The Area Code Tree for Approximate Nearest Neighbour Search in
Dense Point Sets

Fatema Rahman and Wendy Osborn
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta
T1K 3M4 Canada
wendy.osborn@uleth.ca

Abstract

In this paper, we present an evaluation of nearest
neighbour searching using the Area Code tree. The
Area Code tree is a trie-type structure that organizes
area code representations of each point of interest
(POI) in a data set. This data structure provides
a fast method for locating an actual or approximate
nearest neighbour POI for a query point. We first
summarize the area code generation, insertion (used in
overall construction) and searching approaches. Then,
we evaluate the contraction, insertion, searching, and
accuracy of the Area Code tree, with some of the
evaluation involving the comparison versus a basic
benchmark brute force approach. We find that when
the Area Code tree is used for locating an approximate
nearest neighbour, that low constant-time search is
achieved, and in denser POI sets, higher accuracy is
achieved. This ultimately makes the Area Code tree
a strong candidate for approximate continuous nearest
neighbour processing for location-based services.

keywords: nearest neighbour queries, spatial access
methods, location-based services

1 Introduction

A location-based service provides results to a user
of a mobile device (e.g. smartphone, tablet) based on
their location, interests and the type of query being
performed [10]. One example of such a query is a
nearest neighbour query [9, 11], which returns the
nearest point of interest (POI) to them. For example,
a user may want to know the location of the nearest
restaurant to them. The user may want to know
the exactly closest restaurant to them. However, the
user may also be happy with another suggestion that,
although not guaranteed to be the closest, may be
close enough to satisfy them. This is an example of
an approximate nearest neighbour, where a trade-off is

978-1-943436-05-7 / copyright ISCA, SEDE 2016
September 26-28, 2016, Denver, Colorado, USA

103

being made between accuracy and efficiency.

Efficient nearest neighbour processing - exact or
approximate - is important, but is especially important
when it is initiated from a mobile device [10]. Many
strategies have been proposed for nearest neighbour
processing for location-based services. Several utilize
spatial access methods [1], including [12, 13, 3, 4, 5,
7, 6]. Although all of these strategies return exact
nearest neighbour, limitations of these approaches in-
clude repeated searching, the need to cache a significant
amount of data on the mobile device, the requirement to
know the query trajectory in advance, and maintaining
a sparse index which leads to inefficient searches.

Repeated searching, although not desirable, may be
the only option available when storage on a mobile
device is limited. A recently proposed data structure,
the Area Code tree [8] stores and manages POIs in a
trie-type structure using an area code representation
for each POI. Although it can be used to locate
POIs efficiently, it cannot be used for exact nearest
neighbour matching. However, given the preliminary
evaluation on its efficiently, it is an excellent candidate
for approximate nearest neighbour search for situations
where a guaranteed exact answer is not required - for
example, in the restaurant finding scenario given above.

Therefore, in this paper, we evaluate the Area Code
tree for accuracy, tree construction time, and also
comparatively evaluate the search time against an-
other strategy. We find that approximate nearest
neighbour searching can be accomplished in very low
and constant time, regardless of the number of POls
being indexed. With respect to accuracy, up to 60%
accuracy is achieved when the Area Code tree is used
for indexing dense POI sets. This make the Area Code
tree a significant candidate for continuous approximate
nearest neighbour search for location-based services.

The remainder of the paper proceeds as follows.
Section 2 summarizes related work in the area of
continuous nearest neighbour processing for mobile

CMx, CMy

“u

PMINEx MINEY

Figure 1: Area Code Mapping (from [8])

devices. Section 3 summarizes the area code mapping,
insertion and search algorithm for the Area Code
tree. Section 4 presents the methodology and results
of our performance evaluation. Finally, Section 5
concludes the paper and provides some directions of
future research.

2 Related Work

In this section, we summarize related work in nearest
neighbour searching for location-based services. Al-
though nearest neighbour strategies have been proposed
in other contexts, they are considered outside of the
scope of this work. Many strategies have been proposed
in the literature [12, 13, 3, 4, 5, 7, 6].

A continuous nearest neighbour strategy proposed by
Song and Roussopoulos [12] obtains a superset m of
nearest neighbours, which attempts to keep the result
current while the query point moves around, and a new
query call to the server is not necessary. Their strategy
utilizes existing stationery nearest neighbour strategies.
A limitation of their strategy is in choosing the value
of m so that fewer query calls are needed but not too
much data needs to be stored on the mobile device.

