ON SOME PERMUTATION POLYNOMIALS OVER FINITE FIELDS

AMIR AKBARY AND QIANG WANG

ABSTRACT. Let p be prime, $q = p^m$ and q - 1 = 7s. We completely describe the permutation behavior of the binomial $P(x) = x^r(1 + x^{es})$ $(1 \le e \le 6)$ over a finite field \mathbb{F}_q in terms of the sequence $\{a_n\}$ defined by the recurrence relation $a_n = a_{n-1} + 2a_{n-2} - a_{n-3}$ $(n \ge 3)$ with initial values $a_0 = 3$, $a_1 = 1$, and $a_2 = 5$.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field of $q = p^m$ elements with characteristic p. A polynomial $P(x) \in \mathbb{F}_q[x]$ is called a *permutation polynomial* of \mathbb{F}_q if P(x) induces a bijective map from \mathbb{F}_q to itself. In general, finding classes of permutation polynomials of \mathbb{F}_q is a difficult problem (see Chapter 7 of [2] for a survey of some known classes). An important class of permutation polynomials consists of permutation polynomials of the form $P(x) = x^r f(x^{\frac{q-1}{l}})$, where l is a positive divisor of q-1 and $f(x) \in \mathbb{F}_q[x]$. These polynomials were first studied by Rogers and Dickson for the case $f(x) = g(x)^l$ where $g(x) \in \mathbb{F}_q[x]$ ([2], Theorem 7.10). A very general result regarding these polynomials is given in [8]. In recent years, several authors have considered the case that f(x) is a binomial (for example, [3], [9] and [1]).

Here we consider the binomial $P(x) = x^r + x^u$ with r < u. Let s = (u - r, q - 1)and $l = \frac{q-1}{s}$. Then we can rewrite P(x) as $P(x) = x^r(1 + x^{es})$ where $s = \frac{q-1}{l}$ and (e, l) = 1. If $P(x) = x^r(1 + x^{es})$ is a permutation binomial of \mathbb{F}_q , then P(x) has exactly one root in \mathbb{F}_q and thus l is odd. When l = 3, 5, the permutation behavior of P(x) was studied by L. Wang [9]. In the case l = 5, the permutation binomial P(x) is determined in terms of the Lucas sequence $\{L_n\}$ where

$$L_n = \left(2\cos\frac{\pi}{5}\right)^n + \left(-2\cos\frac{2\pi}{5}\right)^n.$$

More precisely, it is proved that under certain conditions on $r, s = \frac{q-1}{5}$ and e, the binomial $P(x) = x^r(1 + x^{es})$ is a permutation binomial if and only if $L_s = 2$ in \mathbb{F}_p ([9], Theorem 2).

In this paper, we consider the case l = 7 (see [1] for some results related to general l). Here we introduce a Lucas-type sequence $\{a_n\}$ by

(1)
$$a_n = \left(2\cos\frac{\pi}{7}\right)^n + \left(-2\cos\frac{2\pi}{7}\right)^n + \left(2\cos\frac{3\pi}{7}\right)^n$$

²⁰⁰⁰ Mathematics Subject Classification. 11B39, 11T06.

Research of the first author partially supported by NSERC.

AKBARY AND WANG

for integer $n \ge 0$. It turns out that $\{a_n\}_{n=0}^{\infty}$ is an integer sequence satisfying the recurrence relation

(2)
$$a_n = a_{n-1} + 2a_{n-2} - a_{n-3}$$

with initial values $a_0 = 3$, $a_1 = 1$, $a_2 = 5$ (see Lemma 2.1). This is the sequence A094648 in Sloane's Encyclopedia [6]. Next we extend the domain of $\{a_n\}_{n=0}^{\infty}$ to include negative integers. For negative integer -n we have

$$a_{-n} = \left(4\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\right)^n + \left(-4\cos\frac{\pi}{7}\cos\frac{3\pi}{7}\right)^n + \left(4\cos\frac{2\pi}{7}\cos\frac{3\pi}{7}\right)^n.$$

Note that $\{a_n\}_{n=-\infty}^{\infty}$ is an integer sequence, so we can consider this sequence as a sequence in \mathbb{F}_p . Here we investigate the relation between this sequence in \mathbb{F}_p and permutation properties of binomial $P(x) = x^r(1+x^{es})$ over a finite field $\mathbb{F}_q = \mathbb{F}_{p^m}$. We have the following Theorem.

