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Abstract–Recent work has begun to investigate the advantages 
of using reversible logic for the design of circuits. The majority of 
work, however, has limited itself to combinational logic. 
Researchers are just now beginning to suggest possibilities for 
sequential implementations. This paper performs a closer 
analysis of three latch designs proposed in previous work and 
suggests advantages and disadvantages of each.  

I. INTRODUCTION 

Reversible computing has recently been re-introduced as 
a potential solution to the problem of the ever-growing 
demand for lower power devices.  As stated by Frank  [1]  

...computers based mainly on reversible logic operations 
can reuse a fraction of the signal energy that theoretically can 
approach arbitrarily near to 100% as the quality of the 
hardware is improved... 

However, reversible logic is suffering from two problems.  
Firstly, there is a lack of technologies with which to build 
reversible gates.  Work is certainly continuing in this area.  
Secondly, while there is much research into how to design 
combinational circuits using reversible logic, there is little in 
the area of sequential reversible logic implementations.  There 
is no limitation inherent to reversible logic preventing the 
design of sequential circuits; in fact when Tommaso Toffoli 
first characterized reversible logic in his 1980 work Reversible 
Computing  [2] he stated that “Using invertible logic gates, it 
is ideally possible to build a sequential computer with zero 
internal power dissipation.''  

Table 1. The truth table of a 3x3 reversible function. 
 

Inputs 
xyz 

outputs 
x’y’z’ 

000 000 
001 001 
010 011 
011 010 
100 100 
101 101 
110 111 
111 110 

 

Researchers such as Rice [3] and Thapliyal, Srinivas and 
Zwolinski [4] have begun work in presenting memory 
elements such as reversible latches and reversible flip-flops. 
This paper presents an analysis of two reversible SR-latch 
implementations, and provides a comparison to the traditional 
SR-latch.   

II. BACKGROUND 

A. Reversible Logic 

Before discussing sequential reversible logic we first 
present the basic concepts underlying reversible logic.  
According to Shende et al. [5] a gate is reversible if the 
(Boolean) function it computes is bijective.  This means that a 
function is reversible if there is a one-to-one and on-to 
mapping from the inputs to the outputs (and vice versa) of the 
function. At the very least, a reversible function must have the 
same number of inputs as it does outputs.  For instance, the 
traditional NOT gate is reversible, but that the traditional 
AND gate is not.  

Table 1 shows the truth table for a 3x3 reversible 
function.  In such a function each output can be thought of as a 
transformed version of one of the inputs. The symbols and 
behaviours of the reversible gates used in this paper are shown 
in Figure 1. 

 

(a) 

 

 

(b) 

Figure 1. (a) The Toffoli gate and (b) the Fredkin gate. 



Table 2. The next state values for the SR-latch. 
 

inputs next state 
S R Q+ Q+ 
0 0 Q Q  (same as previous state) 
0 1 0 1 
1 0 1 0 
1 1 not permitted 

 

 

Figure 2.A traditional NOR-based SR=latch. 

B. The SR-Latch 

The primary focus of this paper is the SR-latch.  This 
latch allows the outputs Q+ and Q+ to be “set” to the values 1 
and 0, respectively, or “reset” to 0 and 1.  The primary inputs 
to the SR-latch are S (set) and R (reset).  The behaviour of the 
SR-latch is characterized by the truth table given in Table 2.   
Figure 2 shows a traditional NOR-based structure for this 
latch. 

III. REVERSIBLE SR-LATCHES 

Given the need for reversible memory elements in order 
to build reversible sequential circuits, it seems reasonable to 
try to mimic the behaviour of the SR-latch using reversible 
logic gates.  At first glance the SR-latch appears to exhibit 
most of the desirable reversible characteristics, except that 
there are two output possibilities when the inputs SR are set to 
00.  Closer examination shows that the SR-latch actually has 
four inputs: S, R, Q and Q, where Q and Q represent the 
current state of the latch. 

