
A k-nearest Neighbour Query Processing
Strategy Using the mqr-tree

Wendy Osborn(B)

Department of Mathematics and Computer Science, University of Lethbridge,
Lethbridge, AB T1K 3M4, Canada

wendy.osborn@uleth.ca

Abstract. This paper presents a k-nearest neighbour query processing
strategy that utilizes a recently proposed spatial access method, the mqr-
tree, to narrow down the search for candidate nearest neighbours. It
requires the traversal of only one path of the tree, and in the majority
of cases, does not require backtracking all the way to the root. The mqr-
tree-based k-nearest neighbour strategy is evaluated both individually
and compared against the brute-force method for running time. It is
shown that the proposed approach performs better in many cases. In
addition, the running time is not affected by the number of points being
indexed or the number of nearest neighbour being sought.

Keywords: Location-based services · Spatial access methods · k-nearest
neighbour query

1 Introduction

A location-based service provides information to a user of a mobile device, such
as a smartphone or mobile-enabled tablet – based on their location, interests
and the type of query issued by the user [10]. One example of such a query is
to locate all restaurants that reside within a certain distance d from the user.
Another example of such a query is to locate the nearest k restaurants to the
user. These queries are referred to as a region query and a k-nearest neighbour
(k-NN) query, respectively.

Several approaches for efficiently finding nearest neighbours to a query point
have been proposed [7], with several utilizing various spatial access methods,
such as the R-tree or kd-tree [1–6,9,11]. Along with the additional space over-
head, some spatial access methods are not balanced and can ultimately become
skewed, while others contain overlapping sub-regions, which result in multiple
paths needing to be searched. A recently proposed spatial access method, the
mqr-tree [8], has been shown to achieve zero overlap in the presence of point
data, while also achieving some relative balance (if not perfect balance) between
all leaf nodes and the root. In addition, due to its organization of data to main-
tain the spatial (i.e., topographical) relationships between them, it is an excellent
candidate for processing k-NN queries.

c⃝ Springer International Publishing AG 2018
L. Barolli et al. (eds.), Advances in Network-based Information Systems,
Lecture Notes on Data Engineering and Communications Technologies 7,
DOI 10.1007/978-3-319-65521-5 49

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 567

Therefore, I propose a k-nearest neighbour strategy that utilizes the mqr-tree
to locate a sub-region of candidate points that will potentially satisfy a k-nearest
neighbour query. This strategy only requires the traversal of one path of the tree
to satisfy a query. In the majority of cases, it does not require backtracking all
the way to the root node. The mqr-tree-based k-NN strategy is evaluated both
individually and compared against the brute-force method for running time. It
is shown that the proposed approach performs better in many cases. In addition,
the running time is not affected by the number of points being indexed by the
tree or the number of nearest neighbour being sought.

2 Related Work and Background

In this section, I summarize related work in the area of k-NN query processing.
I also summarize the features of the mqr-tree that are required for this work.

2.1 k-nearest Neighbour Strategies

Nearest neighbour strategies are classified into structureless and structured.
Structureless strategies do not utilize a complex data structure for searching. The
most straightforward approach is the brute-force approach. Here, the distances
between query point q and all points in set P are calculated before process-
ing P to find the k nearest neighbours. Although the space complexity is low,
processing the list can be costly for higher values of k.

Structured strategies utilize some type of data structure to improve perfor-
mance, at the expense of both space overhead and the cost of constructing the
index [1–6,9,11]. Burkhard and Keller [3] proposed three multi-way trees for
nearest neighbour searching. Fukunaga [5] utilized recursive decomposition of a
search space and a branch-and-bound strategy to create a search data structure.
The branch-and-bound strategy systematically accesses and evaluates all candi-
date data, while eliminating subsets of data as early and often as possible, using
the continuously optimized bound(s) derived during the evaluation.

The first nearest neighbour search algorithm for the k-d tree was proposed
by Friedman et al. [4]. Sproull [11] improved upon it by noting that since
Euclidean distance calculations are invariant under rotation, the planes that
partition space along a particular dimension in the k-d tree can actually be
arbitrary k-dimensional hyperplanes. However, he identified the following limi-
tations, including the additional costs of computing the distance between a point
and an arbitrary hyperplane, and of choosing an arbitrary partition hyperplane.
Approaches using the R-tree are also proposed, including one from Brinkhoff
et al. [2], which computes k nearest neighbours via a spatial join operation.

