
Collisions and reduction filters in distributed query processing.

J.M. Morrissey
School of Computer Science

University of Windsor
Windsor, Ontario N9B 3P4

joan@uwindsor.ca

W.K. Osborn
Department of Computer Science

University of Calgary
Calgary, Alberta T2N 1N4
osborn@cpsc.ucalgary.ca

Y. Liang
School of Computer Science

University of Windsor
Windsor, Ontario N9B 3P4

yanliang3@yahoo.com

Keywords: optimization, hash-semijoin, evaluation.
Topics: Computer networks and communications,
software engineering.

Introduction

The optimization of general queries in a distributed
database management system is an important
research issue. The problem is to select the
best sequence of database operations that will
process the query efficiently and minimize costs.
Approaches include algorithms which are join-based
[1, 2], semijoin–based [3, 4, 5, 6, 7, 8, 9, 10],
or a combination of both [11]. Many algorithms
concentrate on special types of queries [5, 12, 13,
14, 15, 6]. Some improvement algorithms have
been developed [16, 17]. However, it has been
shown [18, 19] that finding an optimal solution
for a given general query is NP-hard so the aim
is to produce an efficient but (perhaps) suboptimal
evaluation strategy. A new approach is to use
hash-semijoins, which employ reduction filters (also
known as Bloom filters), to reduce costs. Bloom
filters are first described in [20], and have mostly
been used to improve the relational join operation
[21, 22, 23, 24, 25]. Bloom filters have been applied
to other relational operations [26, 27, 28] and file
processing operations [29]. Mullin [30, 31] employs
Bloom filters to improve the semijoin operation. His
method is limited to the case where there are only
two sites involved in the query and it has not been
expanded to cater for general queries. Tseng and
Chen [32] present a new relational operator called
a hash-semijoin. They propose a method which
will transform a sequence of semijoins, produced by
any existing semijoin-based algorithm, into a more

cost effective sequence by replacing some of the
semijoins by hash-semijoins. But their approach has
not been experimentally evaluated.

The algorithm

In our recent work [33, 34, 35, 36] we use reduction
filters. Each filter is an array of bits that functions as
a very compact representation of the values of a join
attribute in a relation. A hash function is used to set
bits in the filter. It is then used to identify tuples (in
other relations) which cannot belong to the result.
The relations can be reduced significantly in size,
data transfers can be reduced and costs minimized.

Our algorithm, which is based on reduction filters,
can process general queries consisting of an arbitrary
number of relations and join attributes. Each query
is represented by a graph and an adjacency list.
Each relation is usually only processed once — to
minimize data transfers. However, if a filter changes
during use then certain relations must be processed
again — a queue is used to record this information.
The algorithm consists of two phases: during phase
one the adjacency list is used to determine the order
in which the filters are constructed and used.

Phase one:

1. Select the relation with lowest in-degree
for processing.

2. Scan adjacency list to see which filters
must be constructed. If a filter is already
available then concurrently use it to reduce
the relation and produce all required filters.

3. If a filter has changed the use the following
“ filter rule”: if a filter for a relation



changes then add that relation to the queue
only if it has already been processed; it is
not already on the queue; and it is not the
most recently processed relation.

4. Use adjacency list to “remove edges” from
query graph — that is, reduce the in-degree
of each relation in the list by 1.

5. Mark relation as processed.

Repeat all steps until each relation has been
processed once.

Phase two:

1. Remove relation from queue.
2. Reduce relation using all appropriate filters.
3. If a filter changes then use the “filter rule”.

Repeat all steps until the queue is empty.

Early experiments showed that our algorithm could
reduce data transfers very substantially [33]. But
this work had one serious limitation — we used a
“perfect” hash function which meant that collisions
were not possible. However, in a real-world
database collisions in the reduction filter1 are a
reality and a problem. Such collisions mean that
the hash-semijoin cannot achieve the same amount
of reduction as a traditional semijoin would. In this
paper we investigate the effect that collisions have
on the performance of our algorithm. We expected
that collisions would seriously hinder the algorithm
and drastically affect our performance rates.

