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Abstract

If X is any connected Cayley graph on any finite abelian group, we determine
precisely which flows on X can be written as a sum of hamiltonian cycles. (This
answers a question of B. Alspach.) In particular, if the degree of X is at least 5, and
X has an even number of vertices, then the flows that can be so written are precisely
the even flows, that is, the flows f, such that 3 . p(x) f(a) is divisible by 2. On
the other hand, there are examples of degree 4 in which not all even flows can be
written as a sum of hamiltonian cycles. Analogous results were already known, from
work of B. Alspach, S. C. Locke, and D. Witte, for the case where X is cubic, or
has an odd number of vertices.
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1 Introduction

If C is any cycle in a graph X, then providing C' with an orientation naturally
defines a flow on X. (See §2 for definitions and notation used here in the
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introduction.) Conversely, it is well known that every flow can be written as a
sum of cycles. Brian Alspach (personal communication) has asked which flows
can be written as a sum of hamiltonian cycles.

Notation 1.1. Suppose X is a graph. Then

o F = F(X) denotes the space of all integral flows on X, that is, the
Z-valued flows on X,

e £ = £(X) denotes the additive subgroup of F consisting of the even
flows, that is, the flows f such that the sum of the edge-flows of f is
even, and

e H = H(X) denotes the additive subgroup of F generated by the oriented
hamiltonian cycles.

Note that F = & if and only if X is bipartite. On the other hand, H C &
whenever X has even order.

Locke and Witte [LW] showed that if X is a connected Cayley graph on a
finite abelian group of odd order, then every flow on X can be expressed as
a sum of hamiltonian cycles (except for flows on one particular graph, the
cartesian product K3 o K3 of two cycles of length 3).

Theorem 1.2 (Locke-Witte [LW, Thm. 4.1]). If X = Cay(G;S) is a con-
nected Cayley graph on a finite, abelian group G of odd order, then H = F,
unless X = K3 o K3, in which case, F/H = Zs.

They also settled the case where X is cubic.

Observation 1.3. A connected, cubic Cayley graph on a finite, abelian group
is of one of two types: a Mobius ladder, or a prism over a cycle.

Theorem 1.4 (Locke-Witte [LW, Prop. 3.3]). (1) If X is a Mébius ladder,
then:
(a) E/H = Zy,5 if X is bipartite, where n is the number of vertices of X ;
(b) H=E if X is not bipartite.

(2) If X is a prism over a cycle of length n, then:
(a) E/H = Z,— if X is bipartite;
(b) EH=Z & Z,— if X is not bipartite.

We now complete this work, by calculating H for all the remaining Cayley
graphs on finite abelian groups.

Theorem 1.5. If X = Cay(G;S) is a connected, non-cubic Cayley graph on
a finite, abelian group G of even order, then H = &, unless

(1) X is the square of a cycle, in which case £/H = Z,_1, where n = |G|/2;



or

(2) X has degree 4, X is not bipartite, and |G| is not divisible by 4, in which
case E/H = Zy (unless X is the square of a cycle, in which case, (1)
applies).

In the exceptional cases of Theorem 1.5 (that is, in those cases where H # &),
the results of Section 8 determine precisely which flows are in H. The analogous
results of Locke and Witte [LW] for the exceptional cases of Theorems 1.2
and 1.4 are recalled in Section 4.

In the special case of bipartite graphs, the theorem can be restated as follows.

Corollary 1.6. Let X = Cay(G;S) be a connected Cayley graph on a finite,
abelian group G. If X is bipartite, and X 1is not cubic, then every flow on X
can be written as a sum of hamiltonian cycles.

Analogous results for Zy-flows (in which the coefficients are taken modulo 2)
were obtained by Alspach, Locke, and Witte [ALW] (see 5.1). We rely heavily
on the results of [ALW,LW], and, to a large extent, we also use the same
techniques. Thus, the reader may find it helpful to look at the proofs in those
papers, especially because they provide drawings of many of the hamiltonian
cycles that appear here.

Here is an outline of the paper. Section 2 presents notation and definitions.
It also states our standing assumption, which holds everywhere except here
in the introduction, that G has even order. Section 3 presents some useful
observations on involutions. Section 4 briefly recalls the results of [LW] that
calculate H in the exceptional cases of Theorems (1.2) and (1.4). Section 5
develops the main tools to be used in an inductive proof of our main theorem.
Section 6 shows that H often contains certain basic 4-cycles. Section 7 proves
that if X has degree 4, and is not one of the exceptional cases, then H =
E. Section 8 treats the exceptional graphs of degree 4. Section 9 presents a
somewhat lengthy proof that was omitted from Section 8. Section 10 shows,
for many graphs of degree at least 5, that H contains all of the basic 4-cycles.
Section 11 provides an induction step for the proof of the main theorem, under
the assumption that the generating set S contains a redundant generator.
Section 12 deals with two cases that are not covered by our other results.
Section 13 proves that if the degree of X is at least 5, then H = £.

The statement of Theorem 1.5 merely combines the conclusions of (7.1), (8.1),
(8.2) and (13.3) into a single assertion.

Remark. Although we discuss only integer flows, it is explained in [LW, §5]
that these results are universal. They determine which A-valued flows are
linear combinations of hamiltonian cycles, for any abelian group A.
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2 Preliminaries

Definition 2.1. Suppose S is a subset of a finite group G.

e S is a symmetric generating set for G if
o S generates (G, that is, no proper subgroup of GG contains S, and
o we have s7! € S, for every s € S.

e The Cayley graph Cay(G;S) of S on G is the graph defined as follows:
o the vertices of Cay(G; S) are the elements of G, and
o there is an edge from g to gs, for every g € G and s € S.

Notation 2.2. Throughout this paper,

e ( is a finite abelian group (usually written multiplicatively);
e ¢ is the identity element of G;

e S is a symmetric generating set for GG, such that e ¢ S; and
e X = Cay(G;S).

Assumption 2.3. Throughout the remainder of this paper,
|G| is even.

Notation 2.4. When X = Cay(G;S), and some element s of S has been
chosen, we let

e =S5~ {ss};
. G = (S



o X' = Cay(G";5);
o F'=F(X');

o & =E&(X'); and
o H' =H(X").

Notation 2.5. We use
[](t1,te, ... tn),
where v € G and t; € S, to denote the path (or cycle) in Cay(G; S) that visits
the vertices
Vv, Uly, Vl1le, ..., Vl1to - - - Ty
(When v = e, we usually write simply (1, o, ...,t,).)

We use a superscript to denote the concatenation of copies of the same se-
quence, and the symbol f denotes truncation of the last term of a sequence.
For example,

((32,t)3ﬂ,u> =(s,s,t,8,8,t,8,5,u)
and

((s%,)°u) = (u).

Note that the notation s in such a sequence always denotes repetitions of the
generator s, not a single occurrence of the group element s™. We will always
give a new name (such as t = s™) if we wish to use the group element s™ in
such a path or cycle.

