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VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES OF QUADRATIC

TWISTS OF AUTOMORPHIC L-FUNCTIONS

AMIR AKBARY AND ALIA HAMIEH

ABSTRACT. Let d P N, and let π be a fixed cuspidal automorphic representation of GLdpAQq with

unitary central character. We determine the limiting distribution of the family of values ´ L1

L
p1 `

it, π b χDq as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the

real character associated with D. We establish an upper bound on the discrepancy in the convergence

of this family to its limiting distribution. As an application of this result, we obtain an upper bound

on the small values of

ˇ̌
ˇ L1

L
p1, πb χDq

ˇ̌
ˇ when π is self-dual.

1. INTRODUCTION

Bohr and Jessen showed in [3] that the values log ζpσ` itq for a fixedσ ą 1
2

as t varies in R have

a limiting distribution with a continuous density in the complex plane. In [16], Jessen and Wintner

revisited this problem from a more general perspective using ideas from probability theory and

Fourier analysis machinery, which allowed them to reveal detailed information on the distribution

function in Bohr-Jessen’s theorem (see [16, Theorem 19]). In recent years, this line of research

was pursued further by many authors studying the distribution of log ζpσ ` itq in the critical strip

(e.g. [8], [9], [18] and [21]). We focus here on the work of Lamzouri, Lester, and Radziwiłł [21]

in which the authors investigate the discrepancy between the distributions of log ζpσ` itq and that

of an adequately chosen random series log ζpσ,Xq. More precisely, let tXpup prime be a sequence

of independent random variables uniformly distributed on the unit circle. Consider the random

Euler product ζpσ,Xq “ ś
p p1 ´ Xp p´σq´1

which converges almost surely for σ ą 1
2
. We can

ask whether ζpσ,Xq is a good model for the Riemann zeta function. The authors of [21] answer

this question affirmatively.

Theorem 1.1. [21, Theorem 1.1] Let 1
2

ă σ ă 1 be fixed. Then we have

Dσplog ζ; T q :“ sup
RĂC

|PT plog ζpσ` itq P Rq ´ P plog ζpσ,Xq P Rq| ! 1

plog T qσ .

For σ “ 1, we have

D1plog ζ; T q :“ sup
RĂC

|PT plog ζp1 ` itq P Rq ´ P plog ζp1,Xq P Rq| ! log log T

log T
.

Here R varies over all rectangles in C with sides parallel to the axes, and

PT p f ptq P Rq “ 1

T
meastT ď t ď 2T : f ptq P Ru.
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This improves on the result in [8] where the authors prove that for any ǫ ą 0, we have

Dσplog ζ; T q ! 1

plog T q 4σ´2
21`8σ

´ǫ
,

provided that 1
2

ă σ ď 1. Recently Xiao and Zhai extended the result of [21], for 1
2

ă σ ă 1 to

the case of L-functions attached to Hecke eigenforms of level 1.

In another direction, Mine [24] studied the discrepancy Dsplog L f ; qq in the value distribution

at a fixed point s “ σ ` it of averages and harmonic averages of the values of logarithm of the

L-functions L f psq attached to the primitive cusp forms f of weight 2 and prime level q, as q Ñ 8.

In [24, Theorem 1.4] it is proved that

Dsplog L f ; qq !

$
’&
’%

plog log qq{ log q i f σ ą 1,

plog log qqplog log log qq{ log q i f σ “ 1,

1{plog qqσ i f 1
2

ă σ ă 1,

generalizing a special case of a 1-dimensional result of Cogdell and Michel [4, Corollary 1.16]

and a 1-dimensional discrepancy estimate of Golubeva [5, Theorem 1]. The reader is referred to

[24, Equations (1.16) and (1.17)] for the exact definition of Dsplog L f ; qq.

