
The Area Code Tree for Nearest Neighbour
Searching

Fatema Rahman and Wendy Osborn
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta
T1K 3M4 Canada

Email: (f.rahman,wendy.osborn)@uleth.ca

Abstract—In this paper, we propose the Area Code Tree for
nearest neighbour searching. It is a trie-type structure that stores
points of interest (POIs) that are represented in area code format.
An area code is a sequence of digits that indicate the relative
location in space of a POI. We present the area code calculation,
insert, and nearest neighbour search algorithms. We also present
the results of a preliminary evaluation on the nearest neighbour
search performance. We find that the efficient search times make
the Area Code Tree an excellent candidate for continuous nearest
neighbour processing for location-based services.

Keywords—nearest neighbour search, spatial access methods,
location-based services, performance

I. INTRODUCTION

Location based services (LBSs) are services that return
results based on certain location information [1] and query
types. On such type of query is a nearest neighbour query.

Due to the rapid development of wireless technology
and mobile devices, LBSs have become very popular. The
environment of LBSs is classified into three types according to
the mobility of the clients and the data objects. One of these
types is for moving clients and static data objects, where the
user continuously changes their location and submits a new
query to the server for getting updated static data information.
One such type of location-based application that assumes a
moving query and static data are tourist information services
[2], [3], [4], [5], [6]. continuous nearest-neighbour query. In
a tourist information service, a tourist uses a location-aware
mobile device to issue a continuous query for their closest
Points of Interest (POIs). The POIs are managed on a separate
server, so the query must be sent through a wireless network
to have to server process the query and transmit the result
back to the User. As the user moves around, their nearby POI
changes, so this information must be updated continuously on
their device.

One approach to provide up-to-date information is to pose
a new query to the server after a position update. For mobile
devices that have limited storage capacity, this may be the only
option for performing a continuous spatial query. Therefore, it
is important to have efficient query processing - in particular,
for nearest neighbours - on the server. A spatial access method
can be used to help speed up individual queries. Several

approaches have been proposed that utilize spatial access
methods [7], [8], [9], including [10], [11], [12], [13], [14],
[15], [6]. Limitations of these approaches include caching a
significant amount of data on the mobile device in order to
avoid searching, and maintaining a sparse index which leads
to inefficient searches.

We propose a new data structure called an Area Code Tree
for managing point data, such as POI data. The Area Code
Tree is a trie-type structure in which all POIs are represented
by an area code. An area code is a sequence of digits that
represent the relative location of a point, such as a POI, in
space. Therefore, indexing area code data, instead of actual
spatial values, such as longitude and latitude, reduce the search
for the nearest neighbour to a sequence of simple numeric com-
parisons. We present the algorithms for computing area codes,
inserting a POI using its area code, and nearest neighbour
searching. In addition, a preliminary performance evaluation
for nearest neighbour searching is presented, which shows the
search efficiency for different index sizes and data densities.

II. THE STRATEGY

In this section we present the Area Code Tree and its as-
sociated area code calculation, insertion and nearest neighbour
search algorithms. We first present some preliminaries before
presenting the algorithms.

The Area Code Tree is a trie-type structure that organizes
and manages points of interest (POIs) in area code form. In
the algorithms below, a point of interest (POI) is represented
as (Px,Py). A minimum bounding rectangle (MBR) defines a
region of space. The main region defines the original space
that is occupied by POIs. This region is reduced in size as
the area code for a POI is calculated. It is represented with
different coordinates: 1) the lower left coordinate (MINPx,
MINPy), the upper right coordinate (MAXPx, MAXPy), and
its centre (Cx, Cy). The centre divides a region into 4 regions
and corresponding individual area codes: SW (1), SE (2), NW
(3), NE (4). Therefore, the area code for a POI is a sequence
of these individual area codes.

A. Area Code Calculation for a Point of Interest (POI)

Before calculating an area code for a POI, the lower left
(MINPx,MINPy) and upper right (MAXPx,MAXPy) coordi-
nates must be calculated from the set of POIs, in order to978-1-4673-7788-1/15/$31.00 c©2015 IEEE

153

Fig. 1. Area Code Mapping for POI

define the main region. Then, the centre of the main region
(CMx,CMy) is calculated.