Finally, some approaches can be applied to any hierarchical data structure.
Roussopoulos et al. [9] proposed a depth-first branch-and-bound k-NN search
that can be applied to any tree data structure. For every node visited, its children
are placed on a queue in order of distance from the query point. Any nodes that
are far from the query point are pruned. This continues until k nearest neighbours
have been found. Hjaltason and Samet [6] propose a similar best-first strategy
that does not require the number of nearest neighbours to be known in advance.

568 W. Osborn

2.2 mqr-tree

More details on mqr-tree (including validity, insertion, construction, and basic
region searching algorithms) can be found in [8].

The mqr-tree [8] is a spatial access method that uses two-dimensional nodes
to organize objects in two-dimensional space. This allows the existing spatial
relationships to be maintained between objects and the regions of space that
contain them. After an object or point is inserted, a validity test is performed to
ensure that all spatial relationships are maintained, and any objects or regions
that violate the spatial relationship rules are relocated. In addition to traditional
region searching and point searches, the features of the mqr-tree also allow it to
support k-NN searching. A very nice feature of the mqr-tree that will lend itself
nicely to k-NN searching is that zero overlap of regions (on the same level of the
tree) occurs when the mqr-tree is used to solely index point data [8].

Figure 1 presents an mqr-tree for the given dataset. A node has the quadrants
NW, NE, SW and SE. Each node has a corresponding node MBR, which encom-
passes all objects, points and regions in the subtrees accessible from the node.
All objects and regions containing other objects, are placed in the appropriate
quadrant based on their relationship to the centroid of the nodeMBR. For exam-
ple, in the leaf node containing m1,m2 and p9, we observe that m1 is NW of the
centroid for the node MBR that contains it Similarly, m2 is SW and p9 is NE of

Fig. 1. mqr-tree example (from [8])

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 569

the centroid, respectively. Therefore, these objects are placed in the NW, SW,
and NE quadrants of the node, respectively. The other leaf nodes, and the root
node, are also arranged in this manner.

To use the mqr-tree, it must be constructed if it does not already exist.
Constructing the mqr-tree will take anywhere from a few seconds for 10,000
objects, up to almost two minutes for 100,000 points, by using repeated insertion
of objects. However, the mqr-tree also support the insertion and deletion of
objects, so any updates to the data set can be made in the mqr-tree easily.
Further, to use the mqr-tree for k-NN searching, a quick traversal of the tree
must be performed to count the number of points that are reachable from every
node, if the tree is already built.

3 An mqr-tree-Based k-Nearest Neighbour Strategy

In this section I introduce the new k-NN strategy. This strategy utilizes the
mqr-tree to quickly locate a set of k or more candidate points to satisfy a k-NN
query. A node that will serve as s “starting point” in the mqr-tree is located
first, before a candidate set of points that (hopefully) will contain the k nearest
neighbours to the query point are fetched. Although as we see, the strategy may
need to “backtrack” towards the root in order to find a proper set of k nearest
neighbours, the advantage of the mqr-tree of not having overlap of any regions
at the same level, means that only one path in the tree needs to be utilized for
locating the required nearest neighbours. In addition, results from experiments
show that backtracking is more the exception than the rule.

Figure 2 presents the pseudocode for the proposed approach. After obtain-
ing the query point and the number of nearest neighbours being sought (k), the
search begins at the root node for a node that will be the starting point for fetch-
ing candidate k nearest neighbours. The query point is first evaluated against
the root node and its corresponding nodeMBR. One of the following situations
will occur:

1. The number of points that are reachable from this node, npoints, is <= k.
If this occurs, then the search for a starting point stops here. If npoints < k,
then the search goes back to the parent node for the starting point.

2. The query point is within the node’s nodeMBR, but in a location not covered
by one of the quadrants. the search for a starting point also stops here.

3. The query point will reside in one of the 4 quadrants - NW, NE, SE or
SW (in other words, the point resides in the space that is covered by one of
these quadrants). The search will continue in the subtree of the encompassing
quadrant, and terminate when one of the two above conditions are met.