Theorem 1.1. Let q - 1 = 7s and $1 \le e \le 6$. Then $P(x) = x^r(1 + x^{es})$ is a permutation binomial of \mathbb{F}_q if and only if (r, s) = 1, $2^s \equiv 1 \pmod{p}$, $2r + es \not\equiv 0 \pmod{7}$ and $\{a_n\}$ satisfies one of the following:

(a)
$$a_s = a_{-s} = 3$$
 in \mathbb{F}_p ;

(b) $a_{-cs-1} = -1 + \alpha$, $a_{-cs} = -1 - \alpha$ and $a_{-cs+1} = 1$ in \mathbb{F}_p , where c is the inverse of $s + 2e^5r$ modulo 7 and $\alpha^2 + \alpha + 2 = 0$ in \mathbb{F}_p .

The sequence $\{a_n\}$ is called *s*-periodic over \mathbb{F}_p if $a_n = a_{n+ks}$ in \mathbb{F}_p for integers k and n. Condition (a) in the above theorem is equivalent to *s*-periodicity of a_n over \mathbb{F}_p (see Lemma 2.4). Equivalently we can say $\{a_n\}$ is *s*-periodic over \mathbb{F}_p whenever $\{a_n\} = \{a_n^0\}$ in \mathbb{F}_p , where $\{a_n^0\}_{n=-\infty}^{\infty}$ is the unique sequence in \mathbb{F}_p defined by the recursion (2) and initial values $a_{s-1}^{0} = 2$, $a_s^0 = 3$ and $a_{s+1}^0 = 1$. Similarly condition (b) can be written as $\{a_n\} = \{a_n^{c,\alpha}\}$ in \mathbb{F}_p , where $\{a_n^{c,\alpha}\}_{n=-\infty}^{\infty}$ is the unique sequence in \mathbb{F}_p defined by the recursion (2) and initial values $a_{-cs-1} = -1 + \alpha$, $a_{-cs} = -1 - \alpha$ and $a_{-cs+1} = 1$. So Theorem 1.1 states that under certain conditions on r, $s = \frac{q-1}{7}$ and e the binomial $P(x) = x^r(1 + x^{es})$ is a permutation binomial of \mathbb{F}_p if and only if the Lucas-type sequence $\{a_n\}$ is equal to $\{a_n^0\}$ or $\{a_n^{c,\alpha}\}$ in \mathbb{F}_p (For more explanation see Examples in Section 3).

It is clear that if Legendre symbol $\left(\frac{p}{7}\right) = -1$ then condition (b) in the above theorem is never satisfied (the equation $x^2 + x + 2 = 0$ does not have any solution in \mathbb{F}_p). Moreover in this case we can show that condition (a) is always satisfied, and so we have the following.

Corollary 1.2. Let q - 1 = 7s, $1 \le e \le 6$, and p be a prime with $\left(\frac{p}{7}\right) = -1$. Then $P(x) = x^r(1 + x^{es})$ is a permutation binomial of \mathbb{F}_q if and only if (r, s) = 1, $2^s \equiv 1 \pmod{p}$ and $2r + es \not\equiv 0 \pmod{7}$.

Theorem 1.1 gives a complete characterization of permutation binomials of the form $P(x) = x^r (1 + x^{\frac{e(q-1)}{7}})$. Moreover our theorem together with the above corollary can lead to an efficient algorithm for constructing such permutation binomials. Note that $\{a_n\}$ is a recursive sequence and therefore conditions (a) and (b) can be quickly verified and so by employing the above theorem it is easy to find new permutation binomials over certain \mathbb{F}_q . Also by an argument similar to the proof of Corollary 1.3 in [1], we can show that under the conditions of Theorem 1.1 on q, there are exactly $3\phi(q-1)$ permutation binomials $P(x) = x^r(1 + x^{\frac{e(q-1)}{7}})$ of \mathbb{F}_q . Here, ϕ is the Euler totient function.

In the next section we study certain properties of the sequence $\{a_n\}$ that will be used in the proof of our theorem. Theorem 1.1 and Corollary 1.2 are proved in Section 3.

2. The Sequence $\{a_n\}$

We first show that $\{a_n\}$ appears in the closed expression for the lacunary sum of binomial coefficients $S(2n,7,a) := \sum_{k=0}^{2n} \binom{2n}{k}$.