Now, for each POI we calculate its area code by comparing
it with the centre point (CMx,CMy) of the main region.

• Case 1: Px < CMx and Py < CMy. The POI is
located SW of the centre in the main region, and
therefore an initial area code of 1 is assigned to the
POI. The minimum bounding rectangle of the main
region will be updated as follows: The lower left
coordinate will remain as (MINPx, MINPy), while the
upper right coordinate of the region will be updated to
(CMx,CMy), the centre point of the previous region
(i.e. MAXPx= CMx, and MAXPy= CMy).

• Case 2: Px > CMx and Py < CMy. The POI is
located SE of the centre in the main region, and an
initial area code of 2 is assigned to the POI. The
minimum bounding rectangle of the main region will
be updated as follows: the new lower left corner of the
region will be (CMx, MINPy) (i.e. MINPx = CMx and
MINPy = MINPy), while the new upper right corner
of the region will be (MAXPx, CMy) (i.e. MAXPx =
MAXPx and MAXPy = CMy).

• Case 3: Px < CMx and Py > CMy). The POI is
located NW of the centre of the main region, and
therefore an initial area code of 3 is assigned to the
POI. The main region will be updated as: the new
lower left coordinate will be (MINPx, CMy) MINPx=
MINPx and MINPy = CMy. The new upper right
coordinate of the main region will be (CMx, MAXPy)
(i.e. MAXPx= CMx and MAXPy= MAXPy).

• Case 4: Px > CMx and Py > CMy. The POI is located
NE the centre of the main region. The main region will
be updated as: the lower left coordinate of the region
will be (CMx, CMy) (i.e. MINPx= CMx and MINPy =
CMy), while the upper right coordinate of the updated
region will remain as (MAXPx, MAXPy).

Now, the new centre of updated region (CMx,CMy) will be cal-
culated. The POI (Px, Py) will be compared with (Cmx,CMy).
The next area code digit will be identified, and the lower left
(MINPx,MINPy) and upper right (MAXPy,MAXPy) coordi-
nates will be updated accordingly.

The above comparison and region update will continue
until either: 1) the POI (Px,Py) is equal to the centre
(CMx,CMy), or 1) the lower left (MINPx,MINPy) and upper
right (MAXPy,MAXPy) coordinates are equal.

Figure 1 depicts an example area code mapping of for
the POI shown in the diagram. Beginning with the main
region (shown as the overall minimum bounding rectangle
represented by (MINPx, MINPy) and (MAXPx,MAXPy) in the
diagram), the POI is found to be located NE of (Cmx,CMy),
and therefore is assigned an initial area code of 4. Continuing
in the NE location, the POI is found to be located SE of the
updated centre, and is assigned an additional area code of 1.
For the remaining two updated regions, the POI is found to
be NW and SE, respectively, of the updated centre. Therefore,
the two remaining area codes will be 3 and 2 respectively.
Therefore, the overall area code for the POI in the diagram is
4132.

B. Area Code Insertion

Given the area code for a new POI, we insert the POI into
into the Area Code Tree in the following manner. Beginning
at the root node, we take the first digit from the area code
and check if a path to a child node exists for that digit. If
no such path exists, then a new child (leaf) node is created
for that digit and the remainder of the area code is placed in
the node. If a path to a child node exists for that digit, then
the search for an insertion path continues to the corresponding
child node, and the search for an insertion location continues
with the next digit in the area code of the POI.

After a new leaf node is created, there may exist subsequent
area code digits that two or more POIs share in common. In

154

TABLE I. SAMPLE AREA CODES

POI Area Code

A 12134

B 32321

C 12141

D 32114

E 21324

(a) After Insertion of POI A (b) After Insertion of POI B (c) During Insertion of POI C

(d) After Insertion of POI C (e) After Insertion of POI D

Fig. 2. Index Construction via Insertion - Part 1

this case, further child nodes are created until each POI has
its own leaf node.

