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ABSTRACT

Reductions in the cost and size of integrated circuits are allowing more and more
complex functions to be included in previously simple tools such as lawn-mowers,
ovens, and thermostats. Because of this, the process of synthesizing such functions
from their initial representation to an optimal VLSI implementation is rarely hand-
performed; instead, automated synthesis and optimization tools are a necessity. The
factors such tools must take into account are numerous, including area (size), power
consumption, and timing factors, to name just a few. Existing tools have traditionally
focused upon optimization of two-level representations. However, new technologies
such as Field Programmable Gate Arrays (FPGAs) have generated additional interest
in three-level representations and structures such as Kronecker Decision Diagrams
(KDDs).

The reason for this is that when implementing a circuit on an FPGA, the cost
of implementing exclusive-or logic is no more than that of traditional AND or OR
gates. This dissertation investigates the use of the autocorrelation coefficients in logic
synthesis for these types of structures; specifically, whether it is possible to pre-process
a function to produce a subset of its autocorrelation coefficients and make use of this
information in the choice of a three-level decomposition or of decomposition types
within a KDD.

This research began as a general investigation into the properties of autocorrela-
tion coeflicients of switching functions. Much work has centered around the use of a
function’s spectral coefficients in logic synthesis; however, very little work has used a
function’s autocorrelation coefficients. Their use has been investigated in the areas of
testing, optimization for Programmable Logic Arrays (PLAs), identification of types
of complexity measures, and in various DD-related applications, but in a limited man-

ner. This has likely been due to the complexity in their computation. in order to
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investigate the uses of these coefficient, a fast computation technique was required,
as well as knowledge of their basic properties. Both areas are detailed as part of this
work, which demonstrates that it is feasible to quickly compute the autocorrelation
coefficients.

With these investigations as a foundation we further apply the autocorrelation co-
efficient to the development of a classification technique. The autocorrelation classes
are similar to the spectral classes, but provide significantly different information. This
dissertation demonstrates that some of this information highlighted by the autocorre-
lation classes may allow for the identification of exclusive-or logic within the function
or classes of functions.

In relation to this, a major contribution of this work involves the design and imple-
mentation of algorithms based on these results. The first of these algorithms is used to
identify three-level decompositions for functions, and the second to determine decom-
position type lists for KDD-representations. Each of these implementations compares
well with existing tools, requiring on average less than one second to complete, and

performing as well as the existing tools about 70% of the time.
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Chapter 1

Introduction

In today’s world, nearly every tool one uses is becoming computerized. This is pri-
marily due to the reductions in the cost and size of computer chips. Because of these
more and more complex functions can be incorporated into relatively simple tools
such as thermostats, lawn-mowers, and ovens. One of the major problems inherent to
these advances is the synthesis of the functions to be implemented in these tools. It is
no longer possible to define, translate, and optimize many of these functions by hand
due to their size and complexity. Automated synthesis and optimization programs are
a necessity, and the factors that these programs must take into account are numerous.
This dissertation addresses some of these issues, and introduces techniques that are
of use in solving some of the known problems in the synthesis and optimization of
switching functions.

The first issue in synthesis generally involves making a decision on the repre-
sentation of the switching function to be implemented. Descriptions of switching
functions range from textual to graphical, and may use only the Boolean domain or
extend into the spectral domain. Every switching function f(X) € {0,1}, where
X = Ty, Tp-1,..., T2, 21 € {0,1} must define the output for each of the 2" possible
input combinations. For even relatively small values of n, however, a textual repre-
sentation listing each of these outputs is far too large to be of practical use. Many
representations are still based on this concept, and use a variety of techniques to

reduce the size of the list. All such representations tend to have the disadvantage of
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large size. Additionally, since the function is defined at a number of distinct points
information about the overall structure of the function may be difficult to determine.

An alternative technique used to define switching functions expresses functions in
terms of the Boolean operators used to combine the inputs. This may be a diagram of
the circuit depicting the AND, OR, and various other gates, or it may be an expression
such as a sum-of-products or product-of-sums. Tools such as Karnaugh maps may be
used to convert from a truth table representation to one of these representations [1],
which have the advantage of providing a better overall picture of the function. Again,
though, for functions with large numbers of inputs, these representations may not be
practical.

More recently, graph-based representations called decision diagrams (DDs) have
been introduced [2]. DDs for most switching functions have the advantage of suc-
cintness, and are particularly useful in areas such as verification and testing [3] and
in synthesis to field programmable gate array (FPGA) technologies [4]. One prob-
lem with DDs is that there are a variety of types, and so choosing the best type for
a particular function is not an easy decision. Additionally, decisions related to the
structure of the DD must be made as the graph structure is built. As is described in
Chapter 2, an incorrect decision may mean the difference between a DD that is too
large to store in memory and one that is relatively compact. This is an issue that we
address in Chapter 7.

The above descriptions assume that the chosen representation is limited to the
Boolean domain. If a translation to the spectral domain is performed, additional
information about the function may become more readily apparent. This information
may be used in the choice of one of the above representations, or in the process of
synthesizing from one representation to another. There are various types of transfor-
mations, some of which have advantages over others. This research focuses primarily
on the use of a representation that is based on the autocorrelation function.

The spectral and autocorrelation coefficients are alternative representations for
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switching functions. The advantages of these representations is that they are not
limited to the Boolean domain, and thus display the information inherent within
the function in a different way. It can be said that the spectral and autocorrelation
coefficients of the function provide a more global view than do any of the above
representations [5].

The spectral coefficients of a function are obtained by applying a transform matrix
to the vector of the function’s Boolean outputs. The resulting coefficients describe
the switching function in terms of its similarity to the rows of the transform matrix.
Re-applying the transform allows the regeneration of the original function.

The autocorrelation function provides a different type of transformation. The co-
efficients resulting from the application of this function describe the function in terms
of its similarity to itself, shifted by a certain amount. This implies that the autocor-
relation coefficients may be of great value in applications requiring knowledge about
similarities within the switching function’s structure. Chapter 2 provides background
details for both the spectral transforms and the autocorrelation function.

Autocorrelation coefficients have previously been used in the areas of testing [6],
optimization for Programmable Logic Arrays (PLAs) [7], identification of types of
complexity measures [8], and in various DD-related applications [9, 10]. Their use
has been relatively limited, however. This is most likely due to the complexity in the
computation of the autocorrelation coefficients. As indicated in Chapter 5, this work
includes the development of various techniques that overcome this problem.

Another approach to logic synthesis involves grouping switching functions into
classes with some underlying similarities. There are 22" possible Boolean functions
of n variables. Because of this there is a strong need to be able to group functions
in some logical manner. One objective of classifying switching functions into such
groupings is to list more compactly all 22" possible functions. Another, more practical
goal is to be able to state that certain information is true about all functions in a

particular group, or, that all switching functions in a particular class have certain
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similarities or properties. From this a standard or canonical function for each class
may be designated, thus leading to increased understanding about functions in that
class, better fault diagnosis and testing procedures for that class of functions, and
more efficient implementations [11]. It has been shown by Edwards [12] that it is
possible to find a good implementation for a switching function by making use of an
optimal implementation for the canonical representative of the function’s class and
then adding logic to the inputs or outputs as necessary.

This dissertation began as an investigation into the uses of the autocorrelation
coefficients in logic synthesis and other digital logic applications. In order to make
use of the coefficients, however, two other investigations were necessary: determining
how to quickly compute the autocorrelation coefficients, and identifying their basic
properties. This dissertation addresses the issue of computing the autocorrelation
coefficients in Chapter 5, and determination of the properties of the autocorrelation
coefficients is detailed in Chapter 3. This chapter presents properties of the autocor-
relation coefficients such as limitations on the minimum and maximum values of the
coefficients, the total values of the sum of the coefficients, and in general the values
that the coefficients may take on. We also identify patterns within the autocorre-
lation coefficients that indicate the existence of exclusive-or (XOR) logic within the
functions. Other patterns may be used to identify degenerate functions and sparse
functions. All of these have uses in choosing function representations and for opti-
mization and in minimizing the representations. Additional investigations into the
use of the autocorrelation coefficients in the identification of symmetries were also
carried out. These led to the discovery of a new type of symmetry that we label
anti-symmetries. Details of this investigation are given in Chapter 4.

Since the complexity in their computation is no longer limiting, we propose to
extend the applications of the autocorrelation coefficients to various areas of logic
synthesis. One such area is that of classifying switching functions. Some of the mo-

tivation for this research has come from the fact that extensive work has been done
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in the area of spectral classification [12, 5, 11]; that is, classification based on a func-
tion’s spectral coefficients. There are some overlaps and similarities between spectral
and autocorrelation information, therefore many of the desirable properties of spec-
tral classification are likely to be seen in a classification based on the autocorrelation
coefficients. However, it is our hypothesis that the information in a function’s auto-
correlation coeflicients is better suited to synthesis based on the newer representations
such as DDs. The autocorrelation coefficients identify similarities within a function,
which is exactly what a DD representation attempts to take advantage of. Chapter 6
presents our autocorrelation classes and includes a discussion on issues such as these.

Chapter 7 details the implementation of a tool for determining three-level logic
decompositions that is based on some of the properties determined in Chapter 3. We
compare the results with those of a known tool (AOXMIN-MV), and find that our
autocorrelation-based tool agrees with AOXMIN-MYV for 74% of the benchmarks and
performs faster than AOXMIN-MV. Since our tool is limited to the identification of
only two types of decompositions, this is a very promising result. In the same chapter
the implementation and results of a tool for determining which type of decomposition
to use at each level of a DD variant are presented. This tool does not perform as
well as the three-level decomposition tool, but cannot be said to perform poorly. In
comparison with a known sifting heuristic [13] our autocorrelation-based tool results
in DDs with size within one node for 63% of the benchmarks. Both techniques have
an average time of under one second, and the average number of nodes for each tool
are within a difference of 1.5 Again, it is fair to say that for a simple algorithm based
on this new work, these are results worth further investigation.

A more detailed outline of the dissertation is given below.

e Background material for this dissertation is presented in Chapter 2. We present
an overview of switching functions and their representations, the spectral and

autocorrelation coefficients, and classification techniques.

e Various properties of the autocorrelation coefficients are examined and proven
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in Chapter 3. Minimum and maximum values are proven, as well as limitations
on the sum of the coefficients and the values in general that the autocorrelation
coefficients may take on. Theorems for the identification of sparse and degen-
erate functions are proven, as are theorems relating patterns in the autocorre-
lation coefficients to the existence of XOR logic within the function. Finally,
some discussion is given on the potential relationship between autocorrelation

coefficients of different orders.

e Chapter 4 examines the autocorrelation coefficients for their potential in iden-
tifying symmetries. Theorems relating patterns in a function’s autocorrelation
coefficients to the presence of symmetries within the function are proven, and
details of the newly defined anti-symmetries are presented. Spectral condi-
tions and tests for the anti-symmetries are derived, and applications of the

anti-symmetries are discussed.

e Chapter 5 gives an overview of numerous techniques that have been developed
and implemented for the computation of the autocorrelation coefficients, with an
analysis of each. Two new computation techniques based on DDs are presented,
and the results of experimental tests demonstrate that these techniques are the
fastest for computation of coefficients for large benchmarks. A transform-based
method is shown to be the most efficient for benchmarks with fewer than 10
inputs.

e We describe the autocorrelation classes in Chapter 6. These classes are based
on our new classification technique that makes use of the autocorrelation coef-
ficients. Four operations are defined as invariance operations for the autocorre-
lation classes, and canonical representatives of the classes are defined. Connec-
tions between the spectral and autocorrelation classes are discussed, and some

potential uses of the autocorrelation classes are presented.

e Two applications of the properties investigated in Chapter 3 are detailed in
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Chapter 7. The first application is in determining three-level decompositions,
while the second is in determing decomposition types for a type of DD. Both
tools are compared with existing tools for these applications with extremely
promising results.

e Chapter 8 summarizes this dissertation and suggests further work that could

be undertaken from this research.



Chapter 2

Background

This chapter provides the background material required for the topics presented in this
dissertation. Section 2.1 introduces the topic of switching (Boolean) functions, while
Section 2.2 gives an overview of logic synthesis for switching functions and Section 2.3
discusses ways in which these functions can be represented, with emphasis on decision
diagrams. The chapter also introduces a different domain for describing a switching
function, the spectral domain. The spectral domain is introduced in Section 2.4
along with issues surrounding the computation of a function’s spectrum, and uses of
this representation in logic synthesis. Section 2.6 discusses ways in which Boolean
functions can be classified, and the uses of this technique. The final section in the
chapter introduces the autocorrelation function and other similar functions that may

be applied to Boolean functions.

2.1 Switching Functions

Nearly all of today’s logic systems are based on the Boolean-logic building blocks
AND, OR, NAND and NOR. These operators were defined by George Boole in his
Boolean algebra paper The Calculus of Logic [14]. The functions describing these
logic systems are referred to as Boolean functions or switching functions, as the work
by Boole was later applied to electronic switching circuits by C. E. Shannon [15].

This dissertation uses both terms interchangeably. Both the inputs and outputs of
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these functions are restricted to the Boolean domain of only two values, generally 0
and 1.

Switching functions have also been extended to allow more than two distinct values
for both the inputs to the function and as the outputs of the function. This type of
function is called a multiple-valued function, and is based on multiple-valued logic
(MVL). This dissertation, however, concentrates only on switching functions in the
two-valued Boolean domain over {0, 1}.

A Boolean function is a function f(X) where

F(X) € 10,1}
X = {xnaxnfla "'aanxl}

z; €{0,1} Vi €{1,2,...,n}
The input vectors for the function can then take on 2" possible values. If we assume

that these input vectors are binary representations of a value & such that

k= i x; - 20t
i=1
then the input vectors can take on all possible values from 0 to 2” !. The simplest
way to illustrate this is to show a truth table for the function. For example, the truth
table for the function f(X) = z1 V 3 is shown in Figure 2.1.

It should be noted that instead of restricting the domain of the inputs and output
of a switching function to {0,1}, instead the values {41, —1} may be used. This is
expanded upon in Section 2.4.

The example in Figure 2.1 demonstrates one of the logical operations commonly
used in Boolean functions, namely the logical OR (V) operator. Other operators
are logical AND (A), complementation (Z) and exclusive-OR (&). The AND and OR
operators are often denoted by - and +, respectively; however, the A and V notation is

used in this dissertation to avoid confusion with the more commonly known arithmetic



2.1 Switching Functions 10

klxzy x| f(X)
00 O 0
110 1 1
211 0 1
311 1 1

Figure 2.1. The truth table for the function f(X) = 1V ,.

addition and multiplication operators. It should also be noted that it is common to
leave out the operator when combining terms with either the multiplication operator
or the AND operator. This usage is followed in this dissertation where the context
clearly indicates which operator is intended.

The truth table for the OR operator is shown in Figure 2.1; Figure 2.2 demon-
strates the functionality of the other operators. The result of the AND operation is

To T1 | T1 N\ X9 To T1|ZT1D To 1| T1
0 0 0 0 0 0 01
0 1 0 0 1 1 110
1 0 0 1 0 1
1 1 1 1 1 0

a) b) ¢)

Figure 2.2. a) The truth table for the function f(X) = x1 Axy. b) The truth table
for the function f(X) =z, @ xe. ¢) The truth table for the function f(X) = 7.

called a product while the result of the OR operation is called a sum.
A Boolean function as shown in the example in Figure 2.1 is known as a completely

specified function. That is, the output of the function is defined for all 2™ possible
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input combinations. It is also possible to have incompletely specified functions. These
are Boolean functions in which the output values for some input combinations are
not defined. These outputs are referred to as don’t cares and are denoted with a dash
(-). The analysis of incompletely specified functions is outside the scope of this work;
all further discussions pertain only to completely specified functions.

Until now all of the functions illustrated have been functions with a single output.
However, it is possible to have multiple outputs for a function. This is sometimes
referred to as a system of functions, or an m-output function. Figure 2.3 shows a
multiple-output function in which two of the output functions are incompletely spec-

ified. This dissertation considers only single-output completely specified functions.

3 z2 a1 | fi(X) fo(X) f3(X)
0 0 0 0 0 0
0 0 1 1 1 —
0 1 0 1 - 1
0 1 1 1 1 0
1 0 0 0 1 -
1 0 1 1 1 1
1 1 0 0 0 0
1 1 1 1 0 1

Figure 2.3. A 3-variable 3-output incompletely specified function.

2.2 Logic Synthesis

When used in reference to VLSI design, logic synthesis is most commonly defined as

a two-step process consisting of [16]:

1. the optimization of a technology-independent logic representation, and
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2. technology mapping.
The above steps are usually broken down into more detail as follows:

1. A standardized representation of the desired function is produced. Standard for-
mats may vary from graphs such as binary decision diagrams (see Section 2.3) to
equations describing the logic or languages such as Register Transfer Language
(RTL).

2. The standard format is manipulated in order to minimize the logic, or to opti-
mize with respect to some parameter(s) such as area and/or power consumption.
This process generally consists of removing any redundancies and attempting

to reduce the number of logic components.

3. Having reached a minimal or near minimal representation, the logic description
must now be transformed to a format that is implemented in the desired tech-
nology. This format can vary from a list of basic gates to layouts that describe

transistor structures.

Steps 1 and 2 are part of the technology-independent optimization phase, while step
3 is the technology-dependent step usually known as technology mapping.

Step 1 - produce a representation of the function in a standard format
Languages such as VHDL! or RTL (Register Transfer Language) are often used to
initially specify the function. In order to perform the next step of minimizing the logic,
this description is often transformed into a two-level or multi-level representation of
the function. A sum-of-products representation, as described in Section 2.3, is one

example of a two-level representation.

Step 2 - manipulate the function in order to minimize the logic
Depending on the representation chosen in step 1, either two-level or multi-level logic

minimization is performed. When performing two-level minimization, the goal is

LVHDL stands for VHSIC Hardware Description Language. VHSIC stands for Very High Speed

Integrated Circuits.
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generally to find a minimal sum-of-products expression for the function. The objective
of multi-level logic synthesis is to find the “best” multi-level structure, where “best”
in this case means an equivalent representation that is optimal with respect to various
parameters such as size, speed, or power consumption. Five basic operations are used

in order to reach this goal:

i. Decomposition. This is the process of re-expressing a single function as a col-

lection of new functions.

ii. Extraction. This is the process of identifying and creating some intermediate
functions and variables, and re-expressing the original functions in terms of the
intermediate plus the original variables. The process is used to identify the

common sub-expressions.

iii. Factoring. This is the process of deriving a factored form from a sum-of-products
form. The reason for this is to derive the minimum number of literals possible

in the expression.

iv. Substitution. This is the process of expressing a function F as a function of a
second function, G, plus the original inputs to the function F. This is done by

substituting G into F where ever possible.

v. Collapsing. This is also known as elimination, or flattening, and is the inverse

of substitution.

These manipulations are repeated until the “best” structure (or close to it) is achieved.
It is possible to use either algebraic or Boolean methods to perform the five operations

listed above. Details and algorithms for both methods are given in [17].

Step 3 - technology mapping
Technology mapping is defined as a process of transforming a technology indepen-
dent (optimized) Boolean network into a technology-based circuit [18]. Traditional
techniques for technology mapping use a library of basic cells [19]. The Boolean net-

work representing the circuit is transformed so that it uses only cells that exist in the
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library.

More recently logic synthesis, particularly the technology mapping phase, has had
to take into account additional factors such as power consumption, physical size,
timing constraints, and routing issues. The work in this dissertation has applications

in both the technology-independent and dependent phases.

2.3 Representations of Switching Functions

The simplest way to represent a Boolean function is using its truth table, as shown in
Section 2.1. A truth table is simply a table listing all possible inputs to the function
along with the corresponding output(s). Clearly, for a completely specified function
with n variables, a truth table with 2" rows is required to describe the function. This
quickly becomes infeasible as the number of variables grows. Therefore there are

many other ways to represent a Boolean function.

2.3.1 Karnaugh-maps

A map construction designed by Karnaugh [20] is commonly used for functions with
small numbers of variables. A Karnaugh-map also shows all 2" input combinations
for a function; however, Karnaugh-maps have the advantage of reorganizing the in-
formation such that similar portions of the function may be grouped together. An
example Karnaugh-map is shown in Figure 2.4. Each intersection of the rows and

columns identifies the function for a particular assignment of the variables.

2.3.2 Sums, Products, and Related Representations

Another popular way to represent a switching function is as a sum-of-products, or
sop expression. Additional notation is required to explain this. A literal is a variable

x; or its complement T;. A product term is either a literal or a product of literals,
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zire 00 01 11 10
00[0[0|1]0
010|010
11{1)1]1

100010(110

Figure 2.4. The Karnaugh map for the function f(X) = z4x3 V T22;.

where a product of literals is a list of literals combined with the AND operator. A
sum-of-products expression consists of a list of product terms combined with the OR
operator.

The terms minterm and mazterm are also commonly used when discussing sop
expressions. A product term in which each of the n variables of a function appears
exactly once in either its true or complemented form is called a minterm. A sum term
is either a literal or a sum of literals, and a mazterm is a sum term in which each of
the n variables x; appears exactly once as either x; or T;.

The function shown in Figure 2.4 is expressed as a sum-of-products in the caption
for the figure. There may be many different sum-of-product expressions for one
function, so a canonical form is required for uniquely identifying the function. The
canonical sum-of-products form of a function is a sum of minterms in which no two
identical minterms appear, and it is created by summing the minterms for which
f(X) = 1. A Karnaugh-map is a useful tool in minimizing the terms appearing in
a sum-of-products representation of a function, as it allows groups of minterms for
which f(X) =1 to be easily identified.

Another way to express a Boolean function is as a product-of-sums. The canonical
product-of-sums form is called a mazterm expansion and is a product of maxterms
formed by multiplying the maxterms for which f(X) = 0 and in which no identical

maxterms appear more than once.
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2.3.3 Cube Lists

When using a function as an input to a synthesis tools it is common to use a cube
list, or cubic form to describe the function. This notation involves representing non-
canonical product terms by hyperplanes and edges of the cube defined by 2" points

in space. A three-variable example is shown in Figure 2.5.

011
X, XX 111
1 9 1 X1X2X3
001 XX,
XXXy
010 e
}1)(2)(; XXXy
000 100
X XXg XXX,

Figure 2.5. A pictorial representation of the cubic form of the function f(X) =

$1V.’E2\/$3.

Based on Figure 2.5, one can describe the given function in a number of ways:

1. as a list of points:
001, 010, 011, 100, 101, 110, 111
2. as a list of points, in terms of the variable values:
f(X) =T 1Toxs V T129T3 V T1Xox3 V T1ToT3 V T1ToT3 V T122T3 V L1273
3. as a list of planes for which all four points are in the on-set:
——1
11—
1
4. as a list of planes, in terms of the variable values:
f(X)=z1VaV s
Items 2 and 4 are sum-of-products expressions for the same function. Items 1 and 3

are cube lists for the same function.
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2.3.4 Decision Diagrams

A more recent representation for Boolean functions was popularized by Bryant [2].
This representation is called a Shannon tree, although it is sometimes referred to as
an unreduced Binary Decision Diagram (BDD). An example Shannon tree is shown

in Figure 2.6.

Figure 2.6. The Shannon tree for the function f = x1 V x5 V x3.

A Shannon tree is defined as [21]

a binary directed acyclic graph with two leaves TRUE and FALSE, in
which each non-leaf node is labeled with a variable and has two out-edges,
one pointing to the subgraph that is evaluated if the node label evaluates
to TRUE and the other pointing to the subgraph that is evaluated if the
node label evaluates to FALSE.

Every node in the tree represents either a literal in the Boolean function, or its
complement. Every non-leaf node has two outward edges leading to two other nodes.
If the node has a value of “1” (TRUE) then, to obtain the value of the expression,
one follows the edge marked “1” and evaluates that node. Similarly, if the node has
a value of “0” (FALSE), one follows the edge marked “0” and evaluates that node.
This process is repeated until a leaf node with the value “1” or “0” is reached, and
the evaluation is complete. The direction of the edges from each node is not explicitly
marked, but is understood to be from the root towards the leaf nodes. In Figure 2.6

the 0 edge is the left edge leaving each node.
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A Shannon tree makes use of the Shannon decomposition at each level of the

graph. The Shannon decomposition of a function f(X) is defined as [5]

f(X) =ZnfoV aafi

where

fo=f0,24 1,...,21)
and

=1,z 1,...,21)
and, by relabeling the x; inputs, x,, can be any of the original inputs. This structure
had been introduced by Lee [22], and further described by Akers [23]. However,
Bryant introduced algorithms for creating a canonical form of the structure called
a Reduced, Ordered BDD (ROBDD). A ROBDD is a reduced BDD with a specified

ordering of variables. A ROBDD meets two main specifications:

e a BDD is a reduced BDD if it contains no vertex whose left subgraph is equal
to its right subgraph, nor does it contain distinct vertices v and v’ such that

the subgraph rooted by v and v' are isomorphic, and
e a BDD is an ordered BDD if on every path from the root node to an output,

the variables are encountered at most once and in a specified order.

Figure 2.7 shows the ROBDD for the same function as depicted in Figure 2.6. The
reduced BDD requires only 3 nodes not including the terminal or leaf nodes, while the
unreduced BDD requires 7 nodes. Generally when the term BDD is used the writer
is referring to a ROBDD. This practice is followed throughout this dissertation.

The addition of these specifications not only reduces the size required for storing
functions, but it also ensures that the representation is canonical. This property, plus
various implementation details and algorithms defined by Bryant [2] have combined
to make this representation extremely efficient for operations such as evaluation,
reduction, equivalence checking, satisfiability problems, and many others. The reader

is directed to the vast amount of literature in this area, such as [24, 25, 4] for details.
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0 1
Figure 2.7. The ROBDD for the function f = x1 V 22 V x3.

An additional technique for reducing the size of BDDs is the addition of inverters,
also known as complemented edges. These are indicators on the path to a subgraph
that are used to mark that the subgraph is inverted. This allows for the identi-
fication of even further isomorphic subgraphs within the BDD. However, inverters
must be applied very carefully in order to maintain the property of canonicity. Rules
surrounding their use are detailed in [25].

Another type of decision diagram called a Functional Decision Diagram (FDD)
uses two different types of decomposition. The positive Davio decomposition for a

function f(X) is defined as

f(X)=fo@z(fo® fr)

while the negative Davio decomposition is defined as

fx) = fr®T,(fo ® fr)

If one allows all three types of decompositions to be used in one decision diagram,
then it is generally referred to as a Kronecker Functional Decision Diagram (KFDD)
or as the shortened form Kronecker Decision Diagram (KDD). Reduction and ordering
rules similar to those described for BDDs are also applied to these two types of
decision diagrams, although clearly the property of canonicity and the simplicity of

implementation is more difficult to maintain.
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Since Bryant’s reductions for Binary Decision Diagrams were introduced many
extensions and variants of this decision diagram structure have been developed. A
few of these are described above; however, the reader is again directed to the many
excellent references in this area for more complete descriptions of all the available

types of decision diagrams.

2.4 The Spectral Domain

In Section 2.3 only representations limited to the Boolean domain were considered.
The limitation of these representations is that only local information is provided; that
is, at each input point the output is either a 1, a 0, or a don’t care. If this restriction
is lifted then it is possible to represent a Boolean function with a vector of values

that each describe the function in a more global manner.

2.4.1 Spectral Transforms

In order to transform the function from the Boolean domain to what is called the
spectral domain, some type of function or transform is applied. The resulting co-
efficients are called the spectral coefficients of the function. The vector of spectral
coefficients is referred to as R while the output vector of the function f(X) is referred

to as Z. The spectral transform is then computed as

R=T"xZ (2.1)
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The Hadamard Transform Matrix

One of the commonly used spectral transforms is the Hadamard transform. It is

defined as [5]
Tn—l Tn—l
Tn—l _Tn—l

™ 2

(2.2)
where

0= (1]
An example of computing the spectral coefficients for a three-variable Boolean func-

tion is shown in Figure 2.8.

(11 1 01 1 1 1 1] 0] A
1 -1 1 -1 1 -1 1 -1 1| 1| n
1 1 -1 -1 1 1 -1 -1 1] 2 T
1 -1 -1 1 1 -1 -1 1 1] oz | -1
I SR T T S T R IR [T VR rs
1 -1 1 -1 -1 1 -1 1 1]z 1|
1 1 -1 -1 -1 -1 1 1 1]z 1|
1 -1 -1 1 -1 1 1 -1 1| 2 ST

Figure 2.8. Computing the spectral coefficients using the Hadamard transform ma-

triz.