Tao et al. [13] utilize the R-tree [2] to speed up the
repeated searching needed for their continuous query
strategy. Lee et al. [5] improve upon this strategy by
fetching both the required and some additional objects,
in order to reduce the number of repeated searches
that are needed. Park et al. [7]also improve upon
this strategy by locating all nearest neighbours along
a trajectory by using the R-tree. A limitation exists in
that the trajectory needs to be known in advance.

104

Hu et al. [3] propose a proactive caching strategy,
which caches previous results and the R-tree nodes
required to obtain them on the mobile device. The
cache is always searched first for a new query, with
additional results fetched from the server. Limitations
include the significant overhead of caching and local
processing on the mobile device.

Jung et al. [4] utilize a grid index for continuous
nearest neighbour searching. The grid index allows for
quick elimination of regions of space from consideration
if they do not overlap the query point. A limitation with
this strategy is that the grid index can be sparse due to
wasted space.

In summary, some general limitations of these ap-
proaches include caching a significant amount of data on
the mobile device, repeating searching, using a sparse
index which leads to inefficient searches, and requiring
knowledge of the query path in advance. Repeated
searching, however, may be the only option if storage
is limited on a mobile device. The Area Code tree
[8] attempts to provide the ability to perform repeated
searching that is efficient, but at the cost of accuracy.
It is also more compact that existing spatial access
methods, given that only POIs are stored, and not
many co-ordinates for many bounding rectangles. The
Area Code tree is summarized in the next section.

3 Area Code Tree

The Area Code Tree [8] is a trie-type structure for
approximate nearest neighbour searching. It stores
points of interest (POIs) that are represented in an area
code format. In this section, we briefly summarize

Pre: 1,

Post: Next:2
—

Pre: 3,
Post:2321
Location:B

"
—

Pre: 12,

Post: Next:3
—

Pre:121,
Post: Next:4

Pre: 1213, Pre: 1214 ,
Post: 4, Post:1
Location: A Location: C

Figure 2: Area Code Tree after inserting A,B,C (from [8])

1
Pre: 1, Pre: 3, Pre: 2,
Post: Next:2 Post:Next:5 Post:1324
Location: E
2 2
v
Pre: 12, Pre: 32,
Post: Next:3 Post: Next:6

Pre: 321,
Post:14
Location: D

Pre: 323,
Post: 21
Location: B

Pre: 121 ,
Post: Next:4

Pre: 1214,
Post:1
Location: C

Pre: 1213,
Post: 4
Location: A

Figure 3: Area Code Tree after inserting D,E (from [8])

105

the mapping, construction and nearest neighbour
search for the Area Code tree.

An area code is a sequence of digits that indicate
the relative location of a POI in space. It is obtained
by recursively partitioning the space containing points
into quadrants. For a particular POI, the space is
partitioned until the POI is equal to the middle of a
quadrant. At each level of partitioning, the quadrants
are numbered as follows: SW (1) SE (2) NW (3) and
NE (4). Beginning with the top-most partition, a
POI obtains a digit at each level, depending on which
quadrant it resides in. Figure 1 depicts an example
of space partitioning and mapping. The POI maps to
the area code 4132, since the POI resides in the top-
most NE quadrant, followed at the next level by the
SW quadrant, then the NW quadrant, and finally the
SE quadrant.

Once the area code for a POI is determined, is it
inserted into the Area Code Tree, beginning with the
most significant area code digit. To construct a tree,
each area code is inserted one at a time, using the
existing strategy for any trie structure. Figures 2 and
3 depict a small Area Code Tree, containing the POIS
A,B,C,D and E, and each with area codes 12134, 32321,
12141, 32114, and 21324 respectively.

Given that every POI is mapped to a string of
digits, this provides a method for quickly identifying
an approximate nearest neighbour to the query point.
A search begins by first mapping the query point to
an area code using the same strategy mentioned above.
Then, beginning with the most significant digit of the
query point area code, a path is followed down the Area
Code tree while digits in the query match digits in the
tree nodes. If a match does not exist at a particular
level, the closest match is taken. For example, suppose
we have the query area code of 12144. Referring back
to Figure 3, the closest match is the POI with area code
12141, since a path exists that matches the first 4 digits
of the query area code, with the closest node to the last
digit in the query area code containing the value of 1.