A reversible version of this latch must have at least three 
inputs; in an ideal situation these would consist of S, R and the 
non-inverted Q.  The truth table for such a latch is shown in 
Table 3.  One can see that an additional output has been 
added, labeled g for garbage.  This output would not be used 
although is required to maintain the reversibility of the device.  
The first two rows of the table are illustrative of the process 
used in constructing such a table. In row 0 in order to maintain 
the characteristic of the SR-latch Q+ must be 0 and Q+ must 
be 1.  In row 1 the R input is a 1, thus outputs Q+ = 0 and  
Q+ = 1.  However this is a combination we have already used, 
so to differentiate between rows 0 and 1 we'll arbitrarily assign 
g = 0 in row 0 and g = 1 in row 1. 

We encounter the same problem in rows 2 and 4, and so 
again we arbitrarily assign values to the garbage output g.  In  

Table 3. A truth table for a latch with two primary inputs S and R, and Q 
representing the current state of the latch. 
 

row number Q S R Q+ Q+ g 
0 0 0 0 0 1 0 
1 0 0 1 0 1 0 
2 0 1 0 1 0 0 
3 0 1 1 not permitted 
4 1 0 0 1 0 1 
5 1 0 1 0 1 ? 
6 1 1 0 1 0 ? 
7 1 1 1 not permitted 

 
row 5, however we encounter problems:  the outputs  
Q+Q+ = 01 are required according to the functionality of the 
SR-latch, but this combination has been used twice before and 
so no possible assignment to g can make the outputs unique.  
The same problem is encountered in row 6, making it clear 
that a three-input/three-output reversible SR-latch is not 
possible. 

To solve the problem encountered in Table 3 we can add 
an output.  This of course requires that we add an input.  The 
desired behaviour is characterized in Table 4.  Note that we 
have fixed the value of the additional input at 1, as we only 
need this input to “balance” the added output. The rows 
containing “XXXX” for the outputs are those where S = R = 1, 
which is not permitted.  

The following subsections describe two possible 
alternatives for reversible SR-latches.  Each is based on a 
similar design, but we describe various differing 
characteristics. 

A. Fredkin-based SR-Latch 

One of the first researchers to characterize a reversible 
latch was Picton  [6]. He suggested a reversible SR-latch built 
out of Fredkin gates, as illustrated in Figure 2 (a). The 
problem with Picton's latch is that it incorporates fan-out, 
which is not permitted in reversible designs. One solution to 
this problem is shown in Figure 2 (b). 

In this analysis and in all following discussions we 
assume a delay of 1 for each level of gates and an additional 
delay of 1 for the long wires propagating the values for Q+ 
and Q+ back to the inputs. For instance, if the current state of 
the latch is Q QSR = 0000 then Table 5 illustrates how each of 
the values change.  

Table 4. The state table for a four-input/four-output reversible latch. 
 

1 Q S R Q+ Q+ g1 g2 
1 0 0 0 0 1 0 0 
1 0 0 1 0 1 0 1 
1 0 1 0 1 0 0 0 
1 0 1 1 X X X X 
1 1 0 1 0 1 1 0 
1 1 1 0  1 0 1 0 
1 1 1 1 X X X X 
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Figure 2. (a) The Fredkin-based reversible SR-latch as suggested by Picton, 
(b) a modified version of Picton’s latch, and (c) A reversible SR-latch based 

on Toffoli gates. 

Table 5 shows that with an initial state of Q Q = 00 and 
inputs SR = 00 the latch is unstable, oscillating (as does the 
traditional NOR-based SR-latch) between Q+ Q+ = 00 and 11.  
A similar table can be built starting values of Q QSR = 0001.  
With these values the final state of the latch should be  
Q+ Q+ = 01, and our analysis shows that after 5 time periods 
the latch is stable at these values. Similar state tables can be 
derived for all 16 possible initial starting states of the latch, 
and these tables show that this latch is unstable when any one 
of the following four starting values for QQSR are used: 0000, 
1100, 0100 or 1000. 

