
An Analysis of Several Proposals for Reversible
Latches

J. E. Rice
Department of Mathematics & Computer Science

University of Lethbridge
4401 University Drive

Lethbridge, AB, Canada
T1K 3M4

Abstract–Recent work has begun to investigate the advantages
of using reversible logic for the design of circuits. The majority of
work, however, has limited itself to combinational logic.
Researchers are just now beginning to suggest possibilities for
sequential implementations. This paper performs a closer
analysis of three latch designs proposed in previous work and
suggests advantages and disadvantages of each.

I. INTRODUCTION

Reversible computing has recently been re-introduced as
a potential solution to the problem of the ever-growing
demand for lower power devices. As stated by Frank [1]

...computers based mainly on reversible logic operations
can reuse a fraction of the signal energy that theoretically can
approach arbitrarily near to 100% as the quality of the
hardware is improved...

However, reversible logic is suffering from two problems.
Firstly, there is a lack of technologies with which to build
reversible gates. Work is certainly continuing in this area.
Secondly, while there is much research into how to design
combinational circuits using reversible logic, there is little in
the area of sequential reversible logic implementations. There
is no limitation inherent to reversible logic preventing the
design of sequential circuits; in fact when Tommaso Toffoli
first characterized reversible logic in his 1980 work Reversible
Computing [2] he stated that “Using invertible logic gates, it
is ideally possible to build a sequential computer with zero
internal power dissipation.''

Table 1. The truth table of a 3x3 reversible function.

Inputs
xyz

outputs
x’y’z’

000 000
001 001
010 011
011 010
100 100
101 101
110 111
111 110

Researchers such as Rice [3] and Thapliyal, Srinivas and
Zwolinski [4] have begun work in presenting memory
elements such as reversible latches and reversible flip-flops.
This paper presents an analysis of two reversible SR-latch
implementations, and provides a comparison to the traditional
SR-latch.

II. BACKGROUND

A. Reversible Logic

Before discussing sequential reversible logic we first
present the basic concepts underlying reversible logic.
According to Shende et al. [5] a gate is reversible if the
(Boolean) function it computes is bijective. This means that a
function is reversible if there is a one-to-one and on-to
mapping from the inputs to the outputs (and vice versa) of the
function. At the very least, a reversible function must have the
same number of inputs as it does outputs. For instance, the
traditional NOT gate is reversible, but that the traditional
AND gate is not.

Table 1 shows the truth table for a 3x3 reversible
function. In such a function each output can be thought of as a
transformed version of one of the inputs. The symbols and
behaviours of the reversible gates used in this paper are shown
in Figure 1.

(a)

(b)

Figure 1. (a) The Toffoli gate and (b) the Fredkin gate.

Table 2. The next state values for the SR-latch.

inputs next state
S R Q+ Q+
0 0 Q Q (same as previous state)
0 1 0 1
1 0 1 0
1 1 not permitted

Figure 2.A traditional NOR-based SR=latch.

B. The SR-Latch

The primary focus of this paper is the SR-latch. This
latch allows the outputs Q+ and Q+ to be “set” to the values 1
and 0, respectively, or “reset” to 0 and 1. The primary inputs
to the SR-latch are S (set) and R (reset). The behaviour of the
SR-latch is characterized by the truth table given in Table 2.
Figure 2 shows a traditional NOR-based structure for this
latch.

III. REVERSIBLE SR-LATCHES

Given the need for reversible memory elements in order
to build reversible sequential circuits, it seems reasonable to
try to mimic the behaviour of the SR-latch using reversible
logic gates. At first glance the SR-latch appears to exhibit
most of the desirable reversible characteristics, except that
there are two output possibilities when the inputs SR are set to
00. Closer examination shows that the SR-latch actually has
four inputs: S, R, Q and Q, where Q and Q represent the
current state of the latch.