Once the node that will serve as a starting point is found, its nodeMBR is fetched.
This is the superMBR, or the MBR that will encompass the candidate set of
points from which the k nearest neighbours will be found. The mqr-tree will then
be traversed from this node to fetch all points in the node’s subtree. The fetched
points are sorted by increasing distance, before the kth furthest point from the

570 W. Osborn

po int P = ob ta i n s e a r ch po i n t () ;
i n t k = obta in knn va lue () ;
node X;
node reg ion SR;
bool found = 0 ;
po int Q[k] ; //dynamic , ad justed i f need be

// f i r s t , l o c a t e the f i r s t node with the number o f po in t s
// equal to k
whi l e (! found && X−−>npo ints > k)

i f (P in X[NW])
X = X[NW]−−>ch i l d ;

e l s e i f (P in X[NE])
X = X[NE]−−>ch i l d ;

e l s e i f (P in X[SE])
X = X[SE]−−>ch i l d ;

e l s e i f (P in X[SW])
X = X[SW]−−>ch i l d ;

e l s e
found = 1 ;

end i f
end whi l e

// i f not enough po in t s in subt r ee go back up one l e v e l
i f (X−−>npo ints < k)

X = X−−>parent ;

// i f s e t o f f e t ched po in t s conta in s va l i d k nea r e s t ne ighbours
// then f i n i s h e d . Otherwise , go back up the t r e e and repeat
whi l e (1)

// obta in the po in t s from X, and correspond ing superMBR
t r a v e r s e t r e e (X, Q) ;
s o r t by d i s t a n c e (Q) ;
SR = obta in node r eg i on (X)

i f (X−−>parent == NULL)
return Q; // at the root

e l s e i f (d i s t (P,Q[k]) <= d i s t (P. cy ,SR. hy) &&
d i s t (P,Q[k]) <= d i s t (P. cy ,SR. ly) &&
d i s t (P,Q[k]) <= d i s t (P. cx ,SR. hx) &&
d i s t (P,Q[k]) <= d i s t (P. lx ,SR . lx))

re turn Q; // va l i d r e s u l t
e l s e

X = X−−>parent ;
end whi l e

Fig. 2. k-NN search strategy

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 571

query point will be evaluated against the superMBR to determine if the set of
k nearest neighbours is valid. A set of k nearest neighbours is valid only if the
distance of the kth nearest neighbour from the query point is less than or equal to
the distances from the query point to all sides of the superMBR. Any distances
that are less than the distance to the kth nearest neighbour may mean that
another closer point may reside elsewhere in the tree. Figures 3a and b depict
the valid and invalid situations respectively for the 1-nearest neighbour case. As
we can see, in Fig. 3a, the distance from the query point to the closest point is
less than the distances to all four sides of the superMBR. So we know that this is
a valid nearest neighbour. In Fig. 3b, notice that the distance between the query
point and the closest point to it is greater than the distance to the north side of
the superMBR. This means that there may be a closer nearest neighbour that
resides outside of the north side and within another node’s nodeMBR, so this
candidate is not guaranteed to be the nearest neighbour.

If the set of candidate k nearest neighbours is valid, then these are sent to the
user. Otherwise, another set of candidate points will be obtained from the parent
of the chosen starting point node. If necessary, this process will be repeated by
proceeding up the path one parent node at a time, until either: (1) a set of valid
k nearest neighbours is found that passes the validity test, or (2) the root node
is reached, which means that the candidate set contains all points in the tree
and therefore the closest k of them must be the k nearest neighbours.

(a) Valid (b) Invalid

Fig. 3. Valid and invalid cases

4 Evaluation

This section presents the empirical evaluation of the mqr-tree-based k-NN strat-
egy, including a comparison against the brute-force k-NN approach. I first present
the framework and evaluation methodology. Then, I will present the outcome of
the evaluation and the resulting discussion of the outcome.