Inspired by studying the small values of the Euler-Kronecker constants of the cyclotomic fields

Qpζqq, Lamzouri and Languasco [20] proved a discrepancy estimate for the distribution of L1

L
p1, χq

where χ varies over non-trivial Dirichlet characters mod q (prime). By defining a suitable random

series Ldp1,Xq associated to a certain random sequence X and setting

D1

`
L1
χ{Lχ; q

˘
“ sup
RĂC

ˇ̌
ˇ̌ 1

q ´ 1

ˇ̌
ˇ̌
"
χ ‰ χ0 mod q :

L1

L
p1, χq P R

*ˇ̌
ˇ̌ ´ PpLdp1,Xq P R

ˇ̌
ˇ̌ ,

where the supremum is taken over all rectangles of the complex plane with sides parallel to the

coordinate axes, they proved in [20, Theorem 1.5] that

D1

`
L1
χ{Lχ; q

˘
! plog log qq2

log q
, as q Ñ 8; q prime.

In [7], Hamieh and Mcclenagan, determined an asymptotic distribution function for the values
L1

L
pσ, χDq as D varies over all fundamental discriminants D, with |D| ď N, for a fixed real number

1
2

ă σ ă 1, removing the dependence on GRH in a result of Mourtada and Murty [25]. Here

χD “
`

D
¨

˘
is the Kronecker symbol for D, and Lps, χDq is the associated Dirichlet L-function. In

addition, in [7, Theorem 1.3] they proved

Dσ
`
L1
χD

{LχD
; N

˘
!

ˆ
log log N

log N

˙σ
,

where

Dσ
`
L1
χD

{LχD
; N

˘
“ sup

zPR

ˇ̌
ˇ̌PN

ˆ
L1

L
pσ, χDq ď z

˙
´ P pLdpσ,Xq ď zq

ˇ̌
ˇ̌

is the discrepancy between the value-distribution of quadratic twists and that of a random series

Ldpσ,Xq attached to a random sequence X described in the introduction of [7]. Here

PN

ˆ
L1

L
pσ, χDq ď z

˙
“ 1

|F pNq|

ˇ̌
ˇ̌
"

D P F pNq :
L1

L
pσ, χDq ď z

*ˇ̌
ˇ̌ ,

where F pNq denotes the collection of the fundamental discriminants D with |D| ď N. Note that

we have (see [6, page 1017])

|F pNq| “ 6

π2
N ` O

´
N

1
2

¯
.
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In this paper, we consider the analogous problem for logarithmic derivatives of quadratic twists

of automorphic L-functions. Let π be a cuspidal automorphic representation of GLdpAQq with uni-

tary central character. Let Lps, πq “
ř8

n“1 aπpnqn´s be the associated Dirichlet series. In particular,

we have

(1.1) Lps, πq “
ź

p

dź

j“1

ˆ
1 ´ α j,πppq

ps

˙´1

,

where α j,πppq’s are the Satake parameters of π. Thus, aπppq “
řd

j“1 α j,πppq. By a result of Rudnick

and Sarnak [27], we know that

(1.2) |α j,πppq| ď p
1
2

´ 1

d2`1

for all j P t1, 2, . . . , du. We set

(1.3) λπpnq “

$
’&
’%

dÿ

j“1

α j,πppqm
if n “ pm,

0 otherwise.

Corresponding to a representation π, there is a dual representation π̃. The collection of the Satake

parameters for π̃ coincides with the collection of the complex conjugates of the Satake parameters

for π, and thus aπ̃pnq “ aπpnq. We call a cuspidal representation π self-dual if π » π̃.
Forℜpsq ą 1 and a fundamental discriminant D P F pNq, we set

(1.4) Lps, π b χDq “
8ÿ

n“1

aπpnqχDpnq
ns

and

(1.5) ´ L1

L
ps, πb χDq “

8ÿ

n“1

ΛpnqλπpnqχDpnq
ns

.

These functions have meromorphic continuations to the entire complex plane.

