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Abstract— The use of spectral techniques in logic synthesis is
well researched and well known. However, there is very little
work surrounding the use of other transforms such as the
autocorrelation transform. This paper introduces a variety of
properties inherent to the coefficients produced by the autocor-
relation transform, and discusses potential applications.

I. INTRODUCTION

Much work has been performed in applying transforms
to switching functions in order to achieve a more global
view of the function. Transforms such as the Hadamard and
Rademacher-Walsh and their applications in digital logic are
well researched [1]. There is far less work, however, on the
use of other transforms such as the autocorrelation transform.

The autocorrelation transform has been used in various
areas including optimization and synthesis of combinational
logic [2], variable ordering for Binary Decision Diagrams [3],
and to compute the estimate

�������
of a function’s complex-

ity [2], [4]. However, the use has been limited, likely due
to the fact that little work has been done investigating their
properties, and until recently, methods for computating the
autocorrelation coefficients were exponential in the number
of inputs to the function(s). Since new methods for their
computation have recently been introduced by Rice et. al. [5],
[6], we also have performed an investigation into what useful
properties may be present in the autocorrelation coefficients
for Boolean functions.

In this paper we present the definition and an explanation
of the autocorrelation transform. We introduce several theo-
rems relating the values of the the resulting autocorrelation
coefficients to properties of the underlying switching function.
A number of potential applications for these theorems are
presented, and directions in which this work may progress
is also discussed.

II. BACKGROUND

The application of the autocorrelation transform to a switch-
ing function results in a comparison of the function to itself,
shifted by a specified amount. The autocorrelation transform
is a special case of the correlation transform, which is defined
as [4]:

�	��
 ���������������
�����

����� ��!�"����$#%���'&
(1)

If
�

and
"

are the same function then this becomes the
autocorrelation transform, also called the cross-correlation,
or convolution function. The superscript is generally omitted
when referring to the autocorrelation transform.� �����

is evaluated with
�

in the usual Boolean domain
of (*),+.-0/ . If (213-4+�5$-0/ encoding is used then the resulting
autocorrelation coefficients are denoted as

������
:

���������6���7����
�����

����� ��!.�����$#%���'&
(2)

It is possible to convert between
�

and
�

using the following
equation: �������8�690: 5<;�=>1%; � �����'&

(3)

In this equation, = � � � ) � , which is also the number of
minterms in the function. The derivation is given in Ap-
pendix I.

III. NOTATION

Some additional notation is required for the latter portions
of this paper:? The variable ordering @ : + &A&B& +C@ � is used through-out.

Thus a coefficient
� � )D)�- � or

��� )D)�- � is the first order
coefficient corresponding to @ � .? �

and
�,E

indicate values ranging from ) to
9 : 5F- . �.G is

used to indicate one such value.? �.H
refers to a value whose binary expansion contains a 1

in the IKJL bit, while the remaining MN5O- bits are 0.? �.HAP
refers to a set of values for which the binary expan-

sion contains a 1 in the IQJL bit while the remaining MR5S-
bits have the value TVUW(X),+ &A&A& + 9 : �Y� 5<-0/ . � HZP refers to
a set of values for which the binary expansion contains
a 0 in the IKJL bit while the remaining M	5[- bits have the
value T .?]\ � \ is the weight, or the number of ones in the binary
expansion of

�
. If \ � \ �_^

then
� �����

and
�������

are said
to be

^ JL order coefficients.

IV. OBSERVATIONS ON THE SIGNS AND VALUES OF THE

AUTOCORRELATION COEFFICIENTS

There are a number of restrictions on the values of both
the (X),+�-D/ and (213-4+�5$-0/ autocorrelation coefficients. Knowing
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these limitations can provide a simple check as to whether
the coefficients have been computed correctly. They also lead
to the identification of more specific properties relating the
coefficient values to the original switching function.? � ���� U<(*)�+ &�&.& + 9 : /�� �

.? � ����
is even � ���� ) .? � ������ � � ) � � ���� ) and

� � ) � � = where = refers to
the number of minterms of the switching function.? ������� U[(�5 9 : + &.&�& + 9 : / and is evenly divisible by 2 � �

.? A function may have at most
9 : �Y� negative

�������
.? ���������_��� ) � � ���� ) and

��� ) ��� 9 :
.