4.1 Methodology

The mqr-tree-based k-NN strategy is implemented in C on a PC running the Cen-
tos 7 version of Linux. It was evaluated using several synthetic point sets for both

572 W. Osborn

the data and the queries. These were chosen so that certain characteristics, such as
the number of points and distribution, could be controlled. Altogether, 30 points
sets were created for the experiments. The first are 10 point sets of uniform distri-
bution. Each contains 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and
100000 points respectively. Each set of n points is drawn from a two-dimensional
square region of size

√
n2. Next are 10 point sets of exponential (i.e., skewed) dis-

tribution. Each also contains the same number of points as the uniform datasets,
and are drawn from the same sized regions of space as the uniformly distributed
sets. Finally, there are 10 sets of query points. Each contains the square root of
the number of points in the data set they are applied to. For example, the query
point set corresponding to the 100-point data sets contains 10 query points, while
the one corresponding to the 100,000-point data set contains 316 query points.
The reason for this is because the query point set in each file proceeds diagonally
through the region of space that contains the points.

The following tests are performed by applying the point query sets to their
respective point data sets, mentioned above:

– 1-NN, mqr-tree-based strategy. 20 tests, with 10 using the uniform point sets
and 10 using the exponential point sets.

– 1-NN, brute-force strategy. 20 tests, with 10 using the uniform point sets and
10 using the exponential point sets.

– k-NN (k = 1 to 10), mqr-tree-based strategy. 20 tests, with 10 using the
uniform 100,000-point set and 10 using the exponential 100,000 point set.

– k-NN (k = 1 to 10), brute-force strategy. 20 tests, with 10 using the uniform
100,000-point set and 10 using the exponential 100,000 point set.

For the tests that utilize the mqr-tree-based k-NN strategy, the following per-
formance factors are recorded:

– running time. The running time is recorded for each query. Two average
running times are calculated and recorded: the average running time over
every query, and the average running time for the queries that run in less than
2 µs. The reason for this will be explained when the results are discussed.

– number of queries that execute in less than 2 µs. Required for the second
average running time mentioned above.

– number of pages hits. The number of page hits (i.e., nodes that are checked)
for each query is recorded. The average number of page hits is calculated over
all queries.

– number of queries that have at least one invalid test. As mentioned in the
previous section, it is possible that the initial set of candidate points that
is fetched may not contain a valid set of k nearest neighbours, due to other
members of the true k nearest neighbours residing outside of the correspond-
ing superMBR. Therefore, the number of queries that have at least one invalid
result is recorded.

– number of queries that traverse for points from the root. As mentioned in the
previous section, it is possible that the chosen superMBR corresponds to the
root node, which means that the entire mqr-tree is traversed. Therefore, we
also record the number of queries where this occurs.

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 573

Table 1. 1-NN on uniform data

#points #queries avg#phits #invalid #root avgtime #under2µs avgtime2µs

100 10 24.60 4 2 0.51 10 0.51

500 22 62.18 9 2 0.56 22 0.56

1000 31 55.84 7 1 0.58 30 0.52

5000 70 193.59 34 2 1.99 65 0.52

10000 100 199.63 38 2 3.37 96 0.56

50000 223 277.70 81 1 22.49 216 0.57

100000 316 531.31 136 1 65.19 299 0.53

For the tests that utilize the brute force approach, only the individual running
time for each test is recorded, along with the average running time over all point
queries. The other performance factors recorded for the mqr-tree-based approach
are not applicable for the brute-force approach.

4.2 Results

The results for the mqr-tree-based k-NN approach are presented first, followed
by the comparison of the running time versus the brute-force approach. For
all tables presented here, k is the number of nearest neighbours being sought,
#points is the number of points in the mqr-tree, #queries is the number of
queries executed on the mqr-tree, avg#phits is the average number of nodes
visited for a k-NN search, #invalid is the number of queries that had one or
more invalid fetches of k nearest neighbours while searching the tree, #root is
the number of queries that traversed for the candidate set of k nearest neighbours
from the root, #under2µs is the number of queries that finished in under 2 µs,
avgtime is the average execution time per query over all of the queries executed
(i.e. #queries), and avgtime2µs is the average time per query over those queries
that executed in under 2 µs (i.e. #under2µ). Also, due to limited space, we only
include a subset of results for each table.

