

646

1-4244-1176-9/07/$25.00 ©2007 IEEE.

Exploring Different Methods for 2DR-tree Binary
Search on a FPGA

J. E. Rice
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

Email: j.rice@uleth.ca

J. Schultz
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

Email: jeremy.schultz@uleth.ca

W. Osborn
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

Email: wendy.osborn@uleth.ca

Abstract— Many data structures are proposed for managing
spatial data. However, they are limited in their software imple-
mentations. This paper analyses two hardware implementations
of an existing spatial data structure using a FPGA.

I. INTRODUCTION

Current technologies are allowing individuals, companies,
and institutions to store data in amounts that 10 years ago
would have boggled the mind. We have progressed from 5.25
inch floppy disks capable of storing less than 100 kilobytes of
data, to hard disk drives that can store hundreds of gigabytes
of data. Corporations and industry are making use of such
technologies to store terabytes of data.

In this work we focus in geographical information system
(GIS), an area that is coming into its own due to increased
storage capabilities. A GIS manages spatial data, which, unlike
traditional types of data, is comprised of multidimensional
information. For example, one can use a longitude and latitude
specification to specify a place on a globe. If one is referring
to an archaeological digsite, then the depth of the object may
also be specified.

Most current storage systems are not designed to efficiently
store this type of data and so searches and retrieval of spatial
information tends to be slow. Recent work by Osborn [1]
has produced a data structure called the 2DR-tree, intended
specifically for spatial data, with the intent of solving this
problem. However, due to its complexity the software im-
plementation does not perform to the needs that industrial
applications require. In this work we address this limitation
by investigating the feasibility of implementing the 2DR-tree
on a reconfigurable chip known as a field-programmable gate
array (FPGA).

II. BACKGROUND

A. FPGAs

Hardware solutions, designed specifically for a particular
problem, perform much faster than software solutions. How-
ever, it is extremely expensive to fabricate application-specific
chips. Once fabricated the chip cannot be changed for use with
any other type of problem. In the last 10 to 15 years, with
the advent of (re)configurable hardware, it has become more
common to identify within an algorithm some highly-intensive

computations and off-load this portion of the processing to
a chip that could be programmed for the specific problem.
FPGAs allow a chip to be reused for a variety of problems,
including image compression [2], string matching [3] and
bioinformatics applications such as [4], [5], [6]. The field of
reconfigurable computing allows us to utilize the flexibility and
processing power of reconfigurable devices such as FPGAs to
achieve an increase in performance.

A FPGA consists of programmable cells. Each cell can
be programmed for either I/O or computational functionality.
Cells can have various structures, but are often comprised of
look-up tables (LUTs), which can be programmed to perform
various functions and interconnected in as many ways as can
be determined by the place and route software.

Reconfigurable computing is generally static or dynamic.
In static reconfigurable computing, the device is programmed
once for the entire instance of an application. Dynamic re-
configurable computing solutions re-program the device many
times, producing multiple hardware designs during execution.
We are primarily interested in a static solution as we do not
wish to incur the overhead of reprogramming the FPGA on
the fly. However, a dynamic solution is not ruled out at this
stage in our investigations.

B. Spatial Data Representation and Retrieval

A spatial database contains data that is represented in
multidimensional space. Spatial data can range in complexity
from simple points to objects which are themselves composed
of sub-objects, such as points, lines, or arbitrarily-shaped
objects. For example, a town is represented with a point, while
a province has many towns (i.e. points), cities (i.e. regions),
and roads (i.e. linestrings). Two important issues for spatial
data sets are the efficient retrieval of a specific object and the
efficient search for subsets of spatial objects. Some common
search types include [1]

• exact match searching, in which a matching point, object,
or object approximation is found,

• region searching, where all points or objects that overlap
a query region are found.

Many one-dimensional hierarchical structures are proposed
for retrieving spatial data [7]. Most store minimum bounding

647

rectangles (MBRs) of objects and the regions in space that con-
tain objects. Their limitations include overcoverage of empty
space, and overlap of the MBRs, which leads to multiple-path
searching. Because we propose the use of a multidimensional
structure to store spatial data we avoid these problems.

III. THE PROJECT

A. The 2DR-tree
This paper builds on work introduced by the authors in

[8], which uses a two-dimensional hierarchical data structure
for storage of objects in two-dimensional space. Using a
hierarchical data structure with the same dimensionality as the
data set leads to significant improvement in retrieval perfor-
mance [1]. The 2DR-tree supports the mapping of each MBR
at every level to an appropriate location in a two-dimensional
node, which reduces overlap and overcoverage. In addition, it
reduces the number of nodes that need to be checked during
searches, thereby improving retrieval performance.