4 Evaluation

In this section, we present the methodology and
result of our performance evaluation of the Area Code
tree. We compare its search performance with the
Brute Force method, which consists of searching the
set of POIs to find the nearest neighbour. We chose
this comparison for our preliminary evaluation due to
the Brute Force method being a basic benchmark for
processing nearest neighbour queries. In addition, we
evaluate the construction time and the accuracy of
our proposed structure. Construction is performed by

106

inserting one POI area code at a time, while accuracy is
measured by determining the percentage of times that
an accurate nearest neighbour is found when the Area
Code tree is used.

For our evaluation, we use twenty-one synthetically
generated data sets that represent collections of differ-
ent POIs across New Zealand. Ten data sets consist of
POIs drawn from the North Island of New Zealand,
with each set containing 1000, 2000, 3000,..., up to
10,000 POIs respectively. An additional ten data
sets contain POIs from the Waikato Region of New
Zealand (part of the North Island), again with each
file containing 1000, 2000, 3000,..., up to 10,000 POIs
respectively. The Waikato data sets are denser, which
allows us to evaluate the Area Code Tree in denser
data. The remaining data set contains 10 User locations
along their trajectory, which will serve as the nearest
neighbour queries for our evaluation.

First, an Area Code Tree is created for each of the
POI sets above. Then, for each tree, ten nearest neigh-
bour searches are performed using the User location
set. The same searches are also performed on the same
data sets using the Brute Force method. Therefore, 200
nearest neighbour comparisons are performed.

The performance criteria that are measured are as
follows:

e For each tree construction, both the overall con-
struction time and the average insertion time per
POI area code,

e For the search comparison, the average search time
(in milliseconds).

e Accuracy of the Area Code tree, which is measured
by recording the percentage of POIs found by the
Area Code Tree that matched those found by the
Brute Force search.

First, figures 4 and 5 contain the results of our
comparison using the Waikato and North Island data
sets, respectively. For both figures, the x-axis contains
values that represent 1000s of POIs (i.e. 1is 1000 POIs,
up to 10 for 10,000 POIs), while the y-axis represents
the average search time in seconds. We find for both
groups of POI sets that the Area Code Tree results in
significantly better search times over the Brute Force
method. The average search time for the Area Code
tree is less than 10ms, and is regardless of the density
of the dataset and the number of POI area codes in the
index. For the brute force method, the average search
time increases linearly, between less than 10ms to up to
almost 50ms for searching in 10,000 area codes.

The North Island and Waikato POI sets differ in the
accuracy they achieve. Figure 6 depicts the results of

0.0500

0.0400 //
0.0300

/ “=Area
0.0200 / =Brute

0.0100 —_~

0.0000
123456 7 8 910

Figure 4: Waikato POIs

0.0500

0.0400 //
0.0300
/ ==Area

0.0200 =Brute

0.0100 ﬁ -

0.0000 ——

123456 7 8 910

Figure 5: North Island POlIs

100

80

60
H North

40 B Waikato
20

123456 7 8 910

Figure 6: Accuracy of Area Code Tree

107

| Data Sets | #POIs | O/A Time | Avg. Time |

1000 46.16 0.046
2000 79.60 0.040

3000 106.61 0.036

4000 128.21 0.032

5000 166.32 0.033

North Island | 9219.94 0.037
7000 981.70 0.040

8000 334.07 0.042

9000 437.50 0.049

10000 490.96 0.049

1000 18.63 0.019

2000 39.71 0.020

3000 91.74 0.030

4000 159.69 0.040

. 5000 997.16 0.045
Wailato 6000 303.42 0.051
7000 409.23 0.058

8000 481.41 0.060

9000 586.86 0.065

10000 686.63 0.069

Table 1: Tree Construction Times (in seconds)

the evaluation for accuracy. We find that for dense
point sets (i.e Waikato), the Area Code Tree can achieve
between 40% and 60% accuracy in locating the nearest
neighbour. For the less dense point sets (i.e. North
Island) however, the accuracy was lower - between 0%
and 40%. Therefore, we conclude that, for denser
point sets, the Area Code Tree provides fast nearest
neighbour searching, that is expected to improve in
accuracy as the data set size increases in density.