The following illustrates another useful notation:

2 ,)\3 2 ,\°
(8 7ti)i_1)u7 (S 7ti)i_17u - (87S)t178)8at2)8787t37uvu)‘

Remark.

e We do not usually distinguish between a cycle C' = [v](sq,. .., $y,) and
the corresponding element of F.

o [vs](s7!) and —[v](s) each represent the same edge as [v](s), but with
the opposite orientation. Orientations serve two purposes: they arise in
the definition of a flow (see Definition 2.6), and they may be used to
indicate that a path traverses a certain edge in a certain direction.

o If (51,...,5,) is a cycle, then —(s1,...,5,) = (s7},...,s7"). In partic-
ular,

—(s,t, s Lt = (t,s, 671, 57,

Suggestion. Some hamiltonian cycles in X, such as that in Eq. (E1) on p. 13,
depend on a path (¢;)!", in a subgraph or quotient graph of X. For simplicity,
the reader may find it helpful to assume that the path is simply ("), so that
the subscripts can be ignored. For example, the above-mentioned hamiltonian
cycle simplifies to

H = ((Sm—l7 £, 8—(m—1)7 75)7"/27 (tn—r—17 s, t—(n—r—l)’ S)m/Q).



(In order to facilitate the simplification process, we consistently begin our
indices at 1, even when a different starting point would yield less complicated
formulas in the subscripts.) As soon as the simpler cycle is understood, it
should be clear that there is an analogous hamiltonian cycle that includes
subscripts. Thus, the subscripts are essentially a formality, so the correctness
of an overall proof can usually be verified without checking that the authors
have calculated the subscripts correctly.

Definition 2.6.

e A flow on the Cayley graph X = Cay(G; 5) is a function f: Gx S — Z,

such that

o f(v,s) =—f(vs,s71), forall v € G and s € S, and

o Y s flv,s) =0, forallved.
We usually refer to f(v,s) as the edge-flow of f on the oriented edge
[0](s).

o A weighting of X is a function ¢: G x S — Z, such that ¢(v,s) =
—p(vs,s71), for all v € G and s € S. We usually refer to ¢(v, s) as the
weight of the oriented edge [v](s).

e Given a flow f on X and a weighting ¢, the weighted sum of the edge-
flows of fis > e ®(a)f(a), where A is any subset of G x S, such that
for each v € G and s € S, the set A contains either (v, s) or (vs,s™1),
but not both. It is independent of the choice of the set A.

Remark. In later sections of the paper, it will sometimes be necessary to define
a particular weighting of X. For convenience, whenever we specify that some
oriented edge [v](s) has a certain weight w, it is implicitly understood that
the opposite oriented edge [vs](s™!) has weight —w.

Notation 2.7. Suppose v € G, Y is a subgraph of X, and f € F. We use
[v]Y to denote the translate of Y by v, and [v]f to denote the translate of f
by v. Namely:

e [v]Y is the subgraph of X defined by:
o the vertices of [v]Y are the elements of G of the form vy with
yeY, and
o there is an edge from vy, to vy, in [v]Y if and only if there is an
edge from y; to yo in Y.
e the edge-flow of [v]f on an oriented edge [vw](s) is defined to be the
same as the edge-flow of f on the oriented edge [w](s), for w € G and
seS.

Definition 2.8. For any graphs X and Y, the Cartesian product X oY of X
and Y is the graph defined as follows:

e the vertices of X 0Y are the ordered pairs (z,y) with z € X andy € Y,



and
e there is an edge from (z1,y1) to (z2,y9) if and only if either
o x1 = 9, and there is an edge from y; to y5 in Y, or
o Y1 = Y2, and there is an edge from x; to x5 in Y.

We use X? to denote the Cartesian product X o X o---0X of p copies of X.

Observation 2.9. If 5; is a symmetric generating set for G;, for ¢ = 1,2, then
Cay(Gy; S1) 0 Cay(Ga; Ss) = CaY(Gl X Go; (51 X {e}) U ({6} X 52))-

Definition 2.10.

e A basic 4-cycle in X is any 4-cycle of the form [v](s,t,s7!,t71) with
v e G and s, teSs.

An element s of G is an involution if s is of order 2; that is, if s> = e
and s # e.

An element s of S is a redundant generator if (S') = G.

The generating set S is irredundant if none of its elements are redundant.
For a fixed element s of S, an edge of X is an s-edge if it is of the form
[v](s) or [v](s71), for some v € G.

Notation 2.11.

e 7, denotes the additive group of integers modulo n.

e K, denotes the complete graph on n vertices.

e (), denotes the cycle of length n. (With the expectation that it will not
cause confusion, ', Cy and Cj5 are used to denote certain more general
cycles in the proof of Corollary 10.7.)

e |g| denotes the order of the element g of G.

e |H| denotes the order of the subgroup H of G (that is, the number of

elements of H).

(g) denotes the subgroup of G generated by the element g.

e (A) denotes the subgroup of G generated by the subset A of G.

Definition 2.12.

e For any graph Y, we call Ky oY the prism over Y.
e A Moébius ladder is a graph isomorphic to Cay(ZQn; {#£1, n}), for some
natural number n.
o X is the square of an even cycle if there exist s and t in .S, such that
o § = {sil,til},
o t=s? and
o t? #e.
(The final condition is a convention: we do not consider the cubic graph
K, to be the square of an even cycle.) It is not difficult to show that



if X is isomorphic to the square of an even cycle, then X itself is the
square of an even cycle.

Warning. If we write S = {s*1 t*1}, then it is obvious that |S| < 4. However,
it need not be the case that |S| is exactly 4, unless additional restrictions are
explicitly imposed. For example, it could be the case that s = s~!, or that
s =1.

Warning. We use p and ¢ to denote arbitrary integers; they are not assumed
to be prime numbers.

3 Remarks on involutions in S

Observation 3.1. If S is an irredundant generating set, or, more generally,
if no involution in S is a redundant generator, then we may assume that
S contains no more than one involution. To see this, let

e S; be the set of involutions in S,
e (G be the subgroup generated by S7, and
e (35 be the subgroup generated by S\ S;.

Then G; N Gy is trivial (because none of the elements of S} are redundant),
so G = (G; x G9. Hence

X = Cay(Gy; S1) oCay(Ga; S N SY).

Now, the desired conclusion follows by noting that Cay(Gy;.S;) is isomorphic
to either (Cy)P (if |Si| = 2p) or Koo (Cy)? (if |S1] = 2p+ 1), for some natural
number p.

Observation 3.2. If |S| = 4, and X is not the prism over a Mébius ladder,
then we may assume that S does not contain any involutions. Specifically:

(1) If X is isomorphic to the cartesian product of K, with a prism over a
cycle C,,, then (3.1) applies.

(2) If X is obtained from the prism over a cycle of length 2n by adding the
diagonals, that is, if

X = Cay (2o ® Zoni {(1,0), (1,n), £(0,1)}),
then

v o Cay (Zo @ Zon; {(1,n/2),£(0,1)}) if n is even,
| Cay (24 @ Zo; {£(1,0), £(2,1)}) if n is odd.



It is not difficult to see that these cases are exhaustive, given the list of cubic
graphs in Observation 1.3.

Lemma 3.3. If there exists s € S, such that

e s is a redundant involution in S,
e |S| >3, and
o S’ is irredundant,

then there is a generating set T" for an abelian group H, and an involution t
m H, such that

(1) X = Cay(H; T'U{t}),

(2) X' = Cay(H; T),

(3) t is an involution, and

(4) not every element of T' is an involution.