It should be noted that this transform has some important properties.

e The transform matrix is of size 2" x 2™.

e The transform is reversible, that is, it is possible to compute the original values

of Z from R, since Z = Q%T" X R.

e Combining any two rows in the matrix using element-by-element multiplication

results in a row that already is in the matrix.
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Other Transforms

Other transformations that are commonly used are the Walsh and Rademacher-Walsh.
Definitions of these transforms are given in [5]. An example of the Walsh transform
matrix for n = 3 is shown in Figure 2.9, while the Rademacher-Walsh transform

matrix is shown in Figure 2.10. The spectral coefficients generated by either the

= 000 001 010 011 100 101 110 111

j =000 1 1 1 1 1 1 1 1 Wal(0, k)
001 1 1 1 1 -1 -1 -1 -1 Wal(1, k)
010 1 1 -1 -1 -1 -1 1 1 Wal(2, k)
011 1 1 -1 -1 1 1 -1 -1 Wal(3, k)
100 1 -1 -1 1 1 -1 -1 1 Wal(4, k)
101 1 -1 -1 1 -1 1 1 -1 Wal(5, k)
110 1 -1 1 -1 -1 1 -1 1 Wal(6, k)
110 1 -1 1 -1 1 -1 1 -1 Wal(7,k)

Figure 2.9. The Walsh transform matriz for n = 3.

Walsh, Rademacher-Walsh, or the Hadamard transforms are the same, with the values
appearing in different orderings. Each of these transforms also possess the properties
described for the Hadamard transform.

Other transforms may also be used. [5] gives details of some of these other trans-

forms.

2.4.2 The Meaning of the Spectral Coefficients

By multiplying the transform matrix by the output vector of the function the effect is
to compare the Boolean function’s output to the function represented by a given row

of the transform. Figure 2.11 describes the functions against which the comparison
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= S - OGO O
S N e N N N N N

1 1 -1-1-1-1 1 1| Rad x (2, k)
1 -1 1 -1 -1 1 =1 1| Rad(1,k)x (3,k)
1 -1 -1 1 1 -1 =1 1| Rad(2k)x(3,k)
1 -1 -1 1 =1 1 1 =1 Rad(1,k)x (2,k)x (3,k)

Figure 2.10. The Rademacher-Walsh transform matriz for n = 3.

is being performed for the Hadamard transform matrix for n = 3.

It should be noted that in Figure 2.8 the function output vector is encoded as {0, 1}
while the functions in the transform matrix are encoded as {+1, —1}. However, it is
common to re-encode the function output vector in {+1, —1}. In this case the output
vector is referred to as Y, and the resulting spectral coefficients are referred to as S.

For each of the transforms discussed above, the resulting coefficients are labeled
as shown in Figure 2.8. This labeling varies depending on the ordering of the rows in
the transform matrix, and reflects the function comparison that is being performed

with each row multiplication.

2.4.3 Properties of the Spectral Coefficients

As mentioned above, the advantage of describing a function using its spectral co-
efficients is that each coefficient provides a more global view of the function. In
particular, there are a number of properties of the spectral coefficients. One property
of the spectral coefficients is that if a function is an exact match with one of the rows
of the transform then the resulting coefficient will have a maximum value, while the

remaining coefficients are zero (if {+1, —1} encoding is used). Additionally, a prop-
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1 1 1 1 1 1 1 1 Constant xg
1 -1 1 -1 1 -1 1 -1 T

1 1 -1 -1 1 1 1 1 To

1 -1 -1 1 1 -1 1 -1 T1 B T

1 1 1 1 -1 -1 -1 -1 T3

1 -1 1 -1 -1 1 -1 1 1 D T3

1 1 -1 -1 -1 -1 1 1 To D T3

1 -1 -1 1 -1 1 1 -1 T1 D 2o D T3

Figure 2.11. The function represented by each row vector of the Hadamard trans-

form matriz for n = 3.

erty of the spectral transform is that no information is lost; that is, given the spectral
coefficients and the transform used to generate them, it is possible to uniquely regen-
erate the original function. Finally, they can be used in classifying Boolean functions,
as discussed in Section 2.6. Other properties and uses of the spectral coefficients are

given in [5] and [26].

2.4.4 Computing the Spectral Coefficients

The computation of the 2" spectral coefficients through application of Equation 2.1
(or the equivalent S = T™ x Y') requires the summation of a total of 2" x 2" individual
product terms. For increasingly large values of n this becomes infeasible. However,
a faster method of performing the transform is possible since many subsets of inter-
mediate values are common in the computation of the final coefficients. Figure 2.12
illustrates this.

The use of the fast transform reduces the number of terms to sum to 2" x n. This
is still very large for large values of n, but is considerably reduced from the orginal

transform’s requirements.
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Z (function output) R (resulting coefficients)

ZotZi+2Z,%2Z;

Zo o

z n

I
Is

- .
. — 7, 2—Zs— 25 7,

Figure 2.12. A flow chart demonstrating the fast Hadamard transform for n = 3.

Zs

Zs

Other methods of computing the spectral coefficient involve the use of BDDs, and

are described in [27] and [28].

2.5 Autocorrelation

An alternate description of Boolean functions involves the use of correlation functions.
As with the spectral transforms, the result is a vector of 2" coefficients that describe

the function.
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2.5.1 Definition of the Correlation Function

The correlation function is defined as [26]

BT9(r Zf ) x glv®T) (2.3)

where
f and g are both Boolean functions of n or fewer variables using {0, 1} encoding,

v = Z v; X 2271 while v; are the values assigned to each z;, and

n
T=Y 1 x 27
i=1

If {+1,—1} encoding is used for the outputs of f and g then the resulting coefficient
is labeled C 7 9(7).

2.5.2 Definition of the Autocorrelation Function

The autocorrelation function is defined identically to the correlation function, except
that both functions involved are the same:
on_1
BT I(r Zf ) x fluedT) (2.4)
In general, the superscript f f is omltted when referring to the autocorrelation func-
tion. For the remainder of this dissertation, B (C) is used to refer to the entire vector
of autocorrelation coefficients, and B(7) (C(7)) is used to refer to each entry in this
vector.

Techniques for computing the autocorrelation function are described in detail in

Chapter 5.

2.5.3 Meaning and Labeling of the Autocorrelation Coeffi-

cients

Figure 2.13 shows an example of computing the autocorrelation coefficients for a small

function.
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Br) = ?jﬂwa@®ﬂ

B(0) 0] [r000 sae0) ... f7e0) 7
B() | | s0e sae1 .. fre 6
B(2) 1@ | | r0e2 sae ... fre2 6
Be) | |s®| |08y sues) .. saes | |
B) | | s0e0 saey . fre 6
B(5) 1) | | r0es) saes) ... f7es) 6
B(6) 16 | | r0e6) sae6) ... f7e0 6
30| s |f0en saen . smen| |6

Figure 2.13. An example of computing the autocorrelation coefficients for f(X) =

$1V.’E2V$3.

It is also common to label the entries of the autocorrelation vector with the binary

encoding of 7. The computation can then be written, for example for 7 = 3 as
B(011) = f(000) x (000 011) + ...+ f(111) x f(111 & 011)

This makes the meaning of the autocorrelation coefficients much more evident. One
can now see that with each XOR operation, certain input bits are inverted. Only
the input bits in positions corresponding to 1’s in the binary expansion of 7 are
inverted. As noted earlier the ordering of the input variables is x,...x;. Thus
another relabeling of the entries of the autocorrelation vector is to indicate which of
the input bits are being inverted in the XOR operations. Figure 2.14 demonstrates
each of these alternative labelings.

The autocorrelation coefficients are generally divided into groupings according to
the number of 1’s in the value of 7. Thus B(000) is the zero-order autocorrelation

coefficient, and B(001) is a first order coefficient, as is B(010) and B(100). B(011),
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[ B(0) | [ B(000) | [ BO) |
B(1) B(001) B(z,)
B(2) B(010) B(x»)
B@3) | | BOw)| | Blaw)
B(4) | | Boo) | | B(z)
B(5) B(101) B(z123)
B(6) B(110) B(zyz3)

i B(7) ] i B(111) i B(zyz973) |

Figure 2.14. Alternative labelings for the autocorrelation coefficients (assuming n =

3).

B(101) and B(110) are second order coefficients, and so on. More formally, the order
of a coefficient B(7) is defined as the weight |7|, or the number of ones in the binary

expansion of 7.

2.5.4 Related Concepts

There are a number of concepts with uses in digital logic that are closely related to

the autocorrelation coefficients.

The Boolean Difference

The Boolean difference of a Boolean function is a computation that has been used to
evaluate test patterns for digital circuits, and also has applications in logic synthesis.

It is defined as [29]

df (X)
d.’Ei

The Boolean difference results in a function that evaluates to 0 if there is no

= f(Tny-- s Tiy--21) B f(Tny -, Tiy- .. T1). (2.5)
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change to the function’s output from inputs containing x; to inputs containing Z;,
and 1 otherwise. By identifying the number of input combinations that result in the
function % having the value 0 and subtracting the number that result in the value
1, the result is the same as the corresponding autocorrelation coefficient C(7), where

T is a binary value with one 1 in position 1.

The Gibbs Differentiator

The partial Gibbs derivative of a function f with respect to a variable z; is defined

by Stankovi¢ [30] as

Definition 2.6

DA{f(X)} = f@n,- -, Tiy ooy 21) — f(@py ooy Tiy o oo, T1). (2.6)

This is referred to as the partial derivative because it is computed with respect to
only one of the inputs, x;. The Gibbs derivative of a function is defined, again from

Stankovi¢ [30], as
DX} = =5 2 (DS (X)) (2.7

where n is the number of variables in the function. Stankovi¢ uses {0, 1} encoding of
the function f for the above definitions, while Edwards [31] uses {+1, —1} encoding

of the function f and defines this derivative as

D{f(X)} = ilQi_l{f(xn, ey Ziy oy @) — f(Tpy o Ty oy x1) } (2.8)
1=
It should be noted that the order of the subtraction for Edwards’ and Stankovié’s
definitions is reversed. In both definitions, the difference of the function’s value at
one point is found when compared to another point, and then these differences are
summed.
From the definitions above one can infer the meaning that the partial Gibbs deriva-

tive is the difference between the function at one input point and at another input
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point a unit vector away in direction x;. For example, if there is no change in the
function from, say, xox; = 00 to zox; = 01 then the value of the partial derivative
with respect to x; at zoz1 = 00 is 0.

When these partial values are summed and a weighting factor is incorporated, as
in the definition for the total Gibbs derivative, then the value of the derivative has
a most significant bit which indicates the slope of the function in direction z; away
from the starting point, a next significant bit which indicates the slope of the function
in direction x5, and so on. This is most easily demonstrated using a Karnaugh map

to represent the function.

w01 w01
00 |01 00| 1 |-1
01101 011 ]-1
11 |11 11 | -1} -1
10|01 10 1 | -1

Figure 2.15. The Karnaugh map for the function f(X) = x1x9V x3, showing {0,1}
encoding of the outputs on the left and {+1,—1} encoding of the outputs on the right.

The value of D{f(110)} can be computed two ways: using Stankovié¢’s [30] def-
inition (see Definition 2.7) or Edwards’ [31] definition (see Definition 2.8). Using
Edwards’ definition, the computation is

DI} = 2'x {£(011) ~ F(1ID)} +
20 x {£(011) — f(001)} +
2 x {£(011) - £(010)}
= -3
The binary representation of 3 is 011, indicating a slope of 1 in the x; direction, a
slope of 1 in the x5 direction, and a slope of 0 in the x3 direction. Each of these

directions are indicated with arrows in the Karnaugh map in Figure 2.16.
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wzr 0 1

00| 1]-1
011 |-1
T
11 | -1
101 |-1

Figure 2.16. The Karnaugh map for the function f(X) = zi1x9 V x3, showing
D{f(110)}.

The Gibbs differential could potentially be used to compute the first order auto-
correlation coefficients. An example is shown below. By summing 2" — 1 D values,
the number of places where f(x3, z2, 1) disagrees with f (T3, z2,21) can be computed.
It is possible to calculate B(7) by subtracting this value from B(0), the zero-order

coefficient.

B(0) — B(100) = D{f(000)} + D{(010)} + D{f(001)} + D{f(011)}

2" —1

B(0)— B(zp...1...11) = Z D{f(zp...0...21)}

Tj...T;—1 ,mi+1...mn:O
Complexity Measure

It can be quite difficult to examine a Boolean function and provide some measure of
its complexity. One measure that has been suggested is the following [5]%:

1 2n—1
Cmp(f) =n2" — ={> lvllr} (2.9)
v=0

where || v || is a weighting factor® representing the order of the spectral coefficient

7y. The term n2™ represents the total number of adjacent minterms in f(X), where

2The standard notation for the complexity measure of a Boolean function is C'(f); we use Cmp(f)

to avoid confusion with the {+1,—1} autocorrelation coefficient C(7).
3| v ||=0 for 7o, || v ||= 1 for 71 to ry, || v ||= 2 for r12 to rp_1,, and so on.
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zats 00 01 11 10 zsts2 00 01 11 10
00[0|1]0|1 00[0[0|0]|0
01/1(0|1]0 01{1(1|1]0
11/0(1|0]1 11110
10010110 1000|1]1]0

(@) (b)

Figure 2.17. Ezample functions illustrating the complexity measure Cmp(f); (a)
f(X) =21 @29 ® 23Dy has Cmp(f) = 0; (b) f(X) = T1xy V 22(x3 V 24) has
Cmp(f) = 40.

adjacent minterms are minterms at a Hamming distance of one from each other.
Each pair is counted twice. The term 271%2 represents the number of different-valued
minterm pairs; ¢.e. pairs in which one minterm evaluates to 0 and one minterm
evaluates to 1. An example is shown in Figure 2.17.
The autocorrelation coefficients can also be used in this computation [32]:
Cmp(f) = ”%1 B(u) + (2" — B(u)) — 2(B(0) — B(u))
ull=

|| « || = 1 means that the computation is summed only over the first-order autocor-
relation coefficients. The expression B(u) gives the number of places where the pair
of minterms at a Hamming distance of one are both 1’s. The expression 2" — B(u)
gives the number of places where the pair of minterms are not both 1’s; i.e. 0-1 pairs
and 0-0 pairs, and from that the expression 2(B(0) — B(u)), giving the 0-1 pairs, is
subtracted. The result is the number of 1-1 pairs plus the number of 0-0 pairs each

at a Hamming distance of one, which is the complexity measure.
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2.6 Classification of Switching Functions

There are 22" possible Boolean functions of n variables. Even for very small values
of n this is a number that is far too large for any systematic evaluation of every
possible function. It is for this reason that methods of classifying Boolean functions

into groups with known characteristics are useful.

2.6.1 NPN Classification

One of the most common ways to classify Boolean functions is to use some simple
operations, namely permutation and negation. A function f is said to be NPN-
equivalent to another function g if it is possible to convert f into g by applying one

or more of the following transformations to f.
a) Negation of one or more of the input variables,
b) Permutation of two or more of the input variables, or

c) Negation of the output of the function.

Below are four functions that are NPN-equivalent.

fo(X) is equivalent to fi(X) when z; and x5 are permuted. f3(X) is equivalent to
f1(X) through the negation of z5, and f4(X) is f3(X) negated. Functions that are
NPN-equivalent are said to be in the same NPN-equivalence class. Smaller classes
can also be considered by using only two or one of these operations; this creates P-
equivalence classes (operation b only), N-equivalence classes (operation a only), and

NP-equivalence classes (operations a and b only). The number of equivalence classes
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for functions of up to five variables has been extensively discussed, but is generally
only tabulated for n < 3 [5, 11].

According to Hurst, the total number of possible functions of less than or equal to
4 variables can be compressed into 402 NP-equivalence classes. This can be further

compressed into 222 NPN-equivalence classes.

2.6.2 Threshold Functions

We briefly mention linearly separable functions, or threshold functions. These are
functions for which, when their minterms are considered as 2" equispaced nodes in n-
dimensional space, there exists a plane that separates all the true (f(X) = 1) nodes

from all the false nodes (f(X) = 0). An example is shown in Figure 2.18. This

all true
minterms

all false
minterms
Figure 2.18. An illustration of the concept of linearly separable, or threshold, func-

tions.

is a useful property, as a function with this property may be implemented using a
threshold gate, this being a gate which switches when a given threshold of inputs is
reached. It should be noted that of the 22" possible Boolean functions of n variables, a

decreasingly small percentage of them are linearly separable (as n increases); however,
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many functions that are used in everyday applications, such as arithmetic and decision
mechanisms, are linearly separable [5].

The need to identify linearly separable functions led to another method of classifi-
cation that uses n+1 parameters to describe each class of functions. These parameters

are called Chow parameters, and they are defined as:

CH(X) 2 Ch(1), Ch(ws), ..., Ch(zy); Chao)
where

(2.10)
Ch(z;) = Y occurrence of z; over all true minterms; i=1 to n

Ch(xy) = total number of true minterms

The Chow parameters may be used to characterize classes which encompass the NPN
classes. The main use of this classification is to identify whether or not a function is

linearly separable [5].

2.6.3 Spectral Classification

A modified version of the Chow parameters are actually the first order spectral coef-
ficients. The spectral coefficients are also used extensively in classification of Boolean
functions. If the entire vector of spectral coefficients for a function is considered, there
are five invariance operations that may be identified. Invariance operations are op-
erations that leave the magnitudes of the individual coefficients unchanged although
the order or sign of the individual values may change. These invariance operations

are listed below [5].

(i) Permutation of two variables z; and z;, ¢ # j and 4,j € 1..n. The result of

this is the interchange of 2”2 pairs of spectral coefficients,

S; £ 8

Sik < Sjk

and sy, Sg, S;j, ... are unchanged.
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(i)

(iii)

Negation of one variable z;. The result of this is the negation of 2" ! spectral
coefficients,
S; — —S;

Sij — —Sij

and sg, 54, 5jo are unchanged. « represents all or some of the remaining variables,
not including ¢ or j.
Negation of the output. The result of this is that all the spectral coefficients
are negated.

So — —So

S; — —S;

Replacement of z; with ;@®z;. The result of this is that 2" 2 pairs of coefficients
are interchanged,
i < 845
Sia <7 Sija
and sy, s, 5jo are unchanged.
Replacement of the output f(X) with f(X) @ z;. The result of this is the
interchange of 2"~! pairs of spectral coefficients; in other words, all coefficients

are modified.
S; < So

Sij € Sj

Sija <7 Sja

These operations in combination allow any spectral coefficient value to be moved to

any other position in the coefficient vector. The magnitudes of the 2" coefficients

therefore provide a classification technique that encompasses both the NPN classes

and the Chow classification. In fact, there are 8 classes of functions where n < 4.

This leads to a very compact classification in which the 65536 functions for n < 4 are
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divided into only 8 classes. Clearly, analysis of 8 representative functions is far more

feasible than analysis of 65536 functions.

2.6.4 Other Classification Techniques

There are a variety of other classification techniques which are not relevant to this
dissertation. However, should the reader wish more information in this area some

context is given in Figure 2.19. The reader is directed to [5] for further details on

all functions
1-monotonic

2-monotonic

completely
monotonic

chow-parameter
definable

threshold
functions

Figure 2.19. A diagram illustrating how various classes of functions are related.

classifications such as unateness, monotonicity, summability and dual comparability,
and to [33] for details on a more recent classification technique that has been proposed

based on fixed polarity Reed-Miiller forms.
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2.6.5 Use of Classification

One of the problems in the design of logic circuits is to synthesize a circuit imple-
mentation from a function description. Classification of functions has provided one
possible solution to the question of how to efficiently perform this task. By making
use of the spectral technique for classification one can identify functions within the
same spectral class. Time and effort can then be spent to find the best possible im-
plementation for a canonical function from the class. By adding logic to the inputs
or outputs of this function one can relatively quickly and efficiently implement any
of the other functions in the spectral class, as shown by Edwards [12]. This is partic-
ularly useful if there are known characteristics for the canonical function that make
it “easy” to implement, such as the presence of symmetries in the function.

Another goal of classification has been to identify a universal logic element, or,
a single function from which all 22" functions of a given n could be realized. More

information on this application of classification can be found in [12, 5] and [11].

2.7 Symmetries

Another useful property to identify in switching functions is symmetry. Partial sym-
metries exist in most Boolean functions, particularly those used in practical applica-
tions. Both total and partial symmetry properties are commonly used in synthesis
of digital circuits [5, 34, 35, 36], particularly in the reduction of the size of Binary
Decision Diagram (BDD) representation of functions [37, 38].

A function is symmetric in some way if two or more of the variables can be inter-
changed leaving the output of the function unchanged. The sections below describe

various types of symmetries.
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2.7.1 Totally Symmetric Functions

A Boolean function is totally symmetric if the output is unchanged by any permu-
tation of the inputs to the function. For example, the majority function f(X) =

x1 V x9 V z3 is totally symmetric, as is the function f(X) = 129 V 2023 V 7123.

2.7.2 Symmetric Functions

There are in practice very few totally symmetric functions, and they form a decreasing
percentage of the total number of Boolean functions ( 2;—21 ). For this reason, a less

restrictive definition of symmetry is more useful.

Definition 2.1 A Boolean function is symmetric in two or more input variables

{4, ...,z } if any interchanges within this nonempty subset leave f(X) unchanged [5].

For example, f(X) = z1T3 V 2973 V 21294 is symmetric in {z1, 22}, since permuting
these two variables does not alter the outputs of the function. A totally symmetric
function may be thought of as a special case of symmetric functions.

In this work we are interested in identifying any portion of the function for which
any interchange of two variables or their inverses does not alter the outputs of the
function. This is known as a symmetry of degree 2. There are various types of

symmetries of degree 2 which are described in the following section.

2.7.3 Symmetries of Degree 2

If a function has a symmetry that can be identified by assigning two variables a set
of fixed values then we call this a symmetry of degree 2. In this case the degree refers
to the number of variables being examined.

Symmetries of degree 2 can be identified by finding patterns where

f@n, o a,....b, . m) = f(Xny ooy Cyeenydy o, 20),
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a,b,c,d € {0,1}. The easiest way to illustrate these properties is by examining the

function’s Karnaugh map.

Equivalence Symmetries

One type of symmetry of degree 2 is referred to as equivalence symmetries. These are
defined as follows: a function f(z,,...,;,...,%;,...,21) has an equivalence symme-

try in {z;, z;} if
f@n,..,0,...,0,... 21) = f(zp,. .., 1,..., 1, ... 21) (2.11)

In other words, if the function’s values for z;z; = 00 are unchanged when both
z;x; = 11 then the function has an equivalence symmetry in these variables. This
is written E{z;,z;}. For example, the function f(z4, 3,22, 21) = T1%2T3 V T1T224 V
T1T324 VToT3%4 V X1 X035V T123T4 V Tox3T4 has two equivalence symmetries, E{x, 24}

and F{z,, x4}. The Karnaugh map for this function is shown in Figure 2.20.

zsa2 00 01 11 10

0o[1(0111
01j0(1(0 |1
1110)1(1]0
1000|1101

Figure 2.20. The Karnaugh map for the function f(x4,x3,T2,21) = T1ToT3 V

T1T9Za V T1T3T4 V ToT3T4 V T1X2X3 V T1X3T4 V ToT3T4

Figure 2.21 shows the Karnaugh maps for the 6 equivalence symmetries that may

exist in a 4-variable Boolean function.
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w582 00 01 11 10 zsa® 00 01 11 10 zea2 00 01 11 10

00la|blc|d 00/ a c 00l a | c

01 01 alc 01 cla
1lla|b|c|d 11 bld 11 d|b
10 10| d d 10| b | d
E{.’El,l‘2} E{$17$3} E{x17$4}

25473 00 01 11 10 5273 00 01 11 10 25473 00 01 11 10

00| a c 00l a|c 00 a a
011 b d 01| b | d 01 b b
11 b|d 11 dl|b 11| ¢ c
10 alc 10 cla 10| d d
E{$2,333} E{$2;$4} E{$3;$4}

Figure 2.21. The Karnaugh maps showing the necessary patterns for the 6 equiva-

lence symmetries.

Nonequivalence Symmetries

Nonequivalence symmetries are similar to equivalence symmetries except that the val-
ues of z;z; are changed from 01 to 10. That is, a function f(zp,...,z; ..., %}, ..., 1)

is said to have a nonequivalence symmetry in {z;,z;} if

flxn,...,0,...,1, ... 21) = f(zp,. ..y 1,...,0,...,27) (2.12)

This is written N{z;, z;}. Figure 2.22 shows the 6 possible nonequivalence symmetries

for a 4-variable Boolean function.
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wa® 00 01 11

10

00

0lla|b|d

11

10{a|b|d

ﬁJ{thiﬂQ}

w2 00 01 11

10

00 alc

01 b|d

111 b

10| a

N{$2,$3}

T4T3
2T1

00
01
11
10

00 01 11 10

a

Cc

N{$1,$3}

T4T3
r2T1

00
01
11
10

00 01 11 10

N{zq,z4}

r4ax3
o1

00
01
11
10

00 01 11 10

Cc

a

N{l‘l, 1'4}

T4T3
21

00 01 11

10

00

01

11

a
b
d

QL (= S

10

Cc

N{zs,z4}

Figure 2.22. The Karnaugh maps showing the necessary patterns for the 6 nonequiv-

alence symmetries.

Single Variable Symmetries

A third type of degree two symmetry occurs when the function’s values remain un-

changed if z;z; is changed from 10 to 11 or from 00 to 01. This first single variable

symmetry is written S{z;|z;} and is defined as

flzn,...

1

P

cy ) = f(xn, ...

..,.1'1)

(2.13)
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while the second single variable symmetry is written S{z;|T;} and is defined as

fl@n,..,0,...,0,...,21) = f(zp,.-.,0,...,1, ..., 21) (2.14)

There are 24 possible single variable symmetries for a 4-variable function.

2.8 Conclusion

This chapter provides background concepts to aid in the understanding of the ma-
terial presented in the rest of this dissertation. An overview of switching functions
and logic synthesis is given in Sections 2.1 and 2.2, followed by details on various
representations of switching functions in Section 2.3. Particular attention is paid to
the spectral and autocorrelation representations in Sections 2.4 and 2.5, as all of the
following chapters focus on these concepts. Section 2.6 introduces the concept of
classifying switching functions, and explains the uses of different classification tech-
niques. Chapter 6 expands on this area with a classification technique based on the
autocorrelation coefficients of switching functions. The final section consists of an
introduction to symmetries of switching functions, which is also expanded upon later

in the dissertation (Chapter 4).



Chapter 3

Properties of the Autocorrelation

Coefficients

3.1 Introduction

In this chapter we formulate and prove a number of theorems relating the autocorre-
lation coefficients to their underlying switching functions. The motivation behind this
chapter is to identify patterns in the autocorrelation coefficients that help simplify
the task of logic synthesis. For instance, being able to identify a degenerate function
may save considerable processing time in the synthesis of a function. This will be of
particular use when extending this work to multiple-output functions. Currently, a
BDD representation of a single-output function automatically removes any redundant
variables. However, in a shared BDD representation for a multiple-output function
this will not necessarily occur and so identification of degnerate functions via another
method is required. Similarly, minimization for sparse functions may be approached
differently if this information is known before attempting logic synthesis. Another
motivation is that knowledge of the properties inherent to the coefficients may allow
us to determine a more efficient computational approach.

The material in this chapter begins with notation that is used through-out this
and subsequent chapters. There next follows a section discussing the connections

between the spectral and autocorrelation coefficients. Section 3.4 derives equations for
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converting between the autocorrelation coefficients computed using {0, 1} encoding for
the function’s outputs and those computed using {+1, —1} encoding, and Section 3.5
examines various properties of the coefficients using both encodings. The chapter
closes with a concluding section that discusses potential uses of the properties proven

in this chapter.

3.2 Notation

The notation described here is used in the the following sections and in subsequent

chapters.

e The term “a {0,1}/{+1, —1} coefficient” refers to an autocorrelation coefficient
computed using the given encoding for the function’s outputs.

e [ is the number of true minterms in the function.

e The variable ordering x,, ...,z is used through-out. Thus a coefficient B(001)
is the first order coeflicient corresponding to z;.

e 7 and 7’ indicate values ranging through 0 to 2" — 1. 7, is used to indicate one
such value.

e 7; refers to a value whose binary expansion contains a 1 in the i** bit, while the
remaining n — 1 bits are 0.

e T, refers to a set of values for which the binary expansion contains a 1 in the
i bit while the remaining n — 1 bits have the value a € {0,...,2"' —1}. 75,
refers to a set of values for which the binary expansion contains a 0 in the i*?

bit while the remaining n — 1 bits have the value a.

e |7] is the weight, or the number of ones in the binary expansion of 7. If |7| = j

then B(7) and C(7) are said to be j order coefficients.
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3.3 Relationship Between Spectral and Autocor-
relation Coefficients

Karpovsky demonstrates in [26] the use of the Wiener-Khinchin theorem in the com-
putation of the autocorrelation coefficients from the spectral coefficients. The equa-
tion for this computation is given as Equation 3.1.
B=— xT"x R? (3.1)
2n
In this equation R? is the vector of spectral coefficients with each element squared.
Note that S may be used in place of R in order to compute C. This relationship is
used in Section 3.4 to derive equations for converting between B and C.
It is interesting to note that the elements of R (S) must be squared. It is for this
reason that the autocorrelation transform is not reversible — some sign information is

lost in the squaring process.