Lemma 2.1. The sequence $\{a_n\}_{n=0}^{\infty}$ satisfies the recursion $a_n = a_{n-1} + 2a_{n-2} - a_{n-3}$ $(n \ge 3)$, $a_0 = 3$, $a_1 = 1$, $a_2 = 5$ and we have

$$S(2n,7,a) = \begin{cases} \frac{2^{2n} + 2a_{2n}}{7} & \text{if } 2n - 2a \equiv 0 \pmod{7};\\ \frac{2^{2n} - a_{2n+1}}{7} & \text{if } 2n - 2a \equiv 1,6 \pmod{7};\\ \frac{2^{2n} + a_{2n+1} - a_{2n-1}}{7} & \text{if } 2n - 2a \equiv 2,5 \pmod{7};\\ \frac{2^{2n} - a_{2n} + a_{2n-1}}{7} & \text{if } 2n - 2a \equiv 3,4 \pmod{7}. \end{cases}$$

Proof. Note that $2\cos\frac{\pi}{7}$, $-2\cos\frac{2\pi}{7}$ and $2\cos\frac{3\pi}{7}$ are the roots of the polynomial $g(x) = x^3 - x^2 - 2x + 1$, so a_n satisfies the given recursion.

We know that

$$S(2n,7,a) = \frac{2^{2n}}{7} + \frac{2}{7} \left[\sum_{t=1}^{3} \left(2\cos\frac{\pi t}{7} \right)^{2n} \cos\frac{\pi t}{7} (2n-2a) \right]$$

(see [7], page 232, Lemma 1.3). This together with (1) and (2) imply the result. \Box

Next we have a general formula for the product $a_n a_m$. Lemma 2.2. Let m and n be integers and $m \leq n$. Then

$$a_n a_m = a_{m+n} + (-1)^m (a_{-m} a_{n-m} - a_{n-2m}).$$

In particular,

$$a_n^2 = a_{2n} + (-1)^n 2a_{-n}.$$

Proof. Let $\delta = 2\cos\frac{\pi}{7}$, $\eta = -2\cos\frac{2\pi}{7}$, and $\epsilon = 2\cos\frac{3\pi}{7}$. We have $a_n = \delta^n + \eta^n + \epsilon^n$ and $a_{-n} = (-\delta\eta)^n + (-\delta\epsilon)^n + (-\eta\epsilon)^n$. Considering these, a routine calculation implies the result.

In the next two lemmas, we study the periodicity of $\{a_n\}$ over \mathbb{F}_p .

Lemma 2.3. Let $p \neq 2, 7$ be a prime. Then the sequence $\{a_n\}_{n=-\infty}^{\infty}$ is 7*s*-periodic over \mathbb{F}_p .

Proof. We know that $g(x) = x^3 - x^2 - 2x + 1$ is the characteristic polynomial of the recursion associated to a_n . Let δ , η and ϵ be the roots of g(x) in a splitting field F of g(x) over \mathbb{F}_p . Since $p \neq 2$, 7, we know that a_n is 7*s*-periodic in \mathbb{F}_p if and only if $\delta^{7s} = \eta^{7s} = \epsilon^{7s} = 1$ in F.

We can show that g(x) is either irreducible in $\mathbb{F}_p[x]$ or it splits in $\mathbb{F}_p[x]$. Now if g(x) splits over \mathbb{F}_p , then $\delta^{p-1} = \eta^{p-1} = \epsilon^{p-1} = 1$ in \mathbb{F}_p and therefore a_n has period 7s = q - 1. If p = 7k + 1 or 6, by Theorem 7 of [5], g(x) splits over \mathbb{F}_p . If p = 7k + 2, 3, 4 or 5 and g(x) is irreducible over \mathbb{F}_p then, by Theorems 8.27 and 8.29 of [2], a_n is periodic in \mathbb{F}_p with the least period dividing $p^3 - 1$. Also since $q-1 = p^m - 1 \equiv 0 \pmod{7}$, in these cases 3|m. Hence a_n is periodic in \mathbb{F}_p with the least period dividing 7s = q - 1.

We continue by describing a necessary and sufficient condition under which the sequence $\{a_n\}_{n=-\infty}^{\infty}$ will be a periodic sequence in \mathbb{F}_p with the even period s.

Lemma 2.4. Let $p \neq 2,7$ be a prime and s be a fixed even positive integer. Then

$$\{a_n\}$$
 is s-periodic over $\mathbb{F}_p \iff a_s = a_{-s} = 3$ in \mathbb{F}_p .

Proof. With the notation in the proof of Lemma 2.3, we know that $\{a_n\}_{n=-\infty}^{\infty}$ is *s*-periodic if and only if $\operatorname{diag}(\delta, \eta, \epsilon)^s = I$ in *F*. Here $\operatorname{diag}(\delta, \eta, \epsilon)$ is a diagonal matrix with entries δ , η and ϵ and *I* is the identity matrix. We know that a diagonal matrix is equal to the identity matrix if and only if $(x - 1)^3$ is the characteristic polynomial of the diagonal matrix. By employing this fact, together with the identities $a_n = \delta^n + \eta^n + \epsilon^n$ and $a_{-n} = (-\delta\eta)^n + (-\delta\epsilon)^n + (-\eta\epsilon)^n$ in *F*, we have

$$\operatorname{diag}(\delta,\eta,\epsilon)^s = I \text{ in } F \iff a_s = a_{-s} = 3 \text{ in } \mathbb{F}_p. \square$$

The following two lemmas play important roles in the proof of Theorem 1.1.