Proof. We may assume that every element of S’ is an involution. (Otherwise,
take H =G, T' =5, and t = s5.) Write s = t; +to + - - - + ¢, where ty,...,1,
are distinct elements of S’. Let

H = Z4 X <S/ AN {t17t2}> - Z4 X G/,
T — {(+1,)} U ({0} < (8~ {tl,tQ})> C H,

t=(2,t3+---+1, € H.

Then it is not difficult to verify the desired conclusions. O

4 Graphs that are cubic or of odd order

Let us recall the observations of [LW] that describe exactly which flows are
in H’, for the cases where Theorem 1.2 or 1.4 gives an imprecise answer. For
completeness, we include all of these results, even though the proofs in later
sections require only (4.2), (4.3), and (4.4).

Lemma 4.1 ([LW, pf. of Prop. 3.1]). Suppose

o G' =73 x7Zs, and
o S = {st 1),

Give

e weight 1 to the oriented s-edge [v](s), for each v € (s), and
e weight 0 to each of the other edges of X'.



Then a flow is in H' if and only if the weighted sum of its edge-flows is divisible
by 3.

In the situation of Lemma 4.1, it is easy to see that the weighted sum of the
edge-flows of any basic 4-cycle is nonzero, so the following observation is an
easy consequence (cf. proof of (8.6)).

Corollary 4.2. If
[ ] G/ = Z5 X Z3,

o |S'| =4, and
e H contains some basic 4-cycle C' of X',

then F' CH+H'.

Lemma 4.3 ([LW, pf. of Prop. 3.3(1a)]). Suppose X' is a Mébius ladder, and
X' is bipartite, so we may write

° S/ — {til,u}7
.« G = (1),
e |t| = |G'| = 2n, where n is odd, and
o u =1t" is an involution.
Give

e weight (—1)" to the oriented u-edge [t'](u), for each i, and
e weight 0 to each t-edge.

Then a flow is in H' if and only if the weighted sum of its edge-flows is divisible
by n.

Lemma 4.4 ([LW, pf. of Prop. 3.3(2a)]). Suppose X' is the prism over a
cycle, and X' is bipartite, so we may write

° Sl — {til,u}7
o G'=(t) x (u), and
o |G'| =2|t| = 2n, where n is even.

Glive

o weight (—1)7 to the oriented t-edge [t'u’](t), for each i and j, and
e weight 0 to each u-edge.

Then a flow is in H' if and only if the weighted sum of its edge-flows is divisible
by n —1.

Lemma 4.5 ([LW, pf. of Prop. 3.3(2b)]). Suppose X' is the prism over a
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cycle, and X' is not bipartite, so we may write

e 5= {til,u},
o G'=(t) x (u), and
o |G'| =2|t| = 2n, where n is odd.

Give

e weight 1 to the oriented t-edge [v](t), for each v € (t), and
e weight 0 to all of the other edges of X'.

Then a flow is in H' if and only if

(1) the weighted sum of its edge-flows is divisible by n — 1, and
(2) the flow on the oriented edge (t) is the negative of the flow on the oriented
edge [u](t).

5 Relations between &, &', H, H', and 2F

In most cases, our goal in this paper is to show £ C ‘H, and our proof proceeds
by induction on |S|. Thus, we usually know that & C H’, and we wish to show
that £ C 'H. This section presents some of our main tools to accomplish this.
They are of three general types:

(1) It suffices to show 2F C H: (5.1).

(2) Results that show &€ CH + &": (5.3), (5.5), (5.6).

(3) Results that show H' C H (or, in some cases, show only that 2H' C H):
(5.7), (5.8), (5.9), (5.10).

Note that if & C H’, then combining (2) with the strong form of (3) yields
the desired conclusion £ C H.

Most of the results in this section assume that H contains certain basic 4-
cycles; results in Sections 6 and 10 show that H often contains every basic
4-cycle.

Theorem 5.1 (Alspach-Locke-Witte [ALW, Thm. 2.1]). Let X be a connected
Cayley graph on a finite abelian group. If X is not a prism over an odd cycle,
then &€ C'H + 2F.

We state the following result for X', rather than X, because it applies to all
groups, including those of odd order.

Theorem 5.2 (Chen-Quimpo [CQ]). Suppose |S'| > 3, and let v and w be

11



any two distinct vertices of X'.

(1) If X' is not bipartite, then there is a hamiltonian path from v to w.
(2) If X' is bipartite, then either

e there is a hamiltonian path from v to w, or

e there is a path of even length from v to w.

Corollary 5.3 (cf. pf. of [ALW, Cor. 3.2]). Suppose s € S, such that
e G'=G,
o |S'| >3, and
e cither X is bipartite or X' is not bipartite.
Then € CH+E'.
Lemma 5.4. Let s € S, and assume
o |S| >4,
o G #G, and
o (s,t,s L t7 Y)Y eH, for everyt € S'.
Give

e weight 1 to the oriented s-edge [v](s) if v € s 'G’, and
o weight 0 to all of the other edges of X.

If k s the weighted sum of the edge-flows of some element H of H, then
kF CH+F'.

Proof. Let f € F. We wish to show kf € H + F'. By adding an appropriate
multiple of H to kf, we obtain a flow f;, such that the weighted edge-sum
of f1is 0.

For each i, with —1 <i < |G/G'| — 2, let
E;={[l(s) |vesG}

Then, for 0 < i < |G/G'| — 2, the union —E_; U E; is the set of oriented
edges that start in U;'»:Osj G’', and end in the complement. So the net flow of f;
through the edges in E; must equal the net flow through the edges in £_q,
which is 0.

Therefore, by adding appropriate multiples of basic 4-cycles of the form
[s™](s,t,s,t71),

with t € S, to f1, we obtain a flow that does not use any edges of F,,.

12



Repeating this for all m (including m = —1), we obtain a flow f; that does
not use any s-edges.

So fs is a sum of flows on various cosets of G'. The following claim shows that
fo € H+ F', so we conclude that kf € H + fo CH + F', as desired.

Claim. For any f' € F', and any v € G, we have [v|f € H + F'. We may
assume

o f'isacycle [w|(ti,..., ty), with each ¢; € &', and w € G’, and
e v =3s", for some r > 0.

Then
[U]f, o f, = Z Z[Si_lwt1t2 et t]‘—lKS? t]? 8_1) tj_l)u
i=1j=1
is a sum of basic 4-cycles, so [v]f' — f' € H. ]

Corollary 5.5 (cf. [ALW, Lem. 3.8]). Suppose s € S, and we have

G'#G,
(s, t,s7 1 t71) € H, for every t € S, and
either

(a) X is bipartite, or

(b) X' is not bipartite.

Then € C H +2F'.

Proof. Tt suffices to show F C H + F', for then multiplying by 2 yields 2F C
H + 2F’, and then the desired conclusion follows from Theorem 5.1.

Let m = |G/G’|. Note that, because |S| > 4, we have |G'| > 3.

Case 1. Assume X is bipartite. Let H' = (ty,t9,...,t,) be a hamiltonian
cycle in X'. There is some r with s™™ = tyty---t,. (Note that, because X is
bipartite, we know that r + m is even.) If m is even, define

r/2
=1

H = ((Sm_17 t2i71> 3_(m_1)> t2i) ) ((trJri)?:_lr_l? S, (tgiz‘)zn:_{_l? S) m/2> ) (El)

13



whereas, if m is odd, let

o e (r+1)/2
H = ((3 277521'71,5 ( 2)>t2i)i:1

((tr+1+i)?:_1r_27 S, (t;&i)?:_f_z, S

(tr+1+i)?:_1r_1? (ti)iz1, S)'

Y

)<m71>/2

)

Then Lemma 5.4 (with & = 1) implies 7 C H + F’, as desired.