3.4 Converting Between B and C

In Chapter 2.4 one reason for the use of {+1, —1} encoding was discussed. In this
section we derive equations for converting from one encoding to the other. In these
equations the {0, 1} encoded outputs of the function are labeled z; while the {+1, —1}
encoded outputs are labeled y;, the {0, 1} encoded spectral coefficients are labeled 7,
while the {41, —1} coefficients are labeled s,, and the {0, 1} encoded autocorrelation
coefficients are labeled B(7) while the {41, —1} coefficients are labeled C(7).

The following equation describes the relationship between z; and y;:
yi = =2z + 1 (3.2)

Based on Equation 3.2 and Equation 2.1 (R = T™ x Z) we find that s; and r; are
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related as follows.

S; = —27‘,‘
(3.3)
So = —27"0 + 2"
This relationship combined with Equation 3.1 leads to Equation 3.4:
C(r) =2" — 4k + 4B(7). (3.4)

3.5 Properties

The first properties to be examined are those relating to the range of possible values
that any autocorrelation coefficient may assume. These are identified and explained
in Section 3.5.1. This section also discusses the value of the sum of the autocorrelation
coefficients, as well as properties for the identification of the constant functions.

The next section introduces a number of theorems that relate patterns in the au-
tocorrelation coefficients to sparse functions (or their inverse), as well as theorems
that allow the identification of sparse functions from the examination of the auto-
correlation coefficients. There is, however, a large group of functions for which no
particular patterns exist in the autocorrelation coefficients. Section 3.5.3 makes some
observations about this group of functions.

Section 3.5.4 introduces two theorems that relate the first and second order au-
tocorrelation coefficients to the existence of XOR logic within the function. These
properties have particular use in the areas of three-level minimization and decomposi-
tion, as well as in the design of KDDs. These applications are addressed in Chapter 7.

The final section on properties of the autocorrelation coefficients is Section 3.5.5.
This section theorizes that coefficients of different orders may be related, and further,
that the computation of coefficients of a lower order may allow for a reduction in the
necessary operations when computing coefficients of a higher order. This theory is

proven, and discussions on the applicability of this technique are presented.
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3.5.1 General Observations on the Signs and Values of the

Coefficients

There are a number of restrictions on the values of both the {0,1} and {+1, -1}
autocorrelation coefficients. Knowing these limitations provides for a simple check
as to whether the coefficients have been computed correctly. They also lead to the
identification of more specific properties relating the coefficient values to the original

switching function.
Lemma 3.1 B(r) € {0,...,2"} V 7.
Lemma 3.2 B(7) is even V 7 # 0.
The above lemmas are clear from the definition of the autocorrelation function.

Lemma 3.3 B(7) < B(0) V 7 # 0 and B(0) = k.

Proof.
Since .
B(0) = 22_:01f(v) x f(v®0)
and -

flue0) = fv) Vo

then every true minterm results in a sum term of 1 x 1 and every false minterm results
in a sum term of 0 x 0. Thus the the total value of the summation is the number
of true minterms for the function. The only way another coefficient B(7) could have

the same value is if f(v® 7) = f(v) V v. |

Lemma 3.4 C(7) € {—2",...,2"} and is evenly divisible by 2V T.

The largest possible value for C(7) is obtained when f(v) = f(v & 1) V v, giving
a result of 2". The smallest possible value for C(7) is obtained when f(v) = —f(v ®

7) V v, giving a result of —2".
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Lemma 3.5 A function may have at most 2" negative C (7).

Proof.
Let us define a function f(X) for which there are 2"~! negative coefficients. With-
out loss of generality we assume that for this function every C(7), 2" ™! <7 < 2" —1,

is negative. If 2"7! < 7 < 2" — 1 then in the autocorrelation equation
0<v<2"'—1 = 2" ' <vapr<2"—1

and

M l<y<"—1 = 0<vdT<2" -1

In other words, in computing each of the negative coefficients we are matching a
minterm from the top half of the function with one from the bottom half of the
function.

For any one of the designated coefficients to be negative, there must be 2"=2 + 1
of the values 0 < v < 2"~! — 1 negative if the values in 2"~! < v < 2" —1 are positive,
or vice versa. However, this results in the remaining 2"~! coefficients having positive

values. Thus there can be at most 2"~ negative autocorrelation coefficients. [

Lemma 3.6 C(7) < C(0) V 7 # 0 and C(0) = 2.

Proof.
This can be determined by applying Equation 3.4 to Lemma 3.3. We can also
explain the result as follows. Since in {+1,—1} encoding f(v) x f(v) =1V v then

2n—1

) = E_%f(v) X f(ve0)

2n—1

221
v=0

= 2"
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The next theorem defines the sum of the 2" coefficients.

Theorem 3.1

Lemma 3.7

2

2" —1

2—‘6 B(1) = k”. (3.5)

S B =2 (’;) (3.6)

tau=1

(k) is the number of pairings of the minterms as computed in the summation of

the autocorrelation coefficients. This is then multiplied by 2 to produce all possible

pairings in the form ¢, j and j,:.

Proof.

Using Lemma 3.7 the sum of all of the {0,1} autocorrelation coefficients is as

follows:

Corollary 3.1.1

Proof.

2" —1

S B() =BO)+ 2(’;)

k(k—1
= k + 2521

= k2.

2" —1

Zjl C(r) = (2" — 2k)*. (3.7)

By substituting the expression from Theorem 3.1 into the equation for converting

between C(7) and B(7) (Equation 3.4) we find the following:
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2n—1 2n—1
Y C(r) = > (2" —4k+4B(1))
7=0 7=0

2n—1 2n—1 2n—1

=Y 24 k+4Y B(r)
7=0 7=0 7=0
— (27)2 — 2ndk 4 4k2

= (2" — 2k)?.

The next theorem deals with the situation in which all the coefficients have the

same value.

Theorem 3.2 f(X) =1 or f(X) =0 if and only if C(7) = C(7') V 7 and 7' €
{0,...,2" — 1}.

Proof.

If all the coefficients are equal, they must all have the value 2" as the coefficient
C(0) always has this value. Based on this, if all of the coefficients have equal value,
then this implies that the function matches itself at every value of 7. This can only

occur if the function consists entirely of true minterms, or entirely of false minterms.

Corollary 3.2.1 f(X) = 0 or f(X) = 1 if and only if B(t) = B(r') V 7 and
e {o,...,2" —1}.

Proof.
By applying the equation for converting between C(7) and B(r) (Equation 3.4)

to Theorem 3.2 we find that there are two solutions:
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B(r) =0 or
B(t) = k.

If B(t) =0V 7 then B(0) = 0 and the function is then f(X) =0. If f(X) =0
then clearly B(r) =0V 7.

If B(t) = k V 7 then if £ = 2™ then the function is f(X) = 1. If £ < 2" then there
must exist a coefficient such that B(7) < k, since there will be some coefficient where
one of the sum terms is of the form f(v) X f(v®7) where f(v) =1 while f(v® 1) = 0.
Then not all of the coefficients are equal. So to have B(7) =k V 7, k must be 27. It
is clear from the autocorrelation equation that if f(X) =1 then B(1) =2"V 1.

|

3.5.2 Theorems for Small Numbers of Dissimilar Minterms

Theorems 3.3, 3.4 and 3.5 are the first to be discussed in this section. These theorems
pertain to the situation that occurs when there are a majority of true minterms and
few false minterms for the function, or the inverse. Theorems 3.3 and 3.4 refer to two
special cases, while Theorem 3.5 gives results for the general case.

Additional theorems in this section discuss the properties of the autocorrelation
coefficients when exactly half of the minterms are true (Theorem 3.6). Since one of
the possibilities for this situation is for the function to be degenerate, an additional
theorem, Theorem 3.7, generalizes on how to identify degenerate functions from their

autocorrelation coeflicents.

Theorem 3.3 A function f(X) has exactly one dissimilar minterm if and only if

C(r)y=2"—-4V 1 #£0.

Proof.

In {+1,—1} encoding there is no distinction between exactly one true minterm
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and the inverse situation. This is because negation of the function has no effect on
the coefficients’ values when using {+1, —1} encoding.

Without loss of generality let us define a function f such that

flv)=1,ve 0,...,2" =2
flv)y=-1, v=2"-1.

Then -
C(r) = Zof(v) X flo®T)

2" -2

Z(E_:f(v)xf(v®7))+f(2"—1) x f2"—1®T)

2" -2

=(Y.1x flver)+-1x1

v=0

=(2"-2-1)-1

=2" -4V 1 #0.
Thus if f(X) has exactly one true minterm then all of the coefficients C(7) = 2" — 4,
T # 0.

For the second part of this proof, if all that is known of the function is the
coefficients of this pattern, then it can be shown as follows that the function must
have either exactly one true or exactly one false minterm.

For a coefficient C(7) let us define ¢ as the number of positive pairs in the sum-
mation, and r as the number of negative pairs in the summation. A pair in this case
is a combination of two minterms 4, j, and a positive pair results when both minterms
are true or when both are false. It should be noted that in the summation for the

autocorrelation equation each pair is encountered twice. Then

2¢ —2r=2"—-4
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and

2q 4 2r = 2".

These equations can be solved to show that r = 1. If there is only one negative pair
in the summation then there is only one pair combining a true and a false minterm,;
all other pairs must combine either two true minterms or two false minterms. If there
is only one coefficient C'(7) for which this holds, then there can be any number of
combinations of true and false minterms to meet these requirements. However, there
are 2" — 1 coefficients that have only one negative pair; therefore there can be only

one dissimilar minterm in the function. [ |

Corollary 3.3.1 A function f(X) has exactly one dissimilar minterm if and only if
B(t)=k—1.

Proof. The above is determined by substituting C'(7) = 2™ — 4 into the conversion

equation C(7) = 2" — 4k + 4B(7). H

Explanations

Although Corollary 3.3.1 states a general result in terms of &, in practice the values for
B(7) are quite limited. This is because for a function to have exactly one dissimilar
minterm then either £ = 2" — 1, in which case B(1) =2"—2V 7 # 0, or k£ = 1, which
results in B(7) =0V 7 # 0. Figure 3.1 illustrates this situation.

Theorem 3.3 deals only with the situation where the function has exactly one

dissimilar minterm. Theorem 3.4 goes on to extend this a little further.

Theorem 3.4 A function has exactly two dissimilar minterms if and only if

C(r)=2n—-8V 1 and 7, #0 and 7 # 7.
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functions  autocorrelation coefficients

ORNGOENO (i)
000 0 1 7
001 0
010 0
011 0
100 0
101 0
110 1

0

1
0
0
0
0
0
0
111 0

= e e e
[o> o> BN © e e N © 3N o)

Figure 3.1. Two three-variable functions demonstrating the situation for which (i)

B(0) =1 and (ii) B(0) = 2" — 1.

Proof.
We approach this proof by first demonstrating that if there is one coefficient
C(r,) = 2", 7 # 0 and the remaining 2" — 2 coefficients C'(7) = 2" — 8, then the

function has exactly two dissimilar minterms. Let us define a function f such that

fwy=1,v € 0,...,2" =1, v#i,j
f(U):—l, (U:i:j-

Without loss of generality let 7 = 0 and j = 1. Then
on—1
C(r) = Zf X flo@®T)
on—1
=f@)x flien)+fU)xfGoT)+ Zf xfloer)
o T

=-1xf0®n)+-1x fl®T)+ ZleUEBT)
Then if i®7 = j and j&7 =i, C(7) = 2". Otherwise C(7) = —2+4(2"—4)—-2 = 2"-8.
Because of the nature of the & operator, i@ 7 =j < j@® 7 =1, and so there is only
one assignment of 7 for which this can occur.

A similar process to that shown in the proof of Theorem 3.3 can be used to

prove that this pattern of coefficients can only result in a function with exactly two

dissimilar minterms. [ |
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Corollary 3.4.1 A function has exactly two dissimilar minterms if and only if

B(0) = B(7,) = k and
B(t)=k—-2V 71 and 7, #0 and 7 # 7,.

Proof.
The above is determined by substituting the results of Theorem 3.4 into the con-

version equation C(7) = 2" — 4k + 4B(7). [

Explanation

Once again, although Corollary 3.4.1 states a general result, in practice the values

are limited to the following:

It should also be noted that this pattern of coefficients indicates that the function is
either itself degenerate or is related through the application of the autocorrelation in-
variance operators to a degenerate function. The autocorrelation invariance operators
are discussed in detail in Chapter 6.

Finally, given the location of one of the true minterms, the information contained
in the non-zero autocorrelation coefficient allows us to identify the second of the true
minterms. This can be determined by finding the value of the inputs at the known
true minterm’s location, and XOR-ing this value with the value of 7 for the non-zero
coefficient.

The results in Theorems 3.3 and 3.4 may be generalized as follows:

Theorem 3.5 A function has d dissimilar minterms if and only if the autocorrelation

coefficients have the following properties:
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e C(0)=2",
o for (9) p € 2,4,6,....d, (or2,4,6,...,d—1if d is odd)
C(r) =2" — 4d + 4p, and

e for the remaining coefficients, C(1) = 2" — 4d.

Proof.
The proof is similar to those for Theorems 3.3 and 3.4. Let us define a function
f(X) for which there are d dissimilar minterms. Without loss of generality we assume

that
flo)==1,v€0,...,d—1 and
flo)=1ved,...,2" - 1.
Then there are d—p mod 2 ways (resulting in (g) + (z) +...4+ ( dfl) or (3) coefficients)
in which pairs of dissimilar minterms may match up, resulting in

2n—1—d
C(r) =2p—2(d-p)+ ; f)x floer)

=2p—2(d—p)+2"—2d

=4p—4d+ 2"
where the first term 2p is the result of the sum of the matching dissimilar minterms,
the second term 2(d — p) is the result of the sum of the non-matching dissimilar
minterms, and the final term is the sum of the remaining minterms which are all
similar. There are also coefficients resulting from the situation in which none of the

dissimilar coefficients match in the summation:
m 1.4

C(r) =-2d+ Z f)x floer)
= 2" — 4d.

Again, using a similar technique to that shown in the proof of Theorem 3.3, if ¢

is the number of positive pairs and r is the number of negative pairs then

2q 4 2r = 2™ and
2q —2r =2" —4d
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which results in r = d.

The next situation to take into account occurs when the number of true minterms

and the number of false minterms are equal.

Theorem 3.6 A function f(X) has 2" autocorrelation coefficients C (1) = 2" (in-
cluding C(0)) and the remaining 2" coefficients C(7') = —2" if and only if the

function has exactly 2" ' true minterms.

Proof.

We first demonstrate that if a function is either itself dependent on only one of its
input variables (or related through the application of the autocorrelation invariance
operators to a function that is dependent on only one of its input variables) then half
of its coefficients have the value 2" while the other half have the value —2". A function
that is dependent on only one input variable must have half of the minterms true and
half of them false. Without loss of generality let us define f(X) = z; where z; is the
lowest order bit of the input X. Then if 7 is an odd number the binary expansion of

7 contains a 1 in the lowest order bit, and then by definition f(v) = f(v @ 7). Then

2m—1

C(r) => 1x-1

= —2"
Similarly if 7 is an even number, then the binary expansion contains a 0 in the lowest
order bit and by definition f(v) = f(v @ 7'). Then

on_1

C() =2 (x ()1

v=0

=2".
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Next we demonstrate that given autocorrelation coefficients of the pattern de-
scribed above the function must be dependent on only one of the input variables (or
related to such a function). Without loss of generality let us assume that C(7') = 2"
where 7' is even and C'(7) = —2" where 7 is odd. C(7') = 2" where 7' is even indicates
that the function matches up two false or two true minterms for every product in the
summation. Additionally every product being computed is comparing two inputs for
which z; remains unchanged. Moreover, C(7) = —2" where 7 is odd indicates that
the function matches a false minterm with a true minterm for every product in the
summation, and that every product is matching a pair of inputs for which z; varies.
Based on this we can determine that the function must be dependent only on z, and

so there must be 277! true minterms in the function. [ |

Corollary 3.6.1 A function f(X) has 2"~! autocorrelation coefficients B(t) = 2"}
(including B(0)) and the remaining 2" coefficients B(t') = 0 if and only if the

function has exactly 2! true minterms.

Proof.
This can be determined from applying the conversion equation to the results of

Theorem 3.6. This is also trivially clear since B(0) = k, and B(0) =2"~1. |

Theorem 3.6 identifies one situation where the function may be degenerate. The

next theorem, Theorem 3.7 extends this to the general case.

Theorem 3.7 A function f(X) is independent of j of its input variables if and only
if C(m) =2" Vi € 1..n such that the function does not depend on variable z;.
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Proof.
Without loss of generality let us define a function f(X) that is independent of z,,.
By definition, f(0,z,-1,...,21) = f(1,Zp-1,...,21). Then

2n—1

C(Tn) = Zf XfUEBTn)

on—1_1q 2n—1
= Z fW)yxfloem)+ Y. flo)x flvdn).
y=2n-1

Let us define the range 0 to 2"~! — 1 as A and 2" ! t0 2" — 1 as B. Then

vEA = v®d 1, €B and
vEB = vdT, €A

Since the function is defined to have f(A) = f(B) then

on—1_1 2n—1
C(r) = Z f)xflo@m)+ Y flo)x flver)
p=2n—1
on—1_1 2n—1
= Z 1+ > 1
v=2n-1
= 2™

To prove the second part of the theorem we define (without loss of generality) a
function f(X) for which C(r,) = 2". This is only possible if f(v) = f(v® 7,) V v.
This implies that f(1,2,_1,...,21) = f(0,Zn_1,-..,21), indicating that f(X) is not
dependent on z,,.

Corollary 3.7.1 A function f(X) is independent of j of its input variables if and

only if B(1;) = k ¥V i € 1..n such that the function does not depend on variable x;.
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Proof.
The results from Theorem 3.7 may be extended to {0,1} encoding through the
application of Equation 3.4, C'(7) = 2" — 4k + 4B(71).
H

3.5.3 Observations About Functions For Which 2 < B(0) <
2" —2

For functions with equal or almost equal numbers of true and false minterms it is
difficult to predict the pattern of the higher order coefficients. However, some obser-

vations may be made:

e Functions with B(0) = g belong to a class of functions that is related by output
negation to another class of functions with B(0) = 2" — ¢q. However, as the
number of variables for the functions increases, there will be more than one
class with the same value for B(0). Identification of the related classes will in
such a case require examination of the higher order coefficients as well as B(0).
This cannot be extended to the {+1, —1} encoded coefficients, for two reasons.
The first is that C(0) always has the value 2", therefore examination of this
coefficient does not provide any information except the number of variables in
the function. The second reason is that the {+1, —1} encoded autocorrelation
coefficients do not change when the function is negated, and in fact functions
that fall into different {0, 1} autocorrelation classes may be combined into one
larger {+1,—1} class.

e Certain classes are also related to each other through the application of the type

(v) spectral invariance operation. This is discussed further in Chapter 6.
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3.5.4 Identification of Exclusive-OR Logic

Although it is difficult to give patterns for the entire spectrum of coefficients for
functions with equal or nearly equal numbers of true and false minterms, it is possible
to identify some information about the type of logic within the function through the
identification of the first and second order coefficients. The theorems in this section

expand on this idea.

Theorem 3.8 C(7;) = —2" if and only if the function f(X) has a decomposition
f(X) = 1(X) @z
where f*(X) is independent of x;.

Proof.
We first determine that a function with the decomposition f(X) = f*(X) & z;
has a first order autocorrelation coefficient C(7;) = —2". Without loss of generality

let 2 = n. Then
2" 1

C(m) = Zof(v)xf(v@'rn)

2" —1

= Y (') @z X [[ (v & 7)) @ (2, @ 7))

v=0

on—1_1

= Y (ffv)®0) x(fflvern)e(0en) +

v=0

2" —1

Y. (o)) x (fflvem) e (1emn))

v=2n—1

an—1_1

= > (ffwenx(fven)e 1)+

v=0

2" —1

Y. (=) x (fflver)a(0)

p=2n—1
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|

= ) ffx(=flvemn)+

v=0

2n—1

Y (=) x frlve )

v=2n-1

2" —1

= —Zf )X ff(vedT,)

= _on
since by definition f*(X) is independent of x,,.

We next determine that a first order {41, —1} autocorrelation coefficient with the
value —2" implies that the function f(X) can be decomposed into f*(X) @ z;. If
C(7;) = —2" then in the equation

2n 1

Z f@)x flvem)
f(v) = —f(ve®r) VY v implying that f(v) = —f(v @ ;) V v. This means that half
of the function is the inverse of the other half, which can be achieved by defining a

function f(X) as

f(X) = (X) @z

If no first order coefficients meet the requirements for the presence of this decom-
position, we then go on to include the second order coefficients in the examination.

This is described in Theorem 3.9.

Theorem 3.9 C(r;) = C(1;) = C(135) = 0, i # j if and only if the function f(X)
can be decomposed into f*(X) @ g(X) where g(X) =z; xzj, x € {A,V} and f*(X)

is independent of both z; and z;.
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Proof.

Let us define a function f(X) = f*(X) @ ¢g(X) where g(X) = z; Az; and f*(X)
is independent of z; and z;, and let us assume without loss of generality that i = n
and j =n — 1. Then

2" —1

C(r) = vgf(v) x flveT)
= XA:f(vl) x f(v1 @ 1)+
%:f(uz) X flvg ®7)+
Ecjf(vs) x f(vs ®7)+

%:f(m) X f(va @)

where
A: vy =0to2"2—1 (0000 ...0011),
B: vy = 2772 to 2771 — 1 (0100 ...0111),
C: vz =2""1 {0 2" — 2772 — 1 (1000 ...1011), and

D: vy =2"—2""2 102" —1 (1100 ...1111)%.

!Four variable expansions are given for the sake of clarity only. This does not limit the proof to

four variables.
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Then
C(Tn—l) = Zf(vl) X f(vl ® Tn—l) +
A

Zf(W) X f(vg® Tpot) +

B

Zf(vs) X —f(vs® Tpo1) +

c

> — f(va) X f(0a ® Tor)

D

— 2n72+2n72+_2n72+_2n72

= 0
and similarly for C(7,) and C(7,; pn_1)-
If C(1,) = C(Tu—1) = C(7n n—1) = 0 then each of the summations may be broken

down into

Clry=2"7242"2 2" 2 -2
Let us assume there exists some variable ordering such that
> Fw1) x f(v1 ©Tg) = 2" — 2 and
A
Zf(UQ) X f(va®7,1) =2" — 2 and
B
Zf(v3) X f(vs ® Tpo1) = —2" — 2 and
c

Zf(m) X f(0s® Tpoy) = —2" — 2.
D

Then the first two summations tell us that for part of the function f(v) is inde-
pendent of variable z,,_; and the second two indicate that for part of the function

f(v) contains @ x,_;. This indicates that the solution must be of the form

f(X) = (X))@ g(X)
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where f*(X) is independent of z,,_; and ¢g(X) contains z,,_;. The same process is
then applied to the other known coefficients, C(7, ,—1) = C(7,,) = 0. There are two

possible solutions:

Solution 1

Tp—1 Tn Tn n—1

Sfw) x fly@T) =20 =20 = _9n
zA:f(W)Xf(UQ@T) _9n — _9n  _on
if(vz%)xf(vs@ﬂ —_on  —o9n  —on
éf(m)xf(m@?') — _on —_9n — _9n

The above is obtained for g(X) = z1 A xs.

Solution 2

Tp—1 Tn Tn n—1

S fw) x frn @®7) =-27 =-—9n = _9n
EA:f(W) X flop@®r) =—20 =20 =2n
ZB:f(vz) X flos@7) =2 =-—2¢ =2n
éf(m) X floy®T) =2 =20 =20

The above is obtained for g(X) = x1 V zs.

Theorems 3.8 and 3.9 are put to various uses in Chapter 7.

3.5.5 Relating Coeflicients of Different Orders

This section makes an observation about the autocorrelation coefficients that has

the potential for use in their computation. Although it is not possible to directly
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compute one autocorrelation coefficient from the final values of any other coefficients,
it is possible to make use of intermediate sum terms from the computation other
coefficients in computing additional coefficients.

In {+1,—1} encoding there exist the properties

flz)=f(y) & fz) x f(y) =1

and
f(@) # fly) & f(z) x f(y) = -1

Therefore if we have three values f(z), f(y) and f(z) then

f(@) x fly) x f(x) x f(z) = f(x) x f(z) x fy) x f(2)
=1x f(y) x f(2)
= f(y) x f(2).

The autocorrelation function may be expanded as follows:

2" —1

C(r) = Zof(v) X flveT)

=[fO)x fOen]+[f()x fAe7)]+ - +[f2"=1) x f2" -1 T)].

If the individual product terms of the summations for various values of 7 are stored,
they then can be combined (multiplied) to produce products belonging to summations
for other values of 7.

For example, given a three-variable function f(X) as defined in Table 3.1, the

summations for the three first-order coefficients for f(X) are

C(001) =ab+ba+cd+dc+ef+ fe+ gh+hg
= 2(ab+cd+ef + gh)

C(010) =2(ac+bd+eg+ fh)

C(100) =2(ae+bf +cg + dh).
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w3722 | f(X)
000 a
001 b
010 c
011 d
100 e
101 f
110 g
111 h

Table 3.1. A generic three-variable function f(X) with unknown outputs.
Examination of the products in the summation for C'(011)

C(011) =2(ad+ bc+eh+ fh)

shows that this can be rewritten as a combination of products from C(001) and

C(010) using the properties defined at the start of this section:

C(011) =2(ad +bc+eh+ fh)
2(ab(ac + bd) + ef(eg + fh))
2(ac(ab + cd) + eg(ef + gh))

OR

or other combinations of the product terms from C(001) and C(010). Similarly,
given that C'(111) = 2(ah + bg + cf + de), C(011) can be computed as C(011) =
2(ah(ae+dh)+cf(bf +cg)) or other combinations of terms from C'(100) and C(111).

Based on this example there is a clear connection between the different coefficient

values. The relationship can be generalized as follows in Theorem 3.10.

Theorem 3.10 If 7, = 7, ® 7, then C(7,) can be computed from the intermediate

products of C(1;) and C (7).

Proof. The proof of this theorem also makes use of various properties of the XOR
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operator:
if a=06c then

c=a®band

b=a®ec.
Additionally,

a®a=bh

Given
on_1

Clra) = 3 fva) x f(v; & )

Cr) =3 flu) x f(v,@7,)

vy =0

2" —1

C(r.) = Z fv) X f(v. @)

v,=0

and

T, =T DTy

then for the above relationship to be true, for every assignment to v, there must exist

an expression

fvy) X flvy ®7) @ fve) X f(ve @ 72)

such that
1. two of the terms are equal and thus cancel, and
2. of the other two terms,
one of the terms is equal to f(v,) and

the other term is equal to f(v, @ z).

Since a = b = f(a) = f(b) we reduce this to demonstrating that 3 v, x (v, ® 7,) @

vz X (vgy ® 7,) with the required properties.
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There are two basic options: either v, = v, or v, # v,.
1. If vy = v, then
vy & 7y = v, and
Vyp DTy =V, D Ty
These can be combined as follows
Ve DTy =0y BTy BT,
Ve DUy BT, =Ty BT,
Ty =Ty DT,
T, =Ty DTz
2. If v, = v, then either v, ® 7, = v, or v, ® 7, = vy.
(a) vy ® 7, = v, means that either v, = v, or v, =v, ® z.

i. vy = v, means that v, ® 7, = v, @ z. Combine the two to get

Ve BT =0, DT,

Vp BVy =T, DT,

using v, @ 7, = v, gives
Ty =T DT,

ii. vy =wv, ® 7, means that v, ® 7, = v,. Combine the two to get

Vy =V, DT, DT,
Vy DU =T, DT,
Ty =T DT,
(b) v, ®7, = v, means that either v, = v, and v, @7y = v, BT, or v, =V, BT,
and vy ® 7, = v,. Arguments similar to those above show that both

situations result in 7, ® 7, = 7.

Not only is it possible to reuse the individual products, but it is also possible to

use certain sums of the product terms in subsequent coefficient computations. This
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is apparent in the first example where

C(001) =2(ab+cd+ef+ gh)
(ab+ cd) + (ef + gh))
ac+bd + eg + fh)

ad + bc+ eh + fg)

2
2
C(010) =2
C(011) =2

2

~ /N /N N

= 2(ac(ab + cd) + eg(ef + gh))

(ab + cd) and (ef + gh) have already been computed and the final result of each
sum can be used in the computation of C'(011). There is the potential to reduce the
number of computations required to to compute C'(011) from 1+ 2"~! multiplications
and 2"~! — 1 additions to 1+ 2"~2 multiplications and 2"~2 — 1 additions, a reduction
by half.