We present some example insertions next. Table I gives
some example area codes that are inserted into the area code
tree shown in Figures 2 and 3. Beginning with POI A, it is
inserted into a new child because it is the first POI to be

inserted. Next, we insert POI B. The first digit of its area code
is 3, which does not appear on an existing path in the Area
Code Tree. Therefore, a new node is created to contain POI B.
Figures 2a and 2b depicts the Area Code Tree thus far. There
are two paths from the root - one for POI A (digit 1, Figure
2a) and the other for POI B (digit 3, Figure

155

(a) After Insertion of POI E

Fig. 3. Index Construction via Insertion - Part 2

reftree1).

Next we insert POI C. This is depicted across two figures
- Figures 2c and 2d. The first area code digit for POI C, which
is 1, has an existing path from the root. Therefore, the search
proceeds in the child node. Since the child node is a leaf node,
a new path and leaf node that corresponds to the second digit in
the area code for POI C, which is 2, is created. This is depicted
in Figure 2c. However, both POIs that are now referenced by
the new leaf node - A and C - have the same third area code
digit, which is 1. Therefore, another path and leaf node that
corresponds to the common third digit is created. From here,
two more paths and leaf nodes are created using the fourth
area code digits for POIs A and C respectively. The resulting
tree is depicted in Figure 2d.

Similarly, POIs D (Figure 2e) and E (Figure 3a) are inserted
into the Area Code Tree. The final tree is depicted in Figure
3a.

C. Nearest Neighbour Searching

Because the POIs in the Area Code Tree are inserted using
area code digits, the task of performing a nearest neighbour
search is reduced to numeric comparisons. Given the area code

for the current location of the User, the search begins at the
root node. If a path from the root node exists that matches the
first digit of the User’s area code, then the search continues
from the corresponding child node. If no such path exists, then
the path with the closest path number is chosen. although this
may be possible at any level of the Area Code Tree, it is very
unlikely to occur in an index that is managing many POIs, and
more likely to happen at the leaf levels.

The search continues in a similar manner until a leaf node
is reached, and the POI stored at that leaf node is returned for
the result. Given a User’s area code of 12135 and the Area
Code Tree in Figure 2e, the search proceeds along the path
identified by 1, then 2, then 1, then 3, and finally reaching the
node for POI A.

III. EVALUATION

In this section, we present the framework and results of
our empirical evaluation. We evaluate the search performance
of the area code tree. We first present the datasets we utilized
and tests we performed to evaluate our structure. Then, we
present and discuss the results of our evaluation.

156

(a) POIs over North Island

(b) POIs over Waikato

Fig. 4. Evaluation Results

A. Data Sets

For our experiments, we generated twenty-one data sets
overall that represent different points across New Zealand.
Ten of those data sets consist of random POIs drawn from
across the North Island of New Zealand. Each file contains
1000, 2000, 3000,..., up to 10,000 POIs respectively. Another
ten data sets consist of random POIs drawn from across the
Waikato Region of New Zealand. Also in this case, each file
contains 1000, 2000, 3000,..., up to 10,000 POIs respectively.
The Waikato Region is a smaller area that is part of the North
Island. Therefore, these data sets are denser and will allow us
to evaluate how quickly the Area Code Tree can be used to
find a nearest neighbour in denser data.

Finally, the remaining data set consists of 10 User locations
along their trajectory. They will serve as a series of continuous
nearest neighbour queries for our evaluations.

B. Experiments

We performed 200 nearest neighbour evaluations in the
following manner. First, an Area Code Tree was created for
each of the 20 data sets mentioned above. Next, for each tree,
ten nearest neighbour searches were performed using the User
location point set. The performance criteria that was measured
for each of the 200 searches was the execution time. Finally
for each tree, the average search time was calculated.

C. Results

Figure 4 depict the results of our search evaluation. We
find that the amount of time required for performing a nearest
neighbour search in the Area Code Tree is between 2ms and
5ms on average. We have made the following observations.
First, it appears that the number of points in the index does
not significantly affect the time it takes to locate the nearest
neighbour for a User location. In addition, we achieve similar
results in both the denser and not-so-dense set of points, so

157

density does not appear to affect the outcome of the nearest
neighbour search.