Case 2. Assume X' is not bipartite, and |S’| > 3. Choose nonidentity elements
91,92, - -, gm of G', such that gi1g2--- g, = s ™. Theorem 5.2 implies, for
each j, that there is a hamiltonian path (ti,j)?;ll in X’ from e to g;. Define the
hamiltonian cycle H = ((ti,j)g‘;ll, S):‘ir Then Lemma 5.4 (with k = 1) implies
F CH+F, as desired.

Case 3. Assume X' is not bipartite, and |S'| = 2. Let t € S', so S = {s*!, 1},
Because X’ is not bipartite, we know || is odd. We have s™™ = ¢" for some r
with 0 < r < [t| — 1. We may assume r is even, by replacing s with its inverse
if necessary. Define H as in Eq. (E1), with ¢; = ¢ for all <. Then Lemma 5.4
(with & = 1) implies F C H + F’, as desired. O

Corollary 5.6 (cf. [ALW, Lem. 3.8]). Suppose s € S, and we have

o 1524
o (s,t,s L t7Y)y e H, for everyt € S, and
« ' £G.

Then € CH+E'.

Proof. Tt suffices to show 2F C H + &', for then the desired conclusion follows
from Theorem 5.1. We may assume that X' is bipartite, but X is not bipartite,
for otherwise Corollary 5.5 applies (and yields a stronger conclusion).

Let m = |G/G'|. Because |S| > 4, we have |G'| > 3. Let (t1,ts,...,t,) be a
hamiltonian cycle in X".

We will construct a hamiltonian cycle H in X, such that H contains the
oriented edges [s"!](s) and [s™'¢;](s), but no other oriented edges of the
form +[v](s) with v € s7'G’. Then Lemma 5.4 (with k = 2) implies 2F C
‘H + F'. Since X' is bipartite, this means 2F C H + &', as desired.

There are p and ¢ with 0 < p,q < n, such that s™ = tity...t, and s"t; =
tita...t,. Because X' is bipartite, but X is not bipartite, it is not difficult
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to see that the cycle (t1,to,...,t,,s~™) must be odd. Similarly, the cycle
(ta,t3,...,tg, s~ ™) must also be odd. Therefore

e p and m have opposite parity, and
e ¢ and m have the same parity.

Furthermore, we may assume the hamiltonian cycle (t1,%s,...,%,) has been
chosen so that
p is as small as possible. (E2)

Note that if p > ¢ and ¢ # 0, then replacing the hamiltonian cycle (t1, ta, . . ., t,)
with (ta,ts,...,t,,t1) replaces p with ¢ — 1. Because ¢ — 1 < ¢ < p, this con-
tradicts (E2). Hence

e cither p < qgorq=0.

If m is odd, then ¢ # 0 (because ¢ must be odd), so we must have p < g.
Define

0= (57 ()0, (tprai 1,8 s tpyas, 8)S 077072,
(tq—1+¢)?:_1q_1, (s, (t 1 )i s, (ti)?:—f)(mf?))/??
Ly (eI 57 s, (1)
If m is even and p < ¢, define

787

)(pfl)/2

_(.m -1 —1 41
H = (5 7(57tp+2—2i75 atp+1—2z' =1

_ _ _9\ (m=2)/2 _ 1
(3» (tir1)its s, (tnii)?:f) 19 (tq—&}l—i)ng ) S

—q-2)/2
a—p -1 —1)(n—a
(tpr14i)izt, s 7(tq+2i757tq+2i+lvs )izl .

If m is even and p > ¢ = 0, then, by considering the hamiltonian cycle
et 1y, we see that p = 1. Define

ybn 9y Pn—1
m n— -1 \n— m/2
H= <S ) ((ti+1)i:127 S, (tnii)i:f? S) )
This completes the proof. O

Observation 5.7. If G’ = G, then X" is a spanning subgraph of X, so H' C H.
(In particular, if G' = G and € C 'H + H', then £ C H.)

Lemma 5.8 (cf. [ALW, Lem. 3.6]). Suppose s € S, such that
|G'| > 4 is even.

(1) If (s,t, s 1, t7Y) € H, for everyt € S’, then H' C H.
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(2) If 2(s,t, s~ 1 t71) € H, for every t € S’, then 2H' C 'H.

Proof. We prove only (1), because (2) is very similar. Let m = |G/G’|. Given
a hamiltonian cycle H' = (t1,ts,...,t,) in X', we have a corresponding hamil-

tonian cycle
n/2

H = (sm’l, toig, s MY, tgi)izl
in X. Because

n/2

H-H = [s't1ty . . . baj_s)] (s,tQH, s*l,t;j,l)
j

3
N
~

i
o
Il
—

is a sum of basic 4-cycles, we conclude that H' € H. O]
Lemma 5.9. Suppose s € S, such that

|s| > 2,
|G'| > 3 is odd, and
(s,t,s 1 t71) € H, for every t € S'.

Then 2H' C H.

Proof. Let H' = (t,ts,...,t,) be a hamiltonian cycle in X'. Let m = |G/{|.
There is some r with s™" = t1t5 - - - t,.. Because n is odd, we may assume r is
even (by replacing H' with —H' = (71,1, ..., #7") if necessary). Note that,

because |s| > 2, we have m > 2 if r = 0. Define

0 ifr=0;
€ =
1 otherwise,

_ A A A | “(m—1) ;-1
H, = ((tni+1) S G A SR PR Y

=1
s, (Sm—Q)e’ tl_la (3_(7"_2))6’

-1 m—2 ;—1 —(m—2)
(n—2i+278 1 bn—2i41> S )

1—e
-1 m—2 -1 ,—(m=-3) ;=1 _m-3
t7’+3—267 S ) <t2 S 9 tl S ) ) 8>

)e(wm

i=1 ’

(n—r—342¢)/2

i=1 ’

and
r/2
i=1

Y

Hy, = ((Sml, toi—1, Si(mil)a t2i)
(Sm_g, Lry2i-1, s~ (m=2) tr+2i) (n—r—l)/27

=1
sl () s) .

Then H, — Hy + 2H' is a sum of basic 4-cycles, so 2H’ belongs to H.
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Perhaps we should elaborate further. Let Y be the spanning subgraph of X
with

i 0<i<m—1,
E(Y) = [s'tita- - 15](tj41)
0<j<n-—-2

@- 0<i<m-—2,
U [S tltg"'tj](S)
0<j<n-1

Then
H —H,+H + [s]H’ e F(Y),

and Y is naturally isomorphic to the cartesian product of the two paths (s)
and (t1,to,...,t,_1), so any flow on Y is a sum of basic 4-cycles. Furthermore,

m—1

[s|JH — H' = Z[tth cti(s iy s

i=1
is a sum of basic 4-cycles. Therefore
Hy — Hy+2H' = (Hy — Hy+ H'+ [s]JH') — ([s]H' — H')
is a sum of basic 4-cycles, as claimed. OJ
Lemma 5.10. Suppose S = {s,t*, u*t}, such that

|S‘ = 57

|G'| is odd,

s =e,

GI # <t>7

G’ # (u), and

every basic 4-cycle is in H.