Let R be a rectangle in C with sides parallel to the coordinate axes. We denote by 1R p¨q the

characteristic function of R. For t P R we define

PN

ˆ
´L1

L
p1 ` it, πb χDq P R

˙
“ 1

|F pNq|
ÿ

DPF pNq

1R

ˆ
´L1

L
p1 ` it, πb χDq

˙
.

Thus, PN

`
´ L1

L
p1 ` it, πb χDq P R

˘
is the proportion of the fundamental discriminants D for which

´ L1

L
p1 ` it, πb χDq P R.

Let us now introduce the probabilistic random model which we use to approximate the distri-

bution of the arithmetic values ´ L1

L
p1 ` it, π b χDq described above. Consider the sequence of

independent random variables tXpup prime given by

P
`
Xp “ a

˘
“

#
p

2pp`1q
if a “ ˘1,

1
p`1

if a “ 0.

We set Xn “ ś
p|nX

νppnq
p , where νppnq is the p-adic valuation of n. The sequence X “ tXnunPN was

first introduced in [6] for the purpose of studying the distribution of the extreme values of Lp1, χDq
as D varies over all fundamental discriminants. We denote the underlying probability measure on
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the sample space associated to X by P. For a representation π as above and t P R, we associate the

random series

´ Ldp1 ` it, π,Xq “
8ÿ

n“1

ΛpnqλπpnqXn

n1`it
.

Our main theorem gives an upper bound on the discrepancy between the distribution of the

random series ´ Ldp1 ` it, π,Xq and that of ´ L1

L
p1 ` it, π b χDq as D varies in F pNq. Notice

that if π – π̃ b |det|2it
, then the distribution under consideration is 1-dimensional since the values

involved are necessarily real. To see this, observe that for all primes p and all m P N, we have

λπppmqp´mit “ p´mit

dÿ

j“1

α j,πppqm “ p´mit

dÿ

j“1

´
α j,πppqp2it

¯m

“ λπppmqpmit,

which implies that λπppmqp´mit P R. Otherwise, our distributions are 2-dimensional. We denote

the discrepancy by D1`it

`
L1
πbχD

{LπbχD
; N

˘
and define it as

sup
xPR

ˇ̌
ˇ̌PN

ˆ
´L1

L
p1 ` it, πb χDq ď x

˙
´ P p´ Ldp1 ` it, π,Xq ď xq

ˇ̌
ˇ̌

in the 1-dimensional case, and

sup
RĂC

ˇ̌
ˇ̌PN

ˆ
´L1

L
p1 ` it, πb χDq P R

˙
´ P p´ Ldp1 ` it, π,Xq P Rq

ˇ̌
ˇ̌ ,

whereR varies over all rectangles inCwith sides parallel to the coordinate axes, in the 2-dimensional

case.

Theorem 1.2. Let π be a fixed cuspidal automorphic representation of GLdpAQq with unitary

central character. Suppose that the Satake parameters of π satisfy |α j,πppq| ď pθ with 0 ď θ ă 1
4

for all j “ 1, 2, ¨ ¨ ¨ , d. Then we have

D1`it

`
L1
πbχD

{LπbχD
; N

˘
! plog log Nq2

log N
.

It is clear from (1.2) that the above theorem holds if d “ 1. Moreover, it holds if d “ 2 since

θ ă 7
64

by [14]. Indeed, we get the following automorphic analogue of [21, Theorem 1.1] for

logarithmic derivatives.

Corollary 1.3. Let π be a fixed cuspidal automorphic representation of GL1pAQq or GL2pAQq with

unitary central character. Then we have

D1`it

`
L1
πbχD

{LπbχD
; N

˘
! plog log Nq2

log N
.

Remarks 1.4. (i) We give the proof of Theorem 1.2 only in the 2-dimensional case, i.e., π fl
π̃ b |det|2it

. The proof in the 1-dimensional case follows analogous arguments.