IV. CONCLUSION

We present the Area Code Tree for nearest neighbour
search, which stores points of interest (POIs) that are repre-
sented in area code format. We present the area code calcula-
tion, insert, and nearest neighbour search algorithms. We also
present the results of a preliminary evaluation on the nearest
neighbour search performance. We find that the efficient search
times - between 2ms and 5ms on average, and regardless of the
density of the dataset and the number of POI area codes in the
index. This makes the Area Code Tree an excellent candidate
for continuous nearest neighbour processing for location-based
services. Some future research directions include the following.
The first is to further evaluate the search performance by
comparing the Area Code Tree to other spatial access methods
for nearest neighbour and continuous nearest neighbour search.
The second is to evaluate the performance of the insertion
algorithm for constructing the Area Code Tree. In addition, a
further research direction is to explore the ability to perform k
nearest neighbour searches using the Area Code Tree. Finally,
it would be interesting to explore the use of the Area Code
Tree for other types of area codes, such as postal codes of
various countries.

ACKNOWLEDGMENT

The authors would like to thank the referees for their
constructive recommendations for improvement and future
work.

REFERENCES

[1] J. H. Schiller and A. Voisard, Eds., Location-Based Services. Morgan
Kaufmann, 2004.

[2] S. Poslad, H. Laamanen, R. Malaka, A. Nick, P. Buckle, and A. Zipf,
“Crumpet: Creation of user-friendly mobile services personalized for
tourism,” in Proc. IEE 3G2001 Mobile Communication Technologies
Conf., London, UK, 2001.

[3] P. Klante, J. Krshe, and S. Boll, “Accessignts - a multimodal location-
aware mobile information system,” in Proc. 9th Int’l Conf. on Comput-
ers Helping People with Special Needs, Paris, France, July 2004.

[4] A. Hinze, A. Voisard, and G. Buchanan, “TIP: Personalizing informa-
tion delivery in a tourist information system,” Journal of IT & Tourism,
vol. 11, no. 3, pp. 247–264, 2009.

[5] A. Hinze and Q. Quan, “Trust- and location-based recommendations
for tourism,” in Cooperating Information Sytsems (Coopis), 2009, pp.
414–422.

[6] W. Osborn and A. Hinze, “Tip-tree: A spatial index for traversing
location in context-aware mobile systems to digital libraries,” Pervasive
and Mobile Computing, 2013, in press.

[7] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys, vol. 30, pp. 170–231, 1998.

[8] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Prentice Hall,
2003.

[9] P. Rigaux, M. Scholl, and A. Voisard, Spatial Databases: with Appli-
cation to GIS. Morgan-Kauffman, 2001.

[10] Z. Song and N. Roussopoulos, “K-nearest neighbor search for moving
query point,” in Proc. 7th Int’l Symp. on Advances in Spatial and
Temporal Databases, 2001, pp. 79–96.

[11] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,”
in Proc. 28th Int’l Conf. Very Large Data Bases, 2002, pp. 287–298.

[12] H. Hu, J. Xu, W. Wong, B. Zheng, D. Lee, and W.-C. Lee, “Proactive
caching for spatial queries in mobile environments,” in Proc. 21st Int’t
Conf. on Data Engineering, 2005.

[13] H. Jung, S.-W. Kang, M. Song, S. Im, J. Kim, and C.-S. Hwang, “To-
wards real-time processing of monitoring continuous k-nearest neigh-
bour queries,” in Proc. 2006 Int’l Conf. Frontiers of High Performance
Computing and Networking, 2006.

[14] K. Lee, W.-C. Lee, H. Leong, B. Unger, and B. Zhang, “Efficient valid
scope computation for location-dependent spatial queries in mobile and
wireless environments,” in Proc. 3rd Int’l. Conf. Ubiquitous Information
Management and Communication, 2009.

[15] Y. Park, K. Bok, and J. Yoo, “An efficient path nearest neighbour query
processing scheme for location-based services,” in Proc. 17th Int’l Conf.
Database Systems for Advanced Applications, 2012.

158

