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Introduction

The optimization of general queries in a distributed
database management system is an important
research issue. The problem is to select the
best sequence of database operations that will
process the query efficiently and minimize costs.
Approaches include algorithms which are join-based
[1, 2], semijoin–based [3, 4, 5, 6, 7, 8, 9, 10],
or a combination of both [11]. Many algorithms
concentrate on special types of queries [5, 12, 13,
14, 15, 6]. Some improvement algorithms have
been developed [16, 17]. However, it has been
shown [18, 19] that finding an optimal solution
for a given general query is NP-hard so the aim
is to produce an efficient but (perhaps) suboptimal
evaluation strategy. A new approach is to use
hash-semijoins, which employ reduction filters (also
known as Bloom filters), to reduce costs. Bloom
filters are first described in [20], and have mostly
been used to improve the relational join operation
[21, 22, 23, 24, 25]. Bloom filters have been applied
to other relational operations [26, 27, 28] and file
processing operations [29]. Mullin [30, 31] employs
Bloom filters to improve the semijoin operation. His
method is limited to the case where there are only
two sites involved in the query and it has not been
expanded to cater for general queries. Tseng and
Chen [32] present a new relational operator called
a hash-semijoin. They propose a method which
will transform a sequence of semijoins, produced by
any existing semijoin-based algorithm, into a more

cost effective sequence by replacing some of the
semijoins by hash-semijoins. But their approach has
not been experimentally evaluated.

The algorithm

In our recent work [33, 34, 35, 36] we use reduction
filters. Each filter is an array of bits that functions as
a very compact representation of the values of a join
attribute in a relation. A hash function is used to set
bits in the filter. It is then used to identify tuples (in
other relations) which cannot belong to the result.
The relations can be reduced significantly in size,
data transfers can be reduced and costs minimized.

Our algorithm, which is based on reduction filters,
can process general queries consisting of an arbitrary
number of relations and join attributes. Each query
is represented by a graph and an adjacency list.
Each relation is usually only processed once — to
minimize data transfers. However, if a filter changes
during use then certain relations must be processed
again — a queue is used to record this information.
The algorithm consists of two phases: during phase
one the adjacency list is used to determine the order
in which the filters are constructed and used.

Phase one:

1. Select the relation with lowest in-degree
for processing.

2. Scan adjacency list to see which filters
must be constructed. If a filter is already
available then concurrently use it to reduce
the relation and produce all required filters.

3. If a filter has changed the use the following
“ filter rule”: if a filter for a relation



changes then add that relation to the queue
only if it has already been processed; it is
not already on the queue; and it is not the
most recently processed relation.

4. Use adjacency list to “remove edges” from
query graph — that is, reduce the in-degree
of each relation in the list by 1.

5. Mark relation as processed.

Repeat all steps until each relation has been
processed once.

Phase two:

1. Remove relation from queue.
2. Reduce relation using all appropriate filters.
3. If a filter changes then use the “filter rule”.

Repeat all steps until the queue is empty.

Early experiments showed that our algorithm could
reduce data transfers very substantially [33]. But
this work had one serious limitation — we used a
“perfect” hash function which meant that collisions
were not possible. However, in a real-world
database collisions in the reduction filter1 are a
reality and a problem. Such collisions mean that
the hash-semijoin cannot achieve the same amount
of reduction as a traditional semijoin would. In this
paper we investigate the effect that collisions have
on the performance of our algorithm. We expected
that collisions would seriously hinder the algorithm
and drastically affect our performance rates.

The experiments

We have an experimental framework consisting of
a collection of software to generate random queries
with certain characteristics. Software is also used
to generate the relations needed to execute each
query. We assume a distributed relational database
management system connected via a point to point
network. There is no fragmentation nor replication.
We consider only select-project-join (SPJ) queries,
each consisting of a number of relations located at

1 A collision occurs when two attribute values
hash to the same address in the filter.

different sites which must be joined and the result
made available at the query site. To evaluate, we
compare our method not against another algorithm
but against the effects of a “full reducer” — an
algorithm which reduces the relations to just those
tuples which can be part of the final result. We
believe that this method is more objective and
gives a better assessment of the performance of
the algorithm.

