capability. The

participants in a logical payment transaction only include the financial sector and the client.

As the mobile payment runs over a mobile phone network, the mobile network operator is

142

physically employed to provide a network communication channel. SA2pMP is built on the

application layer, which means that it does not make any modification to current network

protocols and wireless network infrastructures. Since the mobile bank is a typical two-party

mobile payment, it is used as a scenario for describing system design and implementation.

SA2pMP employs a combination of technologies to provide comprehensive security for

mobile payments. It fulfills the four basic security requirements of authentication, integrity,

confidentiality, and non-repudiation. Some of the highlights of SA2pMP are as follows:

• A lightweight cryptography scheme is implemented, which combines a symmetric-

key cryptography algorithm (AES) along with a digital signature algorithm (ECDSA).

ECDSA is a lightweight digital signature algorithm for better operating on resource-

limited mobile devices. It contributes to ensuring the properties of authentication,

integrity, and non-repudiation. AES is a popular symmetric key algorithm which has

the benefit of running faster on mobile devices, as compared to a public key algo-

rithm. It is employed to ensure confidentiality during a payment transaction. The

ease of using a simple “Sign-and-Encrypt” approach avoids high computational re-

quirements on resource-limited mobile devices.

• A multi-factor authentication strategy is proposed, which employs the inherent fac-

tors of mobile devices, bank account, and networks to provide a strong authentication

for a mobile transaction.

• A distributed transaction log strategy is suggested to partly maintain non-repudiation.

The distributed transaction log strategy makes use of the “cooperator and monitor”

business model between financial sectors and mobile network operators. The mo-

bile network operator is viewed as a third party auditor for monitoring the business

transaction. It is responsible for maintaining a transaction log.

143

Additionally, the security API package created in implementing SA2pMP can be reused

as the security library for developing other mobile security applications. Designed origi-

nally for two-party mobile payments, SA2pMP can potentially be extended to ensure secu-

rity for other two-party mobile applications.

The simulation is performed on an IBM IntelliStation M Pro PC, with Pentium 4 CPU

2.80 GHz and 2 GB RAM. The operation system is Windows XP Professional SP3. Three

emulators (the Nokia S60 Emulator, the Sony Ericsson Emulator, and the Sun WTK CLDC

simulator) were employed in the system simulation. The evaluation of both time delay

and code size shows that SA2pMP is practical and efficient for implementation on mobile

devices.

Compared to some related works such as JASA (Itani & Kayssi, 2004), SET and iKP

(VISA and MasterCard, 1997; Janson, 2007), and LSM (Lam et al., 2003), SA2pMP has the

advantage of more lightweight computation, more comprehensive security, and less third

party involvement.

Future work could focus on the following areas:

• Currently, due to limitations of hardware environments, the present experiment in this

thesis were operated on a PC. Three emulators were used to simulate mobile devices.

In future work, the actual device will be employed in experiment and evaluation.

• A good cryptography approach needs a good key management strategy. SA2pMP em-

ploys paralleled key management for the key pair of digital signature, and the sym-

metric key pair of encryption and decryption. Although some options are suggested

for key storage and distribution, especially for the symmetric-key cryptography al-

gorithm, these candidates need to be evaluated in the context of a practical mobile

payment system.

• The distributed transaction log strategy employed in SA2pMP makes use of the mo-

144

bile network operators’ role as a monitor to audit business transactions that take place

between the client and the financial sector. Although it successfully contributes a

technical strategy to solve the problem that lies in business repudiation, it still needs

analysis on a case-by-case basis in real applications. The role that the mobile net-

work operator eventually plays will be dependent on what is allowed by the specific

business contract or the relevant legislation. For example, current legislation in Fin-

land does not allow Mobile Network Operators to charge for services exceeding a

certain amount of money. This example means that the operator may need to found

subsidiary companies in order to act as a trusted third party and/or to acquire licenses

for a bank (Tsalgatidou & Veijalainen, 2000). Another issue that must be concerned

is the client privacy. A business transaction log contains some sensitive information

of the clients. Allowing mobile network operators to maintain the business log does

possible business-sensitive information among these three parties (clients, financial

sectors, and the mobile network operators) to be leak. How to ensure client privacy

in this approach is worth consideration. Future work in the distributed transaction

log strategy needs further analysis than simply basing on technological practicality.

• Adequate security architecture is the most important measure to protect mobile pay-

ment systems. The security architecture can be viewed as the front line for prevention

of attacks. However, it is almost impossible to implement a completely secure sys-

tem. It is inevitable to have bugs and mistakes during the implementation process.

A number of security vulnerabilities and incident reports have been issued by, for

example, the CERT Coordination Center (Carnegie Mellon Software Engineering

Institute, 2004). The fraud detection system (FDS) is in place to detect attempted

and completed frauds; therefore, it can act as the second line of defense for protec-

tion of systems (Barse, 2004). The fraud detection is not in the research scope in

145

this thesis. However, the transaction log data could be employed in fraud detection

research in the future.

Clearly wireless networks and mobile device technologies are still in rapid develop-

ment. The growth of 3G/4G network technology and the Smartphone brings more and

more opportunities to mobile applications. SA2pMP, as a lightweight architecture, can be

feasibly implemented on mobile devices to provide a comprehensive security for two party

mobile payments. The financial sector in two-party mobile payments might be represented

not only by the traditional commercial banks but by stock traders, or even by Internet pay-

ment agents, for example, PayPal. Furthermore, the implementation of SA2pMP is low

cost and can also be easily integrated into the other end-to-end mobile applications. We

expect SA2pMP to provide a lightweight security architecture for ensuring comprehensive

security; meanwhile, it can be practically implemented in a resource-limited environment.

146

Glossary

ACCID Denotes the Client’s bank account number, or

ACCount IDentifier

Amount Denotes the amount of money transferred

Bank Denotes a server computer held by the financial

service participant in the transaction

Client Denotes the person using a mobile device on the

client side of the transaction

ClientDevice Denotes the mobile device used by the client to

carry out their mobile banking transaction

DS Denotes the digital signature

DSign Denotes the signing process for the digital signa-

ture

DVeri f y Denotes the verification process for the digital

signature

Decrypt Denotes the decryption process for the

symmetric-key cryptography algorithm

Encrypt Denotes the encryption process for the

symmetric-key cryptography algorithm

F Acc ID Denotes the ID number of the bank account from

which the money is transferred

Gateway Denotes the wireless gateway offered by a mobile

network operator

IDC Denotes the identity information of the client.

IDC = (SIM + PHID + ACCID)

147

KE Denotes the secret key for the symmetric-key

cryptography algorithm

PHID Denotes PHone IDentifier, such as the mobile

phone serial number

PIN Denotes the Client’s Personal Identifier Number

in the mobile device

PKS Denotes X’s public key which is used to verify

the digital signature in the transaction

PWD Denotes the password of Client, which is known

only to Client and is verifiable by Bank. For ex-

ample, the debit card has its password.

RKS Denotes X’s private key which is used to gener-

ate the digital signature and to sign the data trans-

ferred in the transaction

SIM Denotes the Subscriber Identifier Module num-

ber of ClientDevice

Session Denotes the HTTP communication session set up

between Bank and ClientDevice

T D Denotes the transaction data transferred in a

transaction

T Log Denotes the transaction log

T Acc ID Denotes the ID number of bank account to which

the money is transferred

T+ Denotes a set of operations for formatting the

string-based message

148

TCBiz Denotes the time delay caused by the business

computation on ClientDevice

TCSec Denotes the time delay caused by the security

computation on ClientDevice

TCom Denotes the time delay caused by the HTTP(s)

communication

TDSign Denotes the time delay caused by signing or ver-

ifying a digital signature

TSBiz Denotes the time delay caused by the specific

business processing computation on Bank

TSSec Denotes the time delay caused by the secure ver-

ification process and the decryption process on

Bank

Tencrypt Denotes the time delay caused by the encryption

process or the decryption process

Time Denotes the time when money transfer transac-

tion is initiated

TimeStamp Denotes a time stamp

Veri f y Denotes the process for verifying the transac-

tion’s authentication

X Denotes any participant involved in a mobile

payment transaction

Yes/No Denotes the transaction’s status: approved or re-

jected

149

[RKS,PKS] Denotes a digital signature key pair including a

private key and a public key

added identi f ier Denotes the identity information of the client,

formulated by IDC. The added identi f ier is a

combination of the SIM, PHID, and ACCID

h(msg) Denotes a one-way hash function for the message

msg Denotes a message

3GPP The Third Generation Partnership Project

AES Advanced Encryption Standard

AES256 The AES algorithm with the key size of 256 bits

Android A set of software for mobile devices: an operat-

ing system, middleware and key mobile applica-

tions (Open Handset Alliance, n.d.)

APIs Application Programming Interfaces

AS Authentication Server

ATM Automated Teller Machine

Authentication Ensuing that the communicating entity is who

they are claiming to be (Stallings, 2006)

BlackBerry OS The proprietary operating system made by a

Canadian wireless device company, Research In

Motion, for BlackBerry Smartphones

BLM Business Logic Module

BLS Business Logic Server

150

Bouncy Castle An open-source collection of lightweight cryp-

tography APIs

BTLS Business Transaction Log Server

CDC Connected Device Profile

CDMA Code Division Multiple Access

CLDC Connected Limited Device Configuration

CM Communication Module

Confidentiality Ensuring the operation in private

Cryptography The art and science of securing messages so un-

intended audiences cannot read, understand, or

alter that message (Tipton & Krause, 2003)

DES Data Encryption Standard

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECC The Elliptic Curve Cryptography

ECDSA The Elliptic Curve Digital Signature Algorithm

ECDSAprime192 The ECDSA algorithm on prime integer with the

key size of 192 bits

ETSI European Telecommunications Standards Insti-

tute

FDS Fraud Detection System

151

FIPS Federal Information Processing Standards

FORTRAN A programming language that is especially suited

to the numeric computation and the scientific

computing

GPRS General Packet Radio Service

GSM Global System for Mobile Communication

HCI Human Computer Interaction

HTTPs Hypertext Transfer Protocol Secure

iKP Internet Keyed Payment Protocols

IMT-2000 The International Mobile Telecommunications

2000

Integrity The information and systems must be guaranteed

against corruption by outside parties

iPhone OS The operating system developed by Apple Inc.

for the iPhone and iPod Touch

ITU International Telecommunication Union

J2EE Java 2 Platform, Enterprise Edition

J2ME Java 2 Platform, Micro Edition

JAD Java Application Descriptor

JAR Java ARchive file

152

JASA A J2ME application-layer security architecture

proposed in (Itani & Kayssi, 2004)

Java EE Java Platform, Enterprise Edition, which was for-

merly known as Java 2 Platform, Enterprise Edi-

tion (J2ME)

Java EE Java Platform, Enterprise Edition

Java ME Java Platform, Micro Edition, which was for-

merly known as Java 2 Platform, Micro Edition

(J2ME)

JCA Java Cryptography Architecture

JCE Java Cryptography Extension

JCP Java Community Process

JSR Java Specification Request

JVM Java Virtual Machine

KMM Key Management Module

KMS Key Management Server

LAN Local Area Network

Linux A Unix-like computer operating system, which

can be implemented in the mobile device

LSM The lightweight security mechanism proposed by

Lam et al. (2003)

MBP Mobile Banking Platform

153

MFA Multi-Factor Authentication

MIDlet The MIDP application

MIDP Mobile Information Device Profile

Mobile Device a handheld devices with functions such as GPRS

connectivity, Internet browsing, and basic com-

putational capabilities

MPN Mobile Phone Network

NFC Near Field Communication

NIST National Institute of Standards and Technology

Nokia S60 A Symbian OS for Nokia mobile phones

Non-repudiation Ensuring that the originator cannot falsely repute

or deny a transaction

Onion Layer Framework A security framework adopted from Onion Ring

Framework (Wei et al., 2006)

Onion Ring Framework An m-commerce security framework proposed

by Wei et al. (2006)

Palm An embedded operating system for PDAs

PAP Password Authentication Protocol

PDAs Personal Digital Assistants

154

Pocket PCs The handheld devices that enable users to store

and retrieve e-mail, contacts, appointments,

tasks, play multimedia files, games, exchange

text messages with Windows Live Messenger

(formerly known as MSN Messenger), browse

the Web, and more

POS Point of Sale

Proguard An obfuscation software

Public-key Cryptography The cryptography based on that the sender and

the receiver hold the different keys

RIM Research In Motion, a Canadian wireless device

company.

RMS Record Management System in MIDP

RSA The Rivest-Shamir-Adleman algorithm

RTOS real-time operating system

SA2pMP The security architecture for two-party mobile

payment

SDK Software Development Kit

Security Component A potential secured technology employed in a se-

cured system

Security Map A security solution analysis mode based on the

Onion Layer Framework

SET Secure Electronic Transaction

155

SFA Single-Factor Authentication

SHA The Secure Hash Algorithm

SHA-1 A Secure Hash Standard

SM Security Module

Smartphone The powerful, multi-function cell phones that in-

corporate a number of PDA functionality (Yang,

Zheng, & Ni, 2007)

SMS Short Messaging Service

SSL Secure Sockets Layer

Symbian A proprietary operating system for mobile de-

vices

Symmetric-key Cryptography The cryptography based on that the same key is

shared among the sender and the receiver

TAP Third Auditor Party

TDD/CDMA Time Division Duplex/Code Division Multiple

Access

The strong authentication The layered authentication approach relying on

two or more authenticators to establish the iden-

tity of an originator or receiver of information

(The United States Federal Government, 2006)

TTP Trusted Third Party

UIQ User Interface Quartz

UMTS Universal Mobile Telephone System

156

Unisys Security Index The Unisys Security Index presents a social indi-

cator regarding how safe consumers feel on key

areas of security. Conducted twice a year the

Unisys Security Index provides a regular, statisti-

cal measure of concerns about four areas of secu-

rity: national, financial, Internet and the personal

safety.(http://www.unisyssecurityindex.com/)

VM Virtual Machine

W-CDMA Wideband Code Division Multiple Access

WAP Wireless Application Protocol

WAR Web ARchive file

Windows Mobile A light version operating system combined with

a suite of basic applications for mobile devices

based on the Microsoft Win32 API

WLAN Wireless Local Area Network

WML Wireless Markup Language

157

References

ABI Research. (2007). 203 Million Mobile Phones Will Use Linux Operating Systems by
2012, with 76 Million as RTOS Replacements. www.abiresearch.com.

ABI Research. (2008). Mobile Linux Bringing License-Free Operating Systems to Smart-
phones and Middle-Tier Devices (Tech. Rep.). Oyster Bay, NY, USA: Author.

ACCESS Press Release. (2007). ACCESS Debuts New ACCESS Powered Mark.

Adachi, F., Garg, D., Takaoka, S., & Takeda, K. (2005). Broadband CDMA techniques.
IEEE Wireless Communications, 12(2), 8-18.