Then 2H' C 'H.

Proof. Let p = |G'|/|t| and n = |t|. Note that p and n must be odd, since
|G’| is odd. There is some r with u™? = ¢". Because n is odd, we may assume
r is even (by replacing ¢ with ¢~ if necessary).

Define
H, = (tnl’ upr7 2ff(n73)7 u, tnflv s, tnfl’ uf(pfl)7 t,
—-1)/2
(12w, 02,0) " s,

(u_l, 2 t—<p—2>) R u—l) .
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Then H; — 2(t") is a sum of basic 4-cycles. (For example, this follows from
the observation that H; —2[u""!](t") belongs to F(Y'), where Y is a spanning
subgraph of X that is naturally isomorphic to the cartesian product of the
paths (s), (t™7 1) and (uP™'), cf. pf. of (5.9)). Therefore

2(t") € H. (E3)

Now define

H, = (s,ul, (7 a2,

—r—1)/2
(tor 2, a2 )" e,

(t"’Q, u, t27", u) (pil)/Q, L ulp) .

By adding certain basic 4-cycles involving s to Hy, we can obtain an element
of H that is in X’ and uses only one edge of the form [t'|u. We can now apply
the the proof of Lemma 5.4 to X', with u taking the role of s, to obtain the
conclusion that F' C H + (¢"), since the basic 4-cycles are in ‘H and not just
in H'. In particular, this tells us that 2H’ C H + 2(¢"). Combining this with
(E3), we see that 2H' C 'H, as desired. O

6 Some basic 4-cycles in H

In this section, we show, for s, ¢ € S, that H often contains the flow 2(s, ¢, s7!,¢71)
(see 6.2) and, if |G| is divisible by 4, the basic 4-cycle (s,t,s7%,t71) (see 6.3).
Our main tool is the construction described in Lemma 6.1, which was already
used in [ALW,LW] (and goes back to [M]).

Lemma 6.1. Suppose

e I,Yy,z € S;
e v,w e G, and
e . and H_ are oriented hamiltonian cycles in X.

Then:

(1) If H, contains both the oriented path [v]|(z,y,x~') and the oriented edge
[vxz](y), then

1

(z,y, 2y ) + [2](z,y, 27y ) € H.
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(2) If H_ contains both the oriented path [w](x,y,z~") and the oriented edge
[wayz](y™), then

(z,y, 27"y ™) = [2](z,y, 27y ) € H.

(3) If both (1) and (2) apply, then 2(z,y,x~ 'y~ ') € H.
(4) If

o (z,y,a "y~ ") €H, and
e cither (1) or (2) applies,

then (z,y,27 4 y™!) € H.
Proof. We may assume v = w = e.

(1) Construct a hamiltonian cycle H, by replacing

e the path (z,y,27!) with the edge (y) and
e the edge [z2](y) with the path [zz](271, v, 2).

Then H, — H! is the sum of the two given 4-cycles.
(2) Construct a hamiltonian cycle H” by replacing

e the path (z,y,z7') with the edge (y) and
e the edge [zyz](y~!) with the path [zyz](z71, vy~ !, 2).

Then H_ — H’ is the difference of the two given 4-cycles.
(3) Adding the flows from (1) and (2) results in 2(z,y,z~ 1, y71).

(4) The difference of (z,y,z71,y~1) and the flow that results from either of (2)
and (1) is +[z](z,y, 271, y71). O

Proposition 6.2. If s,t € S, such that

S| =4,
t ¢ (s), and
P (o5},

then, letting Q = (s,t,s™ 1, t71), we have

=-Q=[]Q (modH),

for all v € G. In particular, 2Q € 'H.

Proof. 1t suffices to show
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(a) @ —[slQ €A,
(b) @ —[t]Q € H, and
(c) either @+ [s]Q € H, or Q + [t]Q € H.

Let n = |G|/|s|, and write t" = s", with 0 < r <|s|. (If t" = e, then we have
a choice, which will be made later, whether to use r = 0 or r = |s|.) Because
t ¢ (s), we have G # (s), so n > 2. Note that n|s| = |G| is even, so n and |s]
cannot both be odd. If |s| is even and n > 3, define, for future reference, the
hamiltonian cycle

H, = (t”_l,ss_1,t_1,s_(|3_2),t_(”_2), (s,t"_?’,s,t_("_g))(ls|_2)/2,s>. (E4)

Now let us begin by establishing (a). Let

n/2
<tn1, s, (S|8\*2’t71’ S*(|S|*2),t71) / ﬁ, Sl> if |S| is Odd,
Hy = (t, shsl=1 =1 s*(‘s‘*l)) if n =2,
H, as in Eq. (E4) otherwise.
Then H, contains both the oriented path [s~2t"1](s,t7!, s71) and the oriented

edge [t"7?|(t), so Lemma 6.1(2) (withx =s,y =t 2 =5, and w = s 2" 1)
establishes (a).

All that remains is to establish (b) and (c).
Case 1. Assume n > 3.

Subcase 1.1. Assume |s| is odd. Note that n must be even (so n > 4), because
n|s| = |G| is even. We may assume t" # e (so r ¢ {0,]|s|}), for otherwise, by
interchanging s and ¢, we may transfer to one of the cases where |s| is even and
n is odd. We may assume r is odd, by replacing s with its inverse if necessary.
Define hamiltonian cycles

s|—r)/2
H_ = ((t"_?’,s,t_(”_g),s)(' =/ ,s"

(tn—27 8-17t-(n_2)8_1)(7"*1)/27tn_37 S—(|s—r)7t7ss|—r’t)

and (Is|=r)/2 /2
H, = ((t”l, s, (=1 3) : (s“l,t, s’(’"’l),t> ))
Then
e H_ contains both the oriented path [t"%](¢, s,t~!) and the oriented edge

[t"2s](s71), so Lemma 6.1(2) (with x = ¢, y = s, 2 = ¢, and v = ")
establishes (b)
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e H. contains the oriented path [t"2|(t,s,t7!) and the oriented edge
[t"](s) (because 7 is odd), so Lemma 6.1(1) (with x = t, y = s, 2 =,
and v = t"~2) establishes (c).

Subcase 1.2. Assume |s| is even and n > 4. We may assume t" # s, by
replacing s with its inverse if necessary. Define hamiltonian cycles

H. = ((s R ) t‘“"”‘”) (E5)

and
H. as in Eq. (E4) ifr 2
(5.6, t—(n—3))(‘5“2)/2’ 8) =2.
Then:

e H_ contains both the oriented path [¢t](t7!,s,¢) and the oriented edge
[t71s](s71), so Lemma 6.1(2) (with x =t} y =35, 2 = ¢!, and v = 1)
establishes (b).

e H, contains both the oriented path [st](t7!,s,t) and the oriented edge
[st71](s), so Lemma 6.1(2) (with z = ¢!, y = s, 2 = t7!, and v = st)
establishes (c).