These observations are, in general, clear from the definition
of the autocorrelation transform1.

Further observations may be made about the sum of auto-
correlation coefficients:

Theorem 4.1:
���7�Y��	 ��� � �����8� = � & (4)

Lemma 4.1:

� � ����	 � �
� �����8�69�
 = 9� & (5)���

��� is the number of pairings of the minterms as computed in
the summation of the autocorrelation coefficients. This is then
multiplied by 2 to produce all possible pairings in the form
I�+ ^ and

^ +CI . Proof: Using Lemma 4.1 the sum of all of
the (X),+.-0/ autocorrelation coefficients is as follows:

� �7�Y��	 ��� � ����� � � � ) � 1 9 
 = 9��
� = 1 9 ����� ������� = � &

By applying Equation 3 to the above Theorem, we find that

���7����	 ��� ������� � � 90: 5 9 = � � & (6)

V. GENERAL PROPERTIES

This section introduces three theorems that relate particu-
lar patterns in the autocorrelation coefficients to underlying
properties of the switching function. If a designer is given a
function to work with for which no information is available,
these theorems may be applied to provide the designer with
some information about the type of function with which he/she
is working.

A. Trivial Functions

Theorem 5.1:
������8�������E�� � �

and
�,E US(X),+ &�&�& + 9 : 5%-D/

if and only if
�����[� � - or

�����<��� ) .
Proof: If all the coefficients are equal, they must all have

the value
9 :

as the coefficient
��� ) � always has this value.

Based on this, if all of the coefficients have equal value, then

1Some proofs were omitted from this work due to size constraints. Complete
proofs are provided in [6].

this implies that the function matches itself at every value of�
. This can only occur if the function consists entirely of true

minterms, or entirely of false minterms.
The corollary for (X),+�-D/ coefficients is found by applying
Equation 3 to Theorem 5.1.

B. Degenerate Functions

The following two theorems may be applied to identify
degenerate functions. The simplest situation occurs when the
function is dependent on only one input variable. This is
described in Theorem 5.2. A more general case occurs when
the function is dependent on only

^
(̂
�� M ) of its input

variables, which is detailed in Theorem 5.3.
Theorem 5.2: A function

�����[�
has

9 : ��� autocorrelation
coefficients

������� � 9 :
(including

��� ) � ) and the remaining9 : ��� coefficients
������E�� � 5 9 : if and only if the function has

exactly
9 : ��� true minterms.

Proof: A function that is dependent on only one input
variable must have half of the minterms true and half of them
false. Without loss of generality let us define

�����[�S� @ �where @ � is the lowest order bit of the input
�

. Then if
�

is an odd number the binary expansion of
�

contains a 1 in
the lowest order bit, and then by definition

����� ��� ���� # ���
.

Then
������� � � � ����

����� -��[5$-
� 5 9 : &

Similarly if
�,E

is an even number, then the binary expansion
contains a 0 in the lowest order bit and by definition

����� ���
�����>#%�,EZ�

. Then

�����,E�� �6���7����
�����

� 5 � -�� � 5 � -
� 9 : &

Given autocorrelation coefficients of the pattern described
above the function must be dependent on only one of the
input variables (or related to such a function). Without loss of
generality we assume that

������E�� � 9 :
where

��E
is even and�������$� 5 9 : where

�
is odd.

������E�� � 9 :
where

��E
is even

indicates that the function matches up two false or two true
minterms for every product in the summation. Additionally
every product being computed is comparing two inputs for
which @ � remains unchanged. Moreover,

������ � 5 9 : where�
is odd indicates that the function matches a false minterm

with a true minterm for every product in the summation, and
that every product is matching a pair of inputs for which @ �varies. Based on this we can determine that the function must
be dependent only on @ � , and so there must be

9 : ��� true
minterms in the function.
The corollary for (X),+�-D/ encoding can be found by applying
Equation 3 to Theorem 5.2.