However, there are a number of problems with incorporating this technique into a
computation method. The first problem is that once some grouping of a coefficient’s
intermediate products has been used in a subsequent coefficient’s computation, that
grouping will never be of use for any other computation. Since there are n first-order
coefficients and <Z> second-order coefficients, for n > 3 there will be more second-
order coefficients than first-order, and thus there are not enough groupings to reuse.
Following this pattern, it would be necessary to perform all 2" computations for the
third-order coefficients in order to achieve savings of approximately half (Z) of the
fourth-order coefficients, and so on. Thus the computations for some of the higher-
order coefficients could be reduced by half, but at best every odd-order would require
the full number of computations.

The second problem is in the overhead required. Storage for the intermediate
product terms and for pair-wise sums are required for all n first-order coefficients while
computation of the first and second-order coefficients are performed. A determination
of which pairs to combine must be made, and then storage must be reclaimed for
the next set of computations. There will be a small amount of memory overhead,

but more importantly, a large amount of computation overhead. As is shown in
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Chapter 5 the use of decision diagrams as data structures can generate the coefficients
so quickly that any technique not making use of this approach, even with some savings
in computation, cannot compete.

The third problem is that all 2" outputs of the function are required. Most
practical computation techniques use only the on-set of the function, in most cases
greatly reducing the number of values that must be taken into account. It would be

very difficult for this technique to incorporate this.

3.6 Conclusion

This chapter derives a number of new results demonstrating that the autocorrelation
coefficients have some very useful properties that can be used in the identification of
various types of switching functions. The types of functions identified include sparse
functions and degenerate functions including the constant functions. Knowledge that
a function is sparse or degenerate is very useful in logic synthesis, as it allows the
designer to approach the synthesis process in a manner tailored to the type of function.

The chapter also proves theorems relating the first and second order autocorre-
lation coefficients to the presence of XOR logic within a function. Given the recent
interest in three-level function representations and extensions to BDDs such as KDDs,
determining the existence of XOR logic within a function clearly has many applica-
tions. These applications are discussed further in Chapter 7, with some implementa-
tions based on these properties that show very promising results.

Finally, the investigations in this chapter were partially motivated by the need
for an efficient computation technique. This chapter investigates whether or not
computation of a coefficient could be performed by reusing either all or part of the

sum comprising the value of a previously computed technique.



Chapter 4

Symmetries and Autocorrelation

Coefficients

4.1 Introduction

Symmetries have been used in many types of logic synthesis applications, as referenced
in Chapter 2. For these uses, it is desirable to identify the existence of a particular
symmetry before beginning the synthesis process. Section 4.5 explains how it is
possible to determine a test for the existence of many symmetries, based on subsets
of the spectral coefficients.

Much of the work in this chapter grew from an investigation into whether the
autocorrelation coefficients could be used to develop a similar test for the existence
of symmetries. This was hypothesized based on the fact that the two types of coeffi-
cients are closely related; in fact, Equation 3.1 demonstrates how the autocorrelation
coefficients may be computed from the spectral coefficients. Although we cannot de-
termine a test for the symmetries based on the autocorrelation coefficients, certain
patterns in the autocorrelation coefficients are a required condition for the existence
of symmetries. That is, the autocorrelation coefficients will always take on certain
patterns if the symmetries exist within the function, but properties other than the
existence of symmetries may also result in the same autocorrelation patterns. The

investigations into this are detailed in Sections 4.2, 4.3 and 4.4, and further expla-
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nations into why we cannot test for symmetries using the autocorrelation coefficients
are given in Section 4.5.

Also during these investigations a new type of symmetry was discovered. We label
these new symmetries antisymmetries. One of the popular uses of symmetries as cited
in Chapter 2 is in the reduction of decision diagrams, and it is clear that the anti-
symmetries have great potential in this area. Having discovered these symmetries, we
derive spectral conditions and tests for them and detail the resulting autocorrelation

coefficient properties.

4.2 Totally Symmetric Functions

A totally symmetric function is a function for which the output is unchanged for any
permutation of the input variables. Majority functions fall into this class of function,
and many totally symmetric functions may be realized using a single vertex or ma-
jority gate [11]. Additionally, totally symmetric functions can be represented using
ROBDDs that are at worst quadratic and at best linear in the number of inputs [3].

Figure 4.1 shows an example of a Boolean function that is totally symmetric.

2922 00 01 11 10

00ja|b|c|b
01 b|c|d]|c
11l c|d|e|d
10(b|c|d|c

Figure 4.1. The Karnaugh map for a totally symmetric 4-variable Boolean function.

Theorem 4.1 If a function f(X) is totally symmetric then the autocorrelation coef-
ficients B(t) = B(7') V 7 and 7' such that || = |7'| .

LAll theorems and proofs in this chapter make use of the notation defined in Section 3.2.
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Proof.
Let us define a totally symmetric function f(X). Then by definition V v,,v, €
{0,...,2" — 1}, f(va) = f(vp) if and only if |v,| = |vp|. Then

2n—1

B(r) = Zf )X floT)

= Y f)yxflwer) + 3 flo)yx floer) +--- + > flv)x flveT)
[v[=0 v|=1 lv|=n
= f(0) x f(T)JrnZ_:1 Lf([v] =r); foen)]+fR =) x f"—1@71)

and similarly for B(7"). By definition, f(7) = f(7') and so

f(0) x f(r) = f(0) x f(r') and
fer-1)xfe"—-1e7r)=f2"-1)x f2"—-1e& 7).

In comparing individual sum terms for the remaining part of the summation it is
clear that f(v & 7) may not always be equal to f(v @ 7'). For example, let v = 1,
T=1and 7" =2 then v® 7 =0 and v & 7" = 3. However, within the sum over
lv| =1 v =2 will also be assigned. Since within a summation over |v| = r for some r
v takes on all possible values with weight r, then for some value v; in the summation
there is always another value v; for which v; @ 7 = v; @ 7’. Then

Y fver) =3 fver)

‘U|:7' |1}|:r

and so B(1) = B(7').

4.3 (Non)Equivalence Symmetries

As indicated in Chapter 2, totally symmetric functions are extremely rare. We there-

fore examine a less restrictive form of symmetries, symmetries of degree 2. Of the
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symmetries of degree 2 we first examine the equivalence and nonequivalence symme-
tries.
A function

f(@n, e, Tiy vy T, .., 1) 18 said to possess an equivalence symmetry E{x;, z;} if

f(@n, 0,0, .0sm1) = f(Xn, -y 1, oy 1, o 1)

and is said to possess a nonequivalence symmetry N{z;,z;} if

f@n, 0,1, i) = f(2, oo 1,00, 0, 0 27).

The easiest way to illustrate such symmetries is through the use of Karnaugh maps.
For example, for the equivalence symmetry E{z;, 25}, we can draw a Karnaugh map

for any function with this symmetry as follows:

2535200 01 11 10

00ja|e|alz

01lb|f|Db
1llc|g|c |k
100d|h|d|!

The nonequivalence symmetry N{z1, x5} has a similar Karnaugh map:

2535200 01 11 10

00| e|al|:

01 f j|b
11lglc|k|c
100h|d|l]|d

Based on these examples we hypothesize that the existence of (non)equivalence sym-

metries are reflected in a function’s autocorrelation coefficients.

Theorem 4.2 B(7 -,) = B(753.,), .7 € {1,....,n} and i # j if a function f(X) pos-

ija ija

sesses an equivalence symmetry E{x;, x;} or a nonequivalence symmetry N{z;,x;}.
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Proof.

Without loss of generality let us define a function f(X) such that f(X) possesses

the equivalence symmetry E{x,,z,_1}. Then if

A € 0to2"2—1 (0000...0011)
B € 22 {0 2"~1 —1 (0100...0111)

C € 2 to 2" — 272 — 1 (1000...1011)
D € 2" —2"2 {5 2" —1 (1100...1111)?

the resulting computation for the autocorrelation coefficients is

and similarly for B(7; n—1 a)-

2" —1

W Ta) = Zf

= > f(v)

v €A

+ > f(v)

v € C

AN Ai’l)@’i’nm

v

€

€

B=verT,;

]
Q

C=v®T,;

i—“

DiU@Tnm

A:>U@Tﬁn_1a
B=v® 1% n-1a
C:>’U@Tﬁn_1a

D:U@Tﬁn_la

XfUGBTnn la)

Xfo@T, mmga) + 2 f0)X f0BT, 777 &)

v € B

Xfo@T, amga) + 2, fO)X f0@T, 77 4)

v €D
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For the remainder of this proof we denote f(v) for v € A as f(A), and similarly for
B,C, and D. Then

B(r,5mia) = 2 f(A)xf(CO)+ X f(B)x f(D)

v €A v €B

+ > fO)x f(A) + > f(D) x f(B)

v EeC v €D

= 23 f(A)xf(C)+2 3 f(B)x f(D)

v €E A v € B

and

B(tan-1a) = », f(A)x f(B)+ Y f(B)x f(A)

v EA v € B

+ 2 fC)x f(D)+ > f(D)x f(C)

v eC v €D

= 23 f(A)xf(B)+2 3 f(C)x f(D).

v €A v € B

By definition, f(A) = f(D), and so
B(t,am1a) = 2, f(D)x f(C)+2 > f(B)x f(A)
= B(Tﬁ n—1 a)-

If f(X) contains a nonequivalence symmetry N{z,,z, 1} then f(B) = f(C) and so

B(r,s1a) = 23 f(A)xf(B)+2 ) f(C)x f(D)

v € A v € B

= B(Tﬁ n—1 ae)-

Corollary 4.2.1 C(7 5,) = C(T3;4), 1,7 € {1,...,n} if the function f(X) possesses

ija

an equivalence symmetry E{x;,x;} or a nonequivalence symmetry N{z;, z;}.
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Proof. The encoding of f(X) does not affect the above proof. |

4.4 Single Variable Symmetries

The autocorrelation coefficients of Boolean functions with single variable symmetries
also have identifiable properties. A function is said to possess a single variable sym-

metry S{z;|z;} if
f@n, 1,0, 21) = f(Zn, oy 1, 1, o 21)
and is said to possess a single variable symmetry S{z;|z;} if
f(@n,0,..,0,..c,21) = f(Xn, ., 0,05 1, oy 7).

Figure 4.2 shows the Karnaugh maps for two Boolean functions, each demonstrating

one type of single variable symmetry.

zs2:2 00 01 11 10 zs#22 00 01 11 10
00le|z|a|a 00la|ale|
01| f b|b 01lb|b]|f
111 g | k C 1llc|c|g |k
100p|1|d|d 100d|d|h|l

S{za|z1} S{z2|T1}

f(1: 0,373,374) = f(la 15333,374) f(O: 0,373,374) = f(O, 1,373,374)

Figure 4.2. The definitions and Karnaugh maps of two types of single variable sym-
metries for 4-variable Boolean functions.
Theorem 4.3 B(7 ;3,) = B(T ija), i, € {l.n} and i # j if the function f(X)

possesses a single variable symmetry S{z;|z;} or S{z;|T;}.
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Proof.

Without loss of generality let us define a function f(X) such that f(X) possesses
the single variable symmetry S{z,_|z,}. We again use the ranges A, B,C and D
and notation f(A), f(B), f(C) and f(D) as defined in the previous section.

v €E A v®T, =5, € C,
v € B=2v®T1,;—5, € D,
v €E C=2v®T,7 7, € A4, and

v € DiU@Tnma € B

v E A= vP T p1a € D,
vV €E B=20® T n-1a € C,
v € C=2v®T,n1a € B, and

v €E D=20v® T 14 € A,

and so
B(t,7=1a) = ZAf(A)Xf(C)+ ZBf(B)Xf(D)
+ > f(C)x f(A)+ Y f(D)x f(B)
= 2 f(Axf(C)+2 ) f(B)x f(D)
and

B(tan-1a) = Y f(A)xfD)+ X f(B)x f(C)
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By definition, f(C) = f(D) and so

B(r,5=1a) = 23 f(A)x f(D)+2 3 f(B)x f(C)

v EA v € B

= B(Tn n—1 a)-

If f(X) possesses S{z,-1|T,} then f(A) = f(B) and so

B(r,7=14) = 22 f(B)x f(C)+2 > f(A) x f(D)

v EA v € B

= B(Tn n—1 a)-

Again, the proof is equivalent for {+1, —1} encoding.

4.5 Testing for Symmetries

According to [5] there exist a set of tests that can be performed on subsets of a func-
tion’s spectral coefficients to determine the existence of a particular type of symmetry.

These tests are described in Table 4.1 using the following notation:
S? includes all spectral coefficients that involve neither of z; or x;,
S includes all spectral coefficients that involve z; but not z;,
S? includes all spectral coefficients that involve z; but not z;, and

S? includes all spectral coefficents that involve both z; and z;.

The theorems in Sections 4.2, 4.3 and 4.4 are the results of attempting to determine
similar tests for symmetries based on subsets of the autocorrelation coefficients. As
these demonstrate, the autocorrelation coefficients provide necessary conditions for
the existence of the various symmetries. However, it can be shown that these con-
ditions on the autocorrelation coefficients are not sufficient for the existence of the

symmetries. A 3-variable example having the required pattern of B(7 5,) = B(7 7;,)
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Symmetry Test

S{zilz;} S'+52=0
S{z;lT;} S*+53=0
FE{z;z;} S'+5%2=0
N{z;,z;} S'—S52=0
S{zjlz;} S*=S8=0
S{zilz;} S'=85=0

Table 4.1. Spectral symmetry tests for symmetries in {z;,z;}, i < j.

100 01 11 10
000]01]1
11011(110

Figure 4.3. An ezample of a 3-variable function that has B(7y,) = B(Ts3,) but does

not contain either N{x9,z3} or E{zs,x3}

but not possessing either E{z;,z;} or N{z;,z,} is shown in Figure 4.3. This is due
to the loss of sign information that is present in the spectral coefficients, but is lost

in the autocorrelation coefficients.

4.6 Antisymmetries

Definition

In this section we introduce six new types of symmetries called antisymmetries. An-
tisymmetries are thus named because instead of identifying two equal parts of the
function’s Karnaugh map they identify two parts of the Karnaugh map that are the
exact inverse. With the help of inverters, this has great potential in the application

of decision diagram reduction.
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Notation Definition

E{zi,z;}  [(Tnyy0,0,..,21) = f(Tpyooy 1,1, .0.21)
N{zi,z;}  f(Tnyy 0,1, ,21) = f(Tpy ey 1,0, ..21)
S{xilz;} f(@n, 1,1, 21) = f(2n, -, 0,1, ..27)
Szl f@n, L1, 2) = f(2n, .., 1,0, ..27)
S{zi|z;}  f(zny -y 1,0,.,21) = f(zpy -, 0,0, ...xl)
S{z|z:} f(xn, 0,1, ., 21) = f(2n, -, 0,0, ...27)

Table 4.2. Definitions and notation for the antisymmetries of degree two.

Spectral Conditions on Functions possessing Antisymmetries

Like the equivalence, non-equivalence, and single-variable symmetries, there are tests
that may be performed on the function’s spectral coefficients that determine whether
or not the symmetry in question is present. In this section we derive similar conditions

and tests for the antisymmetries.

Anti-equivalence Symmetries

Definition 4.1 A function f(X) is said to possess an anti-equivalence symmetry

E{z;,z;} if and only if

f(.’l?n, ceey 0, ceey 0, ceey .Il) = f(.Tn, veey ]_, ey 1, . 1171).

Derivation of Spectral Tests and Conditions

For this and subsequent derivations we use the following notation:
(0,0, 29, ...,x1) is denoted fo,
f(0,1,2, o,...,x1) is denoted f,
f(1,0, 2,9, ...,x1) is denoted fo and
( )i

1,1,z,_9,...,21) is denoted f5.
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Additionally, a similar notation is used when referring to the spectral coefficients for

these functions:

The spectral coefficient vector for fy is denoted S,
the spectral coefficient vector for f; is denoted St
the spectral coefficient vector for fs is denoted S, and

the spectral coefficient vector for f3 is denoted Ss.

Without loss of generality we choose ¢+ = n and j = n — 1. The anti-equivalence
symmetry may be expressed using the above notation as f; = f3, which in turn may
be expressed in terms of the spectral coefficients of fy and f; as Sy = —S3. We
can use the spectral vector of the function in this way because there is no loss of
information in the transformation between the outputs of a Boolean function and its
spectral coefficients, and we know that negating a function has the effect of negating
all of its spectral coefficients [5].
[5] also shows that the subsets S9, S' S? and S? are related to Sy, S1,So, and S;

in the following way:

4S5y =S+ St + 52+ 53

48, =850 -8t + 52— 53

48, =S50+ 8t — 52— 53

483 =8 -8t — 5?2+ 53

(4.1)

From this we can determine that the condition for the antisymmetry E{x,_1,z,} to

exist is Sy = —S5 and the test for its existence is S = —S3.

Anti-nonequivalence Symmetries

Definition 4.2 A function f(X) is said to possess an anti-nonequivalence symmetry

N{z;,z;} if and only if

f@n, 0,1, 21) = f(Zn, .oy 1, .., 0, oy 21).
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Derivation of Spectral Tests and Conditions

Again, without loss of generality we choose z; = n and z; = n — 1. Then we have

fi = f» and so S; = —S,. From this we can determine that the condition for the
antisymmetry N{z,_i,7,} to exist is S; = —S, and the test for its existence is
S0 = 53,

Anti-single variable Symmetries in z; over z;

Definition 4.3 A function f(X) is said to possess an anti-single variable symmetry

S{xz;|z;}, i < j if and only if

fxn, 0,1, x1) = f(Zn, oy 1y oy 1, ey 2).

Derivation of Spectral Tests and Conditions

The following is the derivation of both the condition and test for the antisymmetry’s

existence, assuming a choice of ; =n and z; =n — 1:

hi=F
:>51:—S3
= S0=4!

Anti-single variable Symmetry in z; over 7;

Definition 4.4 A function f(X) is said to possess an anti-single variable symmetry

S{z;|Z:}, i < j if and only if

f(xny.y0,..,0,...,21) = f(Zn, .oy 1, .., 0, oy 7).
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Derivation of Spectral Tests and Conditions

The following is the derivation of both the condition and test for the antisymmetry’s

existence, assuming a choice of ; =n and z; =n — 1:

fo=F
:>S():—SQ
= S50=-g6!

Anti-single variable Symmetry in z; over z;

Definition 4.5 A function f(X) is said to possess an anti-single variable symmetry

S{z;|z;}, i < j if and only if

f(.’l?n, ceey 1, ceey 0, ceey .Il) = f(.Tn, veey ]_, ey 1, veey 1171).

Derivation of Spectral Tests and Conditions

The following is the derivation of both the condition and test for the antisymmetry’s

existence, assuming a choice of z; =n — 1 and z; = n:

f2:f3
= Sy =-—35;
= 80 =52

Anti-single variable Symmetry in z; over 7;

Definition 4.6 A function f(X) is said to possess an anti-single variable symmetry

S{zi|z;}, i < j if and only if

f(@n,..0,..,0,...,21) = f(Tn, ..., 0, oy 1, ooy 1)
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Deriviation of Spectral Tests and Conditions

The following is the derivation of both the condition and test for the antisymmetry’s

existence, assuming a choice of z; =n — 1 and z; = n:

f():fl
= S =-51
= S50=-52

Summary of Conditions and Tests for the Antisymmetries of Degree Two
Table 4.3 summarizes the results derived above.

Symmetry Condition Test
E{zj,z;} So=-5; S°=-53
N{zi,z;}  So =253 S0 =63
S{xilz;}  Si=-S3 S'=5!
S{zjlz;i}  Sa=-S3 S°=5?
S{zi|z;}  So=-S S°=-5
S{z;|T:i}  So=-S5 S°=-52

Table 4.3. Spectral conditions and tests for the antisymmetries of degree two.

Properties of Autocorrelation Coefficients for Functions pos-

sessing Antisymmetries

As is the case for the regular symmetries of degree 2, the existence of an antisymmetry
imposes certain restrictions on the values of the autocorrelation coefficients. These
restrictions are initially defined using {+1, —1} encoding of the function, as they

involve negation of the corresponding coefficients.
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Theorem 4.4 C(7,,) = —C(Tja), 4,5 € {1,...,n} and i # j if the function f(X)
possesses an anti-equivalence symmetry E{x;, x;} or an anti-nonequivalence symme-

try N{z;, z;}.

Proof.

Without loss of generality let us define a function f(X) such that f(X) possesses
the anti-equivalence symmetry E{x,,x, 1}. We will again use the ranges A4, ..., D

and the corresponding notation f(A),..., f(D) as defined in Section 4.3. As before,
v € A= v, € C,
v € B=véeT, € D,
velC=vdrn € A and
v € D=>véTr, € B
while
v € A= v 11 € B,
v € B=>vdTr, 1 € A,
v € C=v®T1,-1 € D, and
v € D=>v®dT7, 1 € C,and then

Clraa) = X [A)xf(C)+ > f(B)x f(D)

v EA v € B

+ 2 fO)x f(A)+ X f(D) x f(B)

veC v €D

= 23 f(A)xf(C)+2 ) f(B)x f(D)

vEA v €B
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while

Clta1a) = X f(A)x f(B)+ > f(B) x f(4)

+ 2 fO)x f(D)+ > f(D)x f(C)

v €C v € D

= 23 f(A)xf(B)+2 3 f(C)x f(D).

By definition, f(A) = —f(D), so

Clma) = =23 f(D)x f(C)=2 3 f(B) x f(A4)

v EA v €B

= _C(Tn—l a)-

If f(X) contains an anti-nonequivalence symmetry N{z,,z,_1} then f(B) = —f(C)

and so
ClTna) = —2 ZAf(A) x f(B) -2 ZBf(C) x f(D)
= _C(Tn—l a)-

Corollary 4.4.1 If C(r) = —C(7') then
B(t) =2k —2"' — B(7).
This is determined by using Equation 3.4, C'(7) = 2" — 4k 4+ 4B(7).
Theorem 4.5 C(7 ;3,) = —C(7 4a), 1, € {1,...,n} and i # j if the function f(X)
possesses an anti-single variable symmetry S{z;|z;} or S{z;|T;}.

Proof.
Without loss of generality let us define a function f(X) such that f(X) possesses

the anti-single variable symmetry S{z, |z,}. Then,
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veEA=2v®1, 7,5, € C,

v €E B=vdrT,

7
m
S

n—1 «

v €E C=>v®T, —

i
m
=
&
=
a

a

v € D=0v®T, 505, € B
while

vV €E A= 0D T pn1a € D

v € B=2v® T, 14 € C,

v € C=>v®T, n1a € B, and

v €E D=>0v®T, p_1a € A, and then

Clruaaa) = 2 fA)XfC)+ X f(B)x f(D)

v EA v € B

+ 2 f(C) x f(A)+ > f(D) x f(B)

v e C v €D

= 23 fA)xf(C)+2 3 f(B)x f(D)

v €A v €B

while

Cltan-1a) = X fA)xf(D)+ X f(B) x f(C)

v €A v € B

+ 2 f(C)x f(B)+ X f(D)x f(A)

veC veED

= 23 f(A)xfD)+2 3> f(B)x f(C).

v EA v €B

By definition, f(C) = —f(D), so

Clramma) = =22 f(Axf(D)=2 3 f(B)x f(C)

v EA v €B

= _C(Tn n—1 a)-
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If f(X) contains the anti-single variable symmetry S{z,_1|Z,} then f(A4) = —f(C)

and so

Clrama) = =223 f(A)xf(B)=2 3 f(C)x f(D)

v € A v € B

= _C(Tn n—1 a)-

Corollary 4.5.1 If C(7, 7=7 o) = —C(T0 n—1 o) then

Blr, — ) =2k — 2" — B(t n_1 o).

n n—1a«a

This is determined by using Equation 3.4, C(7) = 2" — 4k + 4B(7).

4.7 Applications

The use of symmetries to minimize Binary Decision Diagram (BDD) or related rep-
resentations is well-documented [38, 4, 39, 40, 3]. Much research has demonstrated
that a function’s symmetry properties may reduce the size of the BDD or related data
structure such as Functional Decision Diagrams (FDDs) [37, 39, 41, 42]. In particular,
Scholl et. al. present a method of BDD minimization based on symmetries [39]. This
method is based on heuristics which identify partial symmetries within a function. It
is our hypothesis that such heuristics can be expanded to incorporate the antisym-
metries that we have defined. This would allow identification of situations where an
antisymmetric portion of a function could be shared within the structure of the BDD.

Figure 4.4 shows a 4 variable Boolean function possessing E{z3,z,}, and Fig-
ure 4.5 shows the Shannon tree for this function. The branches which can be shared
due to the anti-equivalence symmetry are indicated by the boxes.

An example of how the antisymmetries in a function reduces the complexity of the

function’s logic implementation is shown in Figures 4.6 and 4.7. Function f, shown
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zire 00 01 11 10
00[0|0]1|1
01|10
11)1]1

o | O
—_

100010(110

Figure 4.5. A Shannon tree showing two branches which display an anti-equivalence
symmetry. Note that the left edge from each node is the 0 edge while the right is the
1 edge.

on the left in Figures 4.6 and 4.7, possesses the antisymmetry S{z4|z3}. Knowing
this, we can manipulate the function in such a way that results in a function of
a reduced size, plus some additional logic to convert the reduced function into the
desired function. The reduced function is shown on the right in Figures 4.6 and 4.7.
In this figure, clearly f(X) is a much simpler function than f*(X) as f(X) requires
4 OR gates and 12 AND gates while f*(X) requires only 2 OR gates and 5 AND
gates (16 vs 7 2-input gates). The advantage of using f* to implement the function
is that there is a greatly reduced number of blocks in the Karnaugh-map. This leads

to a smaller number of overall inputs being required, as well as possibly improving
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Figure 4.6. a) the Karnaugh map for f(X) = T1Toxsxs V T1T2T4 V T1T3T4 V

T1Toy V T1Xox3T4. b) the Karnaugh map for f*(X) = 21T2 V 2124 V T12223T;.
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Figure 4.7. a) Representation of f(X). b) Representation of f(X) in terms
of a reduced function, f*(X).

routing requirements on an FPGA-type implementation. Additionally, f* clearly has
many more symmetries that can be identified, and requires fewer than half of the
gates than does the implementation of f. Even taking into account the additional

logic required to implement f based on f*, there is still a savings of 6 gates.
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4.8 Conclusion

This chapter discusses in detail the implications that various symmetries have on
the values of the autocorrelation coefficients. In particular, theorems describing the
resulting autocorrelation coeflicient patterns are proven for completely symmetric
functions, and for functions possessing equivalence, nonequivalence, and single vari-
able symmetries. During the course of these investigations it was determined that the
autocorrelation coefficients alone do not provide enough information to identify the
existence of symmetries. This is due to the loss of sign information when computing
the autocorrelation coefficients from the spectral coefficients (see Equation 3.1).
However, another contribution of this chapter is the introduction of antisymme-
tries. This new type of symmetry is defined, and spectral tests and conditions similar
to those given for the regular symmetries in [5] are derived. In addition, theorems
describing the resulting autocorrelation coefficient patterns are also proven for the six
types of antisymmetries. Antisymmetries have clear applications in various types of
logic synthesis applications, particularly in the reduction of decision diagrams. Some

examples are given to provide some idea of the direction this work may take.



Chapter 5

Computation of the

Autocorrelation Coeflicients

5.1 Introduction

B(r) = Z_Of(v) x fwer) (2.4)

The use of Equation 2.4 to compute the autocorrelation coefficients requires on the
order of 2" operations to compute each of the 2" coefficients. For even small values of
n this has been, until recently, infeasible. In an attempt to solve this problem, tech-
niques that reduce the required numbers of operations have been developed by various
researchers. Additionally, as computation resources increase in memory availability
and speed it is becoming possible to make use of some of the more compute-intensive
techniques. However, a run-time that is exponential in n is still very limiting, and is
likely the reason that investigations into the uses and properties of the autocorrelation
coefficients have not been previously addressed.

In this chapter we examine implementations of the existing computation tech-
niques and we present two new computation techniques. These new approaches are
based on DDs, and make use of the inherent efficiency of this data structure. Other
approaches that we have implemented and tested include the straightforward im-

plementations of Equation 2.4 and Equation 3.1, a method based on the function’s
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disjoint cube-list, and techniques for estimating the autocorrelation coefficient values.
Each of these approaches have been tested on a variety of benchmark sizes measured
in the number of inputs, n. One may argue that the use of a single coefficient is lim-
ited, and that a technique is only useful if it can compute all 2" coefficients relatively
quickly. However, this and previous work [43] has shown that a small subset of the
coefficients can be used in various logic synthesis applications. Clearly there are two
needs to satisfy: the computation of small numbers of arbitrary coefficients, and the
computation of all 2" coefficients. We consequently evaluate the performance of each
technique in computing a single coefficient as well as the performance in computing
all 2™ coefficients. We find that many of the techniques presented in this work are
more than fast enough to satisfy the first requirement for even benchmarks with over

100 inputs.