Lemma 2.5. Let $p \neq 2,7$ be a prime, $s = \frac{q-1}{7}$, and $c \ (1 \le c \le 6)$ be a fixed integer. If the sequence $\{a_n\}_{n=-\infty}^{\infty}$ satisfies $a_{cs+1} = a_{2cs-1} - a_{2cs+1} = a_{3cs} - a_{3cs-1} = a_{4cs} - a_{4cs-1} = a_{5cs-1} - a_{5cs+1} = a_{6cs+1} = 1$ in \mathbb{F}_p , then

$$a_{cs} = a_{2cs} = a_{4cs}$$
, and $a_{3cs} = a_{5cs} = a_{6cs}$

in \mathbb{F}_p .

Proof. From the recurrence relation of a_n we get $a_{2cs-1} - a_{2cs+1} = 2a_{2cs} - a_{2cs+2}$. So by the conditions of the lemma we have

- (A) $a_{cs+1}^2 = 1;$
- (B) $(2a_{2cs} a_{2cs+2})^2 = 1;$ (C) $(a_{4cs} - a_{4cs-1})^2 = 1.$

 $(0) (a_{4cs} - a_{4cs-1}) = 1.$

We employ Lemmas 2.2 and 2.3 to deduce new identities from (A), (B) and (C). For simplicity of our exposition we let $a_{-(cs+1)} = \gamma$.

First of all (A) together with Lemma 2.2 imply

(3)
$$a_{2cs+2} = 1 + 2\gamma.$$

From (3) and $2a_{2cs} - a_{2cs+2} = 1$, we have

(4)
$$a_{2cs} = 1 + \gamma$$

Next from (B), (3), (4), Lemma 2.2 and $a_{cs+1} = 1$, we get

$$1 = (2a_{2cs} - a_{2cs+2})^2$$

= $4a_{2cs}^2 - 4a_{2cs}a_{2cs+2} + a_{2cs+2}^2$
= $-4(1+\gamma)\gamma + a_{2cs+2}^2$
= $-4(1+\gamma)\gamma + a_{4cs+4} + 2a_{-(2cs+2)}$
= $-4(1+\gamma)\gamma + a_{4cs+4} + 2(\gamma^2 + 2).$

This implies

(5) $a_{4cs+4} = 2(1+\gamma)^2 - 5 = 2a_{2cs}^2 - 5.$

Note that $a_{4cs} - a_{4cs-1} = 1$ and the recurrence relation (2) imply

(6) $a_{4cs+2} = a_{4cs+1} + a_{4cs} + 1,$

and

(7)
$$a_{4cs+3} = 3a_{4cs+1} + 1.$$

Now applying the recurrence relation $a_{4cs+4} = a_{4cs+3} + 2a_{4cs+2} - a_{4cs+1}$ together with (6) and (7) to the left-hand side of (5) and applying Lemmas 2.2 and 2.3 to the right-hand side of (5) yield

(8) $a_{4cs+1} = a_{5cs} - 2.$

Finally from (C) we have

$$a_{4cs}^2 - 2a_{4cs}a_{4cs-1} + a_{4cs-1}^2 = 1.$$

Applying Lemma 2.2 and Lemma 2.3 on this equality yields

$$a_{cs} + 2a_{3cs} - 2a_{cs-1} - 2a_{3cs+2} + a_{cs-2} = 1.$$

Now by employing the recurrence relation $a_{cs+1} = a_{cs} + 2a_{cs-1} - a_{cs-2}$ in the previous identity and $a_{cs+1} = 1$, we obtain

(9)
$$a_{cs} = a_{3cs+2} - a_{3cs} + 1.$$

Since $a_{3cs} - a_{3cs-1} = 1$, from the recurrence relation (2) we have

$$a_{3cs+2} = a_{3cs+1} + a_{3cs} + 1.$$

Applying this identity in (9) yields

(10)
$$a_{cs} = a_{3cs+1} + 2$$

Now we are ready to finish the proof. Note that by changing s to -s all the above equations remain true, so by changing s to -s in (8) and applying Lemma 2.3 we have

$$a_{3cs+1} = a_{2cs} - 2$$

This together with (10) imply $a_{cs} = a_{2cs}$. Changing s to -s in this equality yields $a_{6cs} = a_{5cs}$. These identities together with Lemma 2.2 and Lemma 2.3 imply that