Aite Group. (2007). Mobile Banking Security: The Black Cloud Attached to the Silver
Lining. Boston, MA, USA.

American Banker. (2009). Mobile Growth Forecast by TowerGroup. American Banker.

Anderson, M. (1998). The Electronic Check Architecture. Financial Services Technology
Consortium.

Apple Inc. (2009). iPhone OS 3.0 Software, Get an Advance Preview.
http://www.apple.com/iphone/preview-iphone-os/.

Barker, E., Barker, W., Burr, W., Polk, W., & Smid, M. (2007). NIST SP800-57: Recom-
mendation for Key Management Part 1: General (revised) (Tech. Rep.). Gaithers-
burg, Maryland, USA: National Institute of Standards and Technology.

Barse, E. L. (2004). Logging for intrusion and Fraud Detection. Unpublished doctoral
dissertation, Department of Computer Engineering, Chalmers University of Technol-
ogy, Sweden.

Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., et al. (2000).
Design, Implementation, and Deployment of the iKP Secure Electronic Payment Sys-
tem. Selected Areas in Communications, IEEE Journal, 18, 611-627.

Bhise, L. (2009). Future of Mobile Internet: Downloadable Mobile Applications.
www.alootechie.com.

Biennier, F., & Favrel, J. (2005). Collaborative Business and Data Privacy: Toward a
Cyber-Control? Computers in Industry, 56, 361 C 370.

158

Bohlin, E., Lindmark, S., Bjorkdahl, J., Weber, A., Wingert, B., & Ballon, P. (2004). The
Future of Mobile Communications in the EU: Assessing the Potential of 4G (Tech.
Rep.). Seville, Spain: Institute for Prospective Technological Studies (IPTS).

Boneh, D., & Daswani, N. (1999). Experimenting with Electronic Commerce on the
PalmPilot. In Proceedings of Financial Cryptography ’99, Lecture Notes in Com-
puter Science (Vol. 1648, p. 1-16). New York, NY, USA: Springer.

Bruene, J. (2007). Mobile Money & Payments, Why Credit & Debit Card Issuers Should
Embrace Mobile Delivery Now (Tech. Rep.). Seattle, WA, USA: Online Financial
Innovations.

CanadianContent. (n.d.). GSM Technology. http://www.canadiancontent.net/mobile/.

Carnegie Mellon Software Engineering Institute. (2004). CERT Coordination Center.
http://www.cert.org/.

Chang, S., Eberle, H., Gupta, V., & Gura, N. (n.d.). Elliptic Curve Cryptography: How it
Works. http://research.sun.com/projects/crypto.

Chapman, S. (2009, October). Updated Windows Mobile 7 RTM Time Frame and Office
Mobile 7 Teaser. http://msftkitchen.com.

Daemen, J., & Rijmen, V. (1999). AES Proposal: Rijndael. Available from http://
csrc.nist.gov/CryptoToolkit/aes/rijndael/

Daemen, J., & Rijmen, V. (2006). The Block Cipher Rijndael. Smart Card. Research and
Applications, LNCS1820, 277-284.

Davis, D. (2002). Defective Sign & Encrypt in S/MIME, PKCS#7,MOSS, PEM, PGP,
and XML. In Proceedings of the General Track: 2002 USENIX Annual Technical
Conference (p. 65-78). Monterey, CA, USA: USENIX Association.

Deans, P. C. (2004). E-Commerce and M-Commerce Technologies. Hershey, PA, USA:
IRM Press.

Debbabi, M., Talhi, C., & Zhioua, S. (2007). Embedded Java Security: Security for Mobile
Devices. New York, NY, USA: Springer.

Delfs, H., & Knebl, H. (2002). Introduction to Cryptography: Principles and Applications.
New York, NY, USA: Springer.

159

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

Diffie, W., & Hellman, M. (1976). New Directions in Cryptography. IEEE Transactions
on Information Theory, IT(22), 644-654.

DiMarzio, J. (2008). Android: A Programmer’s Guide. New York, NY, USA: McGraw-Hill
Professional.

Dray, J. (2000). NIST Performance Analysis of the Final Round Java AES Candidates
(Tech. Rep.). Gaithersburg, Maryland, USA: Computer Security Division, The Na-
tional Institute of Standards and Technology.

EDS.com. (n.d.). EDS Authentication. EDS Slides on EDS.com.

ElGamal, T. (1985). A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory.

Fernandes, A. (1999). Elliptic Curve Cryptography. Dr. Dobb’s Journal.

Ferro, E., & Potorti, F. (2005). Bluetooth and Wi-Fi Wireless Protocols: A Survey and A
Comparison. IEEE Wireless Communications, 12, 12-26.

Firesmith, D. (2003). Security Use Cases. Journal of Object Technology, 2(3), 53 - 64.

FSTC Press Releases. (2007). M-Commerce: Why Rollout, Patch Later Is a Dangerous
Prescription.

Gao, J., Cai, J., Patel, K., & Shim, S. (2005). A Wireless Payment System. In Second
International Conference on Embedded Software and Systems (ICESS 2005) (Vol.
16-18, p. 8). Xi’an, China: Springer.

Ghosh, A. (1998). E-Commerce Security Weak Links, Best Defenses (First Edition ed.).
New York, NY, USA: Robert Ipsen.

Ghosh, S. (2002). J2ME Record Management Store. IBM DeveloperWorks. Available
from http://www.ibm.com/developerworks/library/wi-rms/

Giguere, E. (2004). Databases and MIDP, Part 1: Understanding the Record Management
System.

Ginevan, S. (2002). Networking in the Palm of Your Hand. Network Computing, 13,
67-68.

Glisic, S. G., & Leppanen, P. A. (1997). Wireless Communications: TDMA versus CDMA.

160

http://www.ibm.com/developerworks/library/wi-rms/

Norwell, MA, USA: Kluwer Academic Publishers.

Global Information Inc. (2005). Wireless Payments: The New Payments Paradigm - 2005
to 2010.

Goldreich, O. (2005). Foundations of Cryptography - A Primer. Rehovot, Israel: Dpeart-
ment of Computer Science, Weizmann Institute of Science.

GoMoNews. (2009a). Mobile banking Continues to Rise with Canadas Telus and ATB
Financial. www.gomonews.com.

GoMoNews. (2009b). SMS Mobile Banking for State Bank & Trust Powered by ClairMail.
http://www.gomonews.com.

Ham, W., Choi, H., Xie, Y., Lee, M., & Kim, K. (2002). Secure One-way Mobile Payment
System Keeping Low Computation in Mobile Devices. In Proceedings of The 3rd
International Workshop on Information Security Applications (WISA 2002) (p. 287-
301). Jeju Island, Korea (South): Springer.

Hassell, J. (2002). RADIUS: Securing Public Access to Private Resources. Sebastopol,
CA, USA: OŔeilly and Associates, Inc.

Herzberg, A. (2003). Payments and Banking with Mobile Personal Devices. Communica-
tions of the ACM, 46, 53-58.

IBM MARS Team. (n.d.). The MARS Cipher - IBM Submission to AES. IBM.

Itani, W., & Kayssi, A. (2004). J2ME Application-Layer End-to-End Security for M-
commerce. Journal of Network and Computer Applications, 27, 13-32.

ITU. (2005). Cellular Standards for 3G. http://www.itu.int/osg/spu/imt-
2000/technology.html.

Janson, P. (2007). Internet Keyed Payment Protocols (iKP) (Tech. Rep.). Zurich, Switzer-
land: IBM Zurich Information Technology Solutions.

Java Community Process. (n.d.-a). JSR 118: Mobile Information Device Profile 2.0.
http://www.jcp.org/en/jsr/detail?id=118.

Java Community Process. (n.d.-b). JSR 139: Connected Limited Device Configuration 1.1.
http://www.jcp.org/en/jsr/detail?id=139.

161

Java Community Process. (2002). Mobile Information Device Profile, Version 2.0. Sun
Developer Network.

Johnson, D., Menezes, A., & Vanstone, S. (2001). The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1), 36-63.

Jurisic, A., & Menezes, A. (1997). Elliptic Curves and Cryptography. Dr. Dobb’s Journal.

Karnouskos, S. (2004). Mobile Payment: A Journey Through Existing Procedures and
Standardization Initiatives. IEEE Communications Surveys and Tutorials, 6(4), 44-
66.

Karnouskos, S., & Vilmos, A. (2004). The European Perspective on Mobile Payments.
In IEEE Symposium on Trends in Communications (SympoTIC ’04). Bratislava, Slo-
vakia: IEEE.

Kilas, M. (2009). Digital Signatures on NFC Tags. Unpublished master’s thesis, KTH
Royal Institute of Technology, Sweden.

Koblitz, N. (1987). Elliptic Curve Cryptosystems. Mathematics of Computation, 48,
203-209.

Koblitz, N., Menezes, A., & Vanstone, S. (2000). The State of Elliptic Curve Cryptography.
Designs, Codes and Cryptography, 19, 173 - 193.

Krawetz, N. (2006). Introduction to Network Security. Boston, MA, USA: Charles River
Media.

Krill, P. (2008). Sun: We’ll Put Java on the iPhone (Sun Readies Virtual Machine to Make
Java Apps Run on Apple’s Mobile Platform). InfoWorld.

Kuwayama, J. (2008). Mobile Banking is Just Around the Corner. BizTimes.com.

Lai, Y., P.Lin, & Huang, Y.-T. (2006). Design and Implementation of a Wireless Internet
Remote Access Platform. Wireless Communications and Mobile Computing, 6(4),
413-429.

Lam, K.-Y., Chung, S.-L., Gu, M., & Sun, J.-G. (2003). Lightweight Security for Mobile
Commerce Transactions. Computer Communications, 26, 2052-2060.

Laukkanen, T., & Lauronen, J. (2005). Consumer Value Creation in Mobile Banking
Services. International Journal of Mobile Communications, 3(4), 325-338.

162

Lenstra, A. K., & Verheul, E. R. (1999). Selecting Cryptographic Key Sizes. Lecture Notes
in Computer Science, 1751, 446-465.

Li, S., & Knudsen, J. (2005). Beginning J2ME: From Novice to Professional (Third Edition
ed.). Berkeley, CA, USA: Apress.

Li, Z., Higgins, J., & Clement, M. (2001). Performance of Finite Field Arithmetic in
an Elliptic Curve Cryptosystem. In Ninth Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS’01) (p. 249 -
258). Cincinatti, Ohio, USA: IEEE Computer Society.

Linck, K., Pousttchi, K., & Wiedemann, D. (2006). Security Issues in Mobile Payment
from the Customer Viewpoint. In J. Ljungberg & M. Andersson (Eds.), Proceedings
of the 14th European Conference on Information Systems (ECIS 2006). Goteborg,
Sweden: MPRA.

Lopez, J., & Dahab, R. (2000a). An Overview of Elliptic Curve Cryptography (Tech. Rep.).
State of Sao Paulo, Brazil: Institute of Computing, State University of Campinas,
Brazil.

Lopez, J., & Dahab, R. (2000b). Performance of Elliptic Curve Cryptosystems (Tech.
Rep.). State of Sao Paulo, Brazil: State University of Campinas.

Mahmoud, Q. (2000). MIDP Database Programming Using RMS: a Persistent Storage for
MIDlets. Sun Developer Network.

Maiwarld, E. (2004). Fundamentals of Network Security. Burr Ridge, IL, USA: McGraw-
Hill Professional.

Mann, S., Sbihli, S., & NetLibrary, Inc. (2002). The Wireless Application Protocol (WAP):
A Wiley Tech Brief. Hoboken, New Jersey, USA: John Wiley and Sons Inc., Publica-
tion.

McKitterick, D., & Dowling, J. (2003). State of the Art Review of Mobile Payment Tech-
nology (Tech. Rep.). Dublin, Ireland: Depart of Computer Science, Trinity College
Dublin.

Menezes, A., Oorschot, P. V., & Vanstone, S. (1996). Handbook of Applied Cryptography.
Boca Raton, Florida, USA: CRC Press.

Merz, M. (2002). E-Commerce und E-Business: Marktmodelle,Anwendungen und Tech-
nologien (Second Edition ed.). Deutsch: Dpunkt Verlag.

163

Microsoft Corporation. (2009). Windows Mobile. http://developer.windowsmobile.com/.

Miller, R. B. (1968). Response Time in Man-Computer Conversational Transactions. In
Proceedings of the AFIPS Joint Computer Conferences (AFIPS ’68), part I (p. 267 -
277). San Francisco, California, USA: ACM.

Mobile Marketing Association. (2009). Mobile Banking Overview (NA) (Tech. Rep.).
New York, NY, USA: MMA Mobile Marketing Association. Available from www
.mmaglobal.com

MobileMentalism.com. (2009). Toshiba TG01 Offers Largest Screen and Fastest Processor
of Any Smartphone.

Mollin, R. A. (2003). RSA and Public-Key Cryptography. Boca Raton, Florida, USA:
CRC Press.

Nah, F. F.-H. (2004). A Study on Tolerable Waiting Time: How Long Are Web Users
Willing to Wait? Behaviour & Information Technology, 23(3), 153 - 163.

Nahum, E., O’Malley, S., Orman, H., & Schroeppel, R. (1995). Towards High Perfor-
mance Cryptographic Software. In Third IEEE Workshop on the Architecture and
Implementation of High Performance Communication Subsystems (HPCS ’95) (p. 69
- 72). Mystic, Connecticut, USA: IEEE.

Nambiar, S., Lu, C.-T., & Liang, L. (2004). Analysis of Payment Transaction Security in
Mobile Commerce. In Proceedings of the 2004 IEEE International Conference on
Information Reuse and Integration. Las Vegas, Nevada, USA: IEEE.

Nielsen, J. (1995). Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

NIST. (1995). FIPS PUB 180-1: Federal Information Processing Standards Publication,
Secure Hash Standard (SHS) (Tech. Rep.). Gaithersburg, Maryland, USA: National
Institute of Standards and Technology.

NIST. (2000). FIPS PUB 1862: Federal Information Processing Standards Publication,
Digital Signature Standard (DSS) (Tech. Rep.). Gaithersburg, Maryland, USA: Na-
tional Institute of Standards and Technology.

NIST. (2006). FIPS 200: Minimum Security Requirements for Federal Information and
Information Systems (Tech. Rep.). Gaithersburg, Maryland, USA: National Institute
of Standards and Technology.

164

file://localhost/Users/rice/RESEARCH/GRADSTUDENTS/yunpu/www.mmaglobal.com
file://localhost/Users/rice/RESEARCH/GRADSTUDENTS/yunpu/www.mmaglobal.com

NIST. (2008). FIPS PUB 180-3: Federal Information Processing Standards Publication,
Secure Hash Standard (SHS) (Tech. Rep.). Gaithersburg, Maryland, USA: National
Institute of Standards and Technology.

Nokia. (2009). S60 Platform and Device SDKs. forum.nokia.com.

Ondrus, J., & Pigneur, Y. (2005). A Disruption Analysis in the Mobile Payment Market. In
Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS ’05). Big Island, Hawaii, USA: IEEE Computer Society.