5.2 Brute Force

Our investigation into computation techniques began with a straightforward imple-
mentation into the autocorrelation function to the switching function’s 2" inputs.
This use of Equation 2.4 is labeled the “brute force” method. If the equation is di-
rectly implemented with no attempt to improve the efficiency, computation of each
of the 2™ coefficients requires 2" multiplications and 2" — 1 addition operations. The
advantage of this method is that either a single coefficient or all 2" coefficients may
be computed as needed. The only memory requirements are for space to hold the

function’s truth table (or some reduced representation of it).

Improvements

There are a few ways that this can be improved upon.
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Computing B(0)

The zero-order coefficient, B(0) or C'(0), need not take 2™-plus operations. B(0) is
the number of true minterms (), and so is a straightforward count. The operations
required for this is dependent on the function representation. Computation of C(0)

is not required as it is always 2". This saves computation of one of the 2" coefficients.

Half the Products

Within the summation, it is not strictly necessary to compute 2" products. Since
f(v) = f(v®T@T) it can be shown that only half of the products need be computed.

For example,
an—1-1

B =2 Y f(v) x fve 2
v=0
Unfortunately, depending on the value of 7, the values over which the summation
is performed must be adjusted. This causes a large amount of overhead, rendering

the savings of such an approach almost negligible.

Use only the onset

In practice, the above two improvements do not provide any significant savings. In
particular, the overhead required for the second improvement negates any savings
that are achieved. However, it is possible to get significant performance improvement
if only the onset of the function is considered. In general, functions are described
as a list of minterms, usually only the true minterms. If instead of iterating over all
2™ minterms, both true and false, one iterates over only the cubes in the onset then
clearly the number of operations for each coefficient is dependent on the number of
cubes. Note, also that iterating over the cubes instead of the true minterms means

that if a cube contains many minterms quite significant savings can be achieved.



5.3 Wiener-Khinchin Method 98

5.3 Wiener-Khinchin Method

In contrast to the Brute Force method, the Weiner-Khinchin (W-K) method requires
a significant amount of memory storage space. This is because the Brute Force
method may be applied to a representation of the function that consists only of
its onset, while the W-K method will always require storage of all 2" intermediate
spectral coefficients. However, if there is enough memory, the computation of all 2"
autocorrelation coefficients can be performed far faster by this method.

The W-K method makes use of Equation 3.1 (B = 3% x T™ x R?) to compute

on
the autocorrelation coefficients from the spectral coefficients. Using straightforward
matrix multiplication this does not appear to provide any savings over the Brute Force
method. However, when a fast transform algorithm is used for the computation
of R, and then for B, O(n2") operations are required [5]. This technique requires
that all 2" spectral coefficients must be stored, and squared as an intermediate step.
Each of these are then used in the computation of each of the 2" autocorrelation
coefficients, reusing the results of multiplying individual elements where-ever possible

(see Figure 2.12). Because of this, much of the computation savings are lost if we

require only one, or even a small subset of the coefficients.

5.4 Reuse Method

As discussed in Chapter 3 the {+1, —1} autocorrelation coefficients can be computed
from the individual sum products of previously computed coefficients. We refer to
this method of computing the autocorrelation coefficients as the Reuse method as it is
based on the reuse of certain products. However, due to the overhead in determining
which products are available for reuse this technique does not appear to offer any

significant advantages, and so has not been implemented.
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5.5 Decision Diagram Methods

As part of this research two new methods for the computation of the autocorrelation
coefficients were developed. Each of these methods were based on ROBDDs. The
ROBDDs were used as the data structures for storage of the switching function. Both
of the methods described below were implemented using the CUDD decision diagram

package [44].

Brute Force BDD

This technique originated as a very straightforward (hence the label “Brute Force”)
calculation method based on the initial representation of the function as a ROBDD.
Computation of the zero-order coefficient is simply a matter of counting the minterms.
Computation of higher-order coefficients is performed by creating a ROBDD for the
original function and a ROBDD for the function XOR~ed with 7, and then identifying

the common minterms. This requires the following steps:

e For each variable with a 1 in the binary expansion of 7, create a new ROBDD
by taking the original function and replacing that variable with its negative.

Apply the next iteration to the new ROBDD.

e (Call the function represented by the new ROBDD f5, and the original f;.

e Perform the AND operation f; A fo and call the result f;.

e Count the minterms in f3.
The first step in this method has the effect of shifting the function by the variable(s)
of interest. The second step compares the two functions and results in only minterms
that are common in the two functions. The final step counts these minterms, to
give us the autocorrelation coefficient. All of the steps are done very quickly due to

the efficiency of both the ROBDD data structure and to the fast performance of the
CUDD package.
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Recursive

The second DD-based technique developed in this work is a recursive technique that
requires only one ROBDD. For each coefficient required, a recursive comparison is
done of the appropriate outputs of the function, as represented by the ROBDD. For
instance, for the value 7 = 100 where the variables for a function f are ordered
Tox1T2, the algorithm will compare the left subtree of xy with the right subtree of xy.
Where any 1’s match in position in the left and right subtrees the value 2 is added
to the coeflicient being calculated. In this way the reduced properties of the ROBDD
are used.

Both of the DD-based techniques are designed primarily for the computation of a
single coefficient. Computation of any set of the coefficients requires that the entire
process be repeated, and the only savings gained are in the fact that the original

ROBDD need only be built once.

5.6 Disjoint Cubes Method

A method we refer to as the Disjoint Cubes method was introduced in [45]. It uses a
list of cubes as the representation of the function. This method takes into account two
things: first of all, that not all of the 2" input combinations are in the on-set of the
function, and secondly, that a single cube may represent more than one input combi-
nation through the use of don’t care values, meaning that the value of that variable
has no effect on the output for the given combination of the other input variables.
This technique of computing the autocorrelation coefficients from a list of disjoint
cubes is based on a technique for calculating the Rademacher-Walsh coefficients de-
scribed in [46], and is also very similar to a technique previously published by Varma
and Trachtenburg [8, 47]. Briefly, this technique requires a disjoint set of cubes. The
algorithm then requires summing the weights, or contributions that each cube makes

to the autocorrelation coefficient being computed. See [47] for further details. In [45]
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the technique was limited to computation of only first order coefficients; however, for
the purposes of this dissertation the technique was modified to enable computation of
any autocorrelation coefficient. The algorithm followed for computing each coefficient

is as follows:

e For the computation of B(0), the contribution of each cube to the value of the
coefficient is 2% where where d; is the number of don’t care values in the i**

cube.

e For all other coefficients, the contribution of each cube to coefficient u is 2% if
any variable in a position corresponding to a 1 in the binary expansion of u is
a don’t care value in the ** cube. If the variable has a 1 or a 0, then the cube
must be compared with all the other cubes. For each other cube found where
the original cube is the “same” as the other cube with only the variable(s) at

positions where u is 1 are changed, then the contribution of the original cube is
contribution = contribution + 2 x 29

where dg;, is the number of don’t cares that are in the same position in both the

original cube (cube a) and the cube it is being compared to (cube b).

The algorithm described in [48] was used in finding the disjoint list of cubes from
the input list. Again, this technique is mainly designed for the computation of a
single coefficient; it does not take advantage of prior computations in order to save
time in latter computations. The only savings that are achieved in computing more

than a single coefficient is that the disjoint cube list need only be computed once.

5.7 Estimation Methods

Due to the complexity involved in computing the autocorrelation coefficients an alter-
nate approach is to estimate their values, as presented in [49] and [50]. The technique

presented in these papers makes use of a technique introduced by Karp et. al. [51] for
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approximating the number of satisfying assignments for a Boolean function. Briefly,
the method can be applied to a function in sum-of-products form or product-of-sums
form and involves ordering each term (sum or product, depending on the form) arbi-
trarily. For each term a “random” assignment is determined, and this assignment is
then counted if and only if it satisfies no earlier product term (for sum of products)
in the ordering, OR if and only if it fails to satisfy no earlier sum term in the ordering
(for product of sums). Assuming n variables in the function, of which j are literals in
the current term, s total assignments are sampled, and of these, ¢ are counted, then
the estimated size of the equivalence class is

i &
277' ]X_
S

The estimated number of satisfying assignments for the function is given by the sum
of the estimated sizes of the equivalence classes over all the terms in the function. It
is shown in [51] that the total number of samples required to guarantee an accuracy
of 1+ € with a probability of at least 1 — « is
4nIn(2)
€2
This technique is applied to the problem of estimating the autocorrelation coefficients

by creating an expression that represents f A f*, where

F(0) 2 (v u)

and then estimating the number of satisfying assignments for this expression.
Two versions of this were implemented. The first version uses a straightforward

array implementation to store the terms while the second version uses BDDs.

5.8 Comparisons

Each of the above techniques for computing the autocorrelation coefficients have

been implemented in C++ and tested on a variety of benchmarks. For these tests the
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benchmarks were preprocessed to ensure that each had only a single output. They
were then divided into three classes: benchmarks with 10 or fewer inputs, benchmarks
with 11 to 30 inputs, and benchmarks with greater than 30 inputs. This was done
because it was clear that some of the techniques would not perform well on large
benchmarks, and so in order to generate useful data on their performance at all levels
such a division was necessary. Overviews of each implementation and results of these

tests are summarized in the following sections.

5.8.1 Computation Techniques

BRUTEFORCE - version 1

The first computation technique to be implemented is called bruteforce, because the
algorithm is based directly on the defining equation for the autocorrelation coeffi-

cients. The first version of this program is included mainly for comparison purposes.

BRUTEFORCE - version 2

The bruteforce program was refined slightly in this version. The main refinement was
the use of a BDD [44] as the internal data structure for storing the function. Once
again, however, the underlying algorithm is a direct implementation of the defining

equation.

BRUTEFORCE - version 3

A final refinement of the bruteforce implementation was made for this program. This
version of the computation program uses a decision diagram as intermediate storage,
as did version 2, but in this case we use only the onset to do the computations instead

of iterating through all 2" inputs.
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BDD

The next logical progression is to do all of the computation with a decision diagram.
This version of the computation program does exactly that; the original function
is stored as a BDD, and for each coefficient, another BDD representing the shifted

functions is created and then the number of matching minterms are counted.

BDD _recursive

BDD _recursive is an alternative autocorrelation computation program that uses BDDs
to recursively evaluate the coefficients. In considering this implementation we pre-
dicted that the time required to compute a coefficient would increase while the mem-
ory requirements for the program should decrease, as only one decision diagram is

required.

DISJOINT CUBES

DISJOINT CUBES is the name of the program utilizing the computation technique
based on the disjoint cube list, as described in Section 5.6. The performance of this
particular technique clearly will be highly dependent on the number of cubes in the

function.

Wiener-Khinchin

The alternative method for computing the autocorrelation coefficients is to apply a
transform matrix twice, with some intermediate computation, as described in sec-
tion 3.3. The obvious shortcoming of this program is that memory space to store all
2" coefficients is required. The clear advantage of this technique is that computa-
tions are shared between coefficients, thus significantly reducing the amount of work

required.
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ESTIMATION

Two versions of the estimation technique have been implemented. Version 1 uses a
straightforward list of character strings to store the cubes on which the estimation
is performed, while version 2 uses BDDs to store the separate cubes and the initial
function. The tests below were run using parameters to specify estimation of the

coefficient value within 1 4+ .3 with a probability of 1 — .02.

5.8.2 Experimental Procedure

To test the various techniques a series of experiments were carried out. An initial
series of tests on benchmarks limited to 10 inputs was first performed. The reason
for this is that it was clear that the less sophisticated techniques would not perform
well with higher numbers of inputs, and so this initial set of tests was run in order to
weed out the poorest of the techniques.

The time to compute all 2" coefficients in one run was recorded, and also the
time to compute a single coefficient. The reasoning behind this is that it is very
likely that only a subset of the coefficients are likely to be used, due to the sheer
numbers involved. When computing a single coefficient, it was chosen to compute
B(9) for these tests. B(9) was chosen because it represents a typical autocorrelation
coefficient and so results from the computation of B(9) can be considered typical for
the computation of any coeflicient.

The second set of tests involved benchmarks having 11 to 30 inputs. Again, both
a single coefficient and all 2" coefficients were computed. A final set of tests involving
the computation of only a single coefficient was run on benchmarks from 31 to 140
inputs.

All tests were carried out on 4 machines that were provided by the Canadian
Microelectronics Corporation in an equipment loan to the Computer Science and

Electrical and Computer Engineering Departments at the University of Victoria. The
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benchmarks used are in ESPRESSO-MV (or pla) format [52].

5.8.3 Results
1 to 10 inputs

Table 5.1 summarizes the timing results for the first set of benchmarks that were
tested. The failures column refers to any failure to complete computation of the
coefficients. It should be noted that for all tests the averages given are approximate
values, and that all required preprocessing such as to compute a disjoint cube set or
build a BDD is included in the given figures. Also, in all tests the averages given

include only the times for successful completions.

technique avg time to compute avg time to compute failures

one coefficient 2™ coefficients

BRUTEFORCE - vl 0.78 seconds 180 seconds 0
BRUTEFORCE - v2 0.06 seconds 58.1 seconds 0
BRUTEFORCE - v3 0 seconds 9.76 seconds 0
BDD 0.02 seconds 3.76 seconds 0
BDD recursive 0.02 seconds 4.47 seconds 0
W-K 0.32 seconds 0.54 seconds 0
DISJOINT 0.45 seconds 16.0 seconds 0
ESTIMATION - v1 68.6 seconds N/A 0
ESTIMATION - v2 96.9 seconds N/A 0

Table 5.1. Timing results for various autocorrelation computation techniques for

benchmarks with 1 to 10 inputs.

Note that the tests involving computing all 2" coefficients were not run on the
estimation techniques. This decision was made due to the fact that these techniques

required over a minute to compute a single coefficient. Although this would suggest
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that use of these techniques for any larger benchmarks would be infeasible, this may
not be the case because the computation time is closely linked to the number of prod-
ucts/sums terms in the function. Thus the estimation techniques may be well suited
for functions with very large number of inputs but a comparatively small number of
products/sums terms. In fact the subsequent tests on larger benchmarks demonstrate
that unlike the other techniques the performance of the estimation technique does not
increase with n.

As expected, the time for most of the methods to compute 2" coefficients is in
general considerably larger than the time required for computation of a single coef-
ficient. However, the difference is significantly lower for the Disjoint Cubes method
and the W-K method. This is explained by the fact that the algorithm used by the
Tranform method is designed to compute all of the coefficients by reusing various
internal products and sums. The lower difference in the times for the Disjoint Cubes
method is explained by the fact that the determination of the disjoint cube list is
quite computationally intensive, and thus in computing more than one coefficient the

time for this determination is saved for subsequent computations.

11 to 30 inputs

For the second set of experiments, a limit of 30 minutes of CPU time was introduced.
In this case, failures may be due to either memory or time limits being reached.
621 benchmarks were included in these tests. Only computation of one coefficient
is timed, as the number of coefficients to compute is clearly very large and in most
cases requires on the order of 2" times the work required to compute one coefficient.

Table 5.2 summarizes these results.

31 to 140 inputs

The third set of experiments was run in a similar manner to the previous set; a

limit of 30 minutes of CPU time was introduced, and failures were possible when
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technique avg time to compute failures
one coefficient
BRUTEFORCE - v3 67.6 seconds 0
BDD 1.00 seconds 0
BDD recursive 1.23 seconds 0
W-K 918 seconds 37
DISJOINT 8.98 seconds 0
ESTIMATION - v1 328 seconds 2
ESTIMATION - v2 344 seconds 58

Table 5.2. Timing results for various autocorrelation computation techniques for

benchmarks with 11 to 30 inputs.

either memory or time limits were reached. Once again, only the computation for
one coefficient was recorded. 964 benchmarks were included in these tests. Table 5.3

summarizes these results.

Discussion of the Results for Large Benchmarks

BRUTEFORCE - v3 Using the BRUTEFORCE method only 295 of the 961 files
succeeded. Of the 666 failures, 660 of those ran out of CPU time, as expected. The

remaining 6 failures were due to problems in the internal data storage (see below).

BDD methods Both of the BDD methods succeeded in computing the specified
autocorrelation coefficient for 719 of the 961 test files. Of the 242 failures, 236 were
due to running out of CPU time. The remaining 6 failures due to running out of
memory while building the intial ROBDD for the function. It should be pointed out
that these 6 failures occurred on the same 6 files as the non-time-out failures for the

BRUTEFORCE method.
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technique avg time to compute successes
one coefficient

BRUTEFORCE - v3 663 seconds 295
BDD 4.58 seconds 719
BDD recursive 27.5 seconds 719
W-K N/A 0
DISJOINT 5.12 seconds 718
ESTIMATION - v1 572 seconds 713
ESTIMATION - v2 30.4 seconds 718

Table 5.3. Timing results for various autocorrelation computation techniques for

benchmarks with 31 to 140 inputs.

W-K method The W-K method did not succeed for any of the large input files.
Of the failures, only 236 were due to running out of CPU time, leaving 725 failures

due to running out of memory.

DISJOINT CUBES method The disjoint-cubes method performed extremely
well, failing on 243 files due to lack of time and succeeding on all the remaining files

in an average of 5 seconds.

ESTIMATION methods The two estimation methods had varied performance.
The first method, using character arrays to store the cube lists, completed on 713
of the 961 files but requiring an average of over 500 seconds of CPU time. All 248
failures were due to running out of CPU time. The second method, using BDDs to
store the cube lists, required an average of 30 seconds to complete for each of the
718 successful benchmark tests. Of the 243 unsucessful tests, 5 were due to being
unable to build the BDD while the remainder were due to running over the 30 minute

CPU-time limit.
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5.8.4 Analysis

The goal of these tests is to select a technique for computing the autocorrelation
coefficients, given some basic information such as a) the number of coefficients we
wish to compute, and b) the size (number of inputs) of the function. Based on
these results the best choice for computation of all or one of the coefficients is the
first BDD technique developed for this work. The results demonstrate that for both
large and medium-sized benchmarks this technique completes with the fewest failures
and in the fastest time. The second choice for large benchmarks is the disjoint cubes
technique, although for medium-sized benchmarks it does not perform quite as well as
the recursive BDD technique. These three options far out-perform all of the remaining
techniques for benchmarks having more than 10 inputs.

For 10 or fewer inputs, if all the coefficients are required then the best selection is
clearly the W-K method, which always computes all of the coefficients. All but the
estimation methods complete computation of one coefficient for a small benchmark
in an average time of under one second.

The surprising result is really not that the BDD methods perform so well, or
that the W-K method is best for computing all the coefficients for small files; it
is that the estimation techniques perform so poorly. The only technique to have an
average computation time for large benchmarks that is higher than the best estimation
technique was the Brute Force method. As noted above, the estimation parameters
specified estimation of each value within 1 £ .3 with a probability of 1 — .02, so
although we relaxed the accuracy, we still require a high probability. This indicates
that approximately 4000 x n samples are required for each coefficient. The numbers,
while not that large, are somewhat deceiving, as the algorithm requires that for each
of those 4000 * n samples they must be checked against the list of products. This
leads one to expect a very poor performance for a function with a large number of

products, which is likely the case for the larger benchmarks.
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5.9 Conclusion

During the course of these investigations into the uses of the autocorrelation coef-
ficients we have implemented a number of autocorrelation computation techniques.
These techniques are introduced in this chapter, as well as experimental tests for each

of the implementations. The implemented techniques include

e two new BDD-based techniques,

three straight-forward implementations of the autocorrelation function,

a technique based on the Weiner-Khinchin method for computing the coeffi-

cients,

a technique based on disjoint cube lists, and
e two estimation techniques.

The results of the tests show that the fastest and most successful methods are the new
BDD-based techniques developed in this work, with the disjoint cube list technique
a close second. The W-K method computes all 2" coefficients very quickly, but runs
out of memory on a regular basis for benchmarks with over 10 inputs. The estimation
techniques are surprisingly slow given that an exact value is not necessarily computed.
The BDD techniques, however, perform very quickly for all sizes of benchmarks.
Computation of all 2™ coefficients is still infeasible for large values of n; however,
computation of n coefficients — such as the n first order coefficients — is well within
the power of these methods. As shown in Chapters 3, 4 and 7 there are many
applications for small subsets of the autocorrelation coefficients. In the worst case,
computation of a subset of s coefficients would require s times the computation time
for a single coefficient. However, if the initial work in determining the representation
— 1.e. the BDD or disjoint cube list — was not required to be repeated, then the
average computation requirements for each coefficient in the subset would clearly be
lower than this worst case. This feature has in fact been implemented for each of the

computation technniques introduced in this chapter.
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It should also be noted that although this work does not present solutions for
the computation of autocorrelation coefficientss for multiple-output functions, some
discussion of this extension can be presented. In particular, the use of the BDD
techniques could be parallelized in order to compute the coefficients for each of the
functions represented by the shared BDDs in the same time required for computation

of a coefficient for a single-output BDD.



Chapter 6

The Autocorrelation Classes

6.1 Introduction

As discussed in Chapter 2, there are a number of ways in which switching functions

may be grouped into classes. This is useful for a number of reasons:

e it allows analysis to be performed on a representative of each class, the extension
of which can lead to a near-optimal implementation for all the members of that

class with minimal amounts of processing,

e it allows us to group together functions with similar characteristics, leading to
improved logic synthesis techniques tailored to functions with those character-
istics, and

e classifying switching functions provides in itself a method of logic synthesis
starting from an optimal implementation of a representative function and then

adding the necessary additional logic.

As detailed in Chapter 5 we have developed some relatively fast techniques for
computation of the autocorrelation coefficients. The feasibility of their computa-
tion combined with the interesting properties identified in Chapter 3 indicate that
the autocorrelation coefficients have the potential to provide a useful classification
technique. Additional motivation comes from the fact that the spectral classification
technique is well known and has been widely used. Given the relationship of the

autocorrelation coefficients to the spectral coefficients, it seems reasonable that an
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autocorrelation classification technique could provide many of the useful aspects of
the spectral classification technique as well as extending the uses to newer areas of
research such as DD representations.

This chapter defines four invariance operations for the autocorrelation classes.
Because we have chosen to retain sign information in the autocorrelation classification
technique, this technique results in more classes than does the spectral classification
technique. The autocorrelation classes are therefore smaller than the spectral classes.
Closer examination has indicated that the additional classes are a result of the fact
that the sign of the autocorrelation coefficients are affected by the type (v) spectral
invariance operation. Thus if one chooses to examine only the magnitudes of the
autocorrelation coefficients in an approach similar to that followed in the spectral
classification technique, the autocorrelation classes are in fact identical to the spectral
classes. This relationship is discussed in Section 6.6.

The benefit of this new classification method is that different information is pro-
vided. Chapters 3 and 7 demonstrate that one useful piece of information highlighted
by the autocorrelation coefficients allows for the identification of XOR logic within
the function, and further work continues on the applications of these classes.

Since much of the motivation behind determining classes of similar switching func-
tions has focused on the advantage of having a representative of each class, we also
define a canonical representative of each autocorrelation class, in terms of the auto-
correlation spectra. Our classification technique lends itself to many practical appli-

cations, and we propose a small number of these in Section 6.7.

6.2 Definition

There are a number of operations which, when applied to a switching function, result
in a new function whose autocorrelation coefficients are unchanged in values from the

original. Their ordering may be modified, but the values remain the same. These
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are referred to as autocorrelation invariance operations. The autocorrelation classes
are defined by grouping together all switching functions whose autcorrelation coeffi-
cients remain unchanged after applying one or more of the autocorrelation invariance
operations.

The four autocorrelation invariance operations consist of

e permutation,
e input negation,
e replacement of an input z; with x; @ z;, i # j (the type (iv) spectral invariance

operation'), and

e output negation.

As is discussed below, output negation affects the {0,1} and {+1, —1} coefficients
quite differently. For the purpose of defining the autocorrelation classes we use only
the {+1,—1} autocorrelation coefficients. For proving the results of the invariance
operations the choice of {+1,—1} or {0, 1} encoding is made according to whichever
leads to the simpler exposition of the proof.

Each class defined by these operations may be related to one or more other class
through the application of the type (v) spectral invariance operation. Identification
of these related classes is relatively easy, since the only difference in autocorrelation

values between the classes is the sign of the values.

6.3 Invariance Operations

In this section we formally define each of the invariance operations and their resulting

effects on the autocorrelation coeflicients.

1The numeric labeling of each of these types of operations is taken from [5], in which the spectral

invariant operations are labeled (i) through (v)
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6.3.1 Permutation

The first invariance operation for the autocorrelation classes is permutation of the
input variables. Since the autocorrelation coefficients are directly related to the struc-
ture of the function, any relabeling of the variables is directly reflected in the labeling
of the coefficients. For this and many of the theorems below it is necessary to distin-
guish between the autocorrelation coefficients for two functions f and f*. Therefore
a single superscript is used to indicate for which function the coefficient is being

computed.

Theorem 6.1 If f(2n, ..., Tj, .o, Thy e, 1) = [ (@ oo, Tiy o, Ty o, 1), 5, K € {1, ..., 0}
and j # k then
B (7j0) = B (Ta)
while
BT (1) = B (a)
V « such that j, k ¢ o.

Proof.

Permutation can be described as simply relabeling the inputs. The explanation
given by Hurst [11] can be extended to the autocorrelation coefficients as follows.
Without loss of generality let us define two functions
f(zn,n 1,...,21) = f(p_1,%n,...,x1). In this proof we use the ranges A, B, C, and
D and the associated notation f(A), f(B), f(C), and f(D) as defined in section 4.3.
Then

v €EA=vDT,, € C,
v € B=3v®T,, € D,
v € C=v®1,, € A, and

v € D=>v®1,, € B

and
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v €E A= 0P T_o14 € B,
v €E B=2v®T,_14 € A,
v € C=v®T,_1, € D, and
v €E D=2v®T1_14 € C.

which gives

Bi(rya) = D f(A)xf(C)+ ) f(B)x f(D)

v EA v € B

+ > fO)x f(A) + > f(D) x f(B)

v eC v €D

= 2 fA)xf(C)+2 ) f(B)x f(D)

vEA v € B

and

Bl (ta1a) = D ffA)xf1(B)+ > f1(B)x f"(4)

v EA v €B

+ 2 f(O)x (D) + > f1(D) x f1(C)

v eC v €D

= 23 ffA)xf(B)+2 > f(C)x f(D).

v €A veEB
By definition, f(A4) = f*(A), f(B) = f*(C), f(C) = f*(B) and f(D) = f*(D) and
SO

B(taa) = 23 f{A)x f(B)+2 3 f(C)x f(D)

veEA v € B

= Bf* (Tn—l a)-

Clearly the reverse, B/ (1,_1 o) = B/ (7, o) is also true by the same process.
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6.3.2 Input Negation

The second invariance operation for the autocorrelation classes is negation of any of

the inputs.

Theorem 6.2 If f*(zy, ..., Tiy---Z1) = [(Tny ooy Tiy -y 1), © € {1,....;n} then
B (r)=B/(r)V .

Proof.
Without loss of generality let us define f*(x,...,x1) = f(Tn,-..,x1). Then by

definition
on-1_1 2m—1
2% fro)y= % f@v)
v= y=2n—1
and
271 on—1_1
Y. [flo)= X f)
p=2n—1 v=0
and so
on—1_1 2" —1
BI(r) = Y frlo)yxfvern)+ > ffv)xfver)
v=0 p=2n—1
2n—1 on—1_1
= > f)yxfleer)+ Y fl)xflver)
p=2n—1 v=0
= B/(r)

6.3.3 Exclusive-or with Input

This operation is generally referred to the type (iv) operation, since it is the fourth
type of invariance operation for the spectral classes. This operation, replacement of

an input z; with x;®x;, is also an invariance operation for the autocorrelation classes.
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Theorem 6.3 If f*(zp,....,Tiy .oy Tjy oo, 1) = f(Tp, ey @i & Tj, oy T4, oy T1), 1,] €
{1,...,n}, and i # j then
BT (7354) = BT ija)
while
BT (1a) = B/ (ra)
V « such that i, ¢ «.

Explanation

If z; is replaced with x; ® x; then the coefficients associated with x; are not affected,
while the coefficients associated with z; are exchanged with those associated with
both z; and z;.
Proof.
Without loss of generality, let us define two functions f*(z,, Zp_1, ..., 1) = f(Zn, Tn_1PD

Zn,---,1). Then, again using the ranges A...D and notation f(A)...f(D)

v E A= vP T p1a € D,

v € B=2v® T, 14 € C,

v € C=>v®Tynt1a € Band

v €E D=>v®T, 14 €D

while

v €E A= v®T, 5, € C,

<
m
i
m
S

B=v®rT, =

[e%

v € C=2v®T, =

il
m
o
o)
=
ol

a

<

m
m
S~/

D=v®T, 7=

o
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Then
Bl (Thn1a) = D fA)X D)+ Y f(B)x f(C)

and

6.3.4 Output Negation

Output negation is also an invariance operation for the autocorrelation classes, but
only if {+1, —1} notation is used.

