
Implementation of a Spatial Data Structure on a 
FPGA 

J. E. Rice, W. Osborn and J. Schultz 

Department of Mathematics & Computer Science 
University of Lethbridge 

4401 University Drive, Lethbridge, AB, Canada,  
T1K 3M4 

 

Abstract - Many systems exist that store and manipulate data; 
however, many do no have sufficient support for spatial data 
Many data structures are proposed that are intended specifically 
for spatial data; however, software implementations have not 
performed as well as hoped.  This work presents a feasibility 
study investigating the use of a FPGA for the implementation of a 
structure to support spatial search and retrieval. 

I. INTRODUCTION 

Recent advances in the area of data storage have resulted 
in technology enabling institutions, companies, and 
individuals to store data in sizes never before envisioned.  One 
area in particular that is leveraging this increase is the area of 
geographical information systems (GIS). A GIS manages 
spatial data. Unfortunately many data structures are not 
appropriate for spatial data.  Recent work by Osborn [1] has 
produced a data structure intended specifically for spatial data. 
A limitation is that its software implementation is slow.  In 
this work, we address this limitation by investigating the 
feasibility of implementing the data structure on a 
reconfigurable chip called a FPGA. 

II. BACKGROUND 

A. FPGAs 

One technique for accelerating computation is a 
(re)configurable hardware solution. This has been applied to 
various problems such as image compression [2] and string 
matching [3], as well as in other bioinformatics applications 
[5, 6, 7].  Reconfigurable computing utilizes the flexibility and 
processing power of reconfigurable devices such as Field 
Programmable Gate Arrays (FPGAs) to achieve an increase in 
performance. This flexibility allows the development and 
implementation of a custom hardware circuit as part of a 
solution.  A FPGA consists of many programmable cells, 
which can be programmed for either I/O or functionality. Cells 
are comprised of look-up tables (LUTs), which can be 

programmed for various functions and interconnected in many 
ways that are determined by the place and route software. 

Reconfigurable computing is generally used in a static or 
dynamic role. In static reconfigurable computing, the device is 
programmed once for the entire instance of an application. 
Dynamic reconfigurable computing programs the device many 
times, producing multiple hardware designs during execution. 
We are primarily interested in a static solution because 
reprogramming the FPGA dynamically incurs overhead.  
However, a dynamic solution is not ruled out at this stage in 
our investigations. 

B. Spatial Data Representation and Retrieval 

Spatial data is data that exists in multidimensional space. It 
ranges in complexity from simple points to objects composed 
of sub-objects, such as points, lines, or arbitrarily-shaped 
objects.  For example, a town is represented with a point, 
while a province has many towns (i.e. points), cities (i.e. 
regions), and roads (i.e. linestrings).   

Two important issues for spatial data are the efficient 
retrieval of a specific object (i.e. exact match) and the efficient 
search for subsets of spatial objects (i.e. a region search).  

Many one-dimensional hierarchical structures are 
proposed for retrieving spatial data [4]. Most store minimum 
bounding rectangles (MBRs) of objects and the regions in 
space that contain objects. Their limitations include 
overcoverage of empty space, and overlap of the MBRs, 
which leads to multiple-path searching. 

III. THE PROJECT 

C. The 2DR-tree 

The 2DR-tree is used to create a two-dimensional 
hierarchical structure for retrieving objects in two-dimensional 
space, as opposed to forcing those objects to fit a one-
dimensional structure. Using nodes with the same 
dimensionality as the object space can lead to significant 
improvement in retrieval performance [1]. The 2DR-tree maps  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A sample object layout., with the resulting 2DR-tree. 

 
each MBR to an appropriate location in a two-dimensional 
node, to reduce overlap and overcoverage. 

Each node contains individual locations. Each node 
location holds the MBRs for an object or a region. A MBR 
consists of two coordinate pairs high (x,y) and low (x,y), or 
(hx, lx, hy, ly).  At the leaf level, a MBR in two-dimensional 
space is placed in an appropriate location of a two-
dimensional node. MBRs for regions are placed similarly in 
non-leaf nodes. 
The 2DR-tree differs from other spatial data structures in how 
the node locations are arranged in a node. Instead of a node 
being modeled as a flat one-dimensional array, it is modeled 
as a two-dimensional array. Thus, the order of a node is X*Y, 
where X is the number of node locations on the x-axis and Y is 
the number of node locations on the y-axis.   

Searching is done using a binary search strategy. The main 
task usually involves finding a split point; however we discuss 
in the following section the necessity for removing this when 
implementing the search on a FPGA. 