$$a_{cs} = a_{2cs} = a_{4cs}, \ a_{3cs} = a_{5cs} = a_{6cs}.$$

Lemma 2.6. Let $p \neq 2,7$ be a prime, $s = \frac{q-1}{7}$ and $c \ (1 \le c \le 6)$ be a fixed integer. If the sequence $\{a_n\}_{n=-\infty}^{\infty}$ satisfies

$$a_{6cs-1} = -1 + \alpha$$
, $a_{6cs} = -1 - \alpha$, and $a_{6cs+1} = 1$,

where α is a root of equation $x^2 + x + 2 = 0$ in \mathbb{F}_p then we have $a_{cs} = a_{2cs} = a_{4cs} = \alpha$, $a_{3cs} = a_{5cs} = a_{6cs} = -1 - \alpha$, $a_{cs-1} = -2 - \alpha$, $a_{cs+1} = 1$, $a_{5cs-1} = 1 - 2\alpha$, and $a_{5cs+1} = -2\alpha$ in \mathbb{F}_p .

Proof. From Lemmas 2.2 and 2.3 we have the following six identities.

a_{6cs-1}^2	=	$a_{5cs-2} - 2a_{cs+1}$
$a_{6cs-1}a_{6cs}$	=	$a_{5cs-1} - a_1 a_{cs+1} + a_{cs+2}$
$a_{6cs-1}a_{6cs+1}$	=	$a_{5cs} - a_2 a_{cs+1} + a_{cs+3}$
a_{6cs}^2	=	$a_{5cs} + 2a_{cs}$
$a_{6cs}a_{6cs+1}$	=	$a_{5cs+1} + a_{cs} - a_{cs+1}$
a_{6cs+1}^2	=	$a_{5cs+2} - 2a_{cs-1}$

AKBARY AND WANG

Replacing the known values of the variables in the above identities, writing a_{5cs-2} and a_{5cs+2} in terms of a_{5cs-1} , a_{5cs} and a_{5cs+1} , and writing a_{cs+2} and a_{cs+3} in terms of a_{cs-1} , a_{cs} and a_{cs+1} yield

$$\begin{pmatrix} (-1+\alpha)^2 &= 2a_{5cs-1} + a_{5cs} - a_{5cs+1} - 2a_{cs+1} \\ 1-\alpha^2 &= a_{5cs-1} - a_{cs-1} + 2a_{cs} \\ -1+\alpha &= a_{5cs} - a_{cs-1} + a_{cs} - 2a_{cs+1} \\ (1+\alpha)^2 &= a_{5cs} + 2a_{cs} \\ -1-\alpha &= a_{5cs+1} + a_{cs} - a_{cs+1} \\ 1 &= -a_{5cs-1} + 2a_{5cs} + a_{5cs+1} - 2a_{cs-1} \end{cases}$$

Solving this system of linear equations and noting that $\alpha^2 + \alpha + 2 = 0$ imply the desired values for a_{cs-1} , a_{cs} , a_{cs+1} , a_{5cs-1} , a_{5cs} and a_{5cs+1} . By setting up two similar systems of linear equations one can derive the desired values for a_{2cs} , a_{3cs} and a_{4cs} .

3. Permutation Binomials and the Sequence $\{a_n\}$

The main tool in the proof of Theorem 1.1 is the following well known theorem of Hermite ([2], Theorem 7.4).

Hermite's Criterion P(x) is a permutation polynomial of \mathbb{F}_q if and only if (i) P(x) has exactly one root in \mathbb{F}_q .

(ii) For each integer t with $1 \le t \le q-2$ and $t \ne 0 \pmod{p}$, the reduction of $[P(x)]^t \mod (x^q - x)$ has degree less than or equal to q-2.

Finally we are ready to prove the main result of this paper.

Proof of Theorem 1.1. First we assume that P(x) is a permutation binomial. Then $p \neq 2$, since otherwise P(0) = P(1) = 0. Also, in this case, it is known that (r, s) = 1 ([8], Theorem 1.2) and $2^s \equiv 1 \pmod{p}$ ([4], Theorem 4.7). Next we note that the coefficient of x^{q-1} in the expansion of $[P(x)]^{ks}$ is $S(ks, 7, -ke^5r)$, so if P(x) is a permutation binomial then by Hermite's Criterion $S(ks, 7, -ke^5r) = 0$ in \mathbb{F}_p for $k = 1, \dots, 6$.