Theorem 6.4 If g*(z) = g(x) then

CY(r)=C%r) V.
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Proof.
Let us define two functions ¢*(z) = g(z). In {41, —1} encoding the arithmetic
equivalent is g*(x) = —g(z). Therefore

2" —1

Cv (1) = Zog*(v) X g (veT)

2" —1

= 2_‘69(“) xg(v®T)

= Co(7)

Corollary 6.4.1 If f*(z) = f(x) then

B (1) = B (1) — 2k + 2™
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Proof. In {0,1} notation let us similarly define two functions f*(z) = f(z). The

arithmetic equivalent is f*(z) =1 — f(z). Then
2n—1
B (r) =3 f)x fver)
v=0

2" —1

= > (1=fW)x(1-flver)

v=0

2" —1

=Y (f)x floer) - fv) — flv@r)+1)

v=0
2" —1 2n—1 2" —1
=B ()= > flv)= Y fedr)+ > 1
v=0 v=0 v=0

= B/ (1) — 2k + 2",

6.4 Spectral Invariance Operations & their Effect
on the AC Classes

While the type (v) spectral invariance operation has significant impact for the spectral
classes, the autocorrelation (AC) classes are not invariant under its application. As
shown below, this operation results in the modification of the signs of the affected
autocorrelation coeflicients.

Two autocorrelation coefficients with values 2" and —2" indicate very different
structures within a function; one indicates the highest possible degree of similarity,
and one indicates the least possible degree of similarity. For this reason it was de-
cided that retention of the sign information within the autocorrelation classification

technique is essential. However, it is clear that this fifth spectral invariance operation
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has some significance for the autocorrelation classes, if only in the fact that its ap-
plication results in classes identical to those resulting from the spectral classification

technique.

Exclusive-or with Output

Like output negation, the type (v) spectral invariance operation has a very differ-
ent result on the autocorrelation coefficients depending on which encoding has been
chosen. The type (v) spectral invariance operation involves combining the function’s

output with one of the inputs using the XOR operator.

Theorem 6.5 If f*(z) = f(z) ® x;, i € {1,...,n}, then
Cf*(T ia) = —Cf(T ia)

and

CF (r3) = C'(r3,)

(1e%

Y « such that i ¢ «.

Proof.
Without loss of generality let us define two functions ¢*(z) = g(z) ® z,. If we

define two ranges as follows
A=0.2"1—-1and
B=ov1_9on_1,

then
v € A= v®Th € B,
v €E BT, € A

and

vV E A= 0D THe € A, and
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v € B=>uv®ThH, € B.

We can then write the autocorrelation computations as
CI(Tpa) = 2 z g ( 9" (B)
v EA

and

CIT pa) = QZg

vEA

By definition, ¢*(A) = g(A) and ¢*(B) = —g(B) and so

CTna) = 2 g"(A) x (~g"(B))

v € A
= —C9 (T pa)
Similarly,
C% (Tra) = D g"(A)xg*(A)+ > ¢g*(B) x g"(B)
vEA v € B
and

Effect on the Autocorrelation Classes

As demonstrated in the previous section, the effect of the type (v) spectral invariance
operation (assuming {+1, —1} encoding) is to negate certain coefficients. Thus certain
of the autocorrelation classes are related to each other through the application of

this operation. These related classes are easily identifiable, as they have the same
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magnitudes of autocorrelation coefficients, but different signs for all or some of the

coefficients.

6.5 Canonical Autocorrelation Spectra

The canonical spectrum for the spectral classes consists of a list of the 2" coefficient
values in the identification order sy, s1, $o, ..., Sy, S12, ..., S12.., but with the zero- and
first-order coefficients all positive integer values and arranged in decreasing magni-
tude. Since the sum of the spectral coefficients must always total £2" this implies a
relationship amongst all the coefficients, and so modifying the spectra to match the
given arrangement for the lower order coefficients will clearly affect the higher order
coefficients [5]. This choice of canonical representation was made in order to ensure
that the canonic function for each spectral class is predominantly first ordered; that
is, that the first-order coefficients have the highest magnitude over all the spectral
coefficients of the function. According to [12] this ensures that the representative
function has an optimum synthesis in terms of threshold logic.

For the autocorrelation coefficients it would seem logical to select a canonic rep-
resentation with similar underlying reasoning. High values in the first-order spectral
coefficients imply a certain degree of simplicity in the function as they indicate similar-
ity between the function and the single-variable functions f(X) = z; fori € {1, ..., n}.
High values in the first-order spectral coefficients also correspond to high values in
the first-order autocorrelation coefficients and so choosing a canonical representation
with this as a requirement ensures that the chosen representative is as simple as can
be achieved. In order to maintain a degree of consistency with the spectral representa-
tives, the autocorrelation representatives are chosen such that the magnitude of values
are decreasing over the {+1, —1} first-order coefficients C(7,), C(7,1), ..., C(11). We

further expand on this choice in the following section.
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(101 1 1 1 1 1 1] -s%- -C(O)-
1 -1 1 -1 1 -1 1 =1 5?2 C(m)
1 1 -1 -1 1 1 -1 -1 s C(12)
L 1 -1 -1 1 1 -1 -1 1 y 52, _ C(112)
" 1 1 1 1 -1 -1 -1 -1 52 C(73)
1 -1 1 -1 -1 1 =1 1 52, C(m13)
1 1 -1 -1 -1 =1 1 1 52, C(793)
1 -1 -1 1 -1 1 1 -1 5203 C(T123)

Figure 6.1. A three variable example of computing the autocorrelation coefficients

from the spectral coefficients using the Hadamard transform matriz.

Derivation of Canonical Autocorrelation Representation

The canonical ordering for the representatives of the autocorrelation classes is derived
from that used for the spectral classes. In Chapter 3, Equation 3.1 (5z x 7" x 5? = C)
defines how the spectral coefficients may be used to compute the autocorrelation
coefficients. Figure 6.1 demonstrates how each spectral coefficient contributes to
each autocorrelation coefficient in a three variable example.

If the first-order spectral coefficients are arranged in decreasing order of magni-
tude for sy, s1, ..., S,, one can see that the autocorrelation coefficient with the most
contribution from the largest of these spectral coefficients is C'(0), followed by C(73)
which has positive contributions from sg, s; and s, followed by C(72) which has pos-
itive contributions from sj, s; and s3, and so on. Due to the recursive nature of the
chosen transform matrix (the Hadamard matrix), this observation can be extended
to any number of variables. For these reasons the canonical representative for each
autocorrelation class is chosen to be the function with the largest values in the first

order coefficients C(0),C(7,),C(Tp-1), ..., C(71) followed by the second order coeffi-
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fn

no.

1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
2 16 16 16 16 -16 16 16 -16 16 -16 -16 -16 -16 -16 16 -16
3 16 16 16 0 0 16 0 0 0 0 0 0 0 0 0 0
4 16 16 0 0 0 0 0 0 0 0 0 -16 0 0 0 -16
5 16 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6 16 16 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -8
7 16 12 12 12 -12 12 12 -12 12 -12 -12 -12 -12 -12 12 -12
8 16 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
9 16 12 12 4 4 12 4 4 4 4 4 4 4 4 4 4
10 16 12 12 4 -4 12 4 -4 4 -4 -4 -4 -4 -4 4 -4
11 16 12 4 4 -4 4 4 -4 4 -4 -4 -12 -4 -4 4 -12
12 16 8 8 8 0 0 8 0 8 0 0 0 0 0 8 0
13 16 8 8 8 -8 8 8 -8 8 -8 -8 -8 -8 -8 8 -16
14 16 8 8 0 0 8 0 0 0 0 0 -8 -8 0 0 -8
15 16 8 8 0 0 0 0 0 0 -8 -8 -8 0 -8
16 16 4 4 4 4 4 4 -4 -4 4 -4 -4 -4 4 4 4
17 16 4 4 4 4 4 -4 -4 -4 -4 4 -4 -4 -4 -4 -4
18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T 0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 0111 1011 1101 1110 1111

Table 6.1. The canonical representatives for the n < 4 autocorrelation classes in

{+1, -1} notation.

cients C (7, 1), C(Tn n_2), .., C(721) followed by the third order coefficients and so

Oo1.

Table 6.1 lists the canonical autocorrelation class representatives as selected based

on the above criteria for n < 4.

6.6 The Relationship Between the AC & Spectral

Classes

There is clearly a tight coupling between the spectral autocorrelation classes, as the

invariance operations defining each classification are similar. Given this information,

if two functions both in the same autocorrelation class, does this imply that they are
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both in the same spectral class and vice versa?
Let us define two functions fi(X) and f5(X) such that f;(X) and fo(X) are in

the same autocorrelation class. Then by definition we know that either
fi(X) = fo(X7)

or

f1(X) = fo(X¥)

where X™* represents the inputs X modified by one of the three autocorrelation
invariance operations that affect the inputs. The last invariance operation affects the

output, and is negation, hence the two options given above.

We know that fo(X) and fo(X) are in the same spectral class, as output negation is
one of the spectral invariance operations. We also know that all three of the remaining

autocorrelation invariance operations are also spectral invariance operations, so then

if f1(X) = fo(X*) or f1(X) = fo(X*) then they must be in the same spectral class,

by definition.

Now let us redefine our functions such that f;(X) and fo(X) are known to be in the
same spectral class. Then f;(X) = f3*(X*) where % represents a type (iii) (output
negation) or type (v) (replacement of the output with the exclusive-or combination of
the output and an input), and * represents a type (i) (permutation), type (ii) (input
negation) or type (iv) (replacement of an input with the exclusive-or combination
of that input and another input) spectral invariance operation. Then either the two
functions are in the same autocorrelation class (if the type (v) invariance operation
is not used) or they are in a different class. If they are in a different class, then we
can narrow down which classes they may belong to, as certain autocorrelation classes
are related to each other by the type (v) transformation, as discussed in Section 6.4.

This further implies that if the type (v) operation is also applied and one examines
only the magnitude of the resulting autocorrelation coefficients, then the resulting

smaller set of classes is identical to the spectral classes.
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6.7 Applications of the Autocorrelation Classes

There are various ways in which the classification technique introduced in this chapter

may be used in logic synthesis applications.

Two-Level Logic Synthesis

The spectral classes have been of particular value in logic synthesis. They allow func-
tions in the same spectral class to be synthesized from the class’ canonical function
by adding logic to complement and/or permute the variables, and/or by appending
suitable XOR logic. The same can be applied using the autocorrelation classes. For
example, the function f(X) = z129 V 2123 V Zox3 is a very desirable function, as it is
totally symmetric. Given the autocorrelation coefficients for f and f*, some function
in the same autocorrelation class as f, appropriate logic may be added to convert
this desirable function — which is likely to have an efficient implementation due to the
symmetry property it possesses — into f*, which may or may not possess the same
property.

Figure 6.3 illustrates such a situation, given the functions f and f* as defined in
Figure 6.2.

The problem with this application is that one of the autocorrelation invariance
operations, input negation, has no effect on the autocorrelation coefficients. With the
other invariance operations, examination of the changes in the coefficients will lead to
a determination of which operations have been applied to the initial function. This
is not so with input negation. Work developing an algorithm for this process must
take this factor into account, either disregarding whether positive or negative literals
are used in the functions, or by performing some sort of verification at each stage of

the algorithm to determine if the correct function has been synthesized.
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riroxs | f(X) B C| f*(X) B C
000 0 4 8 1 4 8
001 0 2 0 1 2 0
010 0 2 0 0 2 0
011 1 2 0 1 2 0
100 0 2 0 1 2 0
101 1 2 0 0 2 0
110 1 2 0 0 0 -8
111 1 0 -8 0 2 0

Figure 6.2. The truth table and autocorrelation vectors for two functions in the same

autocorrelation class.

(X)

X f(X)
e

Figure 6.3. The additional logic required to convert f into f*.

Decision Diagrams

The use of the autocorrelation classes can also be demonstrated in relation to logic
synthesis involving decision diagrams.

Given two functions f(X) and g(X) in the same autocorrelation class, a straight-
forward technique for transforming a BDD representation for f to g (or vice versa)
can be determined. Initial investigation in this area indicates that the application of
any of the first three autocorrelation invariant operations to the BDD representation
of a function is trivial: permutation of two variables is easily performed simply by
relabeling the nodes in the graph, and negation of either the output or inputs of a
function can be performed through the use of inverters. The final invariant operation
requires a more complex solution, and has the potential to cause changes in the size

of the BDD (unlike the previous operations). In practice, replacement of an input
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variable z; with x; ® x; requires only the addition of two internal inverters. These
inverters are used to invert the nodes on the branches where z; has the assignment
1 (assuming z; follows z; in the current variable ordering). This is not a difficult
operation to perform, but may cause the BDD to grow as previously isomorphic (and
thus shared) sub-graphs may no longer be isomorphic. Additions of inverters or the
use of a KDD in place of the BDD would certainly solve this problem.

Further work is continuing in this area. Assuming that a “good” decision diagram
representation is one that has a size (i.e. the number of nodes) that is not exponential
in the number of inputs, then the goal is to construct a fast algorithm for generating
a good decision diagram for f given a good decision diagram for g, and assuming that

f and g are both in the same autocorrelation class.

BDD vs FDD vs KDD Classes

If canonical representatives of the n < 4 autocorrelation classes are examined, it is
possible to quickly identify certain functions which contain the markers indicating
XOR logic (first order coefficients with the value —2" or second order coefficients
such that C(r) =0, 7 € {x1,...,2;, %}, ..., T} Where 2, = 0V k # i,j and z;z; €
{01,10,11}). In particular, from Table 6.1 function number 4 contains the second
type of marker, and functions number 2 and 18 contain the first type of marker.
Other function numbers such as 3, 12, 14 and 15 do not exhibit the required
patterns in the canonical function, but have the potential through the application
of invariance operations to contain the XOR-identifying patterns. This leads one to
speculate whether the autocorrelation classes could provide an immediate test as to
whether a function should be represented with a BDD, a FDD, or a KDD. This is
related to the above problem of how to represent a function after the application of

the invariant operation x; <— z; ® x;. Again, further work is continuing in this area.
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Design for Embedded Systems

An area of great interest for many years has been the design of a universal function.
The concept involves determining one function from which, through the application
of various simple operations, any other function may be implemented. This has so far
turned out to be an infeasible goal. The introduction of the new classification pre-
sented in this work, combined with a new technology allowing reconfigurable hardware
allows us to revisit this concept.

One common reconfigurable hardware device is a FPGA stands for Field Pro-
grammable Gate Array. As the name suggests, a FPGA is an array of devices whose
interconnects can be programmed by a user without the use of large and expensive

equipment. A more formal definition for the term FPGA can be stated as [53]:

“A FPGA is a device in which the final logic structure can be directly con-
figured by the end user, without the use of an integrated circuit fabrication

facility.”

Generally, the designer uses a set of CAD tools to minimize the function to be imple-
mented, and then downloads the optimized function to the FPGA.

The classification technique introduced in Chapter 6 differs from other techniques
in that it groups together functions with significant amounts of similarity within their
structures. It may be possible to implement a canonical function on a FPGA and
then add extraneous logic to create the desired function from that class. Optimization
would then be performed for each of the canonical function implementations. Having
a pre-optimized description of each canonical function would save considerably on the
pre-processing and downloading overhead, which can be considerable. This technique

could be approached in a number of ways:

e One could take the optimized description for the canonical function and add

the required logic, then download the function to the FPGA; or

e the optimized function could be downloaded to the FPGA followed by the down-



6.8 Conclusion 133

load of the additional logic; or

e two FPGAs could be used, one for the optimized function and one for the

additional logic.

The second and third techniques would allow for minimal reprogramming overhead
should a new function of the same class be required. New techniques are currently
being developed to allow partial reconfiguration in the manner described in the second

technique [54].

6.8 Conclusion

Classification techniques have historically proven very useful in logic synthesis ap-
plications. There is new interest in logic synthesis techniques such as three-level
minimization and XOR-based DD representations, and we have seen in Chapter 3
that the autocorrelation coefficients may be used to identify properties of use in these
applications. Based on this we have hypothesized that the autocorrelation coefficients
provide a classification method that is of use in these recently introduced areas.

In this chapter we define the autocorrelation classes based on four autocorrelation
invariance operations, and we prove the effects of these operations on the coefficients.
We also discuss the relationship between the well-known spectral classes and our
newly defined autocorrelation classes. The chapter goes on to define canonical rep-
resentations for each class, and the reasons for our choice in this matter. There are
many areas in which our classification technique may be applied, and a number of

these are addressed in Section 6.7.



Chapter 7

Applications

7.1 Introduction

This dissertation has so far discussed mainly theoretical aspects of the autocorre-
lation function. Chapter 6 discusses potential uses for the autocorrelation classes,
but no implementations or tests are performed. In this chapter we discuss in detail
some applications of the previously introduced concepts. In particular, we are inter-
ested in applying Theorems 3.8 and 3.9 from Chapter 3. These are elaborated on in
Section 7.2.

The majority of this chapter is devoted to the discussion of two implementations
that make use of the properties from Theorems 3.8 and 3.9. In Section 7.3 a three-
level decomposition tool is presented, while Section 7.4 presents a tool for determining
decomposition type lists for KDDs. These implementations are contrasted and com-
pared with existing tools for each application. The results from both are very promis-
ing, particularly given that the implemented algorithms are quite straight-forward,

and that the results are in comparison with tools representing many years of work.

7.2 Identification of Exclusive-OR (XOR) Logic

In many cases, functions with embedded XOR logic have very large two-level expres-

sions such as sum-of-products and product-of-sums expressions [55]. In many of these
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cases, the choice of a representation that includes XOR logic can significantly reduce
the size. For example, an n-variable parity function requires 2" ! product terms each
consisting of n literals if expressed using AND, OR and NOT. However, if XOR logic
is included, then only n single-literal product terms are required. The problem is that
minimizing a function for only two levels of operators is approached quite differently
than is three-level minimization. Clearly the identification of the presence of XOR
logic before attempting any further minimization is a useful thing.

BDDs are also quite inefficient for representing certain types of functions such
as multipliers and those containing XOR logic [13, 40]. Becker et. al. demonstrate
in [56] that there exists a class of functions that cannot be represented efficiently
by OBDDs but can be by OFDDs. They also show that there are functions for
which both OBDD and OFDD representations are exponential in size, but for which
polynomial-sized OKFDDs (KDDs) may be constructed. The problems consist of

1. identifying the functions that do not have polynomial-sized BDD representa-

tions, and then

2. identifying the decompositions that will lead to a polynomial-sized KDD.

Again, the usefulness of identifying the existence and location of XOR logic within a
function is clearly of use.

Section 3.5.4 in Chapter 3 shows how the autocorrelation coefficients may be used
in identifying various forms of XOR logic. Briefly, a first order coefficient with the
value —2" indicates that the function can be decomposed into f(X) = f*(X)®x;, and
additional examination of the second order coefficients may lead to the identification
of a decomposition of the form f(X) = f*(X) @ (x; * z;). Section 7.3 discusses
the application of these properties to a simple three-level decomposition tool, while
Section 7.4 applies the properties to the decomposition choice and variable ordering

used in building KDDs.
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7.3 Three-Level Decompositions

In Chapter 2 it was explained that sum-of-products and product-of-sums represen-
tations are commonly used to describe switching functions. Both of these types of
representations are called two-level representations, because they use two levels of
operators.

A three-level representation is one which uses a third type of operator, such as
an XOR operator. Dubrova et. al. have demonstrated in [57] that there exists an
AND-OR-XOR representation for any Boolean function with upper bound on the
number of products smaller than that for either a sum-of-products or an AND-XOR

expansion. An AND-OR-XOR representation is an expression of the type
f(X): (PIVP2VVPp)@(Pp_H\/PIH_QV\/Pm)

where p € 1 <p <m and P; are product terms.

AND-OR-XOR representations are suitable for implementing arithmetic func-
tions, and can be implemented in a very simple architecture since they contain only
one XOR gate [58]. The problem lies in identifying where the XOR operator should
be placed. In Section 7.2 it was explained that the autocorrelation coefficients could
be used to identify functions of the type f(X) = f*(X)@g(X), with some limitations
on f*(X) and ¢g(X). What this implies is that the autocorrelation coefficients may
be used to identify AND-OR-XOR representations for functions. For example, given
the function f(X) = (21 V xox3) @ (z4x5) the first and second order autocorrelation
coefficients are shown in Figure 7.1.

As stated in Section 7.2, there are various properties of the autocorrelation coef-
ficients that may be used in the identification of XOR logic. If any of the first order
coefficients have the value —2" then the function may be decomposed into f*(X) @ ;.
There are no coefficients of this value, so the next identifier of XOR logic is tested:
the existence of three coefficients such that z; and z; take on the values 11, 01, and

10 while the remaining variables are fixed at 0 and all three of these coefficients have
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T C(1)
00001 0
00010 0
00011 0
00100 16
00110 0
01000 16
01001 0
01100 16
10000 -16
10001 0
10010 0
10100 -16
11000  -16

Figure 7.1. The autocorrelation coefficients for a function known to have a good

three-level decomposition.

the value 0. In the example shown in Figure 7.1 the only coefficients matching this
are C'(00001) = 0, C'(00010) = 0, and C'(00011) = 0. Therefore we have identified
that the function can be decomposed into f(X) = f*(X) @ (x4 * z5) where f*(X) is
independent of z;, and x5 and * may either be the AND operator or the OR operator.

7.3.1 Three-Level Minimization Tools

Although this is a relatively new idea, a small number of other researchers have also
developed techniques for three-level logic minimization. The work by Dubroval et.

al. has resulted in one of these.
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Dubrova

AOXMIN-MV [59], written by E. Dubrova, is the program used for comparison to
the techniques developed in this work. The pseudocode followed by AOXMIN-MV is

summarized by the following steps.

e Find a cover for the on-set of the function F'.
e Find a cover for the off-set of the function F.
e Check if F' is likely to have a compact AND-OR-XOR form as follows:
— divide the cubes into equivalence classes of connected chains of cubes,
— randomly partition the classes into two groups such that F} U F, = F' and
FiNFEF, =0, and then
— use these to construct two sets of cubes g; and g, such that g; ® go = F.

e The last step is to perform group migration to optimize the initial partioning

of the equivalence classes of F'.

The check step is performed for both the on-set and the off-set of the function,
and if the size of |g;| + |g2| for either is less than the smaller of the on-set and off-set
then the final step of iterative optimization is performed.

This algorithm has some similarities to the process performed in this work. Both
perform a preprocessing check step that provides an initial guide as to whether in-
clusion of XOR logic will be worthwhile. Both also use the information from this
preprocessing as a guide to the decomposition into functions ¢g; and g,. However,
no additional minimization or balancing is done in this work, although this could be
added, and AOXMIN-MV is designed for multiple-valued multiple-output functions.
The extensions to multiple-valued logic and multiple output functions are beyond the
scope of this dissertation.

It should be pointed out that it is difficult to compare the processing in the
check step for each algorithm since one is intended for multiple-output functions,

while this work concentrates on single-output functions. Given this fact there are
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still similarlities in the approach. AOXMIN-MV uses the idea of chains of cubes to
build equivalence classes, followed by grouping the cubes of the function according
to these classes. This implies that cubes that may overlap are grouped together.
Overlapping cubes imply areas of similarity in the function, since they overlap, and
areas of dissimilarity, otherwise the cubes would be combined into one. Example 7.2
demonstrates this. In terms of autocorrelation coefficients, in {+1, —1} encoding this
will lead in general to smaller coefficients. The processing step in this work focuses
mainly on the identification of small coefficients, thus a somewhat similar concept is
being employed.

It should also be noted that AOXMIN-MV, after identifying a decomposition,
performs some work to optimize the two partitions. We later refer to this as balancing,
as the goal of this optimization is to balance the two functions into which the function

is being decomposed.

z3z2> 00 01 11 10

00
01 111
11 1
10

Figure 7.2. A Karnaugh map demonstrating the overlapping cubes x1Ts3xs and

T1T2X4.

Debnath & Sasao

Debnath and Sasao present a heuristic method for minmizing AND-OR-XOR repre-
sentations of n variable functions in [58]. Their technique is to recursively decompose
the function F' using Shannon’s decomposition into F,—; and F,—_y, each requiring

only n — 1 input variables. When the number of variables that the decomposed
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functions require reaches 5 or fewer a table look-up for the optimum AND-OR-XOR
representation is performed. This representation is then used to determine an AND-
OR-XOR reprentation for the decomposed 6 variable function, and so on until an
AND-OR-XOR representation for the original function F' is obtained.

This technique is quite different from the approach both in this work and in
AOXMIN-MV, as no preliminary check is performed to identify if the use of XOR logic
is advantageous. Additionally, this work appears to be aimed primarly at functions

with relatively small (i.e. fewer than 10) numbers of inputs.

Chattopadhyay et. al.

Chattopadhyay et. al.[60] present another three-level minimization strategy based on
decomposition. Their technique uses instead the Davio decompositions. The problem
they focus on is the choice of variable ordering and type of Davio expansions to choose.

Their choices at each stage are affected by three factors:
e the maximization of trivial subfunctions,
e the maximization of sharing, and

e the maximization of the result of a simple cost function defined as
sim(f) = |ones in f| — |zeros in f|

The Davio decompositions are first determined for all possible variables, and the
above factors are used to select the variable and decomposition type resulting in the
minimum number of next level gates; that is, the simplest functions and the maximum
amount of sharing within the resulting implementation. After this selection, the
process is repeated for the resulting decomposed functions, until only trivial (i.e.
constant) functions remain.

Like the version presented by Sasao, no preliminary checking into whether the use
of XOR logic will be advantageous is performed. However, a check was added to their

tool to measure the suitability of AND-OR and AND-XOR, decompositions at each



7.3 Three-Level Decompositions 141

level, allowing AND-OR logic to be used if it was evaluated to be better than the
AND-XOR decomposition. Thus this tool could also be used in the minimization of

functions that did not contain any XOR logic.

Autosymmetries

Another technique for three-level logic minimization is based on autosymmetries [61].
The concept of autosymmetries is, as the name suggests, related to the concept of
symmetries. However, a totally symmetric function may or may not be autosymmet-
ric, and similarly an autosymmetric function may or may not be totally symmetric.
The concept of autosymmetries was introduced by Luccio and Pagli in 1999 [62].
Further applications of this class of functions were detailed by Bernasconi et. al. in
2002 [61]. An autosymmetric function is one in which some regular, recursive struc-
ture in inherent in the outputs. This can be seen quite clearly when examining some

examples of autosymmetric functions, as shown in Figure 7.3.

zs#2? 00 01 11 10 z3t42 00 01 11 10
00[0|1]0]|1 00[1]0|0]|1
011/(0[1/0 01/0|1]1/0
11/0{0(0]0 11j1/0|0]1
10(0|1]0]1 1000|1]1]0

(a) (b)

Figure 7.3. Two functions which possess autosymmetries of degree 1 and degree 3,

respectively.

The definition of autosymmetry is as follows [61]:

Definition 7.1 A Boolean function f(X) in {0,1}" is closed under o, with a €
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{0,1}", if for each w € {0,1}", w ® « € f(X) if and only if w € f(X).

A vector w € {0,1}" is said to be € f(X) if w is a minterm for f(X).
By combining under & k linearly independent vectors «y, ..., a, we form a sub-
space of 2F vectors that is closed under @. This is referred to as Ly, or the linear

space of f(X), and k is its dimension.

Definition 7.2 A Boolean function f(X) is k-autosymmetric, or equivalently f(X)

has autosymmetry degree k, 0 < k < n, if its linear space Ly has dimension k.

Bernasconi et. al. provide an algorithm for the construction of L;:

1. for all w € f(X) build the set u & f(X);

2. build the set Ly Nyepx)(u @ f(X))

3. compute k = log, | Ly

If £ = 0 then the function is not autosymmetric.

Classes of autosymmetric functions have very efficient sum of pseudoproduct
(SPP) forms. SPPs are defined in [62]. An example function in SPP form is (z1 &
To) A3V (21 D 23D x4) A (23D T5) V 22 A 5. According to Luccio et. al. the advan-
tage of SPP forms is that they are a more general form than SOP forms, and thus
a function expressed as a SPP is in the worst case the same length as the equivalent

SOP, and in most cases is considerably shorter. They also have uses in three-level

logic minimization, as described by Bernasconi et. al.

The Autocorrelation Coefficients and Autosymmetry

The autocorrelation coefficients can be used to identify autosymmetrical functions.

Theorem 7.1 If a function f(X) has an autocorrelation coefficient B(t) = B(0)
(C(1) =2") then T is in Ly.

Lemma 7.1 Any function f(X) for which one or more autocorrelation coefficient

B(71) = B(0) (C(r) =2") is autosymmetrical.
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Proof.

First it is demonstrated that for an autosymmetric function, if a vector 7 is in the
linear subspace Ly of the function f(X) then the autocorrelation coefficient B(7) =
B(0) = m where m is the number of minterms for f(X).