Open Handset Alliance. (n.d.). What is Android? http://www.android.com/about/.

Ortiz, C. E. (2009). Obfuscating Your MIDlet Suite.
http://developers.sun.com/mobility/midp/ttips/midletsize/.

Pahlavan, K., & Levesque, A. H. (2005). Wireless Information Networks (Second Edition
ed.). Hoboken, New Jersey, USA: John Wiley and Sons Inc., Publication.

Park, N., & Song, Y. j. (2001). M-Commerce Security Platform based on WTLS and
J2ME. In Proceedings of IEEE International Symposium on Industrial Electronics
(ISIE 2001). Pusan,Korea (South): IEEE.

Parson, K., & Schaeffler, J. (2001). US Wireless Phone Penetration Climbs. Wireless
Insider.

Peiro, J. L. A., Asokan, N., Steiner, M., & Waidner, M. (1998). Designing a Generic
Payment Service. IBM Systems Journal, 37(1), 72-88.

Research In Motion Limited. (n.d.). BlackBerry Overview. BlackBerry.com.

Riggs, R., & Vandenbrink, M. (2001). Programming for Wireless Devices with the Java 2
Platform, Micro Edition. Santa Clara, California, USA: Addison-Wesley Longman
Publishing Co., Inc.

Rittinghouse, J. W., & Ransome, J. F. (2004). Wireless Operational Security. Burlington,
MA, USA: Digital Press.

Rivest, R., Robshaw, M., Sidney, R., & Yin, Y. L. (n.d.). The RC6 Block Cipher. RSA
Laboratories.

Rivest, R., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM.

165

Roto, V., & Oulasvirta, A. (2005). Need for Non-Visual Feedback with Long Response
Times in Mobile HCI. In Special interest tracks and posters of the 14th international
conference on World Wide Web (p. 775 - 781). Chiba, Japan: ACM.

Roussos, G., Peterson, D., & Patel, U. (2003). Mobile Identity Management: An Enacted
View. International Journal of Electronic Commerce, 8(1), 81 - 100.

RSA Laboratories. (2000). RSA Laboratories’ Frequently Asked Questions About Today’s
Cryptography, Version 4.1. Bedford, MA, USA: RSA Security Inc.

RSA Laboratories. (2002). Public-Key Cryptography Standards (PKCS) # 1: RSA Cryp-
tography Specifications Version 2.1. Bedford, MA, USA: RSA Security Inc.

Sacco, A. (2008). Mobile Payments: 71 Percent of Consumers Say ”No Way” to Online
Shopping, Banking via Mobile Devices. CIO.com.

Sanchez-Avila, C., & Sanchez-Reillol, R. (2001). The Rijndael block cipher (AES pro-
posal) : A Comparison with DES. In IEEE 35th International Carnahan Conference
on Security Technology (p. 229-234). London, England: IEEE.

Sanders, G., Thorens, L., Reisky, M., Rulik, O., & Deylitz, S. (2003). GPRS networks.
New York, NY, USA: John Wiley and Sons Inc., Publication.

Schneider, F. B. (n.d.). Something You Know, Have, or Are.
http://www.cs.cornell.edu/Courses/CS513/2005FA/NNLauthPeople.html.

Schneier, B. (1994). Applied Cryptography. New York, NY, USA: John Wiley and Sons
Inc., Publication.

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., & Ferguson, N. (1998). Twofish:
A 128-Bit Block Cipher. http://www.schneier.com/paper-twofish-paper.html.

Schnorr, C. (1991). Efficient Signatures for Smart Card. Journal of Cryptology.

Scourias, J. (2003). Overview of the Global System for Mobile Communication.
http://ccnga.uwaterloo.ca/ jscouri/GSM/gsmreport.html.

Sony Ericsson. (n.d.). Z800i Specifications. http://www.sonyericsson.com.

Stallings, W. (2006). Cryptography and Network Security: Principles and Practice (Third
Edition ed.). Upper Saddle River, New Jersey, USA: Pearson Prentice Hall.

166

Stinson, D. R. (2002). Cryptography: Theory and Practice (Second Edition ed.). Boca
Raton, FL, USA: CRC Press.

Sun Microsystems. (n.d.-a). Introduction to the Java ME Platform. Sun Developer Net-
work. http://java.sun.com/javame/technology/index.jsp.

Sun Microsystems. (n.d.-b). JSR 177: Security and Trust Services API for J2ME. Sun
Developer Network.

Sun Microsystems. (n.d.-c). Mobile Information Device Profile (MIDP): JSR 37, JSR 118
Overview. Sun Developer Network.

Sun Microsystems. (2000a). Connected Limited Device Configuration, Version 1.0a. Sun
Developer Network.

Sun Microsystems. (2000b). Mobile Information Device Profile, Version 1.0a. Sun Devel-
oper Network.

Sun Microsystems. (2003). Connected Limited Device Configuration, Version 1.1. Sun
Developer Network.

Sun Microsystems. (2009). Sun Java Wireless Toolkit 2.5.2 01 for CLDC Download. Sun
Developer Network.

Symbian Foundation. (2009). About the Symbian Foundation.
http://www.symbian.org/index.php.

Thanh, D. (2000). Security Issues in Mobile Commerce. In Proceedings of the 1st Interna-
tional Conference on Electronic Conference and Web Technologies (EC-Web 2000)
(p. 412 - 425). London, UK: Springer.

The Open Mobile Alliance Ltd. (n.d.). Wireless Application Protocol.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html.

The United States Federal Government. (2006). National Information Assurance (IA)
Glossary (Tech. Rep.). USA: Author.

Tillich, S., & Großschadl, J. (2004). A Survey of Public-Key Cryptography on J2ME-
Enabled Mobile Devices. Lecture Notes in Computer Science, 3280/2004, 935-944.

Tipton, H. F., & Krause, M. (2003). Information Security Management Handbook. Boca
Raton, FL, USA: CRC Press.

167

Tipton, H. F., & Krause, M. (2007). Information Security Management Handbook (6 ed.).
Boca Raton, FL, USA: CRC Press.

Tsalgatidou, A., & Veijalainen, J. (2000). Mobile Electronic Commerce: Emerging Issues.
In Proceedings of 1st International Conference on E-Commerce and Web Technolo-
gies (EC-WEB 2000). London, Greenwich, UK: Springer.

Vanstone, S. (1992). Responses to NISTs Proposal. Communications of the ACM, 35,
50-52.

Varshney, U., & Vetter, R. (2000). Emerging Mobile and Wireless Networks. Communi-
cations of the ACM, 43, 73 - 81.

Vihinen, J. (2004). Identifying the Limitations and Capabilities of M-commerce Services
in GSM Networks. International Journal of Mobile Communications, 2(4), 329 -
342.

VISA and MasterCard. (1997). SET Secure Electronic Transaction Specification.
www.setco.org.

Vyas, A., & O’Grady, P. (2001). A Review of Mobile Commerce Technologies (Tech. Rep.).
Iowa City, IA, USA: Department of Industrial Engineering, University of Iowa.

WAP Forum. (2002). What is WAP? http://www.wapforum.org/what/index.htm.

Wei, J., C.Liu, L., & Koong, K. S. (2006). An Onion Ring Framework for Developing and
Assessing Mobile Commerce Security. International Journal of Mobile Communi-
cations, 4(2), 128 - 142.

Wilcox, N. (2005). Whats Next in Mobile Telephony and Will It Succeed? Telektronikk,
3/4, 85-95.

Yang, B., Zheng, P., & Ni, L. M. (2007). Professional Microsoft Smartphone Programming.
New York, NY, USA: John Wiley and Sons Inc., Publication.

Yi, W., Reddy, C., & Ang, G. (2002). J2ME Devices: Real-World Performance. Java-
World.com.

Zheng, J., Shao, Z., Huang, S., & Yu, T. (2008). Security of Two Signature Schemes Based
on Two Hard Problems. In 11th IEEE International Conference on Communication
Technology (ICCT 2008) (p. 745 - 748). Hangzhou, China: IEEE.

168

Zwass, V. (1996). Electronic Commerce: Structures and Issues. International Journal of
Electronic Commerce, 1(1), 3 - 23.

169

Appendix

Part of Client Simulation Code

MoBankMIDlet Operating Flow

170

MoBankMIDlet.java

1 / *

2 * MobSurveyMIDlet . j a v a

3 *

4 * C r e a t e d on 15−Nov−2007 , 1 0 : 3 7 : 5 4 AM

5 *

6 * To change t h i s t e m p l a t e , choose Too l s ∣ Templa t e s

7 * and open t h e t e m p l a t e i n t h e e d i t o r .

8 * /

9 package com . uleth . mobank ;

10

11 import com . uleth . mobank . connection . NetConnection ;

12 import java . io . IOException ;

13

14 import javax . microedition . midlet . * ;

15 import javax . microedition . lcdui . * ;

16 import javax . microedition . lcdui . Display ;

17 import org . netbeans . microedition . lcdui . LoginScreen ;

18 import org . netbeans . microedition . lcdui . WaitScreen ;

19 import org . netbeans . microedition . util . SimpleCancellableTask ;

20

21 / * *

22 * @author zhuyp

23 * /

171

24 public class MoBankMIDlet extends MIDlet implements ↩

CommandListener , ItemCommandListener {

25

26 private boolean midletPaused = false ;

27 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

F i e l d s ” > / /GEN−BEGIN : ∣ f i e l d s ∣ 0 ∣

28 private Alert alert ;

29 private LoginScreen loginScreen ;

30 private WaitScreen ds_waitScrn ;

31 private WaitScreen http_waitScrn ;

32 private WaitScreen encrypt_waitScrn ;

33 private Form loginForm ;

34 private TextField textAccound ;

35 private TextField textPassword ;

36 private Form payForm ;

37 private TextField payAmount ;

38 private DateField dateFieldPayment ;

39 private ChoiceGroup groupPayto ;

40 private ChoiceGroup groupPayFrom ;

41 private Form bizForm ;

42 private ImageItem imageItem ;

43 private ImageItem imageItem1 ;

44 private ImageItem imageItem2 ;

45 private Form sucForm ;

46 private ImageItem imageItem_Success ;

47 private Command exitCommand ;

48 private Command cancelCommand ;

172

49 private Command okCmdLogin ;

50 private Command okCmd_payForm ;

51 private Command backCmd_payForm ;

52 private Command okCmd_BizForm ;

53 private Command back_biz_Cmd ;

54 private Image image1 ;

55 private Image image2 ;

56 private Ticker ticker ;

57 private Font font ;

58 private Image image4 ;

59 private Image image5 ;

60 private Image image3 ;

61 private SimpleCancellableTask task ;

62 private SimpleCancellableTask task1 ;

63 private SimpleCancellableTask task2 ;

64 / / </ e d i t o r −f o l d > / /GEN−END : ∣ f i e l d s ∣ 0 ∣

65 private String answer = "S," ; / / t h e answer s u b m i t t e d

66 private String alert_notes ; / / t h e s t r i n g f o r a l e r t some ↩

e r r o r

67 private static final String CHANNEL1 = "WEB " ;

68 private static final String CHANNEL2 = "HANDHELD " ;

69 NetConnection nc = new NetConnection () ;

70

71 / * *

72 * @return R e t u r n s t h e a l e r t n o t e s .

73 * /

74 public String getAlert_notes () {

173

75 return alert_notes ;

76 }

77

78 / * *

79 * @param a l e r t n o t e s The a l e r t n o t e s t o s e t .

80 * /

81 public void setAlert_notes (String alert_notes) {

82 this . alert_notes = alert_notes ;

83 }

84

85 / * *

86 * g e t t h e S t r i n g of t h e answer

87 * /

88 private String getAnswer (String title , String subanswer) {

89 answer = answer + title + "_" + subanswer + "," ;

90 System . out . println ("answer :" + answer) ;

91 return answer ;

92 }

93

94 / * *

95 * d e l a y some t ime

96 * /

97 private void TimeDelay () {

98 for (int i = 0 ; i < 5000 ; i++) {

99 System . out . println ("I love this game ") ;

100 }

101 }

174

102

103 / * *

104 * HTTP SUBMIT

105 * /

106 private void httpSubmit () {

107

108 httpSubmitThread hst = new httpSubmitThread () ;

109 hst . start () ;

110 }

111

112 / * *

113 * Thread i n c h a r g e o f h t t p su bmi t

114 * /

115 private class httpSubmitThread extends Thread {

116

117 public void run () {

118 try {

119

120 / / h t t p c o n n e c t i n g t o s e r v e r wi th p o s t method

121 nc . postViaHttpConnection () ;

122

123 } catch (IOException e) {

124 e . printStackTrace () ;

125 }

126 }

127 }

128

175

129 / * *

130 * The MoBankMIDlet c o n s t r u c t o r .

131 * /

132 public MoBankMIDlet () {

133 }

134 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Methods ” > / /GEN−BEGIN : ∣ methods ∣ 0 ∣

135 / / </ e d i t o r −f o l d > / /GEN−END : ∣ methods ∣ 0 ∣

136

137 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : i n i t i a l i z e ” > / /GEN−BEGIN: ∣0 − i n i t i a l i z e ∣0 ∣0 − ↩

p r e I n i t i a l i z e

138 / * *

139 * I n i t i l i z e s t h e a p p l i c a t i o n .

140 * I t i s c a l l e d on ly once when t h e MIDlet i s s t a r t e d . The ↩

method i s c a l l e d b e f o r e t h e <code>s t a r t M I D l e t </ code> ↩

method .

141 * /

142 private void initialize () { / / GEN−END: ∣0 − i n i t i a l i z e ∣0 ∣0 − ↩

p r e I n i t i a l i z e

143 / / w r i t e pre− i n i t i a l i z e u s e r code h e r e

144 / / GEN−LINE: ∣0 − i n i t i a l i z e ∣1 ∣0 − p o s t I n i t i a l i z e

145 / / w r i t e pos t− i n i t i a l i z e u s e r code h e r e

146 } / / GEN−BEGIN: ∣0 − i n i t i a l i z e ∣ 2 ∣

147 / / </ e d i t o r −f o l d > / /GEN−END: ∣0 − i n i t i a l i z e ∣ 2 ∣

148

176

149 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : s t a r t M I D l e t ” > / /GEN−BEGIN: ∣3 − s t a r t M I D l e t ∣0 ∣3 − ↩

p r e A c t i o n

150 / * *

151 * P e r f o r m s an a c t i o n a s s i g n e d t o t h e Mobile Device − MIDlet ↩

S t a r t e d p o i n t .