Theorem 5.3: A function
�����<�

is independent of
^

of its
input variables if and only if

�����*HQ� �69 : � IFU<- &A& M such that
the function does not depend on variable @ H .
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Proof: Without loss of generality let us define a
function

�����<�
that is independent of @ : . By definition,��� ),+ @ : �Y� +

&�&�& +C@ �
� � ��� -D+ @ : �Y� +

&�&�& +C@ �
�
. Then

����� : � � ���7����
�����

����� � � ����� # � : �

� ����� � �Y��
�����

����7� � ���� #%� : �

1 ���7�Y��
��� � ��� �

����� � � ���� # � : ��&

Let us define the range ) ��� 9 : ��� 5 - as A and
9 : ��� ��� 9 : 5 -

as B. Then
� U��	� ��# � : U �

and
� U � � ��# � : U
� .

Since the function is defined to have
��� � �8����� � �

then

����� : � � � ���
�
����

�����
����� � � ����># � : �

1 � �7�Y��
��� � ��� �

����� � � �����># � : �

� ����� � ����
����� -81 � ���Y��

��� � ��� �
-

� 9 : &
To prove the second part of the theorem we define (without

loss of generality) a function
�����[�

for which
����� : �R� 9 :

.
This is only possible if

����� � � �����R#O� : � � �
. This implies

that
��� -D+ @ : ��� +

&�&�& +C@ �
� � ��� ),+C@ : ��� +

&.&�& + @ �
�
, indicating that�����[�

is not dependent on @ : .
The corollary of this for the (X),+�-D/ encoding may be found by
applying Equation 3 to Theorem 5.3.

C. Dissimilar Minterms

The following are three theorems that allow a designer to
identify a sparse (or the inverse) function from the values
of the function’s autocorrelation coefficients. The first two
theorems detail two specific cases: functions that possess one
and only one true minterm (or the inverse) and functions that
possess only two true minterms (or the inverse).

Theorem 5.4: A function f(X) has exactly one dissimilar
minterm if and only if

�������8� 9 : 5<; � � �� ) .
Proof: Without loss of generality let us define a function�

such that ����7��� -D+ � UW)�+ &�&.& + 9 : 5 9
����7��� 5$-D+ ���69 : 5O- &

Then

������� � � � ����
�����

����� � � �����># ���

� ��� �7� ��
�����

����7� � ���� #%��� � 1 ����9 : 5O- � � ����9 : 5O- #%���

� ��� �7� ��
����� -�� �����>#%��� � 1�5$-�� -

� � 9 : 5 9 5O- � 5O-�69 : 5<; � ���� ) &

Thus if
�����<�

has exactly one true minterm then all of the
coefficients

������8� 9 : 5<; ,
���� ) .

For the second part of this proof, if all that is known of
the function is the coefficients of this pattern, then it can be
shown as follows that the function must have either exactly
one true or exactly one false minterm.

For a coefficient
�������

let us define � as the number of
positive pairs in the summation, and � as the number of
negative pairs in the summation. A pair in this case is a
combination of two minterms I + ^ , and a positive pair results
when both minterms are true or when both are false. It should
be noted that in the summation for the autocorrelation equation
each pair is encountered twice. Then

9 � 5 9 � � 9 : 5<;����� 9 � 1 9 � �69 : &
These equations can be solved to show that � � - . If there
is only one negative pair in the summation then there is only
one pair combining a true and a false minterm; all other pairs
must combine either two true minterms or two false minterms.
If there is only one coefficient

������
for which this holds,

then there can be any number of combinations of true and
false minterms to meet these requirements. However, there are9 : 5 - coefficients that have only one negative pair; therefore
there can be only one dissimilar minterm in the function.
The corollary for the (*)�+�-0/ encoding can be shown by
applying Equation 3 to the Theorem above. The general result
is as follows:

Corollary 5.1: A function
�����[�

has exactly one dissimilar
minterm if and only if

� ����8� =	5 - .
It should be pointed out that this general result is somewhat
misleading; in practice the values for

� ����
are quite limited.