Let Ly = {c1,...,coe} where ¢; € Ny,epx) (i @ f(X)), j € {1,..,25}. Addition-
ally, {u1, ..., un} are the minterms for f(X). If 7 € L; then by definition

TE{Ul@f(X),,U,mEBf(X)}
u1 @ f(X) may be rewritten as {u; ®uq, ..., u; ® uy, }; similarly for ug, ..., uy,. Then
Vu € f(X), T=u;®uy, 4,5 € {1,...,m}. If u; =u; then 7 =0.

Now let us examine the definition of the autocorrelation coeflicients:
on_1

B(r) = X_%f(p) X flp®T)
By definition, f(p) = 1 if and only if;_ € {ui,...,un}. Then
B(r) = ﬁ;f(ui) X f(us @)
- if(uz—) X f(u;)
= ;1 x 1

=m
Thus if 7 € Ly then B(7) = m where m is the number of positive minterms for f(X).

Next it is demonstrated that if the autocorrelation coefficient B(7) = m, where m
is the number of minterms for the function f(X), then 7 is in the linear subspace L;
for the function and the function is therefore autosymmetric. Again, by definition,

for a given vector p, f(p) = 1 if and only if p € {u1,...,um}. Then
B(r) = if(ui) x f(us @)
m :if(ui)xf(ui@ﬂ
e
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therefore u; ® 7 € {uy,...,un}. Thus for each coefficient B(1) = m, u; ® 7 = u;.
This can be rewritten 7 = u; @ u;, which leads to
Te [ (wefX))
u; € f(X)
Thus the 7 for coefficients with value m are in L, and if there is more than one (the

trivial 7 = 0) then the function is autosymmetric. |

It should be noted that the computation of Ly is clearly less compute-intensive
than is the computation of all 2" autocorrelation coefficients. However, if the coef-
ficients are already available, then the autosymmetry of the function can be easily

determined, as shown above.

Summary of Tools

We have presented four tools as background for the concept of three-level minimiza-
tion. Each of these tools is based on significant amounts of prior work by the authors,
with in most cases, many iterations and improvements being applied to the tools in
question. Two of these tools are based on applying iterative decompositions of vari-
ous types, while the other two techniques require examination of the function’s cubes,
and grouping of the cubes to form a good decomposition. Our technique is most like
this second description, in that the cubes of the function are examined to deter-
mine the autocorrelation coefficients, followed by a grouping of variables to form a

decomposition. Details of our technique are given below.

7.3.2 Implementation of a Three-Level Decomposition Tool
Implementation Details

The program implemented in this work is intended as a “proof-of-concept”. That

is, many further enhancements could be added should one wish to make use of this
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three-level decomposition tool, such as the minimization of each of the resulting de-
compositions and extending the identification techniques to allow more than two
variables in the second decomposition. However, this work is intended as an overall
investigation into the uses of the autocorrelation coefficients, and thus the implemen-
tation is not intended to be an complete three-level minimization tool. We emphasize
that the goal of this program is to detect the existence of a three-level decomposition;

we perform no measures pertaining to the quality of the detected decomposition.

The algorithm details are as follows:

readcoeffs(ac_infile, coeffvector, uvector);

// identify xor logic. NOTE:

// this is a limited version that will only id if two
// vars are in a decomp e.g. f = g xor (xi+xj)

// or £ = g xor xi

id_xor(coeffvector, uvector, single_vars, double_vars);
// generate gl and g2

generate_glg2(dd, single_vars, double_vars, outfilenamel, outfilename2);

This assumes that the autocorrelation coefficients have previously been generated
and are required as input to the program.
The majority of the work is done in functions id_xor and generate_glg2. id_xor

does the following:

// first examine the first-order coeffs
// for coeffs equal to -2°n
// NOTE: we assume var ordering of 1 2 3 4 ...
// thus the corresponding first order coeff
// for variable 1 is C(1000...).
for each variable i
if (coeffvector[twoexp(numvars-1-i)] == -27n)
singlevars[i] = i;

else singlevars[i] = -1;
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// now the second order coeffs:
// check each pair of vars to see if the corresponding
// first and second order coeffs 000 01= 000 10 = 000 11 = zero
initialize all entries in doublevars to -1;
for each variable i {
// if the var already is in the singlevar list then skip it
if (singlevars[i] != -1) continue;
for each variable j beginning at i+l {
// if the var already is in the singlevar list then skip it

if (singlevars[i] != -1) continue;

int uvall = 0 | twoexp(numvars-1-j); // 000 01

int uval2 = 0 | twoexp(numvars-1-i); // 000 10

int uval3 = uvall | uval2; // 000 11
if ( (coeffvector[uvall] == 0) &&

(coeffvector[uval2] == 0) &&

(coeffvector[uval3] == 0) )
doublevars[0] = i;
doublevars[1] = j;

goto endofloops; // don’t look for any others IN THIS VERSION
} // end for j
} // end for i
endofloops: return;
generate_glg2 creates two decision diagrams, one for the first decomposition (g1)
and one for the second decomposition (g2). It then outputs them to two output files.
If no XOR logic was identified by id_xor then this function informs the user.
// first check if there is ANY xor logic that is usable:
bool xorflag = false;
check singlevars array

check doublevars array
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if (no xor logic)
cout << "No xor logic to use\n\n";
gl = original dd;
g2 = NULL;

outputfunctions(gl, g2);

if singlevars contains xor logic

create gl = xi

create g2 = dd xor gl
else, using doublevars array,

create gl = xi or xj

create g2 = dd xor gl
check gl xor g2 = dd
if not

create gl = xi and xj

create g2 = dd xor gl

outputfunctions(gl, g2);

Results

The above pseudocode was implemented and tested against the three-level minimiza-

tion tool AOXMIN-MV. Details of the AOXMIN-MV tool are given in section 7.3.1.

In these tests both agreed on the detection of XOR logic 74% of the time. However,

the AOXMIN-MYV tool only completed successfully for 244 of the single-output bench-

mark files, while our tool completed for all 278 of the benchmarks. Additionally, our

tool required an average of approximately 5 seconds to compute the decomposition,

while AOXMIN-MV, for its successful benchmarks, required an average of over one

minute. It should be noted, however, that AOXMIN-MV requires more time in com-

putation of a decomposition because the tool is also attempting to find a balanced

decomposition, which our tool does not take into account. The computation of all 2"
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autocorrelation coefficients is included in this timing figure, although future improve-
ments could reduce this as only the first and second order coefficients are required.

These results are summarized in Table 7.1.

num of benchmarks where
successes avg. time XOR logic detected
AOXMIN-MV | 244 / 278  71.1 sec 54
3LEVEL 278 / 278 5.4 sec 59

Table 7.1. Results of comparing the autocorrelation-based three level-decomposition

tool (SLEVEL) to AOXMIN-MYV.

It is interesting to note, however, that while our autocorrelation-based tool de-
tected XOR logic in 59 of the benchmark files, in 32 of those the AOXMIN-MV tool
did not detect XOR logic. Similarly, of the 54 benchmarks for which AOXMIN-MV
detected XOR logic, our tool did not detect XOR logic in 27 of those. Thus for only
27 of the benchmarks did BOTH tools detect XOR logic. The immediate question is
why. For the first situation, when our tool detects XOR logic while AOXMIN-MV
does not, the answer is that AOXMIN-MV is attempting to find a solution for which
the products are fewer than in the best two-level minimization solution. If this is not
found then AOXMIN-MYV does not provide a decomposition. Our tool does not take
this into consideration, it simply provides the decomposition based on the theorems
in Chapter 3. For the second situation, when our tool does not detect XOR logic
while AOXMIN-MYV does, the answer is that AOXMIN-MV takes into account more
possibilities for three-level decompositions than does our tool; our tool is currently
limited to only the two situations described by Theorems 3.8 and 3.9. Future work
must be done to extend the tool to identify other types of decompositions.

Even given the limitations of our tool, the fact is that on 74% of the benchmarks
AOXMIN-MV and our autocorrelation-based tool agree on the existence of XOR logic

within the function. That these results are as good as they are is somewhat surprising,



7.4 Decomposition Type Lists for KDDs 149

since only two types of XOR decompositions are being identified. In fact, given that
this implementation is the result of the first work performed relating autocorrelation
coefficients to three-level minimization while other tools represent the final of many
stages of improvements, this is a very good indication that our technique is worth
further investigation.

The 278 benchmarks used are described in Appendix C, and complete timing

results are given in Appendix D.

7.4 Decomposition Type Lists for KDDs

In Chapter 2 the graph-based representations called BDDs, FDDs, and their combina-
tion KDDs were introduced. BDDs have become very popular for representing switch-
ing functions, but have exponential sizes for some classes of functions [13, 40]. The
solution to this problem lies in the use of alternative decompositions, which creates
a composite type of decision diagram called a KDD. KDDs have the same variable-
ordering problem as do BDDs, with an added complication of deciding which type of
decomposition to use at each level. The list of decompositions is usually referred to
as a decomposition type list, or dtl. As described in Chapter 2, the choices for each
decomposition may be Shannon, positive Davio, or negative Davio decompositions.
Since we have shown in previous sections that the autocorrelation coefficients may be
used to identify XOR logic within a function, we have further hypothesized that they

also may be useful in determining a dtl for a KDD representing the function.

7.4.1 DTL and Ordering Tools for KDDs

The work in this dissertation is one of very few techniques that attempts to find an
ordering and dtl before building the KDD. Most other techniques involve building
the KDD and then sifting [13] or applying genetic algorithms [42]. Some of these

approaches are briefly described below.
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PUMA

The PUMA-Package makes use of three sifting techniques that apply enhanced ver-
sions of the technique introduced in [13]. These techniques are referred to as Sifting,
Siftlight and DTL-Sifting. Details of these are given in [63].

Our tool was compared with the DTL sifting heuristic, implemented by PUMA
as DTL-Sifting. Siftlight is faster, but only performs local optimization, while Sifting
only determines a variable ordering. DTL-Sifting scans all existing levels with all
decomposition types before sifting the variable to another position.

It is interesting also to note that an exact algorithm called DTL_Friedman [64]
is also implemented by PUMA. Initial tests to compare our results to the results of
this algorithm were begun; however, for most benchmarks the algorithm took many

hours to complete, so the DTL-Sifting heuristic was used instead.

Genetic Algorithms (Drechlser et. al.)

Another method introduced by Drechsler et. al. [42] uses a genetic algorithm to
determine the dtl. Once again, the process involves building an initial KDD and per-
forming various operations on it while measuring whether the operation has improved

the size or not.

Variable Weightings

Drechsler et. al. also introduce another method for determining ordering and dtl
in [65]. This method is more like the technique in this work in that it involves
examination of the function in an alternate representation to determine the ordering
and dtl before building the KDD. The authors of this work determine a number of
heuristics that are intended for application on differing types of circuits; for example,
KDDs for tree-like circuits are treated differently from KDDs for two-level circuits,

or KDDs for multi-level circuits.
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Since our work uses a two-level representation of the function to compute the
autocorrelation coefficients, we contrast the two-level heuristics of Drechsler et. al.
with our technique. In the two-level heuristics, a weight value for each variable
is computed. The weight value is determined by comparing plit;, the number of
positive occurrences of the literal x;, with nlit;, the number of negative occurrences
of the literal z; (7;), and then comparing the resulting cost with an arbitrarily chosen

parameter £ € [0,0.5]. The weight value is defined as

([ plit; + nlit; : nlit; = plit; =0V k = 0

plit; . plit; < k

Uar_weighti — plit;+nlit; plit;+nlit; —
nlit; . nlit; k

plit;+nlit; © plit;+nlit; —

plit; + nlit; : else

Depending on the value of the variable weight the decomposition type is chosen — the
first and last cases indicate that the decomposition type should be Shannon. In these
cases the difference between the number of positive literals and negative literals is
small. In the second case a negative Davio node is chosen. This is the case if there
are many more negative literals than positive ones. In the third case, when there are
many more positive literals, a positive Davio node is chosen.

This technique is most like the autocorrelation-based technique since it also ex-
amines the function prior to building. However, it appears that the choice of de-
composition types is almost the opposite of that made by the autocorrelation-based
technique. In our technique a variable with a first order coefficient of —2", indicating
many areas of the function that are dissimilar, leads to a Davio node, while in the
Drechsler technique a variable with similar numbers of positive and negative literals
— 1.e. dissimilarity in the function — leads to a choice of a Shannon node. One expla-
nation for this is that the ordering of the dtl may be as important as the actual dtl

itself.
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7.4.2 Implementation of a KDD Ordering and Decomposi-

tion Tool
Implementation Details

A simple program was written to implement an algorithm that uses the autocorre-
lation coefficients to determine a variable ordering and dtl for building kdds. The
algorithm used for determining a variable ordering was taken from [9]. The algorithm
for determining a dtl is based on the autocorrelation properties used for identification
of XOR logic. Pseudocode is given below. The ordering and dtl was used to build
KDDs using the PUMA [63] decision diagram package. For each benchmark function
a dtl and ordering was determined, and then the KDD for the function was built. The
size of the KDD and the time required to compute the autocorrelation coefficients
and determine the ordering and dtl were then compared against the size and time
required by a heuristic making use of sifting that is provided in the PUMA package.
These heuristics are based on the concept introduced in [13].

The ordering and dtl tool performs two passes examining the autocorrelation

coefficients:

e one pass to generate a variable ordering, and

e one pass to generate a dtl.

Some information about the ordering is used in generating the dtl. The ordering
is generated by creating two lists; one storing the first order coefficient values, and
the second storing the corresponding variables. A sort is then performed to order the
values from smallest to largest, with all swap operations being performed on both
lists. The resulting ordering of variables is returned for use in building the KDD.

The dtl generation function is more complex. First the first order autocorrelation
coefficients are examined. If any of these match the required pattern for XOR logic,
the variable level is assigned a negative Davio decomposition type. The second step

is to examine the second order autocorrelation coefficients. If any of these match the
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pattern for XOR logic, then one of them is assigned a positive Davio decomposition.
Choices of positive or negative decompositions were made through experimentation.

Pseudocode for this function is given below.

generate_dtl(coeffvector, ordering, dtl)
// first examine the first-order coeffs:
for each variable i
if (coeffvector[twoexp(numvars-1-i)] = negtwoexpn)
dtl[i] = negDavioType;

else dtl[i] = shannonType;

// now the examine the second order coeffs:
// check each pair of vars to see if the corresponding

// first and second order coeffs 000 O1= 000 10 = 000 11 = zero

for each variable i
// if the var already has a davio type then skip it

if (dtl[i] !'= shannonType) continue;

for each variable j starting at i+l
// if the var already has a davio type then skip it

if (dt1[i] !'= shannonType) continue;

int uvall = 0 | twoexp(numvars-1-j); // 000 01

int uval2 = 0 | twoexp(numvars-1-i); // 000 10

int uval3 = uvall | uval2; // 000 11

if (coeffvector[uvall] = coeffvector[uval2] = coeffvector[uval3] = 0)
// if one of them is first in the ordering, then
// make the other the davio node, but just one

// becomes a davio node..
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if (1ab[0] != i) dt1l[j] = posDavioType;

else dtl[j] = posDavioType;

Results

We find that for only 4 benchmarks does the autocorrelation-based ordering and
decomposition result in a smaller KDD than that determined by the sifting heuristic.
However, the average number of nodes for the two techniques are very close, and if a
one-node size difference is permitted then the two methods perform equally well for
173 (63%) of the benchmarks. A summary of the results is given in Table 7.2 while
the complete results are given in Appendix D. In both sets of tables the comparison
tool is referred to as DTL_SIFT while our autocorrelation-based method is referred

to as the AC method.

successes avg. time avg. nodes
DTL.SIFT | 276 /278  0.09 sec 14.0
AC method | 276 / 278  0.43 sec 16.5

Table 7.2. Summary of results comparing the DTL_SIFT heuristics implemented in
the PUMA KDD package to our autocorrelation-based dtl tool.

As indicated in Table 7.2, for both methods the KDD-builder failed to build a
KDD for 2 benchmarks. This turned out to be caused by the fact that both of these
benchmarks have no minterms.

While these results indicate that the sifting method performs better than our
method, the difference in the performance is almost negligible. This is interesting,

particularly when the following is considered:

e The autocorrelation-based ordering heuristic used was the simplest of those
introduced in [9]; work in this area would likely lead to a further reduction in

KDD sizes.
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e The autocorrelation-based dtl heuristic examines the autocorrelation coefficients
for only two relatively limited variants including XOR logic. Extension of this
process would likely identify other situations in which a Davio decomposition

would result in smaller or fewer subtrees than a Shannon decomposition.

e Only experimental fine-tuning was performed with respect to whether a positive
or a negative Davio decomposition would be the best choice at each level. Fur-
ther analysis is required in order to determine if the autocorrelation coefficients

provide information that may be used in this area.

In fact, analysis of some of the benchmarks for which our tool gave particularly bad
performance shows that in most cases, Shannon decompositions were chosen for all
of the variables. This implies that our algorithm found no matches for the XOR-logic
patterns in the autocorrelation coefficients. DTL_SIFT, on the other hand, did choose
non-Shannon decompositions for these benchmarks. This leads to the conclusion that
there are other factors indicating a Davio decomposition is a good choice which are
not being detected by our algorithm. Again, we are aware that our tool is only
currently designed to detect two situtations in which the inclusion of XOR-based
decompositions may lead to better KDDs. Clearly this is an area where future work
in extending the algorithm may lead to exceptional improvements. It should also
be noted that the timing for the autocorrelation-based tool includes computation of
all 2™ coefficients. This could be considerably reduced if only the required first and

second-order coefficients were computed.

7.5 Conclusion

This Chapter presents two applications of the autocorrelation coefficients, one in
identifying three-level decompositions and one in the determination of decomposition
types for KDD nodes. Based on the theorems presented in Chapter 3 a proof-of-

concept tool for each application has been implemented and tested against known
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tools. The results for each are very good. We found that our tools perform as well as
the comparison tools 74% of the time for the three-level decomposition, and 63% of
the time for the KDD dtl and ordering determination, and both perform very quickly.
Given the simplicity of the algorithms, these results are very exciting, and certainly

indicate the value of further work in these areas.



Chapter 8

Conclusion

This chapter summarizes the research contributions of this dissertation, and discusses

several potential directions for future research related to this work.

Contributions

This dissertation details an investigation into the uses of the autocorrelation coeffi-
cients in digital logic applications, primarily logic synthesis. Before performing an
in-depth investigation of this sort, we deemed it necessary to have a fast and efficient
technique for the computation of these coefficients. Additionally, since the basic prop-
erties of the autocorrelation coefficients had not been documented, this is also an area
addressed by this dissertation. The main areas of application that are considered for
the autocorrelation coefficients are the classification of switching functions, three-level
decomposition, symmetry-testing, and DD construction. The primary contributions

of this work are as follows:
e theorems relating the autocorrelation coefficients to underlying properties such
as sparcity, degenerateness, and the existence of XOR logic;

e theorems relating the coefficients to symmetries in the original switching func-

tion, and the identification of a new type of symmetry called anti-symmetries;

e two fast DD-based techniques for the computation of single autocorrelation

coefficients;
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e an autocorrelation-based classification technique that encompasses the spectral

classes, as well as the determination of a canonical representative for each class;

e an algorithm for the detection of XOR logic leading to a three-level decompo-

sition of a switching function; and

e an algorithm for the detection of XOR logic leading to a variable ordering and

dtl for the construction of a KDD representing the function.

Future Work

There are many areas in which the above contributions may be applied or extended.
The first, and main concern for researchers continuing this work must certainly be
to extend the above results and applications to incompletely specified and multiple-
output functions. Since most switching functions for practicial applications have
multiple outputs, extending the properties and classification techniques is likely to be
the first area for future consideration. Also, as briefly mentioned in Chapter 5, it is
feasible to extend the BDD techniques introduced in this chapter to the computation
of multiple-output functions.

Similarly, there is potential for these results to be applied to multiple-valued logic
functions. This is an area of increasing popularity, and the extensibility of this work
into the multiple-valued case should be investigated.

Additional research should also be performed with regards to the three-level de-
composition and KDD dtl-determination tools. The present algorithms certainly
perform well, agreeing with existing tools for 74% and 63% of the tested benchmarks
respectively. However, these tools currently detect XOR logic involving either one
or two input variables. There are many other cases that may exist, and this is cer-
tainly is worth investigation. As the tools stand the results are very good; it is also
possible that some further optimization of how the variables are chosen for the de-

compositions or dtl would provide even better results. In particular, future directions
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for the three-level decomposition tool involve investigating techniques for balancing
the decompositions, such as recursively re-applying our technique to the larger of the
functions or identification of more generalized patterns within the autocorrelation
coefficients. Work on the KDD dtl tool must also refine the choices of node de-
compositions, and we envision this work incorporating symmetry and anti-symmetry
information, as well as making use of more generalized Theorems for the identification
of XOR decompositions.

Finally, there are many interesting potential uses for the classification technique
presented in Chapter 6. Some of these uses include the use of reconfigurable logic
to implement a canonical representative of a class, and the identification of certain
classes for which a KDD/FDD/BDD may provide the most efficient representation.
These are areas for which applications are discussed, but have not been tested. It
would be very interesting to develop and implement algorithms for each of these

concepts.
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Appendix A

List of Notation and Symbols Used

General Notation

A Boolean, or switching function is a function f(X) in which

f(X) €{0,1}
X ={x1, .y Tn1,Tn}

z; € {0,1}Viel.n

In any truth table defining a switching function f(X) the highest order bit (left-
most) is labeled z,, while the lowest order bit (rightmost) is labeled z; as shown in

Figure A.1.

The Boolean operators AND, OR, negation (complementation) and exclusive-OR

are represented by the symbols in Table A.1.

Output Encoding

The output vector of a Boolean function f(X) is referred to as Z if {0,1} encoding
is used, and as Y if {+1, —1} encoding is used. z; and y; refer to individual elements

of the vectors Z and Y respectively.
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r3 w3 x| f(X)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1| 1
1 0 O 1
1 0 1| 0
1 1 0| 0
1 1 1| 1

Figure A.1. A truth table demonstrating how the input bits are labeled.

Operator Symbol
AND A
OR \Y
exclusive-OR S
negation of variable x T

Table A.1. The symbols used to represent the most common Boolean operators.

Notation for Spectral Coefficients

The spectral coefficient vectors are labeled R and S for {0,1} and {+1, —1} encoding

respectively as shown in Figure A.2.

s; and r; refer to individual elements of the S and R vectors respectively.
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{0,1} T"-Z=R
{+1,-1} Tr-Y=8

Figure A.2. The spectral transforms for computing R and S.

Notation for Autocorrelation Coefficients

The autocorrelation function is defined as
on_1

BT (1) = Z:lf(v)-f('UEBT)

where
n .
v = Z v; - 271
i=1

n
T = Z 720t
i=1
Alternatively, 7 may be replaced with .
If {+1,—1} encoding is used then the resulting coefficient is labeled C'/ /(7).
In general, the superscript f f is omitted when referring to the autocorrelation
function. For the remainder of this dissertation, B (C) is used to refer to the entire
vector of autocorrelation coefficients, and B(7) (C(7)) is used to refer to each entry

in this vector. Figure A.3 illustrates three alternative labelings for B(r).
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Figure A.3. Alternative labelings for the of the autocorrelation coefficients (assum-

ingn=3).
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Glossary

B.1 Acronyms

ASIC - Application Specific Integrated Circuit
BDD - Binary Decision Diagram

DAG - Directed Acyclic Graph

dtl - decomposition type list

FDD - Functional Decision Diagram

FPGA - Field Programmable Gate Array
KDD - Kronecker Desision Diagram

LUT - Look-up Table

NP - Non-deterministic Polynomial

NPN - Negation (inputs), Permutation, Negation (outputs)
PAL - Programmable Array Logic

PLA - Programmable Logic Array

PLD - Programmable Logic Device

PML - Programmable Macro Logic

POS - Product of Sums

ROBDD - Reduced Ordered Binary Decision Diagram
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RTL - Register Transfer Language

SOP - Sum of Products

VHDL - VHSIC Hardware Description Language
VHSIC - Very High Speed Integrated Circuits

XOR - exclusive-or

B.2 Definitions

analysis - the process of extracting a formal description of a function from a diagram

of the circuit implementation

BDD - Binary Decision Diagram. A binary directed acyclic graph with two leaves
TRUE and FALSE, in which each non-leaf node is labeled with a variable and
has two out-edges, one pointing to the subgraph that is evaluated if the node la-
bel evaluates to TRUFE and the other pointing to the subgraph that is evaluated
if the node label evaluates to FALSE.

Chow parameters - n + 1 parameters defined as

CH(X) 2 Ch(z1), Ch(x2), ..., Ch(zn); Ch(zo)
where
Ch(z;) = Y occurrence of x; over all true minterms; i=1 to n
Ch(zy) = total number of true minterms
completely specified function - a Boolean function in which the output is defined

for all 2" possible input combinations

complexity measure - the complexity measure C(f) is defined as
1 2" —1

C(f) =n2" — {2 v}
v=0

cover - a cover of an incompletely specified function F' (i.e. a function with a don’t
care set) is a completely specified function f such that all minterms in the on-set

of f are also in F' and no minterm in F' is in the off-set of f
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degenerate function - a function of n variables wich does not depend upon all n

inputs to determe the function output(s)

FPGA - Field Programmable Gate Array. A FPGA is a device in which the final
logic structure can be directly configured by the end user, without the use of
an integraged circuit fabrication facility

literal - a variable x; or its complement T;

linearly separable - a term used to describe a function for which, when its minterms
are considered as 2" equispaced nodes in n-dimensional space, there exists a
plane that separates all the true (f(X) = 1) nodes from all the false nodes
(f(X) = 0); also known as a threshold function

LUT - Look-up Table. A memory table that can look up any of 22" possible func-
tions, where n is the number of inputs

maxterm - a sum term in which each of the n variables x; appears exactly once as
either z; or T;

maxterm expansion - a canonical product-of-sums form formed by multiplying the
maxterms for which f(X) = 0 and in which no identical maxterms appear more
than once

minterm - a product term in which each of the n variables of a switching function
appears exactly once in either its true or complemented form

PLA - A Programmable Logic Array. A PLA is a circuit consisting of a grid that
implements a two-level AND/OR circuit

product - the result of an AND operation

product term - a literal or a product of literals

product-of-sums - a Boolean function representation consisting of a product of sum

terms

ROBDD - a Reduced, Ordered Binary Decision Diagram (see BDD). A BDD is a

reduced BDD if it contains no vertex whose left subgraph is equal to its right
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subgraph, nor does it contain distinct vertices v and v’ such that the subgraph
rooted by v and v’ are isomorphic, and a BDD is an ordered BDD if on every
path from the root node to an output, the variables are encountered in the

specified order.

self-dual function - the self dual of a function is written f”(X) and is defined as
fP(X) £ J(X)

Shannon’s expansion f(X) = x;fs,=1 ® Tifz,=0

sum - the result of an OR operation

sum term - a literal or a sum of literals

sum-of-minterms - a canonical sum-of-products representation of a Boolean func-
tion, consisting of a sum of minterms for which f(X) =1 and in which no two

identical minterms appear

sum-of-products - a Boolean function representation consisting of a sum of product

terms

symmetry - a function f(X) is said to be symmetrical, or to have symmetry, in
a subset of its variables if f remains unchanged for any permutation of those

variables
synthesis - the process of taking a formal description of a function and developing
a diagram representing a circuit implementation

trivial function - a function for which the output is constant (that is, f(X) =0 or

f(X) =1 for Boolean functions)

threshold function - a function for which, when its minterms are considered as 2"
equispaced nodes in n-dimensional space, there exists a plane that separates all
the true (f(X) = 1) nodes from all the false nodes (f(X) = 0); also known as

a linearly separable function
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Benchmarks

The benchmarks used in this work are from various sources, including the MCNC
1989 series of benchmarks [52] and those distributed with the ESPRESSO logic min-
imization tool [66].