152 * /

153 public void startMIDlet () { / / GEN−END: ∣3 − s t a r t M I D l e t ∣0 ∣3 − ↩

p r e A c t i o n

154 / / w r i t e pre−a c t i o n u s e r code h e r e

155 switchDisplayable (null , getLoginScreen ()) ; / / GEN−LINE: ∣3 − ↩

s t a r t M I D l e t ∣1 ∣3 − p o s t A c t i o n

156 / / w r i t e pos t−a c t i o n u s e r code h e r e

157 } / / GEN−BEGIN: ∣3 − s t a r t M I D l e t ∣ 2 ∣

158 / / </ e d i t o r −f o l d > / /GEN−END: ∣3 − s t a r t M I D l e t ∣ 2 ∣

159

160 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : resumeMIDlet ” > / /GEN−BEGIN: ∣4 − resumeMIDlet ∣0 ∣4 − ↩

p r e A c t i o n

161 / * *

162 * P e r f o r m s an a c t i o n a s s i g n e d t o t h e Mobile Device − MIDlet ↩

Resumed p o i n t .

163 * /

164 public void resumeMIDlet () { / / GEN−END: ∣4 − resumeMIDlet ∣0 ∣4 − ↩

p r e A c t i o n

165 / / w r i t e pre−a c t i o n u s e r code h e r e

166 / / GEN−LINE: ∣4 − resumeMIDlet ∣1 ∣4 − p o s t A c t i o n

177

167 / / w r i t e pos t−a c t i o n u s e r code h e r e

168 } / / GEN−BEGIN: ∣4 − resumeMIDlet ∣ 2 ∣

169 / / </ e d i t o r −f o l d > / /GEN−END: ∣4 − resumeMIDlet ∣ 2 ∣

170

171 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : s w i t c h D i s p l a y a b l e ” > / /GEN−BEGIN: ∣5 − ↩

s w i t c h D i s p l a y a b l e ∣0 ∣5 − p r e S w i t c h

172 / * *

173 * S w i t c h e s a c u r r e n t d i s p l a y a b l e i n a d i s p l a y . The <code> ↩

d i s p l a y </ code> i n s t a n c e i s t a k e n from <code>g e t D i s p l a y </ ↩

code> method . Th i s method i s used by a l l a c t i o n s i n t h e ↩

d e s i g n f o r s w i t c h i n g d i s p l a y a b l e .

174 * @param a l e r t t h e A l e r t which i s t e m p o r a r i l y s e t t o t h e ↩

d i s p l a y ; i f <code>n u l l </ code > , t h e n <code> ↩

n e x t D i s p l a y a b l e </ code> i s s e t i m m e d i a t e l y

175 * @param n e x t D i s p l a y a b l e t h e D i s p l a y a b l e t o be s e t

176 * /

177 public void switchDisplayable (Alert alert , Displayable ↩

nextDisplayable) { / / GEN−END: ∣5 − s w i t c h D i s p l a y a b l e ∣0 ∣5 − ↩

p r e S w i t c h

178 / / w r i t e pre−s w i t c h u s e r code h e r e

179

180 Display display = getDisplay () ; / / GEN−BEGIN: ∣5 − ↩

s w i t c h D i s p l a y a b l e ∣1 ∣5 − p o s t S w i t c h

181 if (alert == null) {

182 display . setCurrent (nextDisplayable) ;

183 } else {

178

184 display . setCurrent (alert , nextDisplayable) ;

185 } / / GEN−END: ∣5 − s w i t c h D i s p l a y a b l e ∣1 ∣5 − p o s t S w i t c h

186 System . out . println ("Display to :" + display . getCurrent () . ↩

getTitle ()) ;

187 / / w r i t e pos t−s w i t c h u s e r code h e r e

188 } / / GEN−BEGIN: ∣5 − s w i t c h D i s p l a y a b l e ∣ 2 ∣

189 / / </ e d i t o r −f o l d > / /GEN−END: ∣5 − s w i t c h D i s p l a y a b l e ∣ 2 ∣

190 / / w r i t e pre−a c t i o n u s e r code h e r e

191

192 / / w r i t e pre−a c t i o n u s e r code h e r e

193 / / w r i t e pre−a c t i o n u s e r code h e r e

194 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t i c k e r ” > / /GEN−BEGIN: ∣14 − g e t t e r ∣0 ∣14 − p r e I n i t

195 / * *

196 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t i c k e r component .

197 * @return t h e i n i t i a l i z e d component i n s t a n c e

198 * /

199 public Ticker getTicker () {

200 if (ticker == null) { / / GEN−END: ∣14 − g e t t e r ∣0 ∣14 − p r e I n i t

201 / / w r i t e pre− i n i t u s e r code h e r e

202 ticker = new Ticker ("Welcome to MoBank ") ; / / GEN−LINE ↩

: ∣14 − g e t t e r ∣1 ∣14 − p o s t I n i t

203 / / w r i t e pos t− i n i t u s e r code h e r e

204 } / / GEN−BEGIN: ∣14 − g e t t e r ∣ 2 ∣

205 return ticker ;

206 }

207 / / </ e d i t o r −f o l d > / /GEN−END: ∣14 − g e t t e r ∣ 2 ∣

179

208 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : exitCommand ” > / /GEN−BEGIN: ∣66 − g e t t e r ∣0 ∣66 − p r e I n i t

209 / * *

210 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f exitCommand component .

211 * @return t h e i n i t i a l i z e d component i n s t a n c e

212 * /

213 public Command getExitCommand () {

214 if (exitCommand == null) { / / GEN−END: ∣66 − g e t t e r ∣0 ∣66 − ↩

p r e I n i t

215 / / w r i t e pre− i n i t u s e r code h e r e

216 exitCommand = new Command ("Exit " , Command . EXIT , 0) ; ↩

/ / GEN−LINE: ∣66 − g e t t e r ∣1 ∣66 − p o s t I n i t

217 / / w r i t e pos t− i n i t u s e r code h e r e

218 } / / GEN−BEGIN: ∣66 − g e t t e r ∣ 2 ∣

219 return exitCommand ;

220 }

221 / / </ e d i t o r −f o l d > / /GEN−END: ∣66 − g e t t e r ∣ 2 ∣

222

223 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : log inForm ” > / /GEN−BEGIN: ∣68 − g e t t e r ∣0 ∣68 − p r e I n i t

224 / * *

225 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f log inForm component .

226 * @return t h e i n i t i a l i z e d component i n s t a n c e

227 * /

228 public Form getLoginForm () {

229 if (loginForm == null) { / / GEN−END: ∣68 − g e t t e r ∣0 ∣68 − ↩

p r e I n i t

180

230 / / w r i t e pre− i n i t u s e r code h e r e

231 loginForm = new Form ("Bank Login " , new Item [] { ↩

getTextAccound () , getTextPassword () }) ; / / GEN− ↩

BEGIN: ∣68 − g e t t e r ∣1 ∣68 − p o s t I n i t

232 loginForm . setTicker (getTicker ()) ;

233 loginForm . addCommand (getExitCommand ()) ;

234 loginForm . addCommand (getOkCmdLogin ()) ;

235 loginForm . addCommand (getCancelCommand ()) ;

236 loginForm . setCommandListener (this) ; / / GEN−END: ∣68 − ↩

g e t t e r ∣1 ∣68 − p o s t I n i t

237 / / w r i t e pos t− i n i t u s e r code h e r e

238 } / / GEN−BEGIN: ∣68 − g e t t e r ∣ 2 ∣

239 return loginForm ;

240 }

241 / / </ e d i t o r −f o l d > / /GEN−END: ∣68 − g e t t e r ∣ 2 ∣

242

243 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t ex tAccound ” > / /GEN−BEGIN: ∣69 − g e t t e r ∣0 ∣69 − p r e I n i t

244 / * *

245 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t ex tAccound component .

246 * @return t h e i n i t i a l i z e d component i n s t a n c e

247 * /

248 public TextField getTextAccound () {

249 if (textAccound == null) { / / GEN−END: ∣69 − g e t t e r ∣0 ∣69 − ↩

p r e I n i t

250 / / w r i t e pre− i n i t u s e r code h e r e

181

251 textAccound = new TextField ("MoBank Account ID " , ↩

null , 32 , TextField . ANY) ; / / GEN−BEGIN: ∣69 − g e t t e r ↩

∣1 ∣69 − p o s t I n i t

252 textAccound . setLayout (ImageItem . LAYOUT_CENTER ∣ Item ↩

. LAYOUT_TOP ∣ Item . LAYOUT_BOTTOM ∣ Item . ↩

LAYOUT_VCENTER) ; / / GEN−END: ∣69 − g e t t e r ∣1 ∣69 − ↩

p o s t I n i t

253 / / w r i t e pos t− i n i t u s e r code h e r e

254 } / / GEN−BEGIN: ∣69 − g e t t e r ∣ 2 ∣

255 return textAccound ;

256 }

257 / / </ e d i t o r −f o l d > / /GEN−END: ∣69 − g e t t e r ∣ 2 ∣

258

259 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t e x t P a s s w o r d ” > / /GEN−BEGIN: ∣70 − g e t t e r ∣0 ∣70 − ↩

p r e I n i t

260 / * *

261 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t e x t P a s s w o r d component ↩

.

262 * @return t h e i n i t i a l i z e d component i n s t a n c e

263 * /

264 public TextField getTextPassword () {

265 if (textPassword == null) { / / GEN−END: ∣70 − g e t t e r ∣0 ∣70 − ↩

p r e I n i t

266 / / w r i t e pre− i n i t u s e r code h e r e

267 textPassword = new TextField ("MoBank Password " , null ↩

, 32 , TextField . ANY ∣ TextField . PASSWORD) ; / / GEN− ↩

182

BEGIN: ∣70 − g e t t e r ∣1 ∣70 − p o s t I n i t

268 textPassword . setLayout (ImageItem . LAYOUT_DEFAULT) ; / / ↩

GEN−END: ∣70 − g e t t e r ∣1 ∣70 − p o s t I n i t

269 / / w r i t e pos t− i n i t u s e r code h e r e

270 } / / GEN−BEGIN: ∣70 − g e t t e r ∣ 2 ∣

271 return textPassword ;

272 }

273 / / </ e d i t o r −f o l d > / /GEN−END: ∣70 − g e t t e r ∣ 2 ∣

274

275 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : commandAction f o r D i s p l a y a b l e s ” > / /GEN−BEGIN: ∣7 − ↩

commandAction ∣0 ∣7 − preCommandAction

276 / * *

277 * C a l l e d by a sys tem t o i n d i c a t e d t h a t a command has been ↩

i nvoked on a p a r t i c u l a r d i s p l a y a b l e .

278 * @param command t h e Command t h a t was invoked

279 * @param d i s p l a y a b l e t h e D i s p l a y a b l e where t h e command was ↩

i nvoked

280 * /

281 public void commandAction (Command command , Displayable ↩

displayable) { / / GEN−END: ∣7 − commandAction ∣0 ∣7 − ↩

preCommandAction

282 / / w r i t e pre−a c t i o n u s e r code h e r e

283 if (displayable == ds_waitScrn) { / / GEN−BEGIN: ∣7 − ↩

commandAction ∣1 ∣161 − p r e A c t i o n

284 if (command == WaitScreen . FAILURE_COMMAND) { / / GEN− ↩

END: ∣7 − commandAction ∣1 ∣161 − p r e A c t i o n

183

285 / / w r i t e pre−a c t i o n u s e r code h e r e

286 switchDisplayable (null , getPayForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣2 ∣161 − p o s t A c t i o n

287 / / w r i t e pos t−a c t i o n u s e r code h e r e

288 } else if (command == WaitScreen . SUCCESS_COMMAND) { ↩

/ / GEN−LINE: ∣7 − commandAction ∣3 ∣160 − p r e A c t i o n

289 / / w r i t e pre−a c t i o n u s e r code h e r e

290 switchDisplayable (null , getEncrypt_waitScrn ()) ; ↩

/ / GEN−LINE: ∣7 − commandAction ∣4 ∣160 − p o s t A c t i o n

291 / / w r i t e pos t−a c t i o n u s e r code h e r e

292 } / / GEN−BEGIN: ∣7 − commandAction ∣5 ∣165 − p r e A c t i o n

293 } else if (displayable == encrypt_waitScrn) {

294 if (command == WaitScreen . FAILURE_COMMAND) { / / GEN− ↩

END: ∣7 − commandAction ∣5 ∣165 − p r e A c t i o n

295 / / w r i t e pre−a c t i o n u s e r code h e r e

296 switchDisplayable (null , getPayForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣6 ∣165 − p o s t A c t i o n

297 / / w r i t e pos t−a c t i o n u s e r code h e r e

298 } else if (command == WaitScreen . SUCCESS_COMMAND) { ↩

/ / GEN−LINE: ∣7 − commandAction ∣7 ∣164 − p r e A c t i o n

299 / / w r i t e pre−a c t i o n u s e r code h e r e

300 switchDisplayable (null , getHttp_waitScrn ()) ; / / ↩

GEN−LINE: ∣7 − commandAction ∣8 ∣164 − p o s t A c t i o n

301 / / w r i t e pos t−a c t i o n u s e r code h e r e

302 } / / GEN−BEGIN: ∣7 − commandAction ∣9 ∣150 − p r e A c t i o n

303 } else if (displayable == http_waitScrn) {

184

304 if (command == WaitScreen . FAILURE_COMMAND) { / / GEN− ↩

END: ∣7 − commandAction ∣9 ∣150 − p r e A c t i o n

305 / / w r i t e pre−a c t i o n u s e r code h e r e

306 switchDisplayable (null , getPayForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣10 ∣150 − p o s t A c t i o n

307 / / w r i t e pos t−a c t i o n u s e r code h e r e

308 } else if (command == WaitScreen . SUCCESS_COMMAND) { ↩

/ / GEN−LINE: ∣7 − commandAction ∣11 ∣149 − p r e A c t i o n

309 / / w r i t e pre−a c t i o n u s e r code h e r e

310 switchDisplayable (null , getSucForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣12 ∣149 − p o s t A c t i o n

311 / / w r i t e pos t−a c t i o n u s e r code h e r e

312 } / / GEN−BEGIN: ∣7 − commandAction ∣13 ∣77 − p r e A c t i o n

313 } else if (displayable == loginForm) {

314 if (command == cancelCommand) { / / GEN−END: ∣7 − ↩

commandAction ∣13 ∣77 − p r e A c t i o n

315 / / w r i t e pre−a c t i o n u s e r code h e r e

316

317 / / GEN−LINE: ∣7 − commandAction ∣14 ∣77 − p o s t A c t i o n

318 / / w r i t e pos t−a c t i o n u s e r code h e r e

319 } else if (command == exitCommand) { / / GEN−LINE: ∣7 − ↩

commandAction ∣15 ∣73 − p r e A c t i o n

320 / / w r i t e pre−a c t i o n u s e r code h e r e

321 / / GEN−LINE: ∣7 − commandAction ∣16 ∣73 − p o s t A c t i o n

322 / / w r i t e pos t−a c t i o n u s e r code h e r e

323 } else if (command == okCmdLogin) { / / GEN−LINE: ∣7 − ↩

commandAction ∣17 ∣75 − p r e A c t i o n

185

324 / / w r i t e pre−a c t i o n u s e r code h e r e

325 / / GEN−LINE: ∣7 − commandAction ∣18 ∣75 − p o s t A c t i o n

326 / / w r i t e pos t−a c t i o n u s e r code h e r e

327 } / / GEN−BEGIN: ∣7 − commandAction ∣19 ∣135 − p r e A c t i o n

328 } else if (displayable == loginScreen) {

329 if (command == LoginScreen . LOGIN_COMMAND) { / / GEN−END ↩

: ∣7 − commandAction ∣19 ∣135 − p r e A c t i o n

330 / / w r i t e pre−a c t i o n u s e r code h e r e

331 switchDisplayable (null , getBizForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣20 ∣135 − p o s t A c t i o n

