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Abstract

We propose the mqr-tree, a two-dimensional spatial ac-
cess method that improves upon the 2DR-tree. The 2DR-
tree uses two-dimensional nodes so that the relationships
between all objects are maintained. The existing structure
of the 2DR-tree has many advantages. However, limita-
tions include higher tree height, overcoverage and overlap
than is necessary. The mqr-tree improves utilizes a different
node organization, set of validity rules and insertion strat-
egy. A comparison versus the R-tree shows significant im-
provements in overlap and overcoverage, with comparable
height and space utilization. In addition, zero overlap is
achieved when the mqr-tree is used to index point data.

1. Introduction

Many applications exist today that store and manipulate
spatial data. A spatial database [16] contains a large collec-
tion of objects that are located in multidimensional space.
For example, the Geological Survey of Canada maintains a
repository of spatial data for many geoscience applications
[5], while the Protein Data Bank [13] contains many three-
dimensional protein structures. An important issue in spa-
tial data management is to efficiently retrieve objects based
on their location by using spatial access methods.

An approximation method is a spatial access method that
maintains a hierarchy of approximations of both objects and
the space occupied by subsets of objects. Approximations
are usually represented using a minimum bounding rectan-
gle (MBR). Many approximation strategies have been pro-
posed. However, most proposed strategies do not preserve
all spatial relationships between objects because the data,
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which is represented in n-dimensional space, is forced into
a 1-dimensional ordering. This leads to inefficient search-
ing, both within a node and the structure as a whole, because
the only option is a linear search of a node in its entirety.

A recently proposed spatial access method, the 2DR-tree
[11, 12], uses two-dimensional nodes, which allows data to
be ordered and spatial relationships to be preserved. Limita-
tions of the 2DR-tree include a tree height that is higher than
necessary, and a low average space utilization. These limi-
tations also lead to high coverage, overcoverage and overlap
of MBRs within the 2DR-tree. It is suspected that the pri-
mary cause of these limitations lies in the node validity rules
and the insertion algorithm.

Therefore, we take another look at the 2DR-tree. We pro-
pose the mqr-tree, which improves upon the node organiza-
tion, validity rules and insertion algorithm of the 2DR-tree.
We evaluate the mqr-tree against the R-tree [6]. We show
that the mqr-tree achieves significant improvements in over-
lap and overcoverage, and in many cases comparable tree
height over the R-tree. With these improvements accom-
plished, different searching strategies can be explored that
can perform a partial search of nodes.

This paper proceeds as follows. Section 2 presents re-
lated work in the area of spatial access methods and their
limitations. Section 3 presents the mqr-tree, in particular its
node organization and insertion strategy. Section 4 presents
special properties of the mqr-tree. Section 5 presents the
results of our experimental evaluation versus a benchmark
strategy. Finally, the paper concludes and gives research
directions in Section 6.

2. Related Work

Many approaches for indexing objects based on location
are proposed in the literature (see [4, 14, 16] for surveys).
These approaches are classified into three categories [4]:
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Figure 2. Relative orientation of A with
respect to B

main memory methods, point access methods and spatial
access methods (spatial access methods). Many important
strategies are proposed in all categories. We focus on spatial
access methods, since our work is in this category.

Spatial access methods provide uniform access to both
point and object data. Also, they remain height-balanced in
the presence of a dynamic object set. Many spatial access
methods are proposed in the literature [6, 1, 2, 7, 15, 10, 8].
They can be classified [4] into approximation, clipping, and
mapping methods.

Approximation methods store a hierarchy of approxima-
tions of both objects and the space occupied by subsets of
objects. Since the space is not partitioned, approximations
can overlap. Many approximation methods are proposed,
including the R-tree [6], theR∗-tree [1], the X-tree [2] and
the 2DR-tree [11, 12]. Clipping methods, such as theR+-
tree [15], partition an object into parts so that overlap is
avoided. Mapping methods map objects in n-dimensional
space into a one-dimensional order. The objects are then
stored and retrieved using an access method such as a B+-
tree [3]. Approaches that use mapping include Z-ordering
[10], the Hilbert R-tree [7], and the Filter tree [8].

No n-dimensional to one-dimensional mapping of spatial
data exists that preserves all spatial relationships between
objects [4]. A limitation to most hierarchical spatial access
methods is their one-dimensional structure. This forces ob-
jects in n-dimensional space into a one-dimensional order-
ing, which results in the loss of spatial relationships. This
leads to inefficient searching, both within a node and the
structure as a whole, because the only option is a linear
search of a node in its entirety. Mapping methods do pro-
vide a one-dimensional ordering of objects, but they cannot
maintain all spatial relationships.