Tables 1 and 2 present the results of the 1-NN tests across all exponential and
uniform point sets, respectively. We observe for the uniform point sets that for a
significantly high percentage of queries (90% or greater), that a significantly low
average running time is observed. In addition, the number of tree traversals that
occur from the root are very low, and the number of invalid candidate 1 nearest
neighbours that are fetched is less than 50% in most cases, and not more than
54% (for the queries on 100,000 points). The higher average run time and average
number of page hits is a result of the few queries that produce unacceptable run
times and number of page hits, which significantly skew the results. But in most
cases, the performance here is very good.

For the exponential cases, we observe a slightly higher percentage of invalid
candidate 1-nearest neighbours and traversals from the root, and a slightly lower
percentage of queries that execute in under 2 µs. In addition, both the average

574 W. Osborn

Table 2. 1-NN on exponential data

#points #queries avg#phits #invalid #root avgtime #under2µs avgtime2µs

100 10 72.20 1 7 0.61 10 0.61

500 22 254.36 12 8 0.77 22 0.77

1000 31 279.52 16 7 1.01 28 0.82

5000 70 993.74 39 13 8.08 53 0.51

10000 100 1061.04 50 8 15.18 87 0.51

50000 223 3114.56 115 7 215.46 210 0.54

100000 316 5761.48 171 7 806.13 285 0.55

Table 3. K-NN on uniform data

k avg#phits #invalid #root avgtime #under2µs avgtime2µs

1 531.30 136 1 65.18 299 0.53

2 872.87 187 2 99.13 290 0.54

3 1389.28 211 4 240.01 286 0.55

4 1498.94 217 4 244.24 280 0.56

5 1656.18 223 4 252.71 275 0.57

6 1705.44 227 4 252.52 269 0.57

7 1716.00 226 4 252.38 268 0.58

8 1778.54 222 4 257.02 267 0.58

9 2292.91 226 6 343.13 261 0.58

10 2556.74 235 7 401.92 259 0.59

number of page hits and the average overall run time are unacceptably high.
However, the same situation occurs here that a small number of queries take an
unacceptable time to execute, and therefore skews the overall results.

Next, Tables 3 and 4 present the results of the mqr-tree-based k-NN tests
on both the 100,000-point uniform and exponential point sets, respectively. We
observe for the uniform point set that as the number of nearest neighbours
increases, the number of queries that execute under 2 µs decreases slightly, but at
its lowest, is still 81% of the overall number of queries. The average running time
of the queries that run under 2 µs is still quite low. The remaining performance
factors show an increase as the value of k increases, and in the case of the
average overall running time, the number of page hits, and the number of invalid
candidates k nearest neighbours are quite high. The first two, again, are the
result of the few queries that ultimately take significantly more running time
and skew the results. The increase in the latter is due to the increase in k, since
more points must reside in the superMBR in order to be considered valid. With
respect to the exponential point set, although the values are approximately equal
or higher than those found for the uniform point set, the same trends are found
for increasing k.

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 575

Table 4. K-NN on exponential data

k avg#phits #invalid #root avgtime #under2µs avgtime2µs

1 5761.48 171 7 805.44 287 0.56

2 6205.02 191 8 870.96 283 0.56

3 6205.13 193 8 871.26 282 0.56

4 6439.28 226 9 906.36 282 0.57

5 6439.62 228 9 906.29 284 0.58

6 7529.20 230 11 1071.49 278 0.59

7 7529.28 218 11 1067.21 279 0.59

8 9240.96 226 14 1306.46 269 0.59

9 9244.39 227 14 1307.95 271 0.60

10 11438.16 230 20 1624.50 263 0.63

Finally, Figs. 4 and 5 present the results of the comparison between the aver-
age run times of the mqr-tree-based k-NN strategy and the brute force approach,
for the 1-NN and k-NN tests, respectively. For both charts, we use the mqr-tree-
based running time of under 2 µs, since this reflects the majority of the queries
that were executed in our evaluations.