Finally, figure 1 depicts the construction times of the
Area Code Tree for the various sets of POIs. Both
the overall tree construction time (O/A Time) and
the average time per insertion of a POI (Avg. Ins)
are recorded. We do observe that the time it takes
to construct an Area code tree via repeated insertion
increases significantly with the size of the POIs. For
the North Island datasets, the time ranges from just
under a minute for 1000 POIs, up to just over 8
minutes for 10,000 POIs. For the Waikato Region
datasets, the times range from well under a minute to
over 10 minutes. Although these overall construction
times seem high, two things must be noted. First, for
static data sets, the Area Code tree only needs to be
constructed once in order to be searched many times.
Given the search performance above, this is a small
price to pay. Second, if the occasional insertion needs
to take place, on average this can take place in under
50ms for the less denser data sets, and under 70ms for
the denser data sets, because a complete re-build of the
tree is not required.

5 Conclusion

In this paper, we present an evaluation of the Area
Code tree for accuracy, tree construction time, and
also comparatively evaluate the search time against a
Brute Force strategy. We find that approximate nearest
neighbour searching can be accomplished in very low
and constant time, regardless of the number of POIs
being indexed. With respect to accuracy, up to 60%
accuracy is achieved when the Area Code tree is used
for indexing dense POI sets. This make the Area Code
tree a significant candidate for continuous approximate
nearest neighbour search for location-based services.
The only costly factor is in the tree construction time.
However, for fairly static data sets, this is a small price
to pay for the savings in search time and increased
accuracy (in some cases) that are achieved. Some
future research directions include the following: 1) to
further evaluate the search performance by comparing
the Area Code Tree with other spatial access methods
for continuous nearest neighbour search, 2) to extend
the Area Code Tree to find k nearest neighbours, and 3)
to utilize other types of “area codes”, such as telephone
area codes, and postal/zip codes, in the Area Code tree.

References

[1] V. Gaede and O. Giinther. Multidimensional
access methods. ACM Computing Surveys, 30:170—
231, 1998.

A. Guttman. R-trees: a dynamic index structure
for spatial searching. In Proc. ACM SIGMOD Int’l
Conf. Management of Data, pages 47-57, 1984.

H. Hu, J. Xu, W.S. Wong, B. Zheng, D.L. Lee, and
W.-C. Lee. Proactive caching for spatial queries in
mobile environments. In Proc. 21st Int’t Conf. on
Data Engineering, 2005.

HR Jung, S.-W. Kang, MB Song, SJ Im, J Kim,
and C.-S. Hwang. Towards real-time processing

108

of monitoring continuous k-nearest neighbour
queries. In Proc. 2006 Int’l Conf. Frontiers of High
Performance Computing and Networking, 2006.

K.C.K. Lee, W.-C. Lee, H.V. Leong, B. Unger,
and B. Zhang. Efficient valid scope computation
for location-dependent spatial queries in mobile
and wireless environments. In Proc. 3rd Int’l.
Conf. Ubiquitous Information Management and
Communication, 2009.

[6] W. Osborn and Hinze. A. Tip-tree: a spatial index

for traversing locations in context-aware mobile
access to digital libraries. Pervasive and Mobile

Computing, 15:26-47, 2014.

[7] Y. Park, K. Bok, and J. Yoo. An efficient path
nearest neighbour query processing scheme for
location-based services. In Proc. 17th Int’l Conf.
Database Systems for Advanced Applications, 2012.

F. Rahman and W. Osborn. The area code tree
for nearest neighbour searching. In Proc. 2009
IEEE Pacific Rim Conf. on Communications,
Computers and Signal Processing, 2015.

N. Roussopoulos, S. Kelley, and F. Vincent. Near-
est neighbor queries. SIGMOD Rec., 24(2):71-79,
May 1995.

[10] Jochen H. Schiller and Agnes Voisard, editors.

Location-Based Services. Morgan Kaufmann, 2004.

[11] S. Shekhar and S. Chawla. Spatial Databases: A
Tour. Prentice Hall, 2003.
[12] Z. Song and N. Roussopoulos. K-nearest neighbor

search for moving query point. In Proc. 7th
Int’l Symp. on Advances in Spatial and Temporal
Databases, pages 79-96, 2001.

[13] Y. Tao, D. Papadias, and Q. Shen. Continuous
nearest neighbor search. In Proc. 28th Int’l Conf.
Very Large Data Bases, pages 287-298, 2002.