The 2DR-tree [11, 12], a recently proposed spatial access
method, attempts to overcome these limitations by propos-
ing a structure that fits the data as given, instead of forcing
n-dimensional data to fit a one-dimensional structure. Two-
dimensional nodes are used, which allows spatial relation-

ships between objects to be preserved. Node validity rules
are defined and applied during object insertion to ensure that
spatial relationships are maintained.

The 2DR-tree has many advantages, including different
searching strategies and traversal of space in different di-
mensions. Limitations of the 2DR-tree include a tree height
that is higher than necessary, and a low average space uti-
lization. These limitations also lead to high coverage, over-
coverage and overlap of MBRs within the 2DR-tree. We
have identified that an improved strategy for the placement
of objects within a node, and a corresponding insertion al-
gorithm, will alleviate many of the limitations of the 2DR-
tree while preserving the two-dimensional structures and
the ability to maintain spatial relationships among objects
in each node.

3. The mqr-tree

In this section, we present the new approach to organiz-
ing objects within a node, updated node validity rules, and
the new insertion strategy.

3.1. Node Organization and Validity

As with the 2DR-tree, we determine the relative place-
ment of objects in the tree by using the centroids of their
MBRs. The origin of a 2DR-tree node is the bottom left-
hand node entry. In addition, the 2DR-tree is built from
the bottom-up, and therefore all leaf nodes are on the same
level. For the mqr-tree, we redefine the origin of a node, and
the relative orientation of two centroids. In addition, we re-
lax the requirement that the tree must be height-balanced.

Figure 1 depicts the new node layout. A node contains 5
locations. Each location contains a pointer to either another
node or an object. A node must have at least two locations
that reference either an object or a subtree. The origin of
the node is the now the centre of the node. The centre is
defined by the centroid of thenode MBR, which is an MBR
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that contains all objects in the node, and any subtrees of the
node. As objects are added to and removed from the node,
the centre of the node will change.

Figure 2 depicts the redefined orientations, whereA

refers to the centroid of a new object, andB refers to the
centre of the node. The orientations (NE, SE, SW, NW) are
redefined to include centroids that fall on the axes (E, S, W,
N, respectively). Also, an equals (EQ) orientation is added,
to handle two centroids that overlap.

A node is classified as either ’NORMAL’ or ’CENTER’.
In a NORMAL node, the locations are organized based on
the orientations defined above (see figure 1). A NORMAL
node is valid when:

1. The node MBR encloses all the MBRs in the objects
or subtrees that the node references, and

2. All objects or subtrees pointed to by a location are in
the proper quadrant relative to the node centroid.

In a CENTER node, the locations are organized linearly. A
CENTER node only references objects whose centroids are
the same as the centroid of the node MBR.

3.2. Insertion Strategy

The new insertion strategy works as follows. Beginning
at the root node, the node MBR is adjusted to include the
new object. Then, the appropriate location, relative to the
centroid of the node MBR, is identified for inserting a ref-
erence to the new object. If the location is empty, the ref-
erence to the object is inserted. Otherwise, the subtree is
traversed in the same manner, until either: 1) an appropri-
ate location is found that is empty and the object reference
can be inserted, or 2) a leaf node is reached, and no proper
location is available for the new object reference. If the ob-
ject reference cannot be inserted in the proper location of
the leaf node, then a new leaf node is created.

Next, node validity is maintained by removing and rein-
serting objects that have changed orientation relative to the
centroid of the node MBR during the insertion process.
When inserting or deleting an object from a node, one of
three things will happen to the node MBR:

1. The centroid of the node will not change and therefore
all objects remain in their proper orientation,

2. The centroid of the node moves and the area of the
node MBR increases,

3. The centroid of the node moves and the area of the
node MBR decreases.

In the latter two cases, some areas within the node
MBR may have shifted to another quadrant. In ad-
dition, some objects may no longer be in their proper
relative node location. Any objects in this situation
must be located and moved. Objects are moved by
re-inserting them so that they are placed in a proper
relative location.

Figure 3 shows a NorthEast expansion of the node MBR
from the original area (shaded) to the new area. The MBR
is split into four quadrants using hashed lines. The direction
of the hash indicates the quadrant in which the object on
that line is included. The regions that are labeled represent
the destination location for the objects found within that re-
gion.The ’EQ’ location has been omitted for clarity. Notice
that after the MBR is expanded, partial regions that once
belonged to the NorthWest, NorthEast and SouthEast quad-
rants now belong to the region that makes up the SouthWest
quadrant. Any objects within these areas are no longer prop-
erly located relative to the new node centre, and would have
to be relocated. Figure 4 shows the SouthWest contraction
in a similar manner. All other expansions and contractions
work in a similar manner.



4. Properties

In our investigations, we discovered some interesting
properties of the mqr-tree index and insertion algorithm:

• Any point, and therefore any MBR centroid, has only
one possible location in the tree. This leads to a tree
that is independent of the insertion order of all objects.