A reversible version of this latch must have at least three
inputs; in an ideal situation these would consist of S, R and the
non-inverted Q. The truth table for such a latch is shown in
Table 3. One can see that an additional output has been
added, labeled g for garbage. This output would not be used
although is required to maintain the reversibility of the device.
The first two rows of the table are illustrative of the process
used in constructing such a table. In row 0 in order to maintain
the characteristic of the SR-latch Q+ must be 0 and Q+ must
be 1. In row 1 the R input is a 1, thus outputs Q+ = 0 and
Q+ = 1. However this is a combination we have already used,
so to differentiate between rows 0 and 1 we'll arbitrarily assign
g = 0 in row 0 and g = 1 in row 1.

We encounter the same problem in rows 2 and 4, and so
again we arbitrarily assign values to the garbage output g. In

Table 3. A truth table for a latch with two primary inputs S and R, and Q
representing the current state of the latch.

row number Q S R Q+ Q+ g
0 0 0 0 0 1 0
1 0 0 1 0 1 0
2 0 1 0 1 0 0
3 0 1 1 not permitted
4 1 0 0 1 0 1
5 1 0 1 0 1 ?
6 1 1 0 1 0 ?
7 1 1 1 not permitted

row 5, however we encounter problems: the outputs
Q+Q+ = 01 are required according to the functionality of the
SR-latch, but this combination has been used twice before and
so no possible assignment to g can make the outputs unique.
The same problem is encountered in row 6, making it clear
that a three-input/three-output reversible SR-latch is not
possible.

To solve the problem encountered in Table 3 we can add
an output. This of course requires that we add an input. The
desired behaviour is characterized in Table 4. Note that we
have fixed the value of the additional input at 1, as we only
need this input to “balance” the added output. The rows
containing “XXXX” for the outputs are those where S = R = 1,
which is not permitted.

The following subsections describe two possible
alternatives for reversible SR-latches. Each is based on a
similar design, but we describe various differing
characteristics.

A. Fredkin-based SR-Latch

One of the first researchers to characterize a reversible
latch was Picton [6]. He suggested a reversible SR-latch built
out of Fredkin gates, as illustrated in Figure 2 (a). The
problem with Picton's latch is that it incorporates fan-out,
which is not permitted in reversible designs. One solution to
this problem is shown in Figure 2 (b).

In this analysis and in all following discussions we
assume a delay of 1 for each level of gates and an additional
delay of 1 for the long wires propagating the values for Q+
and Q+ back to the inputs. For instance, if the current state of
the latch is Q QSR = 0000 then Table 5 illustrates how each of
the values change.

Table 4. The state table for a four-input/four-output reversible latch.

1 Q S R Q+ Q+ g1 g2
1 0 0 0 0 1 0 0
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 X X X X
1 1 0 1 0 1 1 0
1 1 1 0 1 0 1 0
1 1 1 1 X X X X

 (a)

 (b)

 (c)

Figure 2. (a) The Fredkin-based reversible SR-latch as suggested by Picton,
(b) a modified version of Picton’s latch, and (c) A reversible SR-latch based

on Toffoli gates.

Table 5 shows that with an initial state of Q Q = 00 and
inputs SR = 00 the latch is unstable, oscillating (as does the
traditional NOR-based SR-latch) between Q+ Q+ = 00 and 11.
A similar table can be built starting values of Q QSR = 0001.
With these values the final state of the latch should be
Q+ Q+ = 01, and our analysis shows that after 5 time periods
the latch is stable at these values. Similar state tables can be
derived for all 16 possible initial starting states of the latch,
and these tables show that this latch is unstable when any one
of the following four starting values for QQSR are used: 0000,
1100, 0100 or 1000.

The first two cases are not entirely surprising, since they
reflect the behaviour of the NOR-based latch on which this
design was modeled. However, the second two cases are
dismaying, since this behaviour is in violation of the required
characteristics of the SR-latch. One possible fix for this
behaviour is to intead add Toffoli gates to Picton’s design in
Figure 2 (a) in order to provide the fan-out signals. However,
this modification was not initially suggested due to the
additional delay caused by having two levels of gates internal
to the latch and because of the additional requirement of
another input.

B. Toffoli-based SR-Latch

A second reversible design for the SR-latch was also
proposed by Rice [3]. This design is shown in Figure 3 (c).
Again, state tables showing the changes in values for the latch
can be derived for all 16 input combinations of QQSR. This
latch is unstable for only two input cases: QQSR = 0000 and
1100. Additionally, this latch responds to inputs such as
QQSR = 0100 very quickly, taking only two timesteps to
stabilize.