Subcase 1.3. Assume |s| is even and n = 3. We may assume 0 < r < [s]/2, by
replacing ¢ with ¢~1 if necessary. Define hamiltonian cycles

H_ asin Eq. (Eb),
and

H, = (tQ,S‘S"Z”",t, s~UsI=3) ¢ glol=2 ¢ g (sl=r) g 5).
Then:
e H_ establishes (b), exactly as in the previous subcase.
e H. contains both the oriented path [s?](s7', ¢, s) and the oriented edge

(t), so Lemma 6.1(2) (with z = s7', y = t, 2 = s7!, and v = s?)
establishes (c).

Case 2. Assume n = 2. We have 2 < r < |s| — 2, because t* ¢ {e, s*'}. Notice
that this implies |s| > 4.

Subcase 2.1. Assume |s| is even, and r is odd. We may assume r < |s|/2, by
replacing s with s~! if necessary.

21



If r = |s|/2, then |t| =4, so |G|/|t| = |s|/2 = r > 3 (because r is odd). Thus,
an earlier subcase applies, after interchanging s and t.

We may now assume r < |s|/2. Define

H, = ((t,s,tl, s)(‘s‘iww, (srl,t,s(’"l),t)Q).

Then H, contains both the oriented path [s *2] (s,t, 3*1) and the oriented edge
(t), so Lemma 6.1(1) (with z = s, y = t, 2 = s, and v = s72) implies that
Q + [s]Q € H. Therefore, because

(n— 2)/2
Q= (t 5Pt 57D s*)(Q + [51Q),

=1

we conclude that @ € H, which makes (a), (b), and (c) trivial.

Subcase 2.2. Assume that either

1s odd or
and r are even.

S

o |
e |s

|
|
We may assume |s| — r is even, by replacing ¢ with its inverse if necessary.
Define

H = (t, 5,172 5772 471 g (Is1=3) ¢ glsl-r—2 t).
Then H_ contains both the oriented path (¢,s,£7!) and the oriented edge

[st*](s71), so Lemma 6.1(2) (with v =€, x =¢, y = s and z = ) tells us that
(—Q) — [t](—Q) € H. This establishes (b).

Define the hamiltonian cycle

t,s,t 1, sl1=2 ¢ g s1=3) ¢ if r = |s| —2

H+ = s|—r—

st 5™ s (s,t‘l,s,t)(‘ | 2)/2]j> if r <|s|—2.
Then H, contains both the oriented path (¢,s,¢7') and the oriented edge
[t?](s), so Lemma 6.1(1) (with v = e, z =, y = s and z = t) tells us that
(—Q) + [t](—Q) € H. This establishes (c). O

Corollary 6.3. Suppose s,t € S, such that

|G| is divisible by 4,
|s| > 3,
t ¢ (s), and

either

() |G|/ls| = 3, or
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(b) t* ¢ {e,s*'}.
Then (s, t,s7 1, t71) € H.

Proof. Case 1. Assume (s,t) = G and t* ¢ {e, s*'}.

o If |s| is even, let z = s, y =, m = |s|, and n = |G|/|s].
o If |s| is odd, let x = t, y = 5, m = |G|/|s|, and n = |s|.

In either case,

m/2
H = (fcml,y, (et y 2 )™ ﬂ,yl)
is a hamiltonian cycle in X. Letting

Q - (x7 y? x_17 y_1> - :]:<S7 t7 8_17 t_1)7
we have
m—1 m/2n—2 ' '
H = (ZW*]Q> + (Z Z[xz“zy]]Q> :
; i=1 j=1
so H is the sum of
mn

(m—1)+5(n—2):7—1

translates of ). Because mn = |G| is divisible by 4, we know that (mn/2) —1
is odd. Therefore, Proposition 6.2 implies

H= ((mn/2) - 1)@ =@ (mod H).
Since H € 'H, we conclude that ) € 'H.

Case 2. Assume that either (s,t) # G ort* € {e, s*'}. We show how to reduce
to the previous case.

First, let us show |G|/|s| > 3. By hypothesis, if this fails to hold, then ¢* ¢
{e,s*!}, so we may assume that the latter holds. Hence, the assumption of
this case implies (s,t) # G. Since t ¢ (s), we conclude that

1G] 1G] s,
s S sl

>2-2>3,

as claimed.

Let (t1,...,t,) be a hamiltonian cycle in

Cay(G/<s>; S~ A{s, 3_1}),
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with t; =t (cf. 5.2). Define permutations o and 7 of G by

e o(z) =xs and
o 7(x) = xt;, where i = i(z) satisfies 1 <i <n and x € (s)tity---t;_1.

Let Y be the spanning subgraph of X whose edge set is

EY)={(z,0)zeV(@}u{(z,7() zeV(G)}.

Then Y is a connected, spanning subgraph of X. It is not difficult to see that
o and T generate a transitive, abelian group I' of automorphisms of ¥ (and
any transitive, abelian permutation group is regular), so Y is isomorphic to
the Cayley graph

Y* = Cay(F; {o*!, Til}).
Furthermore, the natural isomorphism carries the 4-cycle (s,t,s71,t71) to
(o, 7,071, 771).

Note that |o| = |s| and |T|/|o] = |G|/|s| > 3, so 7% & (o). From Case 1, we
know that (o, 7,071, 771) € H(Y™*). Hence, via the isomorphism, we see that
(s,t,s7 1t h) e H(Y) C H(X). O

Remark. The assumption that t ¢ {e, st} is necessary in Proposition 6.2
and Corollary 6.3, as is seen from Theorem 1.4(2) and Proposition 8.1. If
|S| =4 and X is not bipartite, then the assumption that |G| is divisible by 4
is necessary in Corollary 6.3, as is seen from Proposition 8.2.

7 The graphs of degree 4 with H =¢&

In this section, we show that H = £ in many cases where |S| =4 (see 7.1). In
Section 8, we will calculate H in the cases not covered by this result.

Proposition 7.1. If

o |S| =4, and
e X is not the square of an even cycle, and
e cither

(a) X is bipartite, or

(b) |G| is divisible by 4,

then H = £.

We preface the proof with an observation on bipartite graphs, and the treat-
ment of a special case.

Lemma 7.2. If
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e |G| is not divisible by 4, and
o cvery element of S has even order,

then X 1is bipartite.

Proof. Let H ={g*| g € G}. Because |G| =2 (mod 4), we see that |H| =
|G|/2, and |H| is odd. We know that no element of S belongs to H (because the
elements of H have odd order), so the subgraph of X induced by each of the
two cosets of H has no edges. Therefore, the coset decomposition G = HUHg
is a bipartition of GG, so GG is bipartite. O

Lemma 7.3. If X =2 Kyo0Y, where Y is a Mébius ladder, then H = &.

Proof. We may assume
X = Cay(Zz @ Zou; {5, u}),

where s = (0,n), t = (0,1), and u = (1,0).

Step 1. We have (u,t,u,t™') € H. Define the hamiltonian cycle

H = ((s,t)"jj,u, (s,t’l)"ﬁ,u).

Then the sum H + [t|H has edge-flow 0 on each s-edge, so H + [t|H € F'.
Under the weighting of X’ specified in Lemma 4.4, with u in the role of s,
the weighted sum of the edge-flows of H + [t]H is 4(n — 1), which is relatively
prime to 2n — 1. Thus, we conclude from Lemma 4.4 that H + [t|H generates
F'/H', so F' C H+ H'. Because X' is a spanning subgraph of X, we have
H' C H, so this implies ' C ‘H. Therefore (u,t,u,t™') € H, as desired.