332 / / w r i t e pos t−a c t i o n u s e r code h e r e

333 } / / GEN−BEGIN: ∣7 − commandAction ∣21 ∣84 − p r e A c t i o n

334 } else if (displayable == payForm) {

335 if (command == backCmd_payForm) { / / GEN−END: ∣7 − ↩

commandAction ∣21 ∣84 − p r e A c t i o n

336 / / w r i t e pre−a c t i o n u s e r code h e r e

337 switchDisplayable (null , getBizForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣22 ∣84 − p o s t A c t i o n

338 / / w r i t e pos t−a c t i o n u s e r code h e r e

339 } else if (command == okCmd_payForm) { / / GEN−LINE: ∣7 − ↩

commandAction ∣23 ∣86 − p r e A c t i o n

340 / / w r i t e pre−a c t i o n u s e r code h e r e

341 switchDisplayable (null , getDs_waitScrn ()) ; / / GEN− ↩

LINE: ∣7 − commandAction ∣24 ∣86 − p o s t A c t i o n

342 / / w r i t e pos t−a c t i o n u s e r code h e r e

343 } / / GEN−BEGIN: ∣7 − commandAction ∣25 ∣117 − p r e A c t i o n

344 } else if (displayable == sucForm) {

186

345 if (command == back_biz_Cmd) { / / GEN−END: ∣7 − ↩

commandAction ∣25 ∣117 − p r e A c t i o n

346 / / w r i t e pre−a c t i o n u s e r code h e r e

347 switchDisplayable (null , getBizForm ()) ; / / GEN−LINE ↩

: ∣7 − commandAction ∣26 ∣117 − p o s t A c t i o n

348 / / w r i t e pos t−a c t i o n u s e r code h e r e

349 } / / GEN−BEGIN: ∣7 − commandAction ∣27 ∣7 − postCommandAction

350 } / / GEN−END: ∣7 − commandAction ∣27 ∣7 − postCommandAction

351 / / w r i t e pos t−a c t i o n u s e r code h e r e

352 } / / GEN−BEGIN: ∣7 − commandAction ∣ 2 8 ∣

353 / / </ e d i t o r −f o l d > / /GEN−END: ∣7 − commandAction ∣ 2 8 ∣

354 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : okCmdLogin ” > / /GEN−BEGIN: ∣74 − g e t t e r ∣0 ∣74 − p r e I n i t

355 / * *

356 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f okCmdLogin component .

357 * @return t h e i n i t i a l i z e d component i n s t a n c e

358 * /

359 public Command getOkCmdLogin () {

360 if (okCmdLogin == null) { / / GEN−END: ∣74 − g e t t e r ∣0 ∣74 − ↩

p r e I n i t

361 / / w r i t e pre− i n i t u s e r code h e r e

362 okCmdLogin = new Command ("Ok " , Command . OK , 0) ; / / GEN− ↩

LINE: ∣74 − g e t t e r ∣1 ∣74 − p o s t I n i t

363 / / w r i t e pos t− i n i t u s e r code h e r e

364 } / / GEN−BEGIN: ∣74 − g e t t e r ∣ 2 ∣

365 return okCmdLogin ;

366 }

187

367 / / </ e d i t o r −f o l d > / /GEN−END: ∣74 − g e t t e r ∣ 2 ∣

368

369 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : cancelCommand ” > / /GEN−BEGIN: ∣76 − g e t t e r ∣0 ∣76 − ↩

p r e I n i t

370 / * *

371 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f cancelCommand ↩

component .

372 * @return t h e i n i t i a l i z e d component i n s t a n c e

373 * /

374 public Command getCancelCommand () {

375 if (cancelCommand == null) { / / GEN−END: ∣76 − g e t t e r ∣0 ∣76 − ↩

p r e I n i t

376 / / w r i t e pre− i n i t u s e r code h e r e

377 cancelCommand = new Command ("Cancel " , Command . CANCEL ↩

, 0) ; / / GEN−LINE: ∣76 − g e t t e r ∣1 ∣76 − p o s t I n i t

378 / / w r i t e pos t− i n i t u s e r code h e r e

379 } / / GEN−BEGIN: ∣76 − g e t t e r ∣ 2 ∣

380 return cancelCommand ;

381 }

382 / / </ e d i t o r −f o l d > / /GEN−END: ∣76 − g e t t e r ∣ 2 ∣

383 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : payForm ” > / /GEN−BEGIN: ∣82 − g e t t e r ∣0 ∣82 − p r e I n i t

384 / * *

385 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f payForm component .

386 * @return t h e i n i t i a l i z e d component i n s t a n c e

387 * /

188

388 public Form getPayForm () {

389 if (payForm == null) { / / GEN−END: ∣82 − g e t t e r ∣0 ∣82 − p r e I n i t

390 / / w r i t e pre− i n i t u s e r code h e r e

391 payForm = new Form ("Money Transfer " , new Item [] { ↩

getGroupPayto () , getGroupPayFrom () , getPayAmount ↩

() , getDateFieldPayment () }) ; / / GEN−BEGIN: ∣82 − ↩

g e t t e r ∣1 ∣82 − p o s t I n i t

392 payForm . addCommand (getBackCmd_payForm ()) ;

393 payForm . addCommand (getOkCmd_payForm ()) ;

394 payForm . setCommandListener (this) ; / / GEN−END: ∣82 − ↩

g e t t e r ∣1 ∣82 − p o s t I n i t

395 / / w r i t e pos t− i n i t u s e r code h e r e

396 } / / GEN−BEGIN: ∣82 − g e t t e r ∣ 2 ∣

397 return payForm ;

398 }

399 / / </ e d i t o r −f o l d > / /GEN−END: ∣82 − g e t t e r ∣ 2 ∣

400

401 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : g r o u p P a y t o ” > / /GEN−BEGIN: ∣88 − g e t t e r ∣0 ∣88 − p r e I n i t

402 / * *

403 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f g r o u p P a y t o component .

404 * @return t h e i n i t i a l i z e d component i n s t a n c e

405 * /

406 public ChoiceGroup getGroupPayto () {

407 if (groupPayto == null) { / / GEN−END: ∣88 − g e t t e r ∣0 ∣88 − ↩

p r e I n i t

408 / / w r i t e pre− i n i t u s e r code h e r e

189

409 groupPayto = new ChoiceGroup ("Pay To " , Choice . POPUP) ↩

; / / GEN−BEGIN: ∣88 − g e t t e r ∣1 ∣88 − p o s t I n i t

410 groupPayto . append ("VISA123456789 " , null) ;

411 groupPayto . append ("PHONEBILL123 " , null) ;

412 groupPayto . setSelectedFlags (new boolean [] { false , ↩

false }) ;

413 groupPayto . setFont (0 , getFont ()) ;

414 groupPayto . setFont (1 , getFont ()) ; / / GEN−END: ∣88 − ↩

g e t t e r ∣1 ∣88 − p o s t I n i t

415 / / w r i t e pos t− i n i t u s e r code h e r e

416 } / / GEN−BEGIN: ∣88 − g e t t e r ∣ 2 ∣

417 return groupPayto ;

418 }

419 / / </ e d i t o r −f o l d > / /GEN−END: ∣88 − g e t t e r ∣ 2 ∣

420

421 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : groupPayFrom ” > / /GEN−BEGIN: ∣91 − g e t t e r ∣0 ∣91 − ↩

p r e I n i t

422 / * *

423 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f groupPayFrom component ↩

.

424 * @return t h e i n i t i a l i z e d component i n s t a n c e

425 * /

426 public ChoiceGroup getGroupPayFrom () {

427 if (groupPayFrom == null) { / / GEN−END: ∣91 − g e t t e r ∣0 ∣91 − ↩

p r e I n i t

428 / / w r i t e pre− i n i t u s e r code h e r e

190

429 groupPayFrom = new ChoiceGroup ("Pay From " , Choice . ↩

EXCLUSIVE) ; / / GEN−BEGIN: ∣91 − g e t t e r ∣1 ∣91 − p o s t I n i t

430 groupPayFrom . append ("Account2831 " , null) ;

431 groupPayFrom . setSelectedFlags (new boolean [] { false ↩

}) ;

432 groupPayFrom . setFont (0 , getFont ()) ; / / GEN−END: ∣91 − ↩

g e t t e r ∣1 ∣91 − p o s t I n i t

433 / / w r i t e pos t− i n i t u s e r code h e r e

434 } / / GEN−BEGIN: ∣91 − g e t t e r ∣ 2 ∣

435 return groupPayFrom ;

436 }

437 / / </ e d i t o r −f o l d > / /GEN−END: ∣91 − g e t t e r ∣ 2 ∣

438

439 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : d a t e F i e l d P a y m e n t ” > / /GEN−BEGIN: ∣93 − g e t t e r ∣0 ∣93 − ↩

p r e I n i t

440 / * *

441 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f d a t e F i e l d P a y m e n t ↩

component .

442 * @return t h e i n i t i a l i z e d component i n s t a n c e

443 * /

444 public DateField getDateFieldPayment () {

445 if (dateFieldPayment == null) { / / GEN−END: ∣93 − g e t t e r ↩

∣0 ∣93 − p r e I n i t

446 / / w r i t e pre− i n i t u s e r code h e r e

447 dateFieldPayment = new DateField ("Payment Date " , ↩

DateField . DATE , java . util . TimeZone . getTimeZone (" ↩

191

America /Edmonton ")) ; / / GEN−BEGIN: ∣93 − g e t t e r ∣1 ∣93 − ↩

p o s t I n i t

448 dateFieldPayment . setDate (new java . util . Date (System . ↩

currentTimeMillis ())) ; / / GEN−END: ∣93 − g e t t e r ∣1 ∣93 − ↩

p o s t I n i t

449 / / w r i t e pos t− i n i t u s e r code h e r e

450 } / / GEN−BEGIN: ∣93 − g e t t e r ∣ 2 ∣

451 return dateFieldPayment ;

452 }

453 / / </ e d i t o r −f o l d > / /GEN−END: ∣93 − g e t t e r ∣ 2 ∣

454

455 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : backCmd payForm ” > / /GEN−BEGIN: ∣83 − g e t t e r ∣0 ∣83 − ↩

p r e I n i t

456 / * *

457 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f backCmd payForm ↩

component .

458 * @return t h e i n i t i a l i z e d component i n s t a n c e

459 * /

460 public Command getBackCmd_payForm () {

461 if (backCmd_payForm == null) { / / GEN−END: ∣83 − g e t t e r ∣0 ∣83 − ↩

p r e I n i t

462 / / w r i t e pre− i n i t u s e r code h e r e

463 backCmd_payForm = new Command ("Exit " , Command . BACK , ↩

0) ; / / GEN−LINE: ∣83 − g e t t e r ∣1 ∣83 − p o s t I n i t

464 / / w r i t e pos t− i n i t u s e r code h e r e

465 } / / GEN−BEGIN: ∣83 − g e t t e r ∣ 2 ∣

192

466 return backCmd_payForm ;

467 }

468 / / </ e d i t o r −f o l d > / /GEN−END: ∣83 − g e t t e r ∣ 2 ∣

469

470 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : okCmd payForm ” > / /GEN−BEGIN: ∣85 − g e t t e r ∣0 ∣85 − ↩

p r e I n i t

471 / * *

472 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f okCmd payForm ↩

component .

473 * @return t h e i n i t i a l i z e d component i n s t a n c e

474 * /

475 public Command getOkCmd_payForm () {

476 if (okCmd_payForm == null) { / / GEN−END: ∣85 − g e t t e r ∣0 ∣85 − ↩

p r e I n i t

477 / / w r i t e pre− i n i t u s e r code h e r e

478 okCmd_payForm = new Command ("Ok " , Command . OK , 0) ; / / ↩

GEN−LINE: ∣85 − g e t t e r ∣1 ∣85 − p o s t I n i t

479 / / w r i t e pos t− i n i t u s e r code h e r e

480 } / / GEN−BEGIN: ∣85 − g e t t e r ∣ 2 ∣

481 return okCmd_payForm ;

482 }

483 / / </ e d i t o r −f o l d > / /GEN−END: ∣85 − g e t t e r ∣ 2 ∣

484

485 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : bizForm ” > / /GEN−BEGIN: ∣94 − g e t t e r ∣0 ∣94 − p r e I n i t

486 / * *

193

487 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f bizForm component .

488 * @return t h e i n i t i a l i z e d component i n s t a n c e

489 * /

490 public Form getBizForm () {

491 if (bizForm == null) { / / GEN−END: ∣94 − g e t t e r ∣0 ∣94 − p r e I n i t

492 / / w r i t e pre− i n i t u s e r code h e r e

493 bizForm = new Form ("Business List " , new Item [] { ↩

getImageItem () , getImageItem1 () , getImageItem2 () ↩

}) ; / / GEN−BEGIN: ∣94 − g e t t e r ∣1 ∣94 − p o s t I n i t

494 bizForm . setCommandListener (this) ; / / GEN−END: ∣94 − ↩

g e t t e r ∣1 ∣94 − p o s t I n i t

495 / / w r i t e pos t− i n i t u s e r code h e r e

496 } / / GEN−BEGIN: ∣94 − g e t t e r ∣ 2 ∣

497 return bizForm ;

498 }

499 / / </ e d i t o r −f o l d > / /GEN−END: ∣94 − g e t t e r ∣ 2 ∣

500 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : okCmd BizForm ” > / /GEN−BEGIN: ∣101 − g e t t e r ∣0 ∣101 − ↩

p r e I n i t

501 / * *

502 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f okCmd BizForm ↩

component .

503 * @return t h e i n i t i a l i z e d component i n s t a n c e

504 * /

505 public Command getOkCmd_BizForm () {

506 if (okCmd_BizForm == null) { / / GEN−END: ∣101 − g e t t e r ∣0 ∣101 − ↩

p r e I n i t

194

507 / / w r i t e pre− i n i t u s e r code h e r e

508 okCmd_BizForm = new Command ("Ok " , Command . OK , 0) ; / / ↩

GEN−LINE: ∣101 − g e t t e r ∣1 ∣101 − p o s t I n i t

509 / / w r i t e pos t− i n i t u s e r code h e r e

510 } / / GEN−BEGIN: ∣101 − g e t t e r ∣ 2 ∣

511 return okCmd_BizForm ;

512 }

513 / / </ e d i t o r −f o l d > / /GEN−END: ∣101 − g e t t e r ∣ 2 ∣

514

515 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : sucForm ” > / /GEN−BEGIN: ∣104 − g e t t e r ∣0 ∣104 − p r e I n i t

516 / * *

517 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f sucForm component .