We next show that $2r + es \not\equiv 0 \pmod{7}$. Otherwise, $2r + es \equiv 0 \pmod{7}$ and Lemma 2.1 follows that

$$S(ks, 7, -ke^5r) = \frac{2^{ks} + 2a_{ks}}{7}$$
, in \mathbb{F}_p

for $k = 1, \dots, 6$. From here if P(x) is a permutation binomial, we have

$$a_s = a_{2s} = \dots = a_{6s} = -\frac{1}{2}$$
 in \mathbb{F}_p

Using Lemma 2.3 and Lemma 2.2, we have $\frac{1}{4} = a_s^2 = a_{2s} + 2a_{6s} = 3a_s = -\frac{3}{2}$. Hence $\frac{1}{2}(\frac{1}{2}+3) = 0$ in \mathbb{F}_p which is a contradiction since $7 \mid (q-1)$. Hence $2r + es \neq 0 \pmod{7}$.

It remains to show that if P(x) is a permutation binomial then either (a) or (b) holds. Let c be the inverse of $s + 2e^5r$ modulo 7. Hermite's criterion together with Lemma 2.1 imply that

$$a_{cs+1} = 1, \ a_{2cs-1} - a_{2cs+1} = 1, \ a_{3cs} - a_{3cs-1} = 1,$$

 $a_{4cs} - a_{4cs-1} = 1, \ a_{5cs-1} - a_{5cs+1} = 1, \ a_{6cs+1} = 1,$

in \mathbb{F}_p . So by Lemma 2.5, we have

(11)
$$a_{cs} = a_{2cs} = a_{4cs} = \alpha, \ a_{3cs} = a_{5cs} = a_{6cs} = \beta,$$

in \mathbb{F}_p . From Lemma 2.2 and Lemma 2.3, we have

(12)
$$a_{cs}^2 = a_{2cs} + 2a_{6cs} \text{ and } a_{6cs}^2 = a_{5cs} + 2a_{cs}.$$

By subtracting these two equations and employing (11), we get

(13)
$$(a_{cs} - a_{6cs})(a_{cs} + a_{6cs} + 1) = 0 \text{ in } \mathbb{F}_p.$$

If $\alpha = \beta$ in \mathbb{F}_p , then by Lemma 2.2 and (11) we have $a_{7cs} = a_{cs}a_{6cs} - a_{6cs}a_{5cs} + a_{4cs} = a_{4cs}$. Since by Lemma 2.3 $a_{7cs} = a_0 = 3$ in \mathbb{F}_p , we have $a_{4cs} = 3$ in \mathbb{F}_p . This together with (11) and $a_{cs} = a_{6cs}$ implies condition (a).

If $\alpha \neq \beta$, then from (13) we have $a_{cs} + a_{6cs} + 1 = 0$. This together with (12) imply that α and β are roots of the equation $x^2 + x + 2 = 0$ in \mathbb{F}_p and therefore $\beta = -1 - \alpha$.

From Lemma 2.2 we have

$$a_{cs}a_{cs+1} = a_{2cs+1} + a_{6cs}a_1 - a_{6cs+1}.$$

This together with $a_{cs} = \alpha$, $a_{6cs} = -1 - \alpha$, and $a_{cs+1} = a_{6cs+1} = 1$ imply that $a_{2cs+1} = 2\alpha + 2$. Note that $a_{2cs-1} = 1 + a_{2cs+1}$, and so $a_{2cs-1} = 2\alpha + 3$ and thus $a_{2cs+2} = a_{2cs+1} + 2a_{2cs} - a_{2cs-1} = 2\alpha - 1$. Finally by Lemma 2.2 we have $a_{cs+1}^2 = a_{2cs+2} - 2a_{6cs-1}$ which implies $a_{6cs-1} = \alpha - 1$. Hence, in this case, a_n satisfies condition (b).

Conversely we assume that the conditions in Theorem 1.1 are satisfied and we show that P(x) is a permutation binomial. First note that $2^s \equiv 1 \pmod{p}$ follows that p is odd. Hence it is obvious that P(x) has only one root in \mathbb{F}_q . Since (r,s) = 1, the possible coefficient of x^{q-1} in the expansion of $[P(x)]^t$ can only happen if t = ks for some $k = 1, \dots, 6$. So by Hermite's criterion, it is sufficient to show that $S(ks, 7, -ke^5r) = 0$ in \mathbb{F}_p for $k = 1, \dots, 6$.

Now if a_n satisfies condition (a), then by Lemma 2.4 a_n is s-periodic over \mathbb{F}_p . Using the initial values of a_n , $2r + es \neq 0 \pmod{7}$ and Lemma 2.1, we have $S(ks, 7, -ke^5r) = 0$ in \mathbb{F}_p and thus P(x) is a permutation binomial over \mathbb{F}_q .