(ii) The condition on the bound for the Satake parameters in Theorem 1.2 is needed in the proof of

the exponential decay for the characteristic function of our random series (Proposition 6.1) which

is a crucial ingredient in our argument. In some other parts of the argument, we only require

Hypothesis H (see Section 2.1) which follows readily from the assumed bound on the Satake

parameters in our main Theorem.

(iii) Similar results can be obtained for the values of log Lp1 ` it, π b χDq by following the proof

of Theorem 1.2.

(iv) By examining the proof of Theorem 1.2, we can see that its assertion also holds when 1 ` it

is replaced by σ ` it with 1 ´ cπ ă σ ă 1 for some constant cπ ą 0. The expected discrepancy
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bound in this case would be of size O

´´
log log N

log N

¯σ¯
. The lower bound on σ is imposed by the

zero density estimate used in the proof (see Lemma 2.9 and Proposition 2.11) and the domain of

convergence of ´ Ldps, π,Xq.

(v) In some special cases, Corollary 1.3 holds with a discrepancy bound of size O

´´
log log N

log N

¯σ¯

for a range of σ that is wider than the one indicated in the previous remark when 1 ` it is replaced

by σ` it. In fact, one can fix σ to be much closer to 1
2

if a suitable zero density result is available

for the family Lps, π b χDq. For instance, [10, Theorem 3] was used in [7] to prove a discrepancy

result for ´ L1

L
pσ, χDq (which can be considered as a special case of Corollary 1.3) that is valid for

any 1
2

ă σ ă 1. Using the zero density theorem in [26], one could achieve a similar result for

´ L1

L
pσ, f b χDq when f is primitive cusp form of weight 2.

We also use Theorem 1.2 to derive an asymptotic bound for the small values of
ˇ̌

L1

L
p1 ` it, πb χDq

ˇ̌

when π – π̃ b |det|2it
. The following result is an analogue of [7, Corollary 1.4 ], and [20, The-

orem 1.1] where the authors investigate the small values of
ˇ̌

L1

L
p1, χq

ˇ̌
for non-principal Dirichlet

characters χ modulo q, as q Ñ 8 over the primes.

Theorem 1.5. Let t P R be fixed, and let π be a cuspidal automorphic representation of GLdpAQq
with unitary central character such that π – π̃b|det|2it

. Suppose that |α j,πppq| ď pθ with 0 ď θ ă 1
4

for all j “ 1, 2 ¨ ¨ ¨ , d. Let mN “ min
DPF pNq

ˆˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
˙

. As N Ñ 8, we have

mN ! plog log Nq2

log N
.

More precisely, there are at least Nplog log Nq2{ log N for which
ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌ ! plog log Nq2

log N
.

Remark 1.6. We derive our upper bound for the small values of
ˇ̌

L1

L
p1 ` it, πb χDq

ˇ̌
by an applica-

tion of Theorem 1.2 and using the positivity at the origin of the density function of the associated

distribution. The assumption of these two facts together will result in

mNp1 ` itq :“ min
DPF pNq

ˆˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
˙

! D1`it

`
L1
πbχD

{LπbχD
; N

˘

for 1-dimensional distributions and

mNp1 ` itq !
b
D1`it

`
L1
πbχD

{LπbχD
; N

˘

for 2-dimensional distributions. The restriction to π – π̃b |det|2it
in Theorem 1.5 is due to the fact

that, in Lemma 8.2, we are able to prove the positivity of the density function for 1-dimensional

distributions only.