518 * @return t h e i n i t i a l i z e d component i n s t a n c e

519 * /

520 public Form getSucForm () {

521 if (sucForm == null) { / / GEN−END: ∣104 − g e t t e r ∣0 ∣104 − ↩

p r e I n i t

522 / / w r i t e pre− i n i t u s e r code h e r e

523 sucForm = new Form ("Transaction Success " , new Item [] ↩

{ getImageItem_Success () }) ; / / GEN−BEGIN: ∣104 − ↩

g e t t e r ∣1 ∣104 − p o s t I n i t

524 sucForm . addCommand (getBack_biz_Cmd ()) ;

525 sucForm . setCommandListener (this) ; / / GEN−END: ∣104 − ↩

g e t t e r ∣1 ∣104 − p o s t I n i t

526 / / w r i t e pos t− i n i t u s e r code h e r e

527 } / / GEN−BEGIN: ∣104 − g e t t e r ∣ 2 ∣

195

528 return sucForm ;

529 }

530 / / </ e d i t o r −f o l d > / /GEN−END: ∣104 − g e t t e r ∣ 2 ∣

531 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : back biz Cmd ” > / /GEN−BEGIN: ∣116 − g e t t e r ∣0 ∣116 − ↩

p r e I n i t

532 / * *

533 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f back biz Cmd component ↩

.

534 * @return t h e i n i t i a l i z e d component i n s t a n c e

535 * /

536 public Command getBack_biz_Cmd () {

537 if (back_biz_Cmd == null) { / / GEN−END: ∣116 − g e t t e r ∣0 ∣116 − ↩

p r e I n i t

538 / / w r i t e pre− i n i t u s e r code h e r e

539 back_biz_Cmd = new Command ("Back " , Command . BACK , 0) ; ↩

/ / GEN−LINE: ∣116 − g e t t e r ∣1 ∣116 − p o s t I n i t

540 / / w r i t e pos t− i n i t u s e r code h e r e

541 } / / GEN−BEGIN: ∣116 − g e t t e r ∣ 2 ∣

542 return back_biz_Cmd ;

543 }

544 / / </ e d i t o r −f o l d > / /GEN−END: ∣116 − g e t t e r ∣ 2 ∣

545 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : a l e r t ” > / /GEN−BEGIN: ∣131 − g e t t e r ∣0 ∣131 − p r e I n i t

546 / * *

547 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f a l e r t component .

548 * @return t h e i n i t i a l i z e d component i n s t a n c e

196

549 * /

550 public Alert getAlert () {

551 if (alert == null) { / / GEN−END: ∣131 − g e t t e r ∣0 ∣131 − p r e I n i t

552 / / w r i t e pre− i n i t u s e r code h e r e

553 alert = new Alert ("alert " , "The Transaction is ↩

failed ! Please consult with your admin !" , ↩

getImage4 () , null) ; / / GEN−BEGIN: ∣131 − g e t t e r ∣1 ∣131 − ↩

p o s t I n i t

554 alert . setTimeout (Alert . FOREVER) ; / / GEN−END: ∣131 − ↩

g e t t e r ∣1 ∣131 − p o s t I n i t

555 / / w r i t e pos t− i n i t u s e r code h e r e

556 } / / GEN−BEGIN: ∣131 − g e t t e r ∣ 2 ∣

557 return alert ;

558 }

559 / / </ e d i t o r −f o l d > / /GEN−END: ∣131 − g e t t e r ∣ 2 ∣

560

561 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : l o g i n S c r e e n ” > / /GEN−BEGIN: ∣133 − g e t t e r ∣0 ∣133 − ↩

p r e I n i t

562 / * *

563 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f l o g i n S c r e e n component .

564 * @return t h e i n i t i a l i z e d component i n s t a n c e

565 * /

566 public LoginScreen getLoginScreen () {

567 if (loginScreen == null) { / / GEN−END: ∣133 − g e t t e r ∣0 ∣133 − ↩

p r e I n i t

568 / / w r i t e pre− i n i t u s e r code h e r e

197

569 loginScreen = new LoginScreen (getDisplay ()) ; / / GEN− ↩

BEGIN: ∣133 − g e t t e r ∣1 ∣133 − p o s t I n i t

570 loginScreen . setLabelTexts ("MoBank ID " , "Password ") ;

571 loginScreen . setTitle ("Login MoBank ") ;

572 loginScreen . setTicker (getTicker ()) ;

573 loginScreen . addCommand (LoginScreen . LOGIN_COMMAND) ;

574 loginScreen . setCommandListener (this) ;

575 loginScreen . setBGColor (−3355444) ;

576 loginScreen . setFGColor (0) ;

577 loginScreen . setUseLoginButton (true) ;

578 loginScreen . setLoginButtonText ("Login ") ; / / GEN−END ↩

: ∣133 − g e t t e r ∣1 ∣133 − p o s t I n i t

579 / / w r i t e pos t− i n i t u s e r code h e r e

580 } / / GEN−BEGIN: ∣133 − g e t t e r ∣ 2 ∣

581 return loginScreen ;

582 }

583 / / </ e d i t o r −f o l d > / /GEN−END: ∣133 − g e t t e r ∣ 2 ∣

584 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : imageI tem ” > / /GEN−BEGIN: ∣138 − g e t t e r ∣0 ∣138 − p r e I n i t

585 / * *

586 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f imageI tem component .

587 * @return t h e i n i t i a l i z e d component i n s t a n c e

588 * /

589 public ImageItem getImageItem () {

590 if (imageItem == null) { / / GEN−END: ∣138 − g e t t e r ∣0 ∣138 − ↩

p r e I n i t

591 / / w r i t e pre− i n i t u s e r code h e r e

198

592 imageItem = new ImageItem ("Statement " , getImage1 () , ↩

ImageItem . LAYOUT_DEFAULT , "Balance Statement ") ; / / ↩

GEN−LINE: ∣138 − g e t t e r ∣1 ∣138 − p o s t I n i t

593 / / w r i t e pos t− i n i t u s e r code h e r e

594 } / / GEN−BEGIN: ∣138 − g e t t e r ∣ 2 ∣

595 return imageItem ;

596 }

597 / / </ e d i t o r −f o l d > / /GEN−END: ∣138 − g e t t e r ∣ 2 ∣

598

599 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : image1 ” > / /GEN−BEGIN: ∣139 − g e t t e r ∣0 ∣139 − p r e I n i t

600 / * *

601 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f image1 component .

602 * @return t h e i n i t i a l i z e d component i n s t a n c e

603 * /

604 public Image getImage1 () {

605 if (image1 == null) { / / GEN−END: ∣139 − g e t t e r ∣0 ∣139 − p r e I n i t

606 / / w r i t e pre− i n i t u s e r code h e r e

607 try { / / GEN−BEGIN: ∣139 − g e t t e r ∣1 ∣139 −@java . i o . ↩

IOExcep t ion

608 image1 = Image . createImage ("/bs .png ") ;

609 } catch (java . io . IOException e) { / / GEN−END: ∣139 − ↩

g e t t e r ∣1 ∣139 −@java . i o . IOExcep t ion

610 e . printStackTrace () ;

611 } / / GEN−LINE: ∣139 − g e t t e r ∣2 ∣139 − p o s t I n i t

612 / / w r i t e pos t− i n i t u s e r code h e r e

613 } / / GEN−BEGIN: ∣139 − g e t t e r ∣ 3 ∣

199

614 return image1 ;

615 }

616 / / </ e d i t o r −f o l d > / /GEN−END: ∣139 − g e t t e r ∣ 3 ∣

617

618 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : imageI tem1 ” > / /GEN−BEGIN: ∣141 − g e t t e r ∣0 ∣141 − ↩

p r e I n i t

619 / * *

620 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f imageI tem1 component .

621 * @return t h e i n i t i a l i z e d component i n s t a n c e

622 * /

623 public ImageItem getImageItem1 () {

624 if (imageItem1 == null) { / / GEN−END: ∣141 − g e t t e r ∣0 ∣141 − ↩

p r e I n i t

625 / / w r i t e pre− i n i t u s e r code h e r e

626 imageItem1 = new ImageItem ("Transfer " , getImage2 () , ↩

ImageItem . LAYOUT_DEFAULT , "Money Transfer " , Item . ↩

PLAIN) ; / / GEN−BEGIN: ∣141 − g e t t e r ∣1 ∣141 − p o s t I n i t

627 imageItem1 . addCommand (getOkCmd_BizForm ()) ;

628 imageItem1 . setItemCommandListener (this) ;

629 imageItem1 . setDefaultCommand (getOkCmd_BizForm ()) ; / / ↩

GEN−END: ∣141 − g e t t e r ∣1 ∣141 − p o s t I n i t

630 / / w r i t e pos t− i n i t u s e r code h e r e

631 } / / GEN−BEGIN: ∣141 − g e t t e r ∣ 2 ∣

632 return imageItem1 ;

633 }

634 / / </ e d i t o r −f o l d > / /GEN−END: ∣141 − g e t t e r ∣ 2 ∣

200

635

636 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : imageI tem2 ” > / /GEN−BEGIN: ∣143 − g e t t e r ∣0 ∣143 − ↩

p r e I n i t

637 / * *

638 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f imageI tem2 component .

639 * @return t h e i n i t i a l i z e d component i n s t a n c e

640 * /

641 public ImageItem getImageItem2 () {

642 if (imageItem2 == null) { / / GEN−END: ∣143 − g e t t e r ∣0 ∣143 − ↩

p r e I n i t

643 / / w r i t e pre− i n i t u s e r code h e r e

644 imageItem2 = new ImageItem ("Payment " , getImage3 () , ↩

ImageItem . LAYOUT_DEFAULT , "<Missing Image >") ; / / ↩

GEN−LINE: ∣143 − g e t t e r ∣1 ∣143 − p o s t I n i t

645 / / w r i t e pos t− i n i t u s e r code h e r e

646 } / / GEN−BEGIN: ∣143 − g e t t e r ∣ 2 ∣

647 return imageItem2 ;

648 }

649 / / </ e d i t o r −f o l d > / /GEN−END: ∣143 − g e t t e r ∣ 2 ∣

650

651 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : image2 ” > / /GEN−BEGIN: ∣142 − g e t t e r ∣0 ∣142 − p r e I n i t

652 / * *

653 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f image2 component .

654 * @return t h e i n i t i a l i z e d component i n s t a n c e

655 * /

201

656 public Image getImage2 () {

657 if (image2 == null) { / / GEN−END: ∣142 − g e t t e r ∣0 ∣142 − p r e I n i t

658 / / w r i t e pre− i n i t u s e r code h e r e

659 try { / / GEN−BEGIN: ∣142 − g e t t e r ∣1 ∣142 −@java . i o . ↩

IOExcep t ion

660 image2 = Image . createImage ("/mt .png ") ;

661 } catch (java . io . IOException e) { / / GEN−END: ∣142 − ↩

g e t t e r ∣1 ∣142 −@java . i o . IOExcep t ion

662 e . printStackTrace () ;

663 } / / GEN−LINE: ∣142 − g e t t e r ∣2 ∣142 − p o s t I n i t

664 / / w r i t e pos t− i n i t u s e r code h e r e

665 } / / GEN−BEGIN: ∣142 − g e t t e r ∣ 3 ∣

666 return image2 ;

667 }

668 / / </ e d i t o r −f o l d > / /GEN−END: ∣142 − g e t t e r ∣ 3 ∣

669

670 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : image3 ” > / /GEN−BEGIN: ∣144 − g e t t e r ∣0 ∣144 − p r e I n i t

671 / * *

672 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f image3 component .

673 * @return t h e i n i t i a l i z e d component i n s t a n c e

674 * /

675 public Image getImage3 () {

676 if (image3 == null) { / / GEN−END: ∣144 − g e t t e r ∣0 ∣144 − p r e I n i t

677 / / w r i t e pre− i n i t u s e r code h e r e

678 try { / / GEN−BEGIN: ∣144 − g e t t e r ∣1 ∣144 −@java . i o . ↩

IOExcep t ion

202

679 image3 = Image . createImage ("/pm .png ") ;

680 } catch (java . io . IOException e) { / / GEN−END: ∣144 − ↩

g e t t e r ∣1 ∣144 −@java . i o . IOExcep t ion

681 e . printStackTrace () ;

682 } / / GEN−LINE: ∣144 − g e t t e r ∣2 ∣144 − p o s t I n i t

683 / / w r i t e pos t− i n i t u s e r code h e r e

684 } / / GEN−BEGIN: ∣144 − g e t t e r ∣ 3 ∣

685 return image3 ;

686 }

687 / / </ e d i t o r −f o l d > / /GEN−END: ∣144 − g e t t e r ∣ 3 ∣

688

689 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

Method : commandAction f o r I t e m s ” > / /GEN−BEGIN: ∣8 − ↩

i temCommandAction ∣0 ∣8 − preItemCommandAction

690 / * *

691 * C a l l e d by a sys tem t o i n d i c a t e d t h a t a command has been ↩

i nvoked on a p a r t i c u l a r i t em .

692 * @param command t h e Command t h a t was invoked

693 * @param d i s p l a y a b l e t h e I tem where t h e command was invoked

694 * /

695 public void commandAction (Command command , Item item) { / / GEN ↩

−END: ∣8 − i temCommandAction ∣0 ∣8 − preItemCommandAction

696 / / w r i t e pre−a c t i o n u s e r code h e r e

697 if (item == imageItem1) { / / GEN−BEGIN: ∣8 − ↩

i temCommandAction ∣1 ∣146 − p r e A c t i o n

698 if (command == okCmd_BizForm) { / / GEN−END: ∣8 − ↩

i temCommandAction ∣1 ∣146 − p r e A c t i o n

203

699 / / w r i t e pre−a c t i o n u s e r code h e r e

700 switchDisplayable (null , getPayForm ()) ; / / GEN−LINE ↩

: ∣8 − i temCommandAction ∣2 ∣146 − p o s t A c t i o n

701 / / w r i t e pos t−a c t i o n u s e r code h e r e

702 } / / GEN−BEGIN: ∣8 − i temCommandAction ∣3 ∣8 − ↩

postI temCommandAction

703 } / / GEN−END: ∣8 − i temCommandAction ∣3 ∣8 − ↩

postI temCommandAction

704 / / w r i t e pos t−a c t i o n u s e r code h e r e

705 } / / GEN−BEGIN: ∣8 − i temCommandAction ∣ 4 ∣

706 / / </ e d i t o r −f o l d > / /GEN−END: ∣8 − i temCommandAction ∣ 4 ∣

707

708 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : h t t p w a i t S c r n ” > / /GEN−BEGIN: ∣148 − g e t t e r ∣0 ∣148 − ↩

p r e I n i t

709 / * *

710 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f h t t p w a i t S c r n ↩

component .