The experiments

We have an experimental framework consisting of
a collection of software to generate random queries
with certain characteristics. Software is also used
to generate the relations needed to execute each
query. We assume a distributed relational database
management system connected via a point to point
network. There is no fragmentation nor replication.
We consider only select-project-join (SPJ) queries,
each consisting of a number of relations located at

1 A collision occurs when two attribute values
hash to the same address in the filter.

different sites which must be joined and the result
made available at the query site. To evaluate, we
compare our method not against another algorithm
but against the effects of a “full reducer” — an
algorithm which reduces the relations to just those
tuples which can be part of the final result. We
believe that this method is more objective and
gives a better assessment of the performance of
the algorithm.

We designed a number of experiments to investigate
the effects of collisions on the performance of the
algorithm. In the first experiment we executed and
optimized queries using a “perfect” hash function,
one in which no collisions are possible. This
gives a benchmark performance for the rest of the
experiments. In the second experiment we simulate
one non-perfect hash function and use a single
filter for each joining attribute in each relation.
Our framework allows us to specify and guarantee
a certain percentage of collisions in the filter, so
we can test the performance of the algorithm with
different collision rates. (For full details of how we
generated the different collision levels see [37]). At
each collision rate we generated and executed 600
random queries, where each relation has between
200 and 600 tuples; the active domains had between
150 and 250 values; the selectivity of each attribute
was set between 0.5 and 0.95; and each relation
had approximately 75% of the joining attributes.
For convenience the queries are grouped by type,
where type 3–2 means that the query has three
relations and two join-attributes. The objective
was to investigate how different levels of collisions
affected the performance of the algorithm. Our
“performance measure” is the reduction achieved
as a percentage of the full reduction possible. So a
reduction of 70% means that our algorithm removed
70% of the tuples that would be removed by a full
reducer algorithm.

In the third experiment we simulate two different
hash functions and using the same percentages of
collisions, we investigate how the use of two filters
per joining attribute in each relation improves the
performance of the algorithm.



The result tables are presented below:

Type
Average

reduction (%)

Percentage of queries

fully reduced

3-2 93.40 49

3-3 93.50 84

3-4 100 100

4-2 97.68 67

4-3 98.50 92

4-4 99.82 99

5-2 99.14 89

5-3 99.45 97

5-4 100 100

6-2 99.81 92

6-3 99.67 99

6-4 100 100

Avg 98.41 89

Table 1 Results for queries with no collisions.

Type 10% 20% 30% 40% 50%

3-2 87.56 87.10 84.44 78.52 80.39

3-3 95.82 94.62 88.65 89.53 85.10

3-4 99.21 98.89 97.86 98.23 98.67

4-2 94.63 92.88 92.43 90.49 87.88

4-3 97.83 95.61 96.52 97.34 95.35

4-4 100 100 100 98.99 99.23

5-2 98.58 97.80 96.53 96.06 93.57

5-3 99.67 98.65 97.89 98.72 97.56

5-4 99.94 100 100 99.23 100

6-2 99.43 98.57 98.58 97.86 97.73

6-3 100 99.14 98.76 99.13 99.42

6-4 99.98 99.79 100 100 99.95

Avg 97.72 96.92 95.97 95.34 94.57

Table 2 Average reduction for 10%–50% collisions

using a single filter.

Type 10% 20% 30% 40% 50%

3-2 85.53 89.14 88.63 88.91 87.53

3-3 96.45 96.44 96.13 96.55 96.77

3-4 97.48 98.20 98.11 97.99 97.86

4-2 93.46 96.88 95.03 95.06 93.12

4-3 98.53 97.98 98.14 98.55 98.36

4-4 98.79 99.95 100 99.25 99.33

5-2 97.76 98.09 97.30 97.41 97.39

5-3 99.35 98.99 99.20 99.33 98.46

5-4 100 99.63 100 99.28 99.56

6-2 99.37 99.30 99.41 99.02 99.01

6-3 100 99.48 99.65 100 99.99

6-4 100 100 100 100 100

Avg 97.84 97.63 97.61 97.28 97.83

Table 3 Average reduction for 10%–50% collisions

using two filters.