The first two cases are not entirely surprising, since they 
reflect the behaviour of the NOR-based latch on which this 
design was modeled.  However, the second two cases are 
dismaying, since this behaviour is in violation of the required 
characteristics of the SR-latch.  One possible fix for this 
behaviour is to intead add Toffoli gates to Picton’s design in 
Figure 2 (a) in order to provide the fan-out signals.  However, 
this modification was not initially suggested due to the 
additional delay caused by having two levels of gates internal 
to the latch and because of the additional requirement of 
another input. 

B. Toffoli-based SR-Latch 

A second reversible design for the SR-latch was also 
proposed by Rice [3].  This design is shown in Figure 3 (c). 
Again, state tables showing the changes in values for the latch 
can be derived for all 16 input combinations of QQSR.   This 
latch is unstable for only two input cases: QQSR = 0000 and 
1100.  Additionally, this latch responds to inputs such as 
QQSR = 0100 very quickly, taking only two timesteps to 
stabilize. 

We should note that a similar alternative to the latch 
shown in Figure 2 (c), again based on Toffoli gates, was also 
proposed by Rice  [3].  Our analysis for this paper showed that 
this alternative does not have the required behaviour of a SR-
latch, and so we have not included this latch in these 
comparisons. 

 

C. Comparisons 

During the course of this work we found that the 
traditional SR-latch became unstable under the input 
conditions SRQ Q = 0000 or SRQ Q = 0011.  In both these 
cases the next state would oscillate between Q+ Q+ = 00 and 
11.  This behaviour is also reflected in the Toffoli and 
Fredkin-based SR-latches. 

 
 
 

Table 5. An illustration of how the internal state of the Fredkin-based SR-latch changes, assuming a delay of 1 for processing at each level of gates and a delay of 
1 for each propagation of values from outputs back to inputs. 

 
Time period Q Q S R Q+ g1 S+     Q+ g2 R+ 
0 0 0 0 0  
1 (after gates process inputs) 0 0 0 0  0 1 0    0 1 0 
2 (after propagating values back to inputs) 1 1 0 0 0 1 0     0 1 0 
3 (after gates process inputs) 1 1 0 0 1 0 1     1 0 1 
4 (after propagating values back to inputs) 0 0 0 0 1 0 1     1 0 1 
5 (after gates process inputs) 0 0 0 0 0 1 0     0 1 0 

 
 
 
 



Table 6. The average number of timesteps required for each latch to reach a 
stable state. 

 
Latch type Average delay 

Traditional SR-latch 3.36 
Toffoli-based SR-latch 3.71 

Modified Picton SR-latch (no Toffoli gates) 3.83 
Picton SR-latch with Toffoli gates 4.57 

 
 
Table 6 compares the average number of timesteps 

required for each latch to reach a stable state.  We identified a 
stable state by detecting a repetition of values on the inputs or 
the outputs. Input combinations resulting in instability were 
not included in our computations. The values were determined 
by assuming a delay of one for each level of gates to process 
their inputs, and a delay of one for signals to be propagated 
back to the inputs. 

IV. CONCLUSION & FUTURE WORK 

The purpose of this paper is both to illustrate the 
feasibility of reversible logic in sequential logic design, and to 
examine more closely the behaviour of a basic memory  
element, the SR-latch.  We found that one of the proposed 
latch designs has some flaws, and while correction of these 
flaws was possible, it resulted in additional delay and the need 
of an additional input. We would conclude that the better 
reversible design for an SR-latch is the Toffoli-based design, 
as shown in Figure 2 (c). 

There are many areas of work that may lead from this 
paper, most notably similar types of analysis for other latches 
and for flip-flops designed from these latches.  Additionally, 
during the course of this work the authors noted the lack of 
simulation tools that support reversible gates, and this is most 
definitely an area worthy of attention. Finally an ongoing goal 
is to develop a synthesis process that will support reversible 
logic, and incorporate the sequential elements we are 
proposing in this work. 
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