We should note that a similar alternative to the latch
shown in Figure 2 (c), again based on Toffoli gates, was also
proposed by Rice [3]. Our analysis for this paper showed that
this alternative does not have the required behaviour of a SR-
latch, and so we have not included this latch in these
comparisons.

C. Comparisons

During the course of this work we found that the
traditional SR-latch became unstable under the input
conditions SRQ Q = 0000 or SRQ Q = 0011. In both these
cases the next state would oscillate between Q+ Q+ = 00 and
11. This behaviour is also reflected in the Toffoli and
Fredkin-based SR-latches.

Table 5. An illustration of how the internal state of the Fredkin-based SR-latch changes, assuming a delay of 1 for processing at each level of gates and a delay of
1 for each propagation of values from outputs back to inputs.

Time period Q Q S R Q+ g1 S+ Q+ g2 R+
0 0 0 0 0
1 (after gates process inputs) 0 0 0 0 0 1 0 0 1 0
2 (after propagating values back to inputs) 1 1 0 0 0 1 0 0 1 0
3 (after gates process inputs) 1 1 0 0 1 0 1 1 0 1
4 (after propagating values back to inputs) 0 0 0 0 1 0 1 1 0 1
5 (after gates process inputs) 0 0 0 0 0 1 0 0 1 0

Table 6. The average number of timesteps required for each latch to reach a
stable state.

Latch type Average delay

Traditional SR-latch 3.36
Toffoli-based SR-latch 3.71

Modified Picton SR-latch (no Toffoli gates) 3.83
Picton SR-latch with Toffoli gates 4.57

Table 6 compares the average number of timesteps

required for each latch to reach a stable state. We identified a
stable state by detecting a repetition of values on the inputs or
the outputs. Input combinations resulting in instability were
not included in our computations. The values were determined
by assuming a delay of one for each level of gates to process
their inputs, and a delay of one for signals to be propagated
back to the inputs.

IV. CONCLUSION & FUTURE WORK

The purpose of this paper is both to illustrate the
feasibility of reversible logic in sequential logic design, and to
examine more closely the behaviour of a basic memory
element, the SR-latch. We found that one of the proposed
latch designs has some flaws, and while correction of these
flaws was possible, it resulted in additional delay and the need
of an additional input. We would conclude that the better
reversible design for an SR-latch is the Toffoli-based design,
as shown in Figure 2 (c).

There are many areas of work that may lead from this
paper, most notably similar types of analysis for other latches
and for flip-flops designed from these latches. Additionally,
during the course of this work the authors noted the lack of
simulation tools that support reversible gates, and this is most
definitely an area worthy of attention. Finally an ongoing goal
is to develop a synthesis process that will support reversible
logic, and incorporate the sequential elements we are
proposing in this work.

REFERENCES

[1] M. P. Frank, “Introduction to Reversible Computing: Motivation,
Progress, and Challenges,” in Proceedings of the 2nd Conference
on Computing Frontiers, 2005, pp. 385–390.

[2] T. Toffoli, Automata, Languages and Programming. Springer
Verlag, 1980, chapter: Reversible Computing, pp. 632–644.

[3] J. E. Rice, “A New Look at Reversible Memory Elements,” in
Proceedings of the International Symposium on Circuits and
Systems (ISCAS), 2006, to appear.

[4] H. Thapliyal, M. B. Srinivas, and M. Zwolinski, “A Beginning in
the Reversible Logic Synthesis of Sequential Circuits,” in
Proceedings of Military and Aerospace Programmable Logic
Devices (MAPLD) International Conference, 2005, submission
1012.

[5] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Reversible Logic Circuit Synthesis,” in IEEE/ACM
International Conference on Computer Aided Design (ICCAD),
2002, pp. 353–360.

[6] P. Picton, “Multi-Valued Sequential Logic Design using Fredkin
Gates,” Multiple-Valued Logic, pp. 241–251, 1996.