With respect to the 1-NN results, it is noted that the mqr-tree-based strat-
egy achieves fairly constant running time, regardless of the number of points
in the point set. For smaller point set size – in particular, up to 2000 points – we
see no advantage for the mqr-tree-based k-NN strategy over the brute force app-
roach. In fact, brute force performs slightly better than the proposed approach
in many of these cases. However, once the point set reaches 5000, then sav-
ings in running time over the brute-force approach start to appear and increase

Fig. 4. 1-NN Comparison versus brute force search

576 W. Osborn

Fig. 5. k-NN Comparison versus brute force search

significantly as the point set size increases. With respect to the k-NN results,
we observe that the mqr-tree-based strategy significantly outperforms the brute
force approach for all values of k. It is also noted here that the running time
of the mqr-tree-based approach is fairly constant, regardless of the number of
nearest neighbours being sought.

4.3 Discussion

The mqr-tree-based k-NN strategy achieves significantly low running times in
many cases. In addition, the running time in these cases are fairly constant,
regardless of the number of points in the point set, or the number of nearest
neighbours being sought. When compared to the brute force approach, the pro-
posed strategy outperforms brute force in larger point sets. It is expected that
this will continue to be the case as the number of points increases.

However, there is the situation of the “rogue” searches - the ones that take
unacceptably longer than necessary. I would like to explain the situations that
caused a small number of queries to produce unacceptably high running time
and page fetches, which ultimately cause some overall results to look worse than
they should have been. This can be cause by two scenarios. The first is that
the query is in “unindexed space”. This is the situation where a query resides
within a nodeMBR (ultimately chosen as a superMBR), in a location that was
not indexed by any of the subtrees of the corresponding node. Although this
situation can occur at any point in the mqr-tree, it is most noticeable when it
happens in the root. This means that the entire tree must be traversed for the
candidate k nearest neighbours. This is especially unacceptable when k is low.
The second is that the query is located near “border”. This is the situation where
the query resides very close to the border of the space being indexed. This would
equate to the query being near the end of the nodeMBR of the root. Further,
the query resides further down the mqr-tree, but continually fails validity tests,

A k-Nearest Neighbour Query Processing Strategy Using the mqr-tree 577

and moves back up the tree until it reaches the root. This would result in many
invalid candidate k nearest neighbour sets being fetched, which ultimately would
cause the running time and the number of page hits to be unacceptably high.

5 Conclusion

This paper presents a k-nearest neighbour query processing strategy that utilizes
a recently-proposed spatial access method, the mqr-tree, to narrow down the
search for candidate nearest neighbours. It requires the traversal of only one
path of the tree, and in the majority of cases, does not require backtracking
all the way to the root. The mqr-tree-based k-nearest neighbour strategy is
evaluated both individually and compared against the brute-force method for
running time. It is shown that the proposed approach performs better in many
cases. In addition, the running time is not affected by the number of points being
indexed by the tree or the number of nearest neighbour being sought.

Some future research directions include: (1) further empirical evaluation ver-
sus other strategies – in particular, those that use the R-tree, since it is known to
contain overlap of subregions; (2) improvements to the proposed strategy in order
to eliminate the cases of root processing, and (3) proposal of a more bottom-up
strategy for k-nearest neighbour query processing, which would eliminate the
requirement of specifying k in advance.

References

1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM
45(6), 891–923 (1998)

2. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using
r-trees. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD 1993, pp. 237–246. ACM, New York (1993)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

4. Friedman, J.H., Baskett, F., Shustek, L.J.: An algorithm for finding nearest neigh-
bors. IEEE Trans. Comput. 24(10), 1000–1006 (1975)

5. Fukunage, K., Narendra, P.M.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)

6. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proceedings of the
4th International Symposium on Advances in Spatial Databases, SSD 1995, pp.
83–95. Springer-Verlag (1995)

7. Ilarri, S., Mena, E., Illarramendi, A.: Location-dependent query processing: where
we are and where we are heading. ACM Comput. Surv. 42(3), 1–73 (2010)

8. Moreau, M., Osborn, W.: mqr-tree: a two-dimensional spatial access method. J.
Comput. Sci. Eng. 15, 1–12 (2012)

9. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD Rec.
24(2), 71–79 (1995)

10. Schiller, J.H., Voisard, A. (eds.): Location-Based Services. Morgan Kaufmann, San
Francisco (2004)

11. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica 6(4), 579–589 (1991)