711 * @return t h e i n i t i a l i z e d component i n s t a n c e

712 * /

713 public WaitScreen getHttp_waitScrn () {

714 if (http_waitScrn == null) { / / GEN−END: ∣148 − g e t t e r ∣0 ∣148 − ↩

p r e I n i t

715 / / w r i t e pre− i n i t u s e r code h e r e

716 http_waitScrn = new WaitScreen (getDisplay ()) ; / / GEN− ↩

BEGIN: ∣148 − g e t t e r ∣1 ∣148 − p o s t I n i t

717 http_waitScrn . setTitle ("Processing ") ;

204

718 http_waitScrn . setCommandListener (this) ;

719 http_waitScrn . setFullScreenMode (true) ;

720 http_waitScrn . setImage (getImage4 ()) ;

721 http_waitScrn . setText ("Transaction processing ... ↩

... ") ;

722 http_waitScrn . setTextFont (getFont ()) ;

723 http_waitScrn . setTask (getTask ()) ; / / GEN−END: ∣148 − ↩

g e t t e r ∣1 ∣148 − p o s t I n i t

724 / / w r i t e pos t− i n i t u s e r code h e r e

725 } / / GEN−BEGIN: ∣148 − g e t t e r ∣ 2 ∣

726 return http_waitScrn ;

727 }

728 / / </ e d i t o r −f o l d > / /GEN−END: ∣148 − g e t t e r ∣ 2 ∣

729

730 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t a s k ” > / /GEN−BEGIN: ∣151 − g e t t e r ∣0 ∣151 − p r e I n i t

731 / * *

732 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t a s k component .

733 * @return t h e i n i t i a l i z e d component i n s t a n c e

734 * /

735 public SimpleCancellableTask getTask () {

736 if (task == null) { / / GEN−END: ∣151 − g e t t e r ∣0 ∣151 − p r e I n i t

737 / / w r i t e pre− i n i t u s e r code h e r e

738 task = new SimpleCancellableTask () ; / / GEN−BEGIN: ∣151 − ↩

g e t t e r ∣1 ∣151 − e x e c u t e

739 task . setExecutable (new org . netbeans . microedition . ↩

util . Executable () {

205

740 public void execute () throws Exception { / / GEN− ↩

END: ∣151 − g e t t e r ∣1 ∣151 − e x e c u t e

741 / / w r i t e t a s k−e x e c u t i o n u s e r code h e r e

742

743 TimeDelay () ;

744

745 / / h t t p S u b m i t () ;

746

747 } / / GEN−BEGIN: ∣151 − g e t t e r ∣2 ∣151 − p o s t I n i t

748 }) ; / / GEN−END: ∣151 − g e t t e r ∣2 ∣151 − p o s t I n i t

749 / / w r i t e pos t− i n i t u s e r code h e r e

750 } / / GEN−BEGIN: ∣151 − g e t t e r ∣ 3 ∣

751 return task ;

752 }

753 / / </ e d i t o r −f o l d > / /GEN−END: ∣151 − g e t t e r ∣ 3 ∣

754

755 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : f o n t ” > / /GEN−BEGIN: ∣155 − g e t t e r ∣0 ∣155 − p r e I n i t

756 / * *

757 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f f o n t component .

758 * @return t h e i n i t i a l i z e d component i n s t a n c e

759 * /

760 public Font getFont () {

761 if (font == null) { / / GEN−END: ∣155 − g e t t e r ∣0 ∣155 − p r e I n i t

762 / / w r i t e pre− i n i t u s e r code h e r e

763 font = Font . getFont (Font . FACE_SYSTEM , Font . ↩

STYLE_BOLD ∣ Font . STYLE_ITALIC , Font . SIZE_LARGE) ; ↩

206

/ / GEN−LINE: ∣155 − g e t t e r ∣1 ∣155 − p o s t I n i t

764 / / w r i t e pos t− i n i t u s e r code h e r e

765 } / / GEN−BEGIN: ∣155 − g e t t e r ∣ 2 ∣

766 return font ;

767 }

768 / / </ e d i t o r −f o l d > / /GEN−END: ∣155 − g e t t e r ∣ 2 ∣

769

770 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : image4 ” > / /GEN−BEGIN: ∣156 − g e t t e r ∣0 ∣156 − p r e I n i t

771 / * *

772 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f image4 component .

773 * @return t h e i n i t i a l i z e d component i n s t a n c e

774 * /

775 public Image getImage4 () {

776 if (image4 == null) { / / GEN−END: ∣156 − g e t t e r ∣0 ∣156 − p r e I n i t

777 / / w r i t e pre− i n i t u s e r code h e r e

778 try { / / GEN−BEGIN: ∣156 − g e t t e r ∣1 ∣156 −@java . i o . ↩

IOExcep t ion

779 image4 = Image . createImage ("/processing .png ") ;

780 } catch (java . io . IOException e) { / / GEN−END: ∣156 − ↩

g e t t e r ∣1 ∣156 −@java . i o . IOExcep t ion

781 e . printStackTrace () ;

782 } / / GEN−LINE: ∣156 − g e t t e r ∣2 ∣156 − p o s t I n i t

783 / / w r i t e pos t− i n i t u s e r code h e r e

784 } / / GEN−BEGIN: ∣156 − g e t t e r ∣ 3 ∣

785 return image4 ;

786 }

207

787 / / </ e d i t o r −f o l d > / /GEN−END: ∣156 − g e t t e r ∣ 3 ∣

788 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : i m a g e I t e m S u c c e s s ” > / /GEN−BEGIN: ∣157 − g e t t e r ↩

∣0 ∣157 − p r e I n i t

789 / * *

790 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f i m a g e I t e m S u c c e s s ↩

component .

791 * @return t h e i n i t i a l i z e d component i n s t a n c e

792 * /

793 public ImageItem getImageItem_Success () {

794 if (imageItem_Success == null) { / / GEN−END: ∣157 − g e t t e r ↩

∣0 ∣157 − p r e I n i t

795 / / w r i t e pre− i n i t u s e r code h e r e

796 imageItem_Success = new ImageItem ("Congratulations ! ↩

Transaction is succeeded !" , getImage5 () , ↩

ImageItem . LAYOUT_CENTER ∣ Item . LAYOUT_BOTTOM ∣ ↩

Item . LAYOUT_VCENTER ∣ Item . LAYOUT_SHRINK ∣ Item . ↩

LAYOUT_VSHRINK ∣ Item . LAYOUT_EXPAND ∣ Item . ↩

LAYOUT_VEXPAND , "Transaction is succeed !" , Item . ↩

PLAIN) ; / / GEN−LINE: ∣157 − g e t t e r ∣1 ∣157 − p o s t I n i t

797 / / w r i t e pos t− i n i t u s e r code h e r e

798 } / / GEN−BEGIN: ∣157 − g e t t e r ∣ 2 ∣

799 return imageItem_Success ;

800 }

801 / / </ e d i t o r −f o l d > / /GEN−END: ∣157 − g e t t e r ∣ 2 ∣

802

208

803 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : image5 ” > / /GEN−BEGIN: ∣158 − g e t t e r ∣0 ∣158 − p r e I n i t

804 / * *

805 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f image5 component .

806 * @return t h e i n i t i a l i z e d component i n s t a n c e

807 * /

808 public Image getImage5 () {

809 if (image5 == null) { / / GEN−END: ∣158 − g e t t e r ∣0 ∣158 − p r e I n i t

810 / / w r i t e pre− i n i t u s e r code h e r e

811 try { / / GEN−BEGIN: ∣158 − g e t t e r ∣1 ∣158 −@java . i o . ↩

IOExcep t ion

812 image5 = Image . createImage ("/success .png ") ;

813 } catch (java . io . IOException e) { / / GEN−END: ∣158 − ↩

g e t t e r ∣1 ∣158 −@java . i o . IOExcep t ion

814 e . printStackTrace () ;

815 } / / GEN−LINE: ∣158 − g e t t e r ∣2 ∣158 − p o s t I n i t

816 / / w r i t e pos t− i n i t u s e r code h e r e

817 } / / GEN−BEGIN: ∣158 − g e t t e r ∣ 3 ∣

818 return image5 ;

819 }

820 / / </ e d i t o r −f o l d > / /GEN−END: ∣158 − g e t t e r ∣ 3 ∣

821

822 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : d s w a i t S c r n ” > / /GEN−BEGIN: ∣159 − g e t t e r ∣0 ∣159 − ↩

p r e I n i t

823 / * *

824 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f d s w a i t S c r n component .

209

825 * @return t h e i n i t i a l i z e d component i n s t a n c e

826 * /

827 public WaitScreen getDs_waitScrn () {

828 if (ds_waitScrn == null) { / / GEN−END: ∣159 − g e t t e r ∣0 ∣159 − ↩

p r e I n i t

829 / / w r i t e pre− i n i t u s e r code h e r e

830 ds_waitScrn = new WaitScreen (getDisplay ()) ; / / GEN− ↩

BEGIN: ∣159 − g e t t e r ∣1 ∣159 − p o s t I n i t

831 ds_waitScrn . setTitle ("Signing Digital Signature ") ;

832 ds_waitScrn . setCommandListener (this) ;

833 ds_waitScrn . setFullScreenMode (true) ;

834 ds_waitScrn . setImage (getImage4 ()) ;

835 ds_waitScrn . setText ("Signing Digital Signature ... ↩

... ") ;

836 ds_waitScrn . setTextFont (getFont ()) ;

837 ds_waitScrn . setTask (getTask1 ()) ; / / GEN−END: ∣159 − ↩

g e t t e r ∣1 ∣159 − p o s t I n i t

838 / / w r i t e pos t− i n i t u s e r code h e r e

839 } / / GEN−BEGIN: ∣159 − g e t t e r ∣ 2 ∣

840 return ds_waitScrn ;

841 }

842 / / </ e d i t o r −f o l d > / /GEN−END: ∣159 − g e t t e r ∣ 2 ∣

843

844 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t a s k 1 ” > / /GEN−BEGIN: ∣162 − g e t t e r ∣0 ∣162 − p r e I n i t

845 / * *

846 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t a s k 1 component .

210

847 * @return t h e i n i t i a l i z e d component i n s t a n c e

848 * /

849 public SimpleCancellableTask getTask1 () {

850 if (task1 == null) { / / GEN−END: ∣162 − g e t t e r ∣0 ∣162 − p r e I n i t

851 / / w r i t e pre− i n i t u s e r code h e r e

852 task1 = new SimpleCancellableTask () ; / / GEN−BEGIN ↩

: ∣162 − g e t t e r ∣1 ∣162 − e x e c u t e

853 task1 . setExecutable (new org . netbeans . microedition . ↩

util . Executable () {

854 public void execute () throws Exception { / / GEN− ↩

END: ∣162 − g e t t e r ∣1 ∣162 − e x e c u t e

855 / / w r i t e t a s k−e x e c u t i o n u s e r code h e r e

856

857 TimeDelay () ;

858 } / / GEN−BEGIN: ∣162 − g e t t e r ∣2 ∣162 − p o s t I n i t

859 }) ; / / GEN−END: ∣162 − g e t t e r ∣2 ∣162 − p o s t I n i t

860 / / w r i t e pos t− i n i t u s e r code h e r e

861 } / / GEN−BEGIN: ∣162 − g e t t e r ∣ 3 ∣

862 return task1 ;

863 }

864 / / </ e d i t o r −f o l d > / /GEN−END: ∣162 − g e t t e r ∣ 3 ∣

865

866 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : e n c r y p t w a i t S c r n ” > / /GEN−BEGIN: ∣163 − g e t t e r ∣0 ∣163 − ↩

p r e I n i t

867 / * *

211

868 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f e n c r y p t w a i t S c r n ↩

component .

869 * @return t h e i n i t i a l i z e d component i n s t a n c e

870 * /

871 public WaitScreen getEncrypt_waitScrn () {

872 if (encrypt_waitScrn == null) { / / GEN−END: ∣163 − g e t t e r ↩

∣0 ∣163 − p r e I n i t

873 / / w r i t e pre− i n i t u s e r code h e r e

874 encrypt_waitScrn = new WaitScreen (getDisplay ()) ; / / ↩

GEN−BEGIN: ∣163 − g e t t e r ∣1 ∣163 − p o s t I n i t

875 encrypt_waitScrn . setTitle ("Encrypting Data ") ;

876 encrypt_waitScrn . setCommandListener (this) ;

877 encrypt_waitScrn . setFullScreenMode (true) ;

878 encrypt_waitScrn . setImage (getImage4 ()) ;

879 encrypt_waitScrn . setText ("Encrypting ") ;

880 encrypt_waitScrn . setTextFont (getFont ()) ;

881 encrypt_waitScrn . setTask (getTask2 ()) ; / / GEN−END: ∣163 − ↩

g e t t e r ∣1 ∣163 − p o s t I n i t

882 / / w r i t e pos t− i n i t u s e r code h e r e

883 } / / GEN−BEGIN: ∣163 − g e t t e r ∣ 2 ∣

884 return encrypt_waitScrn ;

885 }

886 / / </ e d i t o r −f o l d > / /GEN−END: ∣163 − g e t t e r ∣ 2 ∣

887

888 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : t a s k 2 ” > / /GEN−BEGIN: ∣166 − g e t t e r ∣0 ∣166 − p r e I n i t

889 / * *

212

890 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f t a s k 2 component .

891 * @return t h e i n i t i a l i z e d component i n s t a n c e

892 * /

893 public SimpleCancellableTask getTask2 () {

894 if (task2 == null) { / / GEN−END: ∣166 − g e t t e r ∣0 ∣166 − p r e I n i t

895 / / w r i t e pre− i n i t u s e r code h e r e

896 task2 = new SimpleCancellableTask () ; / / GEN−BEGIN ↩

: ∣166 − g e t t e r ∣1 ∣166 − e x e c u t e

897 task2 . setExecutable (new org . netbeans . microedition . ↩

util . Executable () {

898 public void execute () throws Exception { / / GEN− ↩

END: ∣166 − g e t t e r ∣1 ∣166 − e x e c u t e

899 / / w r i t e t a s k−e x e c u t i o n u s e r code h e r e

900

901 TimeDelay () ;

902 } / / GEN−BEGIN: ∣166 − g e t t e r ∣2 ∣166 − p o s t I n i t

903 }) ; / / GEN−END: ∣166 − g e t t e r ∣2 ∣166 − p o s t I n i t

904 / / w r i t e pos t− i n i t u s e r code h e r e

905 } / / GEN−BEGIN: ∣166 − g e t t e r ∣ 3 ∣

906 return task2 ;

907 }

908 / / </ e d i t o r −f o l d > / /GEN−END: ∣166 − g e t t e r ∣ 3 ∣

909

910 / /<e d i t o r −f o l d d e f a u l t s t a t e =” c o l l a p s e d ” desc =” G e n e r a t e d ↩

G e t t e r : payAmount ” > / /GEN−BEGIN: ∣172 − g e t t e r ∣0 ∣172 − p r e I n i t

911 / * *

912 * R e t u r n s an i n i t i l i a z e d i n s t a n c e o f payAmount component .