Next we assume that a_n satisfies condition (b). Then by Lemma 2.6, we also have

$$a_{cs} = a_{2cs} = a_{4cs} = \alpha, \ a_{3cs} = a_{5cs} = a_{6cs} = -1 - \alpha,$$

 $a_{cs-1} = -2 - \alpha$, $a_{cs+1} = 1$, $a_{5cs-1} = 1 - 2\alpha$, and $a_{5cs+1} = -2\alpha$.

By using $2^s = 1$, $a_{cs+1} = a_{6cs+1} = 1$, and Lemma 2.1, we have

$$S(kcs, 7, -kce^{5}r) = 0$$
 for $k = 1$, and 6.

To demonstrate $S(kcs, 7, -kce^5r) = 0$ for other k's, it is sufficient to show that

$$a_{2cs-1} - a_{2cs+1} = 1, \ a_{3cs} - a_{3cs-1} = 1,$$

$$a_{4cs} - a_{4cs-1} = 1, \ a_{5cs-1} - a_{5cs+1} = 1.$$

From the values for a_{5cs-1} and a_{5cs+1} it is clear that $a_{5cs-1} - a_{5cs+1} = 1$. Next note that by considering appropriate systems of linear equations as described in the proof of Lemma 2.6 we can deduce that

$$a_{2cs-1} = 2\alpha + 3$$
, $a_{2cs+1} = 2\alpha + 2$, $a_{3cs-1} = -\alpha - 2$, and $a_{4cs-1} = \alpha - 1$.

AKBARY AND WANG

So $a_{2cs-1}-a_{2cs+1}=a_{3cs}-a_{3cs-1}=a_{4cs}-a_{4cs-1}=1$. These relations show that $S(ks,7,-ke^5r)=0$ in \mathbb{F}_p for $k=1,\cdots,6$. Hence P(x) is a permutation binomial of \mathbb{F}_q .

Next we prove that if $\left(\frac{p}{7}\right) = -1$ then the sequence a_n is always s-periodic. That is, $a_s = a_{-s} = 3$.

Proof of Corollary 1.2. Following the notation in the proof of Lemma 2.3, let ϵ be a root of $g(x) = x^3 - x^2 - 2x + 1$ in an extension of \mathbb{F}_p . We need to prove that $\epsilon^s = 1$. If $p \equiv 6 \pmod{7}$ then by Theorem 7 of [5] we have $\epsilon \in \mathbb{F}_p$. Since (p-1,7) = 1, in this case ϵ is a 7-th power in \mathbb{F}_p and therefore $\epsilon^s = 1$ in \mathbb{F}_p . To prove the result for $p \equiv 3$ or 5 (mod 7), first of all note that g(x) is either irreducible in $\mathbb{F}_p[x]$ or it splits in $\mathbb{F}_p[x]$. If it splits over \mathbb{F}_p , then ϵ is a 7-th power in \mathbb{F}_p and so $\epsilon^s = 1$ in \mathbb{F}_p . Otherwise g(x) splits over \mathbb{F}_{p^3} . Now since $p \not\equiv 1, 2$ or 4 (mod 7) we have $(p^3 - 1, 7) = 1$, so ϵ is a 7-th power in \mathbb{F}_{p^3} and therefore $\epsilon^{\frac{p^3-1}{7}} = 1$ in \mathbb{F}_{p^3} . Also since $7 \mid (q-1)$ we have $6 \mid m$. This and $\epsilon^{\frac{p^3-1}{7}} = 1$ in \mathbb{F}_{p^3} imply that $\epsilon^s = 1$ in \mathbb{F}_q . Hence $\{a_n\}$ is s-periodic and so by Lemma 2.4, $a_s = a_{-s} = 3$. Now Theorem 1.1 implies the result.

Examples An algorithm for finding permutation binomials $P(x) = x^r (1 + x^{\frac{e(q-1)}{7}})$ of a given field \mathbb{F}_q can be easily implemented by using Theorem 1.1 and Corollary 1.2. Moreover our theorem together with Lemma 2.4 and Lemma 2.6 imply that under certain conditions on r, s and e the binomial $x^r(1 + x^{es})$ is a permutation polynomial over \mathbb{F}_q if and only if the Lucas-type sequence $\{a_n\}$ becomes one of the following four sequences over \mathbb{F}_p .

(I) $a_{-s-1} = 2$, $a_{-s} = 3$, $a_{-s+1} = 1$, $a_{s-1} = 2$, $a_s = 3$, $a_{s+1} = 1$.