Collision rates:

10% 20% 30% 40% 50%

1 filter 74.66 70.66 68.00 65.08 61.92

2 filters 81.00 81.33 79.75 79.33 76.50

Difference 6.34 10.67 11.75 14.25 14.58

Table 4 Average number of queries fully reduced, averaged

over all query types, at 10%-50% collision rates.

Conclusions

The results show that, on average, collisions in the
filters do not have a huge impact on the performance
of the algorithm. Even with 50% of the values
colliding we can still reduce relations by over
90%, using either one or two filters. Moreover, it
seems that the difference in the average reduction
is not significantly affected by the use of a second
filter for each joining attribute of each relation. It
would appear that the query type has more of an
influence on the reduction rate than the percentage
of collisions or number of filters used. This is not
an unexpected result since, as the number of joining



attributes increases we use more filters on a relation
and this reduces the impact of the collisions.

However, there is a very significant difference
in performance when we look at the percentage
of queries which were fully reduced2. The use
of an additional filter for each joining attribute
significantly increases the number of queries which
are fully reduced. This increase is most marked at
the higher collision rates.

The conclusions of this paper are very significant.
To our knowledge no one has ever examined the
effect of collisions on the performance of a hash-
semijoin based algorithm. Our main conclusion is
that the collisions, even at 50%, do not significantly
affect performance.

A full discussion of the results will be presented
at conference time.

References

[1] J. Ahn and S. Moon, “Optimizing joins between
two fragmented relations on a broadcast local
network.,” Info. Syst., vol. 16(2), pp. 185–198,
1991.

[2] P. Legato, G. Paletta, and L. Palopoli,
“Optimization of join strategies in distributed
databases,”Info. Syst., vol. 16(4), pp. 363–374,
1991.

[3] P. Bernstein, N. Goodman, E. Wong, C. Reeve,
and J. Rothnie, “Query processing in a system
for distributed databases (SDD-1),”ACM Trans.
on Database Systems, vol. 6(4), pp. 105–128,
1981.

[4] P. Black and W. Luk, “A new heuristic for
generating semi-join programs for distributed
query processing,”IEEE COMPSAC, vol. 581–
588, 1982.

[5] P. Apers, A. Hevner, and S. Yao, “Optimization
algorithms for distributed queries,”IEEE
Transactions on Software Engineering, 9(1),
pp. 51–60, 1983.

2 The relations had been reduced to just those
tuples which can participate in the final join.

[6] L. Chen and V. Li, “Improvement algorithms
for semi-join query processing programs in
distributed database systems.,”IEEE Trans. on
Computers, vol. 33(11), pp. 959–967, 1984.

[7] H. Kang and N. Roussopoulos, “Using 2–way
semi-joins in distributed query processing,”
in Proc. 3rd Int. Conf. on Data Engineering,
pp. 644–650, 1987.

[8] N. Roussopoulos and H. Kang, “A pipeline
n-way join algorithm based on the 2–way semi-
join program,”IEEE Trans. on Knowledge and
Data Engineering, vol. 3(4), pp. 486–495, 1991.

[9] L. Chen and V. Li, “Domain-specific semi-
join: a new operation for distributed query
processing,”Info. Sci., vol. 52, pp. 165–183,
1990.

[10] C. Wang, V. Li, and A. Chen, “Distributed
query optimization by one-shot fixed precision
semi-join execution,” inProc. 7th Int. Conf. on
Data Engineering, pp. 756–763, 1991.

[11] M. Chen and P. S. Yu, “Combining join and
semi-join operations for distributed query
processing,”IEEE Transactions on Knowledge
and Data Engineering, vol. 5(3), pp. 534–542,
1993.

[12] D. Chiu, P. Bernstein, and Y. Ho, “Optimizing
chain queries in a distributed database system,”
Siam Journal of Computing, vol. 13(1), pp. 116–
134, 1984.

[13] A. Chen and V. Li, “A method for interpreting
tree queries into optimal semijoin expressions,”
in ACM SIGMOD, 1980.

[14] D. Chiu and Y. Ho, “Optimizing star queries
in a distributed database system,” inVLDB,
pp. 959–967, 1984.

[15] C. Yu, Z. Ozsoyoglu, and K. Kam,
“Optimization of distributed tree queries,”
J. Comp. Sys. Sci., vol. 29(3), pp. 409–445,
1984.