The proof of Theorem 1.5 is given in Section 8 as an application of Theorem 1.2. While our

proof of Theorem 1.2 follows the approach devised in [21], we deviate from their method in the

last step of the proof. In order to avoid the need for a large deviation result for our family, we

employ a 2-dimensional version of the classical Berry-Esseen inequality instead of the Beurling-

Selberg functions used in [21, Section 6] to relate the distribution functions under consideration

to their characteristic functions. In Section 7, we show how this 2-dimensional Berry-Esseen

inequality yields an upper bound for the discrepancy between PN

`
´ L1

L
p1 ` it, πb χDq P R

˘
and

P p´ Ldp1 ` it, π,Xqq in terms of the difference between their associated characteristic functions.
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In doing so, we adapt some of the ideas outlined in [24, Section 4.3]. In Section 6 we prove

a rapid decay estimate for the characteristic function of the random series ´ Ldp1 ` it, π,Xq
which is crucial for applying the Berry-Esseen inequality. In Section 5, we prove Theorem 5.1

which shows that the characteristic function of the joint distribution of ℜ
`
´ L1

L
p1 ` it, πb χDq

˘

and ℑ
`
´ L1

L
p1 ` it, πb χDq

˘
can be very well approximated by the corresponding characteristic

function of the random series ´ Ldp1 ` it, π,Xq. The point of departure in the proof of Theorem

5.1 is a result asserting that ´ L1

L
p1 ` it, πb χDq can be approximated by a short Dirichlet polyno-

mial outside a set of fundamental discriminants D of size opNq. The proof of this approximation,

although mostly standard, entails few complications arising from the fact that we do not assume

the Generalized Ramanujan Conjecture in our work. We deal with these subtleties by employing

a truncated Perron’s formula for automorphic L-functions [22, Theorem 2.1], a Brun-Titchmarsh

type inequality [30, Theorem 2.4], and a recent zero density estimate [12, Theorm 1.1]. In view

of this result, Theorem 5.1 can be extracted from a key result, Proposition 4.2, that compares the

characteristic functions of short Dirichlet polynomials of the form

(1.6)
ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

and
ÿ

nďY

ΛpnqλπpnqXn

n1`it
.

In Section 4, we prove Proposition 4.2. More precisely, we show that

1

|F pNq|
ÿ

DPF pNq

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` z2

ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸

can be well approximated by

E

«
exp

˜
z1

ÿ

nďY

ΛpnqλπpnqXn

n1`it
` z2

ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ff

for all complex numbers z1, z2 satisfying |z1|, |z2| ! log N

plog log Nq2 . We mention here that widening the

range of |z1| and |z2| in Proposition 4.2 would lead to an improvement in the discrepancy bound in

Theorem 1.2. In view of the Taylor expansion of the exponential function, the proof of Proposition

4.2 requires upper bounds of integral moments of the partial sums (1.6) which we establish in

Section 2 and Section 3.

Conventions and Notation. Given two functions f pxq and gpxq, we shall interchangeably use the

notation f pxq “ Opgpxqq and f pxq ! gpxq to mean that there exists M ą 0 such that | f pxq| ď
M|gpxq| for all sufficiently large x. We write f pxq — gpxq to mean that the estimates f pxq ! gpxq
and gpxq ! f pxq hold simultaneously. Sometimes we will use the notation f pxq !t gpxq, or

alternatively f pxq “ Otpgpxqq to emphasize the dependence of the O-constant on the parameter t.

Most of our O-constants depend on π and t, although we sometimes drop the subscript to simplify

the exposition. We use the notation f pxq “ opgpxqq if limxÑ8 f pxq{gpxq “ 0. Finally, the letter p

will always be used to denote a prime number.

Acknowledgements. The authors would like to thank Jesse Thorner and Asif Zaman for useful

correspondences related to this work.

2. PRELIMINARY RESULTS

In this section, we introduce some notation and preliminary results pertaining to the arithmetic

setting of automorphic L-functions, quadratic twists and logarithmic derivatives.
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2.1. Prime Number Sums. The Generalized Ramanujan Conjecture (GRC) for a cuspidal auto-

morphic representation π of GLdpAQq asserts that |α j,πppq| ď 1 for all j “ 1, . . . , d and all primes p.

The following condition which follows from GRC is known as Hypothesis H (see [27, page 281]).