 $\begin{array}{l} \text{(II)} \ a_{-s-1} = -1 + \alpha, \ a_{-s} = -1 - \alpha, \ a_{-s+1} = 1, \ a_{s-1} = -2 - \alpha, \ a_s = \alpha, \ a_{s+1} = 1. \\ \text{(III)} \ a_{-2s-1} = -1 + \alpha, \ a_{-2s} = -1 - \alpha, \ a_{-2s+1} = 1, \ a_{2s-1} = -2 - \alpha, \ a_{2s} = \alpha, \\ a_{2s+1} = 1. \end{array}$

 $\begin{array}{l} (\mathrm{IV}) \\ a_{-3s-1} = -1 + \alpha, \ a_{-3s} = -1 - \alpha, \ a_{-3s+1} = 1, \ a_{3s-1} = -2 - \alpha, \ a_{3s} = \alpha, \\ a_{3s+1} = 1. \end{array}$

Note that the sequence (I) is s-periodic and in (II), (III) and (IV), α is a root of equation $x^2 + x + 2 = 0$ in \mathbb{F}_p .

The following table gives some prime numbers p with $p \equiv 1 \pmod{7}$ and $2^{\frac{p-1}{7}} \equiv 1 \pmod{p}$ whose corresponding sequence $\{a_n\}$ over \mathbb{F}_p is in the form (I) ((II), (III), (IV), respectively).

Type IV	Type III	Type II	Type I
2731	4999	7309	874651
3389	18439	20063	941879
15583	20441	33587	1018879
62791	33503	37199	1036267
65899	55609	37339	1074277
:	•		•

Here p = 2731 (4999, 7309, 874651 respectively) is the smallest prime $p \equiv 1 \pmod{7}$ with $2^{\frac{p-1}{7}} \equiv 1 \pmod{p}$ whose corresponding sequence $\{a_n\}$ over \mathbb{F}_p is in the form (IV) ((III), (II), (I), respectively). The following table gives examples of such permutation binomials over these four fields.

8

	p = 2731	p = 4999	p = 7309	p = 874651
a_n	$a_{-3s-1} = 1001$	$a_{-2s-1} = 760$	$a_{-s-1} = 3858$	$a_{-s-1} = 2$
	$a_{-3s} = 1728$	$a_{-2s} = 4237$	$a_{-s} = 3449$	$a_{-s} = 3$
	$a_{-3s+1} = 1$	$a_{-2s+1} = 1$	$a_{-s+1} = 1$	$a_{-s+1} = 1$
	$a_{3s-1} = 1727$	$a_{2s-1} = 4236$	$a_{s-1} = 3448$	$a_{s-1} = 2$
	$a_{3s} = 1002$	$a_{2s} = 761$	$a_s = 3859$	$a_s = 3$
	$a_{3s+1} = 1$	$a_{2s+1} = 1$	$a_{s+1} = 1$	$a_{s+1} = 1$
(r, e, s)	(7, 1, 390)	(5, 1, 714)	(7, 1, 1044)	(1, 1, 124950)
	(23, 1, 390)	(19, 1, 714)	(13, 1, 1044)	(11, 1, 124950)
	(37, 1, 390)	(23, 1, 714)	(35, 1, 1044)	(13, 1, 124950)
	(49, 1, 390)	(37, 1, 714)	(41, 1, 1044)	(19, 1, 124950)
	(77, 1, 390)	(47, 1, 714)	(49, 1, 1044)	(23, 1, 124950)
	:	:	:	:
		•		•

References

- A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proc. Amer. Math. Soc., to appear.
- [2] R. Lidl and H. Niederreiter, *Finite Fields*, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1997.
- [3] J. B. Lee and Y. H. Park, Some permuting trinomials over finite fields, Acta Math. Sci. (English Ed.), 17 (1997), 250–254.
- [4] Y. H. Park and J. B. Lee, Permutation polynomials with exponents in an arithmetic progression, Bull. Austral. Math. Soc. 57 (1998), 243–252.
- [5] M. O. Rayes, V. Trevisan and P. Wang, Factorization of Chebyshev polynomials, http://icm.mcs.kent.edu/reports/index1998.html.
- [6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/ njas/sequences/.
- [7] Z. H. Sun, The combinatorial sum $\sum_{k=0,k\equiv r \pmod{m}}^{n} \binom{n}{k}$ and its applications in number theory

I (Chinese), Nanjing Daxue Xuebao Shuxue Bannian Kan 9 (1992), no. 2, 227–240.

- [8] D. Wan, R. Lidl, Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure, *Monatsh. Math.* **112** (1991), 149–163.
- [9] L. Wang, On permutation polynomials, Finite Fields and Their Applications 8 (2002), 311– 322.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LETHBRIDGE, 4401 UNIVERSITY DRIVE WEST, LETHBRIDGE, ALBERTA, T1K 3M4, CANADA

 $E\text{-}mail\ address: akbary@cs.uleth.ca$

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, CANADA

E-mail address: wang@math.carleton.ca