D. FPGA Implementation 

For this work we used the Virtex-II Pro FPGA Prototyping 
Station that is provided by the Canadian Microelectronics 
Corporation (CMC). It is an AMIRIX AP1000 development 
board that features the Xilinx Virtex-II Pro FPGA. It has 
44,000 logic slices and features two embedded IBM PowerPC 
hard macros and 1.4MB of on-chip RAM.  We use the Xilinx 
ISE and Xilinx EDK software for development and to run 
simulations. 

The basic unit in a 2DR-tree is the node location. With the 
node location a node of any order can be built. The nodes are 
then used as the building blocks for a 2DR-tree. It makes  

 
Figure 2.  The input/output design for a 2*2 node. 

 
sense for the unit representing the node location to contain 
most of the functional logic and carry out the bulk of the work 
(i.e. checking two MBRs for overlap). The other calculation 
performed in software is to find a dividing point for the node 
during binary search. However, the FPGA can check all nodes 
simultaneously, and therefore we do not need to find a 
division; instead all nodes on one level can be tested at once. 
The node location unit is designed to test the input MBR for 
overlap with the stored MBR and give the appropriate output.  

The output from a node location unit is a MBR.  This may 
be empty if no overlap exists between the input and stored 
MBRs. If overlap exists, the output depends on whether the 
node location unit is marked as a leaf-node or not. An isLeaf 
marker is used to identify a leaf-node. A leaf-node will output 
the stored MBR, otherwise the input MBR is sent as output.  

A load signal and a load MBR are used to set the stored 
MBR value for a node location unit.  When the load signal is 
sent the load MBR value is used to replace the current value in 
the stored MBR. The initial value of the stored MBR is an 
empty MBR.  The last two incoming signals to a node location 
unit are the clock and reset signals. The reset signal is used in 
conjunction with the load signal to re-initialize the stored 
MBR to the empty MBR, or on its own to signal the node to 
output an empty MBR.   

Using the node location unit as the foundation, a node of 
any order can be created. The only information stored at the 
node-level is the status of the node, i.e. leaf-node or not.  The 
output from all node location units are passed out of the node 
unit as a group. The size of this group depends on the node 
order.  It the node has an order of 2*2, then the output group 
will have 4 MBRs. The load MBRs are also grouped in the 
same manner. This allows for an entire node to load all of its 
node locations at once. 

The final step is to create, on the FPGA, a 2DR-tree built 
from the individual nodes. Two issues arise when creating the 
2DR-tree. As the height of the tree grows the number of 
output MBRs increase drastically, as do the number of load 
MBRs. 

 
 
 
 
 
 
 

Figure-3. Numbering scheme for the 2DR-tree nodes 
 



 

To solve these issues two controllers are needed, an input 
controller and an output controller.  The input controller 
allows a single node to be loaded with a load MBR value, so 
the overall 2DR-tree on the FPGA only has one load MBR as 
an input line. Along with the load MBR value the node 
number is needed. Each node in the tree is numbered starting 
with the root node as 0 as shown in Figure 3. The reset and 
load signals for each individual node are also controlled by the 
input controller. 

The output controller allows for a particular node output to 
be queried, which allows the FPGA 2DR-tree to have only one 
MBR output line. Each of the output MBRs for individual 
nodes are fed into the output controller as inputs. The load 
signal and node number are also provided as inputs to the 
output controller. If the load signal is set then the output MBR 
is an empty MBR, otherwise, the output from the node with 
the given node number is provided.  These controllers solve 
the problem of having too many input and output lines for the 
FPGA 2DR-tree. It is now possible to create a functional tree 
to perform binary searches.  Using this model a simulation 
using the Xilinx ISE was created for our testing and analysis 
purposes. 

E. Results & Analysis 

For the FPGA 2DR-tree performance analysis, we 
use trees of heights 3 and 4. These heights are chosen 
due to FPGA space limitations.  We can store a height 4 
tree by reducing the range of integers in the MBRs, as 
the sample data did not exceed the range of a 16 bit 
integer. Further reduction would allow for a deeper tree, 
but for analysis purposes the two sample tree heights 
will be adequate. 

All of our results are from simulations carried out 
with the Xilinx design tools, and so the transfer time for 
sending data from the host system to the FPGA board is 
not taken into account.  Table 1 shows the time required 
for each of the actions carried out by the FPGA-based 
2DR-tree.  