Step 2. For
Y = Cay({O} ® Zon; {s,til}) C X,
we have E(Y) C H. The hamiltonian cycle

(u, t" 1 s, t’(”’l)>2

contains both the oriented path [t71](#,u,t™!) and the oriented edge [su](u™!),
so Lemma 6.1(2) (with x = ¢, y = u, 2 = s, and w = ¢ !) implies

(tu,t™u ) = [t](s,u,5,u) € H.

From Step 1, we know (t,u,t™ ', u) € H, so we conclude that (s,u,s,u) also
belongs to H. Then, from Lemma 5.8(1) (with w in the role of s), we see that
H(Y') € 'H. Thus,

it suffices to show £(Y) CH +H(Y).
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We may assume n is odd, for otherwise Theorem 1.4(1b) implies £(Y) =
H(Y) CH+ H(Y). Consider the hamiltonian cycle

H' = (s,t"_Q,u,t_(2"_3),u,t”_2, s,u,t,u).

We have

2n—3
(s,t7 ' s, t) =H' — (t,u,t™ " u) = > [t u,t u) € H.

=1

Under the weighting of Y specified in Lemma 4.3, the weighted sum of the
edge-flows of (s,t71, s, t) is £2, which is relatively prime to n. Thus, Lemma 4.3
implies that (s,t7', s,t) generates F(Y)/H(Y), so we conclude that £(Y) C
H+HY).

Step 3. Completion of the proof. Given any even flow f € £, we wish to show
f € H. Adding appropriate 4-cycles of the form [v](u,t,u,t™!) eliminates all

u-edges from f, leaving an even flow f; € 5(Y) & 5([u]Y) From Step 2,

we know that £(Y) @ €([u]Y') € H, so we have f; € H. Hence, f € H, as
desired. O

Proof of Proposition 7.1. By Remark 3.2 and Lemma 7.3, we may assume
that S has no involutions. Let S = {s*! t*1}.

Case 1. Assume X is bipartite. In this case, we know [t is even, and t? # s*L.

Subcase 1.1. Assume t € (s). Write t = s". We may assume 2 < r < |s|/2, by
replacing t with its inverse if necessary. Because X is bipartite, we know that

r is odd. Give

e weight 0 to each s-edge, and
e weight (—1)" to each oriented t-edge [s'](t).

Then the weighted sum of the edge-flows of the hamiltonian cycle
H, = ((t S,t_l,s) (Mm,t, 38—2’““)
is 7, and the weighted sum of the edge-flows of the hamiltonian cycle
Hy = (t, (t,s70, 87, 3*1)(“”/2, £ 3|8|2’"1>
Is2—r.

Given any flow f on X, we wish to show f € H. Because r is relatively prime
to 2—r, some integral linear combination of H; and Hs has the same weighted
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edge-sum as f; thus, by subtracting this linear combination, we may assume
the weighted edge-sum of f is 0. Then, by subtracting a linear combination of
hamiltonian cycles of the form

[U] (t, S—(r—l)7 t, 8\3\—7"—1)7

we may assume that f does not use any t-edges. Then f is a multiple of the
hamiltonian cycle (s)"!, so f € H.

Subcase 1.2. Assume t ¢ (s). By Lemma 6.2, we know 2(s,t,s7%,t7!) € H.
We have

ECHA+2F (see 5.1)
CH+2E (X is bipartite, so F =€)
CH+2& (cf. 5.6)
CH+2H (X' is an even cycle, so &' =H’)
CH (see 5.8(2)),

as desired.

Case 2. Assume |G| is divisible by 4. Let m = |G|/|t|, and write s™ = t", for
some 7, with 0 < r < |¢|.

Subcase 2.1. Assume (t) # G. Because X is not the square of an even cycle,
we know s? ¢ {t*'}. Therefore Corollary 6.3(b) (with the roles of s and ¢
interchanged) implies that the 4-cycle (s,t,s7%,¢t7!) is in ‘H.

If || is even, then

ECH+E (see 5.6)
CH+H (X" is a cycle, so ' =H)
CH (see 5.8(1)),

as desired.

If |¢] is odd, then

ECH+2F (see 5.5(b))
CH+2H (X' is a cycle, so F' = H')
CH (see 5.9),

as desired.

Subcase 2.2. Assume (t) = G. Since X is not bipartite (and |t| = |G| is even),
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r must be even. So (s) C (t?) # G. Thus, by interchanging s and ¢, we can
move out of this subcase. ]

For future reference, let us record the following special case of the proposition.
(Note that no bipartite graph is the square of an even cycle.)

Corollary 7.4. If |S| =4 and X is bipartite, then H = .

8 The graphs of degree 4 with H # &

In this section, we provide an explicit description of H for the graphs of de-
gree 4 that are not covered by Proposition 7.1 (see 8.1 and 8.2). We also
establish two corollaries that will be used in the study of graphs of higher
degree (see 8.6 and 8.7).

Proposition 8.1. Suppose X is the square of an even cycle, so
S = {st 1=} with t = s%.
Give

o weight 0 to each s-edge, and
o weight (—1)" to each t-edge [s'](t).

Then a flow is in 'H if and only if the weighted sum of its edge-flows is divisible
by |G| — 2.

Proof. Let n = |G|/2. All hamiltonian cycles are of one of the following two
forms:
Hy = [v] (t"_l, s,t_("_l),s_l)

or
Hy = +[v] (5”0, (t,s 1 t),s™, (t, s 1, t),s",
(t, 57 t),..., 8" (t,s7 1), s"‘“)

(for some k > 0 and nyg,...,nE > 0 with 3k + Y- n; = 2n). In both cases, it is
easy to see that the weighted sum of the edge-flows is divisible by 2n — 2.

Conversely, given any flow f such that the weighted sum of its edge-flows
is m(2n — 2), for some integer m, we wish to show f € H. The weighted sum
of the edge-flows of f —mH; is 0, so, by adding appropriate hamiltonian cycles
of the form Hy (with &k = 1 and ng = 0), we obtain a flow f’ that does not use
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any t-edges. Then f’ is a multiple of the hamiltonian cycle (s**), so f’' € H.
Therefore f € H. O

Proposition 8.2. Suppose

|S‘ = 47

X 18 not bipartite,

|G| is not divisible by 4, and

X is not the square of an even cycle,

so
o S ={t* u*'}, where
e t has odd order, and
o t £ ut?

Give

o weight (—1)7 to each oriented t-edge [t'u’](t), and
e weight 0 to each u-edge.

Then a flow belongs to 'H if and only if the weighted sum of its edge-flows is
divisible by 4.

This proposition is obtained by combining Lemmas 8.4 and 8.5.

Observation 8.3. In the situation of Proposition 8.2, we know that |G|/|t|

is even, so it is not difficult to see that > cq f([v](u)) is even, for all f € F.
Therefore, a flow on X is even if and only if the weighted sum of its edge-flows
is even.

Remark. In the situation of Proposition 8.2, some even flows (such as any basic
4-cycle) have weight 2, so the result implies that H # £. In fact, £/H = Zs.