This is because for a function to have exactly one dissimilar
minterm then either = � 9 : 5O- , in which case

� ������ 9 : 59 � ���� ) , or = � - , which results in
� ������� ) � ���� ) .

Theorem 5.5: A function has exactly two dissimilar
minterms if and only if��� ) ���69 : +���� G ���69 : +�����������8��9 MN5�� � � + � G �� )����� ���� � G &
The proof is similar to that given for Theorem 5.4.

Corollary 5.2: A function has exactly two dissimilar
minterms if and only if

� � ) � � � ��� G ��� =������ ������ =35 9 � ��� M�� � G �� ) and
����_� G &

The above is determined by substituting the results of Theo-
rem 5.5 into the conversion equation

������8��9 : 5$;�= 13; � ����
.

Again, although Corollary 5.2 states a general result, in
practice the values are limited to the following:

(i)
� � ) � � � �� G ���69

and
� �����8� ) , or

(ii)
� � ) � � � �� G ���69 : 5 9

and
� ������� 9 : 5<; .

It should also be noted that this pattern of coefficients indicates
that the function is either itself degenerate or is related through
the application of the autocorrelation invariance operators [6]
to a degenerate function. The third theorem generalizes the
above results to � dissimilar minterms:
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Theorem 5.6: A function has � dissimilar minterms if and
only if the autocorrelation coefficients have the following
properties:? ��� ) � �69 :

,

? for

 �� � � U 9 + ;�+��,+ &A&A& + � , (or

9 + ;�+��,+ &A&A& + �35 - if � is

odd)�������8�69 : 5<; � 1 ; � , and? for the remaining coefficients,
������� �69 : 5[; � .

Again, the proof is similar to that for Theorem 5.4.

VI. CONCLUSION

This work has presented a number of observations regarding
the values of the autocorrelation coefficients for switching
functions, as well as six theorems relating the values of par-
ticular coefficients to underlying properties of the originating
switching function. This information can be used in a situation
where a designer is given a switching function to optimize
and/or synthesize, but no information about the function’s use
or structure is provided.

We envision making use of the autocorrelation coefficients
and the research presented in this paper to develop a pre-
processing tool that will inform the user about the function
with which they are working. Information such as whether the
function is degenerate, sparse, or has a particular structure can
then be used to decide on the optimization or synthesis tools to
be used. Other work in the area of autocorrelation coefficients
has made use of them in the determination of three-level
decompositions [7], and this would also be incorporated into
such a tool.

Future work includes extending this research to the in-
completely specified and multiple-output cases, and further
investigation into other properties that may be identifiable
through the use of the autocorrelation coefficients.

APPENDIX I
DERIVATION OF EQUATION 3

Assuming that input variables encoded as (X),+�-D/ are referred
to as � H and input variables encoded as (013-D+.5$-0/ are encoded
as � H , then it is known that

� H � 5 9 � H 1�- & (7)

Based on Equation 7 and the equation for computing the
spectral coefficients ( � ��� : �	� or 
 ��� : ��� [1]),
one can also derive the following conversion between spectral
coefficients computed using (213-4+�5$-D/ encoding (  H ) and the
(*),+.-0/ spectral coefficients ( � H ):

 H � 5 9 � H ����
 � � 5 9 � � 1 9 : & (8)

Karpovksy demonstrated in [4] that the autocorrelation coef-
ficients may be computed from the spectral coefficients using
the following equation:

� � -9 : � � : ��� � (9)

where � � is the vector of (X),+�-D/ spectral coefficients with each
element squared. Based on the relationships defined in these
equations, we can determine that�������8�69 : 5<;�=$1 ; � ����
where = � � � ) � .
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