• The centroid of a node will have the same orientation
in its parent as all objects enclosed by the node MBR.

• The MBR of a location will have less then half of its
area outside its quadrant, except for the ’EQ’ quadrant.
This may lead to a minimizing in overlap.

• With datasets consisting of only points, the overlap of
any two MBRs at any level of the tree is zero. There is
no area that has the potential to be covered twice.

5. Evaluation

Now, we present the results of our empirical evaluation
of the mqr-tree. Initially, we compared the mqr-tree with
the 2DR-tree [9]. We found that the mqr-tree achieved sig-
nificant improvements in height, space utilization, cover-
age, overcoverage and overlap. Here, we compare the per-
formance of the mqr-tree insertion algorithm with the R-
tree insertion algorithm [6], which is considered one of the
benchmark strategies for spatial indexing.

5.1. Data Sets

We use both synthetic and real datasets for our compari-
son. Our synthetic data consist of randomly generated col-
lections of objects that vary in type (i.e. squares, points),
size (i.e. 500-10,000 objects) and distribution (i.e. uniform,
exponential). Our real data consists of sets of road and rail-
road data that vary in size from 11,000 to 122,000 line seg-
ments. The line data is part of the Digital Chart of the World
and obtained from [17].

5.2. Tests and Evaluation Criteria

For each dataset, we created 1000 trees using each al-
gorithm. Each tree was built using randomly-ordered data.
The number of nodes, height, average space utilization in
each node, total coverage of all MBRs, total overcoverage
(i.e. whitespace) of all MBRs, and the total overlap between
all MBRs was calculated for each tree. We discuss 4 of
those performance factors below:

• Average space utilization - the average number of
MBRs per node. Ideally, the higher the number of

MBRs per node, the lower the number of nodes and
the lower the tree height. Both the MBRs referenc-
ing objects and those encompassing other MBRs are
included in this calculation.

• Overcoverage - the amount of whitespace (i.e. area
with no objects) that is contained in the MBRs of a spa-
tial index. Ideally, the amount of overcoverage should
be zero or very low. A higher overcoverage will results
in searches along paths that will lead to no objects.

• Overlap - the amount of space covered by two or more
MBRs. Ideally, overlap should If significant overlap
exists, then a search may proceed down multiple paths
that are covering the same area. This in turn will lead
to unnecessary searching, since the extra paths usually
do not contain objects required for a query.

• Height - the number of nodes from the root to the leaf
node on the longest path of the index. Ideally, the
shorter the path, the shorter the search from root to
leaf. However, shorter paths may also lead to more
overcoverage and overlap, so slightly longer paths may
be beneficial overall. For the R-tree, all paths are the
same length because the tree is height-balanced. Be-
cause the mqr-tree is not height-balanced, in addition
to the longest path length, the average path length (i.e.
average height) is also recorded.

5.3. Results on Synthetic Data

Table 1 displays the results for the data sets consisting of
uniformly distributed squares. Note that for the R-tree, the
values for all parameters are averaged over all 1000 runs,
since these values vary for each tree. For the mqr-tree, the
values are identical for all 1000 trees. As mentioned ear-
lier, the new insertion strategy is independent of the orderin
which the objects are inserted. The only variation is in how
many objects are moved in order to maintain node validity.
Also note the two sets of values for height for the mqr-tree.
The first value represents the maximum (i.e. worst-case)
height, while the second value in parentheses is the average
height (i.e. average path length).

Results show that the mqr-tree achieves a significant im-
provement over the R-tree in many aspects. In particular,
there is a 22-25% decrease in coverage, a 10-36% decrease
in overcoverage, and a 17-46% decrease in overlap. In all
cases, the improvements increase as the number of objects
increase. Although the space utilization of the mqr-tree is
13-8% lower than that of the R-tree, it is still at least 50%
overall. In addition, although the maximum tree height of
the mqr-tree is higher than that of the R-tree, the difference
in tree height decreases to 20% as the number of objects in-
creases. It must also be noted that the average tree height



#objects index #nodes height util (%) coverage overcoverage overlap
mqr-tree 279 7(5) 56 290177.89 40756.80 21028.36500
R-tree 305 4 65 372130.69 45306.94 25402.35
mqr-tree 585 8(5) 54 631842.02 80732.27 46784.411000
R-tree 605 5 66 837206.01 91859.61 58061.60
mqr-tree 2870 9(6) 55 3703689.90 388583.38 246737.325000
R-tree 3021 6 66 5161652.44 478843.25 334332.24
mqr-tree 5786 10(7) 55 7861089.36 758803.43 492034.6310000
R-tree 6017 7 66 10968198.78 1005048.34 735112.17
mqr-tree 28794 11(8) 55 45248114.33 3846739.24 2531268.3350000
R-tree 30164 9 66 67744586.52 5700505.69 4394641.83
mqr-tree 57746 12(9) 55 95796506.41 7715213.25 5091928.56100000
R-tree 60368 10 66 148388577.82 12014645.01 9434519.77