Lemma 8.4. If

e S and G are as described as in Proposition 8.2, and
e H is any hamiltonian cycle in X,

then the weighted sum of the edge-flows of H s divisible by 4.
Proof. Because it is rather lengthy, this proof has been postponed to a section
of its own (see Section 9). The reader can easily verify that this proof does

not rely on any of the subsequent results in the present section. O]

Lemma 8.5. If
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e S and G are as described as in Proposition 8.2, and
o f is a flow, such that the weighted sum of the edge-flows of f is divisible
by 4,

then f € 'H.

Proof. Let Q be the subgroup of F generated by the basic 4-cycles, and let
s = u.

Step 1. We have € C H + Q + 2F’. Obviously, H + Q contains every basic
4-cycle, so this follows from (the proof of) Corollary 5.5(b).

Step 2. We may assume f € Q. We have

ECH+Q+2F (from Step 1)
=H+Q+2H (X' is a cycle, so F' =H')
CH+Q (see proof of (5.9)).

Thus, because f € £ (see 8.3), we may write f = H + @, with H € H and
Q) € Q. By assumption, the weighted sum of the edge-flows of f is divisible
by 4. By Proposition 8.4, the weighted sum of the edge-flows of H is also
divisible by 4. Therefore the weighted sum of the edge-flows of ) must also
be divisible by 4. So there is no harm in replacing f with Q.

Step 3. Completion of the proof. From Step 2, we may assume that f is a sum
of some number of basic 4-cycles. The weighted sum of the edge-flows of any
basic 4-cycle is +2, so we conclude that the number of 4-cycles in the sum is
even. Thus, Proposition 6.2 implies f € H, as desired. O

Corollary 8.6. If s € S, such that

o |5’ =4, and
e H contains some basic 4-cycle C' of X',

then & CH+H'.

Proof. We may assume that either

e X' is the square of an even cycle, or
e X' is not bipartite, and |G| is not divisible by 4,

for otherwise Proposition 7.1 implies & C H'.
Given any even flow f € &' we wish to show that f € H + H’'. Under

the weighting of X’ specified in Proposition 8.1 or 8.2 (as appropriate), the
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weighted sum of the edge-flows of C' is +2, and, because f is an even flow,
it is not difficult to see that the weighted sum of the edge-flows of f is even.
Therefore, there is an integer m, such that the weighted sum of the edge-flows
of f —mC is 0. Therefore, Proposition 8.1 or 8.2 (as appropriate) asserts that
f—mC € H'. Because mC' € H, we conclude that f € H+H’, as desired. [J

Corollary 8.7. If s,t € S, such that

1S =4,

|G'| is not divisible by 4,

X' is not the square of an even cycle,
te s,

|t| is odd, and

H contains the flow 2(t*),

then & CH+H'.

Proof. Let C' = 2(tI"). Under the weighting of X’ specified in Proposition 8.2,
the sum of the edge-flows of C' is 2|t| = 2 (mod 4). Thus, for any f € &,
the weighted sum of the edge-flows of either f or f — C' is is divisible by 4.
Therefore, Proposition 8.2 asserts that either f € H' or f — C € H'. Because
C € 'H, we conclude that f € H + H’, as desired. O

9 The proof of Lemma 8.4

This entire section is devoted to the proof of Lemma 8.4. (None of the defi-
nitions, notation, or intermediate results are utilized in other sections of the
paper.) After embedding X on the torus (see 9.3), we assign an integer (mod 4),
called the “imbalance” (see 9.6(2)) to certain cycles (namely, those that are
“essential” and have even length). Then we show that this geometrically-
defined invariant can be used to calculate the weighted sum of the edge-flows
of the cycle (see 9.25). Lemma 8.4 follows easily from this formula.

Assumption 9.1. Throughout this section, S, G, t, u, and the weighting of X
are as described in Proposition 8.2.

Notation 9.2. We use

e wt(f) to denote the weighted sum of the edge-flows of a flow f, and
e len(P) to denote the length of a path P.

Definition 9.3.

(1) Define
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o m = |t],
e n=|G:(t)], and
e choose an even integer r, such that v =t".
(2) Embed X on the torus T? = R?/Z2, by identifying the vertex tu® of X

with the point
<a rb b)
R _I,_ —_— =
m  mn n

of T?, and embedding the edges in the natural way (as line segments).

Notation 9.4. Suppose P is any path in X, and C'is any cycle in X, such that
neither the initial vertex nor the terminal vertex of P lies on C'. Intuitively,
we would like to

define x¢(P) to be the parity of

the number of times that P crosses C.

(Note that if P coincides with C' on some subpath, then this is counted as a
crossing if (and only if) P exits C' on the opposite side from the one it entered
on.) It would be possible to formalize the definition in purely combinatorial
terms, but we find it convenient to use a topological approach.

We may think of P as a continuous curve on the torus, and C as a knot (or
loop) on the torus. By perturbing P slightly, we can obtain a curve P’ on the
torus, with the same endpoints as P, such that P’ is homotopic to P, and
every intersection of P’ with C'is transverse (and is not a double point of P’).
Let
xc(P)=|P'NnC| (mod 2).

This is well-defined (modulo 2) because P’ is homotopic to P (cf. [ST, §§73—
74]).

Definition 9.5. A cycle C'in X is essential if the corresponding knot on the
torus is not homotopic to a point.

More concretely, a cycle [v](sy,...,S,) is essential if and only if either

{ilsi=t}#Hilsi=t"}

or

il si=ull# {ilsi=u}.
Definition 9.6. Let C' be any essential, even cycle in X.

(1) For two vertices v and w in X \ C, we say that v and w have the same
color (with respect to C'), if

len(P) + xc(P) is even,
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where P is any path in X from v to w. (This is independent of the choice
of the path P (see Lemma 9.13(2) below).) This is an equivalence relation
on V(X \ (), and has (no more than) two equivalence classes.
We may refer to the vertices in one equivalence class as being “black,”
and the vertices in the other equivalence class as being “white.” This is
a 2-coloring of X ~ C.
(2) If K and W are the number of vertices of X \ C that are black, and the
number that are white, respectively, we define the imbalance imb(C) to

be
imb(C) = K — W (mod 4).

Because K + W = |G| — len(C) is even, we know that K — W is either
0 or 2 (mod 4); therefore, K — W = W — K (mod 4), so imb(C) is
well-defined (modulo 4), independent of the choice of which equivalence
class is colored black and which is colored white.

Observation 9.7. Because this concept is the foundation of this entire sec-
tion, we describe an alternate approach to the 2-coloring that determines
imb(C). The graph X has a natural double cover X, that is bipartite. Specif-
ically,

= CaY(G2; {t, U2}>,

where
G2 = <t2,U2 ‘ t%m =€, Ug’ = tg, t2u2 = Ugtg).

The inverse image of C' in X, consists of two disjoint cycles C; and C,, with
len(C}) = len(Cy) = len(C). (This would be false if C' were not an even cycle.)
There is a natural embedding of X5 on the torus T?, and T2~ (6’1 Ué’Q) has ex-
actly two connected components. (This would be false if C' were not essential.)
Choose one connected component X3. The vertices in X3 are in one-to-one
correspondence with the vertices in X \ C. Because Xj is bipartite, the ver-
tices in X3 have a natural 2-coloring. Under the natural correspondence with
V(X ~\ C), this is precisely the 2-coloring defined above, up to the arbitrary