 
 

 

 

 

 

 

 

Figure-4. The input controller (top) and the output controller (bottom). 

Table 2 shows the time required for the software binary 
search. The timing results for the software binary search are 
computed by using the Java code from Osborn’s work [1]. The 
only addition was the code for timing the searches. Because 
searching takes a fraction of a second, several hundred 
searches were performed, and the average time was calculated.  

Results show that the FPGA implementation will give a 
tremendous speed increase to the binary search. The 
concerning factor will be the time it takes for the data to 
transfer from the host machine to the FPGA board. Currently 
the transfer is performed via the serial interface, which can be 
rather slow for large amounts of data. We will investigate data 
transfer via the PCI Bus, which will produce faster data 
transfer speeds. 

IV. CONCLUSIONS & FUTURE WORK 

This work shows the feasibility of using a FPGA to 
improve search speeds on a spatial database. Work is 
continuing in many areas. We will incorporate communication 
times into our results. We will have the host machine run a 
Java application that will communicate with the FPGA board. 
This application will load the FPGA 2DR-tree, run a binary 
search and query for results. The communication between the 
application and the FPGA board can be done via the serial port 
or PCI bus, as investigations allow. 

Also, additional logic can be added to support unbalanced 
trees and self-checking nodes.  The current implementation 
requires that the 2DR-tree be balanced. Extending the logic to 
allow for leaf-nodes to occur any where in the tree would 
allow for more realistic sample data to be used. Self-checking 
nodes will allow for a more robust implementation and will be 
useful when logic is added for the insert operation. This means 
a node will have logic to ensure the MBRs within it conform 
to the required "node validity" presented by Osborn [1].  
Finally, for a complete implementation of the 2DR-tree, insert 
and delete operations need to be incorporated into the design. 

 
Table 1. FPGA 2DR-tree search performance. 

 
Action Time  

(Height 3) 
Time  

(Height 4) 
Initialize 6 ns 6 ns 

Load 264 ns 1,032 ns 
Search 48 ns 60 ns 
Query  
Output 

216 ns 792 ns 

Total 
 Time 

534 ns 1,890 ns 

 



 

Table 2. 2DR-tree software search performance. 

 
The current work on implementing a 2DR-tree on a FPGA 
shows much promise. The performance increase is significant. 
Further research will produce a functional 2DR-tree for binary 
searches. It can also lead to other speed increases for the 2DR-
tree. The ideas presented in this paper can be applied and 
extended to increase performance for the binary search, insert 
and delete operations of the 2DR-tree.  

REFERENCES 

[1] Osborn, W. The 2DR-tree: a 2-Dimensional Spatial Access 
Method.  PhD Thesis, University of Calgary, 2004. 

[2] Simpson, A., Hunter, J., Wylie, M., Hu, Y., and Mann, D.   
Demonstrating Real-Time JPEG Image Compression-
Decompression Using Standard Component IP Cores on a 
Programmable Logic Based Platform for DSP and Image 
Processing. Proceedings of FPL 2001, LNCS 2147, Springer-
Verlag, pp. 441-450, 2001.  

[3] Lee, H. and Ercal, F. RMESH Algorithms for Parallel String 
Matching. Proceedings of the 3rd International Symposium on 
Parallel Architectures, Algorithms and Networks (I- SPAN'97), 
pp. 223-226, 1997.  

[4] Gaede, V. and Guenther, O.  Multidimensional Access Methods. 
ACM Computing Surveys, 30(2), pp. 170-231, 1998 

[5] K. B. Kent, J. E. Rice, S. Van Schaick, and P. A. Evans. 
Hardware-Based Implementation of the Common Approximate 
Substring Algorithm. In Proceedings of the Euromicro 
Symposium on Digital System Design: Architectures, Methods 
and Tools (DSD), pages 314–320, 2005.  

[6] J. E. Rice and K. B. Kent. Systolic Array Techniques for 
Determining  Common Approximate Substrings. In Proceedings 
of the International Symposium on Circuits and Systems (ISCAS), 
2006. Paper  number 1480 (CDROM). 

[7]  K. B. Kent, R. B. Proudfoot, and Y. Zhao. Optimizing the Edit-
Distance Problem. In Proceedings of the 17th International 
Workshop on Rapid System Prototyping (RSP), 2006. to appear.  

 
 

 

Height Iterations Avg. Total Time 
3 1,000,000 13,422.2 ns 
3 5,000,000 13,100.04 ns 
4 1,000,000 22,193.8 ns 
4 5,000,000 20,684.96 ns 