213

913 * @return t h e i n i t i a l i z e d component i n s t a n c e

914 * /

915 public TextField getPayAmount () {

916 if (payAmount == null) { / / GEN−END: ∣172 − g e t t e r ∣0 ∣172 − ↩

p r e I n i t

917 / / w r i t e pre− i n i t u s e r code h e r e

918 payAmount = new TextField ("Pay Amount (USD)" , null , ↩

32 , TextField . DECIMAL) ; / / GEN−BEGIN: ∣172 − g e t t e r ↩

∣1 ∣172 − p o s t I n i t

919 payAmount . setPreferredSize (−1 , −1) ; / / GEN−END: ∣172 − ↩

g e t t e r ∣1 ∣172 − p o s t I n i t

920 / / w r i t e pos t− i n i t u s e r code h e r e

921 } / / GEN−BEGIN: ∣172 − g e t t e r ∣ 2 ∣

922 return payAmount ;

923 }

924 / / </ e d i t o r −f o l d > / /GEN−END: ∣172 − g e t t e r ∣ 2 ∣

925 / * *

926 * R e t u r n s a d i s p l a y i n s t a n c e .

927 * @return t h e d i s p l a y i n s t a n c e .

928 * /

929 public Display getDisplay () {

930 return Display . getDisplay (this) ;

931 }

932

933 / * *

934 * E x i t s MIDlet .

935 * /

214

936 public void exitMIDlet () {

937 switchDisplayable (null , null) ;

938 destroyApp (true) ;

939 notifyDestroyed () ;

940 }

941

942 / * *

943 * C a l l e d when MIDlet i s s t a r t e d .

944 * Checks whe the r t h e MIDlet have been a l r e a d y s t a r t e d and ↩

i n i t i a l i z e / s t a r t s o r resumes t h e MIDlet .

945 * /

946 public void startApp () {

947 if (midletPaused) {

948 resumeMIDlet () ;

949 } else {

950 initialize () ;

951 startMIDlet () ;

952 }

953 midletPaused = false ;

954 }

955

956 / * *

957 * C a l l e d when MIDlet i s paused .

958 * /

959 public void pauseApp () {

960 midletPaused = true ;

961 }

215

962

963 / * *

964 * C a l l e d t o s i g n a l t h e MIDlet t o t e r m i n a t e .

965 * @param u n c o n d i t i o n a l i f t r u e , t h e n t h e MIDlet has t o be ↩

u n c o n d i t i o n a l l y t e r m i n a t e d and a l l r e s o u r c e s has t o be ↩

r e l e a s e d .

966 * /

967 public void destroyApp (boolean unconditional) {

968 }

969 }

216

NetConnection.java

1 / *

2 * To change t h i s t e m p l a t e , choose Too l s ∣ Templa t e s

3 * and open t h e t e m p l a t e i n t h e e d i t o r .

4 * /

5

6 package com . uleth . mobank . connection ;

7

8 import java . io . DataInputStream ;

9 import java . io . DataOutputStream ;

10 import java . io . IOException ;

11 import javax . microedition . io . Connector ;

12 import javax . microedition . io . HttpConnection ;

13

14 / * *

15 *

16 * @author zhuyp

17 * /

18 public class NetConnection {

19

20 private String answer = "S," ; / / t h e answer s u b m i t t e d

21

22

23 private static final String URL = "http :// localhost :8080/ ↩

MobileBankServer /PortalDataServlet ?" ;

217

24

25 / * *

26 * HTTP CONNECTION TO SERVER

27 * /

28 public void postViaHttpConnection () throws IOException {

29 HttpConnection http = null ;

30 DataOutputStream dos = null ;

31 DataInputStream dis = null ;

32 int rc ;

33

34 String url = URL ;

35 String rawData = "answer =" + answer ;

36 url = url + rawData ;

37 System . out . println ("url :" + url) ;

38

39 try {

40 http = (HttpConnection) Connector . open (url) ;

41

42 / / S e t t h e r e q u e s t method and h e a d e r s

43 http . setRequestMethod (HttpConnection . POST) ;

44 http . setRequestProperty ("User -Agent " , "Profile /MIDP ↩

-2.0 Configuration /CLDC -1.1 ") ;

45 http . setRequestProperty ("Content -Language " , "UTF -8 ") ↩

;

46 http . setRequestProperty ("Content -Length " , String . ↩

valueOf (rawData . length ())) ;

47

218

48 / / G e t t i n g t h e o u t p u t s t r e a m may f l u s h t h e h e a d e r s

49 dos = http . openDataOutputStream () ;

50 dos . write (rawData . getBytes ()) ;

51

52 / / G e t t i n g t h e r e s p o n s e code w i l l open t h e ↩

c o n n e c t i o n ,

53 / / send t h e r e q u e s t , and r e a d t h e HTTP r e s p o n s e ↩

h e a d e r s .

54 / / The h e a d e r s a r e s t o r e d u n t i l r e q u e s t e d .

55 rc = http . getResponseCode () ;

56 if (rc != HttpConnection . HTTP_OK) {

57 throw new IOException ("HTTP response code : " + ↩

rc) ;

58 } else {

59

60 System . out . println ("dis before ") ;

61

62 dis = http . openDataInputStream () ;

63 String resNotes = dis . readUTF () ;

64 System . out . println ("dis ") ;

65 / / t h i s . ge tSucces sForm () . d e l e t e A l l () ;

66 System . out . println ("deleteAll ") ;

67 System . out . println ("resNotes :" + resNotes) ;

68 / / t h i s . ge tSucces sForm () . append (r e s N o t e s) ;

69

70 System . out . println ("HTTP DONE ") ;

71 }

219

72 } catch (ClassCastException e) {

73 throw new IllegalArgumentException ("Not an HTTP URL " ↩

) ;

74 } finally {

75 if (dis != null) {

76 dis . close () ;

77 }

78 if (dos != null) {

79 dos . close () ;

80 }

81 if (http != null) {

82 http . close () ;

83 }

84 }

85 }

86

87

88 }

220

Part of Security API Code

ECDSAPrime192Signature

package org.yunpu.crypto.ecdsa;

/**

*

* @author zhuyp

* ECDSA Digital Signature over Prime curve with 192-bit key size

*/

public class ECDSAPrime192Signature

1 / *

2 * ECDSA D i g i t a l S i g n a t u r e ove r Prime c u r v e wi th 192− b i t key ↩

s i z e

3 *

4 * /

5 package org . yunpu . crypto . ecdsa ;

6

7 import java . io . IOException ;

8 import java . io . InputStream ;

9 import java . math . BigInteger ;

10 import java . security . SecureRandom ;

11

12 import org . bouncycastle . asn1 . x9 . X962NamedCurves ;

221

13 import org . bouncycastle . asn1 . x9 . X9ECParameters ;

14 import org . bouncycastle . crypto . AsymmetricCipherKeyPair ;

15 import org . bouncycastle . crypto . digests . SHA1Digest ;

16 import org . bouncycastle . crypto . generators . ECKeyPairGenerator ;

17 import org . bouncycastle . crypto . params . ECDomainParameters ;

18 import org . bouncycastle . crypto . params . ECKeyGenerationParameters ;

19 import org . bouncycastle . crypto . params . ECPrivateKeyParameters ;

20 import org . bouncycastle . crypto . params . ECPublicKeyParameters ;

21 import org . bouncycastle . crypto . params . ParametersWithRandom ;

22 import org . bouncycastle . crypto . signers . ECDSASigner ;

23 import org . yunpu . crypto . util . InputUtils ;

24

25 / * *

26 *

27 * @author zhuyp

28 * ECDSA D i g i t a l S i g n a t u r e ove r Prime c u r v e wi th 192− b i t key ↩

s i z e

29 * /

30 public class ECDSAPrime192Signature {

31

32 private ECDomainParameters params ;

33 private ECPrivateKeyParameters privateKey ;

34 private ECPublicKeyParameters publicKey ;

35 private SecureRandom random = new SecureRandom () ;

36 private ParametersWithRandom privateKeyWithRandom ;

37 private byte [] plainText ;

38 private BigInteger r ;

222

39 private BigInteger s ;

40 private ECDSASigner signer = new ECDSASigner () ;

41 private SHA1Digest digest = new SHA1Digest () ;

42

43 public ECDSAPrime192Signature () {

44

45 }

46

47 / * *

48 *

49 * G e n e r a t e ECDSA key p a i r a s a f i l e and s t o r e i t a t ↩

K e y D e p o s i t L o c a t i o n

50 * @param K e y D e p o s i t L o c a t i o n

51 * /

52 private void ECDSAPrime192GenerateKey (String ↩

KeyDepositLocation) {

53

54 }

55

56 / * *

57 *

58 * @param s t r P l a i n T e x t

59 * @return a d i g i t a l s i g n a t u r e

60 * @throws j a v a . l a n g . E x c e p t i o n

61 * /

62 private BigInteger [] ECDSAPrime192Sign (String strPlain_Text) ↩

throws Exception {

223

63

64

65 }

66

67

68

69 / * *

70 *

71 * @param s t r P l a i n T e x t

72 * @return b o o l e a n v e r i f y i n g t h e d i g i t a l s i g n a t u r e i s l e g a l ↩

or n o t

73 * @throws j a v a . l a n g . E x c e p t i o n

74 * /

75 private boolean ECDSAPrime192Verify (String strPlain_Text) ↩

throws Exception {

76

77 }

78

79 / * *

80 * T r a n s f e r d a t a i n f o r m a t i o n t o a S t r i n g based p l a i n t e x t

81 * @return S t r i n g based p l a i n t e x t

82 * /

83 public String get_PLAIN_TEXT () {

84

85 }

86

87

224

88 }

225

AES256Crypto

package org.yunpu.crypto.aes;

/**

* @author zhuyp

* AES256Crypto is to realize AES cryptography algorithm with key size

* of 256-bit

*/

public class AES256Crypto

1 / * *

2 *

3 * AES256Crypto i s t o r e a l i z e AES c r y p t o g r a p h y a l g o r i t h e m wi th ↩

key s i z e

4 * of 256− b i t

5 * /

6

7 package org . yunpu . crypto . aes ;

8

9 import java . io . IOException ;

10 import java . io . InputStream ;

11 import java . security . SecureRandom ;

12

13 import org . bouncycastle . crypto . BufferedBlockCipher ;

14 import org . bouncycastle . crypto . engines . AESFastEngine ;

15 import org . bouncycastle . crypto . modes . CBCBlockCipher ;

226

16 import org . bouncycastle . crypto . paddings . ↩

PaddedBufferedBlockCipher ;

17 import org . bouncycastle . crypto . params . KeyParameter ;

18 import org . bouncycastle . crypto . params . ParametersWithIV ;

19

20 / * *

21 * @author zhuyp

22 * AES256Crypto i s t o r e a l i z e AES c r y p t o g r a p h y a l g o r i t h e m wi th ↩

key s i z e

23 * of 256− b i t

24 * /

25 public class AES256Crypto {

26

27 private byte [] key = new byte [3 2] ;

28

29 private byte [] iv = new byte [1 6] ;

30

31 private byte [] plainText = PlainText . PLAIN_TEXT . getBytes () ;

32

33 private byte [] cipherText ;

34

35 private BufferedBlockCipher cipher = new ↩

PaddedBufferedBlockCipher (

36 new CBCBlockCipher (new AESFastEngine ())) ;

37

38 private ParametersWithIV piv ;

39

227

40 private SecureRandom random = new SecureRandom () ;

41

42

43 public AES256Crypto () {

44 }

45

46

47 / * *

48 * g e n e r a t e e n c r y p t / d e c r y p t key , s t o r e i t a t ↩

K e y D e p o s i t L o c a t i o n

49 * @param byteKey

50 * @param K e y D e p o s i t L o c a t i o n

51 * /

52 private void AES256GenerateKey (Byte [] byteKey , String ↩

KeyDepositLocation) {

53

54 }

55

56

57 / * *

58 * e n c r y p t P l a i n T e x t wi th byteKey

59 * @param P l a i n T e x t

60 * @param byteKey

61 * @throws j a v a . l a n g . E x c e p t i o n

62 * /

63 private Byte [] AES256Encrypt (Byte [] PlainText , Byte [] ↩

byteKey) throws Exception {

228

64

65 }

66

67 / * *

68 * d e c r y p t C i p h e r T e x t wi th byteKey

69 * @param C i p h e r T e x t

70 * @param byteKey

71 * @return P l a i n T e x t

72 * @throws j a v a . l a n g . E x c e p t i o n

73 * /

74 private byte [] AES256Decrypt (Byte [] CipherText , Byte [] ↩

byteKey) throws Exception {

75

76 }

77 }

229

	Title Page
	Approval/Signature Page
	Dedication
	Abstract
	List of appended papers
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Current Limitations
	Problem Statement
	Research Scope
	Research Contributions
	System Development
	Thesis Outline

	Background
	Wireless Network Technologies
	Mobile Phone Network

	Mobile Service Technologies
	Short Messaging Service
	Wireless Application Protocol
	Java ME

	Mobile Payment
	Mobile Payment Overview
	Mobile Payment Models

	Mobile Devices
	Mobile Devices' Overview
	Mobile Operating Systems

	Java ME
	Java ME: An Overview
	Connected Limited Device Configuration
	Mobile Information Device Profile
	MIDlets
	Record Management System

	Authentication
	Authentication: Definition
	Single-factor Authentication
	Multi-factor Authentication

	Cryptography
	Basic Cryptography Concepts
	Symmetric-key Cryptography
	Public-key Cryptography
	A Comparison of Symmetric-key and Public-key
	Software Encryption

	System Analysis
	Research Constraints
	Mobile Devices
	Two-party mobile payments
	Wireless Networks
	Application Layer

	Security Objectives
	System Analysis based on Security Map
	Onion Layer Framework
	Security Map

	Analysis Result
	Cryptography Solutions
	Authentication Solutions
	Non-repudiation Solutions
	Implementation Proposal

	System Design
	Security Architecture
	Security Architecture Notations
	Network Module
	Lightweight Cryptography Scheme
	Multi-factor Authentication Strategy
	Distributed Transaction Log Strategy
	Key Management

	Application Architecture
	Mobile Client Architecture
	Server Architecture

	System Simulation
	Simulation Environment
	Bouncy Castle

	Simulation Implementation
	Business Work Flow
	Data Transformation
	Cryptography Simulation

	Simulation Evaluation
	Time Delay Evaluation
	Code Size Evaluation

	System Comparison
	Other Works
	J2ME application-layer end-to-end security architecture
	Lightweight security for mobile commerce transactions
	Internet Keyed Payment Protocols
	Secure Electronic Transaction protocol

	Architecture Comparison
	Time Delay Comparison

	Conclusions and Future Work
	Glossary
	References
	Appendix