The 2DR-tree differs from other spatial data structures in
that the node locations are arranged in a node. Instead of a
node being modeled as one-dimensional, it is in the form
of a two-dimensional array. A node can be broken down
into individual node locations. These locations hold MBRs,
which consists of two coordinate pairs high (x, y) and low
(x, y). At the leaf level, an MBR represents an object, and
its location in two-dimensional space is approximated in an
appropriate location within a node. At the non-leaf level, an
MBR represents a subspace that contains other MBRs, and its
location is also approximated within a two-dimensional node.
The order of a node is X ∗ Y , where X is the number of
node locations on the x-axis and Y is the number of node
locations on the y-axis. Figure 1 shows the layout for some
sample objects, and the corresponding 2DR-tree representing
those objects is shown in Figure 2.

Fig. 1. An example layout of various objects.

Searching is done using a binary search algorithm. The main
task generally involves deciding where to make the division;
however as we will see in the following section the necessity
for this is removed when implementing the search on the
FPGA. In [8] we implemented a basic version of this concept.
This paper builds upon this with a second implementation that
solves many problems with our first method.

Fig. 2. The 2DR-tree storing the objects shown in Figure 1.

B. FPGA Implementation

For this work we used the Virtex-II Pro FPGA Prototyping
Station, provided by the Canadian Microelectronics Corpora-
tion. It consists of an AMIRIX AP1000 development board
that features the Xilinx Virtex-II Pro FPGA. It has 44,000
logic slices, two embedded IBM PowerPC hard macros and
1.4MB of on-chip RAM. We use the Xilinx ISE and Xilinx
EDK software for development and simulations.

The FPGA implementation of the 2DR-tree structure closely
matches the description in section III-A, except that the node
location units also contain a pointer to related data about
the object as well as logic to perform the bulk of the work
(i.e. checking two MBRs for overlap). In software it is also
necessary to determine a split point for the binary search.
However, the FPGA can check all nodes simultaneously, and
therefore we do not need to find a division; instead all nodes
on one level can be tested at once. The node location unit is
designed to test for overlap between a given input MBR and
the stored MBR and give the appropriate output.

Along with the 2DR-tree, it is also necessary to implement
controllers to manage the input and output. Details of these
controllers are given in [8]. Using the node location unit as
the foundation, a node of any order can be created. The only
information stored at the node-level is the status of the node,
i.e. leaf-node or not. The output from all node location units
are passed out of the node unit as a group. The final step is
to create, on the FPGA, a 2DR-tree built from the individual
nodes. Two issues arise when creating the 2DR-tree. As the
height of the tree grows the number of output MBRs increase
drastically, as do the number of load MBRs. The input and
output controllers solve the issue of handling the input and
output loads, but tree size reamins a problem.

IV. METHODS & RESULTS

The goal of this work is to explore different FPGA imple-
mentations of the 2DR-tree binary search. In this section we
present the two methods that were compared and some results
for each. The first method is based on the idea of representing
the complete 2DR-tree on the FPGA. However, in previous
work we found that we quickly run out of room on the FPGA.
The second method tries to overcome this shortcoming by
using a queue of nodes to test for overlap.

648

A. Method 1: Complete Tree
In implementing the entire tree in hardware we gain an

immediate speed increase from the ability to test several nodes
for overlap at once. All nodes at each level in the 2DR-tree
can be tested simultaneously. Assuming an order of 2∗2, then
at the first level (the root node) one node is tested, followed
by 4 at the next level, 16 at the level after that and so on.

A tree of height 3 was intially used for the FPGA 2DR-
tree performance analysis. The height restriction is due to the
space limitation of the FPGA. Adding another level would
require a larger FPGA. Since storage of the MBRs for each
node location accounts for most of the space requirements,
we are able to fit a tree of height 4 on the FPGA by reducing
the range of the integers in the MBRs. This was done by
using an integer with 16 bits instead of 31 bits, since the
sample data does not exceed the range of a 16 bit integer.
Further reduction in the range would allow for more levels to
be added to the tree, but for analysis purposes the two sample
tree heights will suffice. Two techniques for generating timing
results are used: first, the implementation was simulated using
the Xilinx software, and then the method was implemented
and tested on the FPGA. Simulations were run on the sample
data with tree heights of both 3 and 4. A tree of height 3
has 21 nodes and 16 output nodes, while a tree of height
4 has 85 nodes and 21 output nodes. Both trees can be
implemented with a clock cycle of approximately 12ns. Table I
gives the results for performing searches with the varying
height trees. For the FPGA implementation the total time is