Because this work is limited to single-output functions, each of the benchmarks
have been separated into separate files for each of their outputs. The following tables
list all of the benchmarks as a whole, rather than as the separate filenames that were

assigned to each output.
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filename | inputs outputs | products filename | inputs outputs | products
C17 5 2 7 pml 4 10 40
ex3 5 1 4 radd 8 5 75
misex1 8 7 32 terml 34 10 257
064 130 1 65 tial al 8 586
sa02 10 4 58 ttt2 24 21 149
t481 16 1 481 unreg 36 16 48
z4 7 4 59 vda 17 39 793
add6 12 7 355 vg2 25 8 110
bl 45 45 1224 x2dn 82 56 105
cm42a 4 10 40 dk27 9 9 10
apex1 45 45 206 C7552 5 16 16
apex7 49 37 517 alul 12 8 19
apla 10 12 26 alu2 10 6 261
b9 41 21 138 alu4 14 8 1799
clip 9 5 167 bca 26 46 180
cml152a 11 1 8 bcb 26 39 155
cm82a 5 3 23 bed 26 38 117
conl 7 2 9 bw 5 28 87
in0 n0 11 107 cht 47 36 120
dc2 8 7 40 cu 14 11 22
bc0 26 11 179 decod 5 16 16
cmb 16 4 54 dk17 10 11 18
cm85a 11 3 48 dk48 15 17 22
col4 14 1 47 mux 21 1 36
dcl 4 7 9 duke2 22 29 87
dist st 5 121 f51m 14 8 1799
f2 4 4 12 in2 n2 10 137
frg2 143 139 4377 in3 n3 29 74
inl 16 17 104 in4 n4 20 212
1dd 47 36 120 ind nd 14 62
life 9 1 512 in6 n6 23 54
max46 9 1 46 in7 n7 10 54
pcler8 16 5 45 jbp 36 57 122
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filename | inputs outputs | products filename | inputs outputs | products
k2 45 45 1224 5xpl 7 10 75
parity 16 1 32768 9symml 9 1 87
mlp4 8 8 128 C5315 49 37 517
rckl 32 7 32 adr4 8 5 75
rd53 5 3 32 alu3 10 8 66
root 8 5 57 apex2 39 3 1035
sct 19 15 74 bee 26 45 137
sym10 10 1 837 cc 21 20 52
x1 51 35 324 chkn 29 7 140
toolarge | 38 3 1075 cmlbla 19 9 45
x2 10 7 35 cm162a 27 17 61
x7dn 66 15 539 cm163a 16 13 37
x9dn 27 7 120 ex2 5 1 7
z4ml 7 4 59 example2 | 10 6 261
apex3 54 50 280 lal 21 20 52
apex4 9 19 438 frgl 28 3 119
apexb 117 88 1227 gary 15 11 107
apex6 143 139 4377 log8mod | 8 5 47
cm150a 21 1 17 majority | 5 1 5
count 35 16 184 misex2 25 18 29
e64 65 65 65 mish sh 43 82
exl 5 1 16 pcle 18 9
misex3 14 14 1848 rd73 7 3 141
misex3c 14 14 305 risc sc 31 28
misg 56 23 69 ryy6 16 1 112
seq 41 35 1459 tcon 17 16 32
rd84 8 4 256 x1dn 27 6 110
sqn 7 3 38 x6dn 39 5 82
sqr6 6 12 50 xorH 5 1 16
wim m 7 9 life_min 9 1 84




Appendix D

Results

D.1 Results of Three-Level Decomposition Exper-
iments

We first provide a brief overview of the results of our three-level decomposition tool.

e 3level decomp found 59 benchmarks with XOR, logic.

o AOXMIN-MV found 54 benchmarks with XOR logic.

e For 32 benchmarks AOXMIN-MYV did not identify XOR logic while 3level decomp
did.

e For 27 benchmarks AOXMIN-MYV did identify XOR logic while 3level decomp
did not.

e The total number of benchmarks for which the AOXMIN-MV tool completed
without error was 244. Examination of the provided code indicates that a

programming error is the cause of the 34 failures.

e The total number of benchmarks for which 3level_decomp completed without

error was 278.

e The average time for 3level_decomp to complete was 5.4 seconds while the av-

erage time for AOXMIN-MV was 71.1 seconds.

e All benchmarks used had fewer than 10 inputs due to limitations of the proof-
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of-concept autocorrelation-based tool.

In the following table, the second and third columns refer to the results of our
three-level minimization tool. The column labeled “XOR?” refers to whether or not
the algorithm identified the presence of XOR logic in the function; a “no” indicates
no appropriate three-level decomposition, while a “yes” indicates that one was found.
The column labeled “3level_decomp & ac time” gives the timing in seconds for com-
putation of the autocorrelation coefficients and determining the decomposition. The
third and fourth columns give similar results for the comparison tool AOXMIN-MV.
The entry “err” means that for some reason the tool in question could not complete

processing for that benchmark.
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filename 3LEVEL AOXMIN-MV filename 3LEVEL AOXMIN-MV
XOR? time | XOR? time XOR? time | XOR? time
dcl_out? no 0 no 0.0 adr4_outl yes 0 no 0.0
5xpl_outl no 0 no 0.2 adr4_out2 yes 0 yes 2.1
5xpl_outl0 no 0 no 0.0 adr4_out3 yes 0 yes 1.7
5xpl_out2 no 0 no 0.2 adr4_out4 yes 0 yes 1.9
5xpl_out3 yes 0 yes 4.4 adr4_outb yes 0 no 0.2
5xpl-_out4 yes 0 yes 3.6 alu2_outl no 6 yes 11.1
5xpl_outd yes 0 yes 2.3 alu2_out2 no 24 yes 1.4
5xpl-_out6 yes 0 yes 1.8 alu2_out3 yes 0 no 0.3
5xpl_out7 yes 0 yes 0.1 alu2_out4 yes 0 no 0.0
5xpl_out8 yes 0 no 0.2 alu2_outb no 18 no 0.2
5xpl_out9 yes 0 no 0.0 alu2_out6 yes 0 no 0.1
9symml_outl no 6 err err alu3d_outl yes 0 yes 0.3
C17_outl no 0 no 0.0 alu3_out2 no 0 yes 0.2
C17_out2 no 0 err err alu3_out3 no 6 yes 0.3
C7552_outl no 0 no 0.0 alu3_out4 no 6 no 0.1
C7552_out10 no 0 no 0.0 alu3_outb no 6 no 0.0
C7552_outll no 0 no 0.0 alu3_out6 no 12 yes 0.3
C7552_outl2 no 0 no 0.0 alu3_out7 no 0 no 0.0
C7552_outl3 no 0 no 0.0 alu3_out8 no 0 no 0.0
C7552_outl4 no 0 no 0.0 apex4_outl no 0 no 0.0
C7552_outls no 0 no 0.0 apex4_out2 no 0 no 0.2
C7552_out16 no 0 no 0.0 apex4_out3 no 6 no 0.5
C7552_out2 no 0 no 0.0 apex4_out4 no 6 no 0.5
C7552_out3 no 0 no 0.0 apex4_outb no 6 no 0.5
C7552_out4 no 0 no 0.0 apex4_out6 no 6 yes 4:28.6
C7552_outb no 0 no 0.0 apex4_out? no 6 no 0.5
C7552_out6 no 0 no 0.0 apex4_out8 no 6 yes 57.1
C7552_out7 no 0 no 0.0 apex4_out9 no 6 no 0.4
C7552_out8 no 0 no 0.0 apex4_outl10 no 6 no 0.5
C7552_out9 no 0 no 0.0 apex4_outll no 6 no 0.4
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filename 3LEVEL AOXMIN-MV filename 3LEVEL AOXMIN-MV
XOR? time | XOR? time XOR? time | XOR? time
apex4_outl2 no 6 no 0.5 bw_out24 no 0 no 0.1
apex4_outl3 no 6 no 0.4 bw_out25 no 0 err err
apex4_outl4d no 6 no 0.3 bw_out26 no 0 no 0.2
apex4_outlb no 6 no 0.4 bw_out27 no 0 no 0.2
apex4_outl6 no 0 no 0.0 bw_out28 no 0 no 0.0
apex4_outl7 no 0 no 0.0 bw_out3 no 0 no 0.2
apex4_outl8 no 0 no 0.0 bw_out4 no 0 yes 0.6
apex4_out19 no 0 no 0.0 bw_outb no 0 no 0.1
apla_outl no 6 no 0.2 bw_out6 no 0 err err
apla_out10 no 12 no 0.3 bw_out7 no 0 no 0.1
apla_outl1l no 0 no 0.0 bw_out8 no 0 no 0.0
apla_out12 no 0 no 0.2 bw_out9 no 0 yes 0.7
apla_out2 no 6 no 0.1 clip_outl no 0 no 0.0
apla_out3 no 6 no 0.0 clip_out2 no 0 yes 1.6
apla_out4 no 0 no 0.0 clip_out3 no 6 yes 3.7
apla_outb no 6 no 0.1 clip_out4 no 6 yes 1.6
apla_out6 no 0 no 0.0 clip_outb no 0 no 0.0
apla_out7 no 0 no 0.0 cm42a_outl no 0 err err
apla_out8 no 0 no 0.1 cm42a_out10 no 0 err err
apla_out9 no 6 no 0.1 cm42a_out2 no 0 err err
bw_outl no 0 no 0.1 cm42a_out3 no 0 err err
bw_out10 no 0 no 0.0 cm42a_outd no 0 err err
bw_outll no 0 no 0.1 cm42a_outb no 0 err err
bw_out12 no 0 no 0.1 cm42a_out6 no 0 err err
bw_out13 no 0 no 0.0 cm42a_out? no 0 err err
bw_outl4 no 0 no 0.1 cm42a_out8 no 0 err err
bw_out15 no 0 no 0.1 cm42a_out9 no 0 err err
bw_outl6 no 0 no 0.0 cm82a_outl yes 0 yes 1.6
bw_outl7 no 0 no 0.0 cm82a_out2 yes 0 yes 2.7
bw_outl8 no 0 no 0.1 cm82a_out3 yes 0 no 0.0
bw_out19 no 0 no 0.1 conl_outl no 0 no 0.2
bw_out2 no 0 no 0.0 conl_out2 no 0 no 0.4
bw_out20 no 0 yes 0.7 dcl_outl yes 0 no 0.1
bw_out21 yes 0 yes 1.8 dcl_out2 no 0 no 0.1
bw_out22 no 0 no 0.0 dcl_out3 no 0 yes 0.7
bw_out23 no 0 yes 1.4 dcl_out4 no 0 yes 0.7
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filename 3LEVEL AOXMIN-MV filename 3LEVEL AOXMIN-MV
XOR? time | XOR? time XOR? time | XOR? time
dcl_outb yes 0 no 0.2 dk17_outb no 0 no 0.1
dcl_out6 yes 0 no 0.0 dk17_out6 no 0 no 0.0
dc2_outl no 0 no 0.3 dk17_out7 no 0 no 0.0
dc2_out2 no 0 no 0.1 dk17_out8 no 0 no 0.0
dc2_out3 no 0 no 0.2 dk17_out9 no 6 no 0.0
dc2_out4 no 0 no 0.1 dk27_outl no 0 no 0.1
dc2_outb no 0 yes 0.9 dk27_out2 no 0 no 0.0
dc2_out6 no 0 no 0.2 dk27_out3 no 0 no 0.1
dc2_out? yes 0 no 0.0 dk27_out4 yes 0 no 0.0
decod_outl no 0 no 0.0 dk27_outb no 0 no 0.0
decod_out10 no 0 no 0.0 dk27_out6 yes 0 no 0.0
decod_outll no 0 no 0.0 dk27_out7 yes 0 no 0.0
decod_out12 no 0 no 0.0 dk27_out8 no 0 no 0.0
decod_outl3 no 0 no 0.0 dk27_out9 yes 0 no 0.0
decod_out2 no 0 no 0.0 exl_outl yes 0 yes 39.1
decod_out14 no 0 no 0.0 ex2_outl no 0 no 0.3
decod_outl5 no 0 no 0.0 ex3_outl no 0 no 0.1
decod_outl6 no 0 no 0.0 example2_outl no 12 yes 10.8
decod_out3 no 0 no 0.0 example2_out2 no 24 yes 1.5
decod_out4 no 0 no 0.0 example2_out3 yes 0 no 0.2
decod_outb no 0 no 0.0 example2_out4 yes 0 no 0.0
decod_out6 no 0 no 0.0 example2_out5 no 18 no 0.2
decod_out7 no 0 no 0.0 example2_out6 yes 0 no 0.1
decod_out8 no 0 no 0.0 f2_outl no 0 no 0.0
decod_out9 no 0 no 0.0 f2_out2 no 0 no 0.0
dist_outl no 0 no 0.0 f2_out3 no 0 no 0.0
dist_out2 no 0 yes 1.5 f2_out4 no 0 no 0.0
dist_out3 no 0 yes 7.7 life_min_outl no 6 yes 5:16.5
dist_out4 no 0 no 0.3 life_outl no 6 yes 4:49.1
dist_outd no 0 no 0.2 log8mod_outl no 0 no 0.3
dk17_outl no 0 no 0.1 log8mod_out2 no 0 no 0.2
dk17_out10 no 6 no 0.2 log8mod_out3 no 0 yes 1.1
dk17_outll no 0 no 0.1 log8mod_out4 no 0 no 0.2
dk17_out2 no 0 no 0.1 log8mod_out5 no 0 yes 2.3
dk17_out3 no 0 no 0.0 majority_outl no 0 no 0.0
dk17_out4 no 6 no 0.1 max46_outl no 6 no 0.3
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filename 3LEVEL AOXMIN-MV filename 3LEVEL AOXMIN-MV
XOR? time | XOR? time XOR? time | XOR? time
misex1_outl no 0 no 0.1 sqn-out3 no 0 yes 1.2
misex1_out2 no 0 no 0.1 sqr6-outl no 0 no 0.0
misex1_out3 no 0 no 0.1 sqr6_out10 yes 0 no 0.0
misex1_out4 no 0 no 0.1 sqr6_outll no 0 no 0.0
misex1_outb yes 0 no 0.2 sqr6_out12 yes 0 no 0.0
misex1_out6 no 0 no 0.2 sqr6-out2 no 0 no 0.1
misex1_out7 no 0 no 0.2 sqr6_outd no 0 yes 1.0
mlp4_outl no 0 no 0.0 sqré_out3 no 0 no 0.2
mlp4_out2 no 0 no 0.2 sqr6_outd no 0 no 0.1
mlp4_out3 no 0 no 0.3 sqr6_out6 yes 0 no 0.1
mlp4_outd no 0 no 0.3 sqré_out7 yes 0 yes 1.9
mlp4_outh yes 0 yes 18.1 sqr6-out8 yes 0 no 0.2
mlp4_out6 yes 0 yes 4.6 sym10_outl no 24 err err
mlp4_out7 yes 0 yes 0.2 sqr6-out9 yes 0 no 0.1
mlp4_out8 yes 0 no 0.0 wim_outl no 0 err err
pml_out4 no 0 err err wim_out2 no 0 no 0.0
pml_outl no 0 err err wim_out3 yes 0 no 0.1
pml_outl0 no 0 err err wim_out4 no 0 no 0.0
pml_out2 no 0 err err wim_out5 no 0 err err
pml_out3 no 0 err err wim_out6 no 0 err err
pml_outd no 0 err err wim_out? no 0 err err
pml_out6 no 0 err err x2_outl no 0 err err
pml_out? no 0 err err x2_out2 yes 0 no 0.1
pml_out8 no 0 err err x2_out3 no 0 no 0.0
pml_out9 no 0 err err x2_out4 no 0 err err
radd_outl yes 0 no 0.2 x2_outh no 0 no 0.0
radd-out2 yes 0 yes 2.1 x2_out6 no 12 no 0.2
radd-out3 yes 0 yes 2.1 x2_out7? no 12 no 0.1
radd_out4 yes 0 yes 1.8 xor5_outl yes 0 yes 39.2
radd_out5 yes 0 no 0.0 z4_outl yes 0 no 0.0
ryy6_outl no 2640 err err z4_out2 yes 0 yes 2.0
sao2_outl no 6 no 0.1 z4_out3 yes 0 yes 2.7
sao2_out2 no 6 no 0.2 z4_out4d yes 0 yes 1.8
sao2_out3 no 12 err err z4ml_outl yes 0 no 0.0
sao2_out4 no 6 err err z4ml_out2 yes 0 yes 1.8
sqn_outl no 0 no 0.1 z4ml_out3 yes 0 yes 2.7
sqn_out2 no 0 no 0.2 z4ml_out4d yes 0 yes 1.7
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D.2 Results of KDD Ordering and Decomposition

The following is a brief overview of some of the results of comparing our KDD dtl
and ordering tool with the DTL_SIFT algorithm implemented in the PUMA package.
Our method is referred to as AC.

e The AC method resulted in a smaller KDD than did the DLT_SIFT algorithm
for 4 benchmarks.

e The Sift method (DTL_SIFT algorithm) resulted in a smaller KDD for 131

benchmarks.
e Both methods resulted in KDDs of the same size for 141 benchmarks.

e If a one node size difference is permitted then AC and Sift result in “same-sized”

KDDs for 173 benchmarks.

e The average nodes for the AC method is 16.5, while the average nodes for the
Sift method is 14.0.

e Both methods completed successfully for 276 benchmarks.

e The average time for the Sift method was 0.09 seconds while the average time

for the AC method was 0.43 seconds.

The complete results are listed in the following tables. In these tables the time
in seconds required for computing the autcorrelation coefficients, determining the dtl
and variable ordering, and building the kdd is listed in the second column labeled
“AC method/time”. The resulting number of nodes for the KDD is then listed in
the third column labeled “AC method/nodes”. The corresponding measures for the

DTL_SIFT algorithm are listed in columns 4 and 5.
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filename AC method DTL_SIFT
time nodes | time nodes

5xpl-_outl 0 11 0.1 10
5xpl_outl0 0 7 0.1 7
5xpl-_out2 0.1 19 0.1 13
5xpl_out3 0 16 0.1 12
5xpl_out4 0.1 12 0.1 9
5xpl_outd 0 7 0.1 7
5xpl_out6 0 5 0 4
5xpl_out7 0 3 0 3
5xpl-_out8 0.1 2 0.1 2
5xpl_out9 0 1 0.1 1
9symml_outl 0.2 24 0.1 24
C17_out1 0 6 0.1 5
C17_out2 0 6 0.1 4
C7552_outl 0 5 0.1 5
C7552_out10 0 5 0.1 5
C7552_outll 0 5 0.1 5
C7552_outl2 0 5 0.1 5
C7552_out13 0 5 0 5
C7552_out14 0.1 5 0.1 5
C7552_out2 0.1 5 0.1 5
C7552_outl5 0 5 0.1 5
C7552_outl6 0 5 0.1 5
C7552_out3 0 5 0 5
C7552_out4 0.1 5 0 5
C7552_outb 0 5 0.1 5
CT7552_out6 0 5 0 5
C7552_out7 0 5 0.1 5
CT7552_out8 0 5 0.1 5
CT7552_out9 0.1 5 0.1 5
adr4_outl 0 11 0.1 11
adr4_out2 0.1 10 0.1 11
adr4_out3 0 0.1
adr4_out4 0 0.1 4
adr4_out5 0 0.1
alu2_outl 0.3 46 0.1 33

filename AC method DTL_SIFT
time nodes | time nodes

alu2_out2 1 86 0.1 47
alu2_out3 0 2 0.1 2
alu2_out4 0.1 2 0.1 2
alu2_outb 0.6 81 0.1 64
alu2_out6 0.1 6 0 4
alu3_outl 0.2 4 0
alu3_out2 0.1 10 0.1 7
alu3_out3 0.2 15 0.1 10
alu3_out4 0.4 55 0.1 24
alu3_outb 0.2 9 0.1 9
alu3_out6 0.5 20 0.1 14
alu3_out7 0.1 7 0.1 7
alu3_out8 0.1 4 0.1 4
apex4_outl err err err err
apex4_out10 0.2 103 0.1 98
apex4_outll 0.4 100 0.1 97
apex4_outl2 0.2 90 0.1 81
apex4_outl3 0.2 80 0.1 73
apex4_outl4 0.3 80 0.1 73
apex4_outlb 0.2 80 0.1 82
apex4_outl6 0.1 30 0.1 25
apex4_outl7 0.2 26 0.1 23
apex4_outl8 0.1 28 0.1 25
apex4_out19 0.1 33 0.1 25
apex4_out2 0.2 70 0.1 61
apex4_out3 0.4 105 0.1 94
apex4_out4 0.2 105 0.1 92
apex4_outb 0.4 106 0.1 95
apex4_out6 0.2 105 0.1 93
apex4_out? 0.4 98 0.2 97
apex4_out8 0.3 102 0.2 95
apex4_out9 0.3 106 0.1 99
apla_outl 0.2 20 0.1 14
apla_out10 0.4 34 0 23
apla_outll 0.2 10 0.1 9
apla_out12 0.2 17 0.1 10
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filename AC method DTL_SIFT filename AC method DTL_SIFT
time nodes | time nodes time nodes | time nodes
apla_out2 0.3 20 0.1 14 clip_outl 0.2 32 0.1 26
apla_out3 0.3 20 0.1 16 clip_out2 0.2 32 0.1 27
apla_out4 0.1 8 0.1 8 clip_out3 0.2 39 0.1 28
apla_out5 0.4 24 0 18 clip_out4 0.2 27 0.1 21
apla_out6 0.1 8 0.1 8 clip_out5 0.1 20 0.1 20
apla_out7 0.2 4 0.1 4 cm42a_outl 0 4 0.1 4
apla_out8 0.1 23 0.1 15 cm42a_out10 0 4 0.1 4
apla_out9 0.2 14 0.1 10 cm42a_out2 0 4 0.1 4
bw_outl 0 12 0.1 9 cm42a_out3 0.1 4 0.1 4
bw_out10 0 5 0.1 5 cm42a_out4 0 4 0.1 4
bw_out11 0 7 0.1 5 cm42a_outb 0 4 0.1 4
bw_out12 0 8 0.1 6 cm42a_out6 0.1 4 0.1 4
bw_out13 0 5 0.1 5 cm42a_out? 0.1 4 0.1 4
bw_out14 0 10 0.1 8 cm42a_out8 0 4 0.1 4
bw_out15 0 9 0 7 cm42a_out9 0.1 4 0.1 4
bw_out16 0 7 0.1 6 cm82a_outl 0.1 3 0.1 3
bw_out17 0 5 0 5 cm82a_out2 0 6 0.1 6
bw_out18 0.1 7 0.1 7 cm82a_out3 0 7 0 7
bw_out19 0.1 7 0.1 6 conl_outl 0 10 0 9
bw_out2 0 5 0.1 5 conl_out2 0 8 0.1 6
bw_out20 0 9 0.1 7 dcl_outl 0 6 0.1 5
bw_out21 0.1 6 0.1 5 dcl_out2 0 4 0.1 4
bw_out22 0 5 0.1 5 dcl_out3 0 6 0.1 4
bw_out23 0.1 9 0.1 7 dcl_out4 0 6 0.1 5
bw_out24 0.1 10 0.1 9 dcl_outb 0.1 7 0.1 6
bw_out25 0 8 0.1 7 dcl_out6 0 6 0.1 5
bw_out26 0 9 0.1 8 dcl_out? 0 6 0 4
bw_out27 0 8 0.1 6 dc2_outl 0 10 0 8
bw_out28 0 5 0.1 5 dc2_out2 0 17 0.1 15
bw_out3 0.1 8 0 6 dc2_out3 0.1 20 0.1 16
bw_out4 0.1 6 0.1 6 dc2_out4 0 26 0.1 19
bw_out5 0 10 0.1 8 dc2_outb 0 20 0.1 10
bw_out6 8 0.1 7 dc2_out6 0 11 0.1 8
bw_out7 9 0.1 9 dc2_out7 0.1 1 0 1
bw_out8 0.1 7 0 5 decod_outl 0 5 0 5
bw_out9 0.1 10 0.1 7 decod_out10 0 5 0.1 5
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filename AC method DTL_SIFT filename AC method DTL_SIFT
time nodes | time nodes time nodes | time nodes

decod_outll 0.1 5 0.1 5 dk27_out7 0.1 2 0.1 2
decod_out12 0 5 0.1 5 dk27_out8 0 6 0.1 6
decod_outl3 0.1 5 0.1 5 dk27_out9 0 1 0.1 1
decod_outl4 0 5 0.1 5 exl_outl 0 5 0 5
decod_out2 0 5 0.1 5 ex2_outl 0 10 0.1 8
decod_outlb 0.1 5 0.1 5 ex3_outl 0 9 0 8
decod_out16 0 5 0.1 5 example2_outl 0.4 46 0.1 33
decod_out3 0 5 0.1 5 example2_out2 1 86 0.1 47
decod_out4 0 5 0.1 5 example2_out3 0.1 2 0.1 2
decod_outb 0 5 0.1 5 example2_out4 0.1 2 0.1 2
decod_out6 0 5 0.1 5 example2_out5 0.7 81 0.1 64
decod_out? 0.1 5 0.1 5 example2_out6 0.2 6 0.1 4
decod_out8 0.1 5 0.1 5 f2_outl 0.1 5 0.1 5
decod_out9 0 5 0.1 5 f2_out2 0.1 5 0.1 5
dist_outl 0 23 0.1 20 f2_out3 0 5 0 5
dist_out2 0 28 0.1 23 f2_out4 0 5 0.1 5
dist_out3 0.1 37 0.1 32 life_outl 0.2 26 0.1 25
dist_out4 0.1 55 0.1 36 life_min_outl 0.3 26 0.1 25
dist_outd 0.1 58 0.1 46 log8mod_outl 0 9 0.1 6
dk17_outl 0.1 9 0.1 9 log8mod_out2 0 13 0.1 13
dk17_out10 0.2 17 0.1 12 log8mod_out3 0.1 15 0.1 13
dk17_out11 0.2 9 0.1 8 log8mod_out4 0 22 0.1 17
dk17_out2 0.2 9 0.1 9 log8mod_out5 0.1 25 0.1 19
dk17_out3 0.1 10 0.1 9 majority_outl 0 7 0 7
dk17_out4 0.3 16 0.1 11 max46_outl 0.2 80 0.1 74
dk17_outb 0.2 15 0.1 10 misex1_outl 0 6 0.1 5
dk17_out6 0.1 3 0.1 3 misex1_out2 0.1 11 0.1 8
dk17_out7 0.1 3 0 3 misex1_out3 0 12 0.1 10
dk17_out8 0.1 3 0.1 3 misex1_out4 0.1 12 0.1 9
dk17_out9 0.2 18 0.1 13 misex1_outb 0 6 0.1 5
dk27_outl 0 3 0.1 3 misex1_out6 0 12 0.1 9
dk27_out2 0 3 0.1 3 misex1_out? 0.1 12 0.1 9
dk27_out3 0 7 0.1 7 mlp4_outl 0 14 0.1 14
dk27_out4 0 2 0 2 mlp4_out2 0.1 27 0.1 25
dk27_outb 0.1 5 0.1 5 mlp4_out3 0 37 0.1 36
dk27_out6 0.1 2 0 2 mlp4_outd 0.1 49 0.1 39
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filename AC method DTL_SIFT
time nodes | time nodes
mlp4_outd 0.1 21 0.1 15
mlp4_out6 0 10 0.1 7
mlp4_out? 0 4 0 4
mlp4_out8 0 2 0.1 2
pml_outl 0 4 0.1 4
pm1l_outl0 0.1 4 0.1 4
pml_out2 0 4 0.1 4
pml_out3 0.1 4 0.1 4
pml_out4 0.1 4 0.1 4
pm1l_outb 0.1 4 0.1 4
pm1l_out6 0 4 0.1 4
pml_out? 0 4 0.1 4
pml_out8 0 4 0.1 4
pm1l_out9 0.1 4 0.1 4
radd_outl 0 2 0.1 2
radd_out2 0.1 4 0.1 4
radd_out3 0 7 0.1 7
radd_out4 0.1 10 0.1 10
radd_outd 0 11 0.1 11
ryy6_outl 92.2 31 0.1 21
sao2_outl 0.2 31 0.1 29
sao2_out2 0.3 49 0.1 33
sao2_out3 0.5 36 0.1 24
sao2_out4 0.3 35 0.1 25
sqn-outl 0 25 0.1 13
sqn_out2 0.1 31 0.1 20
sqn_out3 0 26 0.1 25
sqr6_outl 0 5 0 5
sqr6-out10 0 2 0.1 2
sqré6_outll err err err err
sqr6-out12 0 1 0.1 1
sqr6_out2 0 6 0.1 5

filename AC method DTL_SIFT
time nodes | time nodes
sqré6_out3 0 13 0.1 10
sqré_out4d 0.1 16 0.1 12
sqr6-_outd 0.1 15 0.1 13
sqré_out6 0 12 0.1 12
sqré_out7 0 8 0 6
sqré-out8 0 7 0 4
sqr6_out9 0 4 0 3
sym10_outl 0.9 30 0.1 30
wim_outl 0.1 4 0.1 4
wim_out2 0 5 0.1 5
wim_out3 0.1 3 0 3
wim_out4 0.1 3 0.1 3
wim_out5 0 3 0.1 3
wim_out6 0 3 0.1 3
wim_out7 0 6 0.1 5
x2_outl 0 3 0.1 3
x2_out2 0.1 3 0.1 3
x2_out3 0 3 0.1 3
x2_out4 0.1 6 0.1 6
x2_outd 0.1 4 0.1 4
x2_out6 0.5 13 0.1 14
x2_out7 0.5 14 0.1 11
xorb_outl 0 5 0.1 5
z4_outl 0 10 0.1 10
z4_out2 0.1 9 0.1 9
z4_out3 0 6 0.1 6
z4_out4 0 3 0.1 3
z4ml_outl 0 10 0.1 10
z4ml_out2 0 9 0.1 9
z4ml_out3 0 6 0.1 6
z4ml_out4 0.1 3 0.1 3
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