Table 1. Uniform Distribution of Objects

#objects index #nodes height util (%) coverage overcoverage overlap
mqr-tree 281 7(5) 56 183202.42 52329.78 0500
R-tree 266 4 71 245727.36 57450.22 5120.44
mqr-tree 584 7(5) 54 412179.74 101789.65 01000
R-tree 535 4 71 576901.59 115082.14 13292.48
mqr-tree 2880 9(7) 55 2608566.96 503669.43 05000
R-tree 2684 6 71 3818879.85 620295.57 116626.14
mqr-tree 5758 9(7) 55 5683295.67 999477.64 010000
R-tree 5375 7 71 8438581.92 1284808.36 285330.7
mqr-tree 28814 11(8) 55 34311970.34 5017147.64 050000
R-tree 26889 9 71 54548019.98 7079331.94 2062184.26
mqr-tree 57737 12(9) 55 73778577.04 10048704.63 0100000
R-tree 53820 9 71 122816655.76 15131590.62 5082885.99

Table 2. Uniform Distribution of Points

of the mqr-tree is almost equal to the height of the R-tree.
We believe that this is a small price to pay for the significant
decrease in coverage, overcoverage and overlap.

Table 2 presents the results for the data sets consisting
of uniformly distributed points. The most significant find-
ing in these results is that zero overlap is achieved when
an index is constructed for points using the mqr-tree inser-
tion strategy. This is very important because point queries
can be executed without having to potentially traverse mul-
tiple paths in the tree. In addition, significant reductionsin
coverage (25-40%) and overcoverage (9-34%) occur. The
values for height are similar to those obtained for the ob-
ject datasets, and therefore we feel these are insignificant
compared to the achievement of zero overlap.

5.4. Results on Real Data

Table 3 presents the results for the road and railroad
data. Here, we also achieve almost no overlap in the mqr-

tree. The results show that a reduction of almost 100% is
achieved. In addition, we also achieve over 90% in reduc-
tion in overlap and overcoverage. The mqr-tree has a higher
tree height in the worst case - almost double in some cases.
However, the average tree height for the mqr-tree is lower.
Given that the overlap and overcoverage of the mqr-tree are
much lower, it is expected that more efficient searching will
be achieved despite the higher tree height.

5.5. Results on Exponential Data Sets

Due to space limitations, we did not include our results
on the exponential object and point sets here. However, we
found that significant reductions in coverage, overlap and
overcoverage are achieved when the mqr-tree is used to in-
dex exponential data. In addition, zero overlap for point
data was achieved. We did discover that the worst-case
height of the mqr-tree is worse than that obtained from in-
dexing the uniformly-distributed data, but that the average



#objects index #nodes height util (%) coverage overcoverage overlap
mqr-tree 7755 13(9) 49 248.10 94.13 1.0111381 (CArrline)
R-tree 5858 6 73 9699.83 3777.58 3684.48
mqr-tree 14118 13(9) 51 352.01 97.20 4.1921831 (CArdline)
R-tree 11192 7 73 21602.31 8118.90 8025.92
mqr-tree 23108 13(9) 50 4324.47 1561.67 18.1835074 (CDrrline)
R-tree 18096 8 73 36064.09 13081.80 11538.44
mqr-tree 58849 13(10) 51 2038.99 553.05 16.8792392 (MXrdline)
R-tree 47116 9 74 96803.79 35321.41 34785.37
mqr-tree 6735 12(9) 50 1294.95 541.89 2.2010060 (MXrrline)
R-tree 5248 7 72 9184.51 3474.23 2934.55
mqr-tree 76998 15(10) 52 9500.39 2925.65 59.95121416 (CDrdline)
R-tree 62399 10 72 134965.07 46201.81 43336.29

Table 3. Uniform Distribution of Points

case height is only slightly worse.

6. Conclusion and Future Work

We propose the mqr-tree, a two-dimensional index struc-
ture that improves upon the structure, validity rules and in-
sertion algorithm of the 2DR-tree. We show through exper-
imental evaluation that the mqr-tree outperforms a bench-
mark indexing strategy, and achieves no or little overlap.
Currently, the mqr-tree is limited to two dimensions.

Future work includes the following. The first is to eval-
uate the searching ability of the mqr-tree versus benchmark
strategies such as the R-tree [6]. The second is to extend
the node structure to multiple dimensions. The third is to
increase the number of locations in a 2-dimensional node.
The fourth is to create a bottom-up tree-construction strat-
egy to handle multiple insertions at once. The fifth is to
improve the CENTER nodes. The final improvement is a
paging strategy that groups nodes based on a high probabil-
ity that they are retrieved for the same queries.
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