Action FPGA Simulation Software
Height=3 Height=4 Height=3 Height=4

Initialize 6 ns 6 ns N/A N/A
Load 264 ns 1,032 ns N/A N/A
Search 48 ns 60 ns N/A N/A
Query Output 216 ns 792 ns N/A N/A
Total Time 534 ns 1,890 ns 13422 ns 20685 ns
Further Searches 264 ns 852 ns no change no change

TABLE I
SPEED FOR VARIOUS ACTIONS IN PERFORMING A BINARY SEARCH ON A

2DR-TREE (FPGA METHOD 1 COMPARED TO SOFTWARE).

based on loading each node in the tree, performing the search
and querying all the output nodes. Further searches do not
include loading the tree with nodes. The time it takes for the
data to transfer to the host PC and FPGA is not included
in these calculations. For comparison, the last two columns
of Table I give the timing results for the software binary
search. These results were obtained by runing the 2DR-tree
Java code. The only modification to the code was to add
instructions for gathering the time it takes for the searches.
Since a search takes a fraction of a second, several hundred
searches were performed and the average time was calculated
from these results. There is a dramatic increase in speed using
the FPGA, according to these simulated results. However, the
results from execution of the binary search on the FPGA
illustrate how much the data transfers slow down the search, as
shown in Table II. Table II shows that incorporating the serial

Baud Iterations Output Avg. Time
Method per Search (ms)

9600 100 Full 46.8
9600 1000 Full 46.667
9600 100 None 17.267
9600 1000 None 17.334
57600 100 Full 15.667
57600 1000 Full 15.4
57600 100 None 2.81*
57600 1000 None –

TABLE II
FPGA (METHOD 1) BINARY SEARCH PERFORMANCE INCLUDING SERIAL

COMMUNICATIONS.

communication time requirements decreases the performance
to a level far below the software results. Increasing the baud
rate of the communications from 9600 to 57600 decreases
the requirements, but not to an acceptable level. The output
methods full and none refer to whether the search output is
displayed. This allows us to determine the time required for
querying for the output. With a baud rate of 57600 and with
output method none, the Java serial driver gives errors and so
therefore complete results could not be reported. In addition,
the * indicates that not all iterations were completed for this
data set.

From these results, running the binary search on the
FPGA does not show any advantage. Increased communication
speeds, such as sending information via PCI bus, are necessary.
The difference between the software and FPGA binary search
may also reduce as the height of the tree increases, since the
FPGA search time does not dramatically increase as the height
of the tree grows while this tends to be the trend for the
software implementation.

B. Method 2: Overlap Queue

In the previous method there is a restriction on tree height,
imposed by the data requirements and the size of the FPGA.
One way around this restriction is to split the main tree
into subsections and use the previous method to test each
subsection. However, this could lead to loading of unneeded
sections of the tree. This can be broken down even further.
Instead of a complete subsection of the tree being tested for
overlap a single node can be tested.

Using this method, the root node is added to a queue. The
nodes in the queue are tested by a FPGA node. If a node
location, from a non-leaf node, passes the overlap test, then
the node it points to is added to the queue. Otherwise, if it
is a leaf node and the node location passes the test, then that
MBR is added to the found list. This cycle is continued until
there are no nodes left in the queue. The pseudocode is:

Add the root node to a queue
While the queue is not empty

Load and test the node on FPGA
Query for the Node Location results
If the Node Location passed the overlap test then

If the node is a leaf-node then
Add to the final results

Else

649

Add the child-node to the queue
End if

End if

Unlike method 1, which communcates with software strictly
for input and output, this method relies on a software/hardware
combination. The queue must be implemented in software and
the overlap test would be performed on the FPGA. The queue
software can, however, be run on the FPGA, since the board
has a IBM PowerPC hard macro and onboard RAM.

The advantages to this method are that it behaves just like
a binary search and takes up very little room on the FPGA.
It can prune branches of the tree as it performs the search. It
can also handle any size of tree. The only limitations are the
size of the queue in software. Additionally, since this method
only needs one node for testing, it frees up room for additional
units that can then be used to speed up insertion or deletion
operations on the 2DR-tree.