We designed a number of experiments to investigate
the effects of collisions on the performance of the
algorithm. In the first experiment we executed and
optimized queries using a “perfect” hash function,
one in which no collisions are possible. This
gives a benchmark performance for the rest of the
experiments. In the second experiment we simulate
one non-perfect hash function and use a single
filter for each joining attribute in each relation.
Our framework allows us to specify and guarantee
a certain percentage of collisions in the filter, so
we can test the performance of the algorithm with
different collision rates. (For full details of how we
generated the different collision levels see [37]). At
each collision rate we generated and executed 600
random queries, where each relation has between
200 and 600 tuples; the active domains had between
150 and 250 values; the selectivity of each attribute
was set between 0.5 and 0.95; and each relation
had approximately 75% of the joining attributes.
For convenience the queries are grouped by type,
where type 3–2 means that the query has three
relations and two join-attributes. The objective
was to investigate how different levels of collisions
affected the performance of the algorithm. Our
“performance measure” is the reduction achieved
as a percentage of the full reduction possible. So a
reduction of 70% means that our algorithm removed
70% of the tuples that would be removed by a full
reducer algorithm.

In the third experiment we simulate two different
hash functions and using the same percentages of
collisions, we investigate how the use of two filters
per joining attribute in each relation improves the
performance of the algorithm.



The result tables are presented below:

Type
Average

reduction (%)

Percentage of queries

fully reduced

3-2 93.40 49

3-3 93.50 84

3-4 100 100

4-2 97.68 67

4-3 98.50 92

4-4 99.82 99

5-2 99.14 89

5-3 99.45 97

5-4 100 100

6-2 99.81 92

6-3 99.67 99

6-4 100 100

Avg 98.41 89

Table 1 Results for queries with no collisions.

Type 10% 20% 30% 40% 50%

3-2 87.56 87.10 84.44 78.52 80.39

3-3 95.82 94.62 88.65 89.53 85.10

3-4 99.21 98.89 97.86 98.23 98.67

4-2 94.63 92.88 92.43 90.49 87.88

4-3 97.83 95.61 96.52 97.34 95.35

4-4 100 100 100 98.99 99.23

5-2 98.58 97.80 96.53 96.06 93.57

5-3 99.67 98.65 97.89 98.72 97.56

5-4 99.94 100 100 99.23 100

6-2 99.43 98.57 98.58 97.86 97.73

6-3 100 99.14 98.76 99.13 99.42

6-4 99.98 99.79 100 100 99.95

Avg 97.72 96.92 95.97 95.34 94.57

Table 2 Average reduction for 10%–50% collisions

using a single filter.

Type 10% 20% 30% 40% 50%

3-2 85.53 89.14 88.63 88.91 87.53

3-3 96.45 96.44 96.13 96.55 96.77

3-4 97.48 98.20 98.11 97.99 97.86

4-2 93.46 96.88 95.03 95.06 93.12

4-3 98.53 97.98 98.14 98.55 98.36

4-4 98.79 99.95 100 99.25 99.33

5-2 97.76 98.09 97.30 97.41 97.39

5-3 99.35 98.99 99.20 99.33 98.46

5-4 100 99.63 100 99.28 99.56

6-2 99.37 99.30 99.41 99.02 99.01

6-3 100 99.48 99.65 100 99.99

6-4 100 100 100 100 100

Avg 97.84 97.63 97.61 97.28 97.83

Table 3 Average reduction for 10%–50% collisions

using two filters.

Collision rates:

10% 20% 30% 40% 50%

1 filter 74.66 70.66 68.00 65.08 61.92

2 filters 81.00 81.33 79.75 79.33 76.50

Difference 6.34 10.67 11.75 14.25 14.58

Table 4 Average number of queries fully reduced, averaged

over all query types, at 10%-50% collision rates.

Conclusions

The results show that, on average, collisions in the
filters do not have a huge impact on the performance
of the algorithm. Even with 50% of the values
colliding we can still reduce relations by over
90%, using either one or two filters. Moreover, it
seems that the difference in the average reduction
is not significantly affected by the use of a second
filter for each joining attribute of each relation. It
would appear that the query type has more of an
influence on the reduction rate than the percentage
of collisions or number of filters used. This is not
an unexpected result since, as the number of joining



attributes increases we use more filters on a relation
and this reduces the impact of the collisions.

However, there is a very significant difference
in performance when we look at the percentage
of queries which were fully reduced2. The use
of an additional filter for each joining attribute
significantly increases the number of queries which
are fully reduced. This increase is most marked at
the higher collision rates.

The conclusions of this paper are very significant.
To our knowledge no one has ever examined the
effect of collisions on the performance of a hash-
semijoin based algorithm. Our main conclusion is
that the collisions, even at 50%, do not significantly
affect performance.

A full discussion of the results will be presented
at conference time.
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