[16] P. Boderick, J. Pyra, and J. Riordan, “Correcting
execution of distributed queries,” inProc. of
2nd Int. Symp. on Databases in Parallel and
Distributed Systems, pp. 192–201, 1990.



[17] P. Boderick, J. Riordan, and J. Pyra, “Deciding
to correct distributed query processing,”IEEE
Trans. on Knowledge and Data Engineering,
vol. 4(3), pp. 253–265, 1992.

[18] A. Hevner,The optimization of query processing
in distributed database systems. PhD thesis,
Perdue University, 1980.

[19] C. Wang and M. Chen, “On the complexity of
distributed query optimization,” tech. rep., IBM
Technical Report RC 18671, 1993.

[20] B. Bloom, “Space/time tradeoffs in hash coding
with allowable errors,”Comm. ACM, vol. 13(7),
pp. 422–426, 1970.

[21] D. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H. Hsiao, and R. Rasmussen,
“The GAMMA database machine project,”
IEEE Transactions on Knowledge and data
engineering, pp. 44–62, 1990.

[22] G. Z. Qadah,Filter-based join algorithms
on uniprocessor and distributed-memory
multiprocessor database machines, vol. 303
of Lecture Notes in Computer Science, pp. 388–
413. Springer-Verlag, 1988.

[23] G. Z. Qadah and K. Irani, “The join algorithms
on a shared-memory multiprocessor database
machine,” IEEE Transactions on Software
Engineering, pp. 1168–1683, 88.

[24] P. Valduriez and G. Gardarin, “Join and
semijoin algorithms for a multiprocessor
database machine,”ACM Transactions on
database systems, pp. 133–161, 1984.

[25] J. Mullin, “Estimating the size of a relational
join,” Information Systems, vol. 18(3), pp. 189–
196, 1993.

[26] G. Graefe and K. Ward, “Dynamic query
evaluation plans,” inACM SIGMOD, pp. 358–
366, 1989.

[27] G. Graefe, “Query evaluation techniques for
large databases,”ACM computing surveys,
pp. 73–170, 1993.

[28] C. Mohan, D. Haderle, Y. Wang, and J. Cheng,
Single table access using multiple indexes:
optimization, execution and concurrency control

techniques., vol. 416 of Lecture Notes in
Computer Science, pp. 29–43. Springer-Verlag,
1990.

[29] D. Severance and G. Lohman, “Differential
files: their application to the maintenance of
large databases,”ACM Transactions on database
systems, pp. 257–267, 1976.

[30] J. Mullin, “(1983) A second look at bloom
filters,” Comm. ACM, vol. 26(8), pp. 570–571,
1983.

[31] J. Mullin, “Optimal semijoins for distributed
database systems,”IEEE trans. on software
eng., vol. 16(5), pp. 558–560, 1990.

[32] J. Tseng and A. P. Chen, “Improving distributed
query processing by hash-semijoins,”Journal
of Information Science and Engineering, vol. 8,
pp. 525–540, 1992.

[33] J. Morrissey and W. Osborn, “Distributed
query optimization using reduction filters,” in
Proceedings of the IEEE Canadian Conference
on Electrical and Computer Engineering,
(University of Waterloo, May 1998), pp. 707–
710.

[34] J. Morrissey and W. Osborn, “Experiments
with the use of reduction filters in distributed
query optimization,” inProceedings of the
9th Internaltional Conference on Parallel and
Distributed Computing and Systems (PDCS’97),
(Washington, D.C., October 1997), pp. 327–330.

[35] J. Morrissey, “Reduction filters for minimizing
data transfers in distributed query optimization,”
in Proceedings of the IEEE Canadian
Conference on Electrical and Computer
Engineering, (University of Calgary, May
1996), pp. 198–202.

[36] J. Morrissey and W. Osborn, “The effect of
collisions on the performance of reduction
filters.,” in Proceedings of the IEEE Canadian
Conference on Electrical and Computer
Engineering, (Edmonton, May 1999).

[37] W. Osborn, “The use of reduction filters in
distributed query optimization,” Master’s thesis,
The University of Windsor, 1998.