This method is not completely implemented on the FPGA.
Further work on the software side of the method is required;
however, some results can be calculated for the computations
to be carried out in hardware. The clock speed used in the
calculations is based on the previous methods, and thus is set
at 12ns. The reason for using the previous method’s clock
cycles is because simulations of the overlap node do not give
a clock cycle restriction. The single node has no complicated
logic or mappings, and so should run at the FPGA’s max
speed. Comparing the estimated simulation timings of the two

Action Height=3 Height=4
Initialize 6 ns 6 ns
Single Test 12 ns 12 ns
Best-case (1 path) 36 ns 48 ns
Worst-case 252 ns 1020 ns
Total Time (Method: Complete Tree) 534 ns 1890 ns

TABLE III
ESTIMATED SIMULATION TIMINGS FOR METHOD 2 OF THE FPGA-BASED

2DR-TREE BINARY SEARCH.

methods, the overlap queue method clearly is an improvement.
This holds true even for the worst-case scenario where method
2 has to perform the overlap test on each node in the tree. It
really shows its power if it can prune branches and does not
test every node in the tree.

As seen in the results from the last method, the commu-
nication latency increases the times for the FPGA methods
considerably. Unfortunately, using serial communications there
will be even more latency with method 2, since it depends
on constant communication for each node. However one way
to reduce the communication between the host PC and FPGA
board is to load the tree in software on the FPGA. That means
duplicating the tree to run on the IBM Power PC. The idea of
creating the tree to run on the on-board processor of the FPGA
board can be further extended. The insert and delete operations
can be added to the software portion, and then certain node
computations can be off-loaded to the FPGA. For instance,
when inserting new data, it is necessary to determine where

to add the data in the tree. The goal is to increase one node
location’s MBR to encompass the new data; however, the node
location that requires the minimum amount of increase must be
found via a greedy search. This operation can be incorporated
into the FPGA and the speed increase will come from being
able to run the test on all node locations concurrently.

V. CONCLUSION & FUTURE WORK

The problem is how to fit a highly data-intensive problem
onto a platform that is intended for highly computationally-
intensive problems. We propose two methods for using a
FPGA to perform searches using a 2DR-tree structure.

Simulation of both FPGA-based methods for implementing
and searching the 2DR-tree show the potential for speed-up.
The major bottleneck in both methods is the communication
latency between the host PC and the FPGA board. Currently,
this communication is being performed via a serial cable.
Future work will include using drivers for the FPGA board
to communicate with the PC over the PCI bus. This would
decrease the communication latency considerably.

The second method, using an overlap queue, shows even
more promise. Once the communication barrier is overcome,
not only should this technique speed up searches, but also
we anticipate that it will allow for the inclusion of other
required data manipulation operations such as inserts, update
and deletes. Further development in implementing the 2DR-
tree on the FPGA board using processor macros is of great
interest, and could provide the solution to the problems we
are encountering since it would reduce the communication
between the FPGA board and the host PC to simple relays
of the users’ requests.

REFERENCES

[1] W. Osborn, “The 2dr-tree: a 2-dimensional spatial access method,” Ph.D.
dissertation, University of Calgary, 2005.

[2] A. Simpson, J. Hunter, M. Wylie, Y. Hu, and D. Mann, “Demonstrating
Real-Time JPEG Image Compression-Decompression Using Standard
Component IP Cores on a Programmable Logic Based Platform for DSP
and Image Processing,” in Proceedings of Field Programmable Logic
(FPL) 2001, LNCS 2147, Springer-Verlag, 2001, pp. 441–450.

[3] H. Lee and F. Ercal, “RMESH Algorithms For Parallel String Matching,”
in Proceedings of the 3rd International Symposium on Parallel Architec
tures, Algorithms and Networks (I-SPAN’97), 1997, pp. 223–226.

[4] K. B. Kent, J. E. Rice, S. V. Schaick, and P. A. Evans, “Hardware-Based
Implementation of the Common Approximate Substring Algorithm,” in
Proceedings of the Euromicro Symposium on Digital System Design:
Architectures, Methods and Tools (DSD), 2005, pp. 314–320.

[5] J. E. Rice and K. B. Kent, “Systolic Array Techniques for Determin-
ing Common Approximate Substrings,” in Proceedings of the Interna-
tional Symposium on Circuits and Systems (ISCAS), 2006, cdrom paper
1480.pdf.

[6] K. B. Kent, R. B. Proudfoot, and Y. Zhao, “Optimizing the Edit-Distance
Problem,” in Proceedings of the 17th International Workshop on Rapid
System Prototyping (RSP), 2006, to appear.

[7] V. Gaede and O. Guenther, “Multidimensional Access Methods,” ACM
Computing Surveys, vol. 30, no. 2, pp. 170–231, 1998.

[8] J. E. Rice, W. Osborn, and J. Schultz, “Implementation of a Spatial
Data Structure on a FPGA,” in Proceedings of the Second International
Joint Conferences on Computer, Information, and Systems Sciences, and
Engineering (CISSE), 2006, to appear.