Hypothesis H: For any fixed k ě 2, we have

ÿ

p

plog pq2
ˇ̌
λπppkq

ˇ̌2

pk
ă 8.

Observe that Hypothesis H holds if |α j,πppq| ď pθ with 0 ď θ ă 1
4

for all j “ 1, 2, ¨ ¨ ¨ , d, which

is the assumption we make in Theorem 1.2. In this work we make frequent use of the following

prime number theorem for automorphic representations.

Theorem 2.1. Let π and π1 be cuspidal automorphic representations of GLdpAQq and GLd1pAQq
respectively, and assume that they satisfy Hypothesis H. Set

θπ,π1puq “
ÿ

pďu

plog pqλπppqλπ1ppq.

Then for any 0 ă ǫ ă 1, we have

(2.1) θπ,π1puq “

$
’&
’%

u1`iτ0

1`iτ0
` O

´
u

log u

¯
if π1 – π b |det|iτ0 for some τ0 P R,

Oǫ

ˆ
u

plog uq
1´ǫ

dd1

˙
if π1 fl π b |det|iτ

for any τ P R.

If d, d1 ď 4, then (2.1) is true without assuming Hypothesis H.

Remark 2.2. The first case of Theorem 2.1 can be found in [31, Theorem 3]. It follows from

[22, Theorem 2.3] and uses Hypothesis H to bound the contributions of composite prime powers

in the sum
ř

nďuΛpnqλπpnqλπ1pnq by O

´
u

log u

¯
. The condition that at least one of π and π1 is self

dual in [22] and [31] can be removed by applying the recent zero-free region result of Humphries

and Thorner [11, Theorem 2.1]. The second case of Theorem 2.1 can be derived from [17, The-

orem 2.6] by using Hypothesis H to bound the contribution of composite prime powers. We note

that the exponent 1´ǫ
dd1 can be replaced by 1 if π or π1 is self-dual [31, Theorem 3].

Using this theorem, we derive the following lemmas.

Lemma 2.3. Assume Hypothesis H. As X Ñ 8, we have

ÿ

pąX

plog pq2

p2
|λπppq|2 “ log X

X
` O

ˆ
1

X

˙
.

Proof. The proof follows from Theorem 2.1 and an application of Abel’s summation formula. �

Lemma 2.4. Assume Hypothesis H. The following assertions hold.

(i) If π – π̃b |det|iτ0 for some τ0 P R, then

ÿ

pąX

plog pq2

p2`2it
λπppq2 “ log X

p1 ´ 2it ` iτ0qX1´2it`iτ0
` O

ˆ
1

X

˙
,

as X Ñ 8.

(ii) If π fl π̃b |det|iτ
for any τ P R, then there exists 0 ă α ă 1 such that

ÿ

pąX

plog pq2

p2`2it
λπppq2 ! plog Xqα

X
,

as X Ñ 8.
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Proof. Let πt “ π b |det|´it
and π̃t be its dual representation. Then λπ̃t

ppq “ λπt
ppq “ λπppqpit.

We have

θπt,π̃t
puq “

ÿ

pďu

plog pqλπt
ppqλπ̃t

ppq “
ÿ

pďu

plog pqλπppq2 p´2it.

By Theorem 2.1, for any 0 ă ǫ ă 1, we have

θπt ,π̃t
puq “

ÿ

pďu

plog pqλπppq2 p´2it “

$
’&
’%

u1`iτ0´2it

1`iτ0´2it
` O

´
u

log u

¯
if π – π̃b |det|iτ0 for some τ0 P R,

Oǫ

ˆ
u

plog uq
1´ǫ

dd1

˙
if π fl π̃b |det|iτ

for any τ P R.

If π – π̃ b |det|iτ0 for some τ0 P R, we have

ÿ

pąX

plog pq2

p2`2it
λπppq2 “

„
log u

u2
θπt,π̃t

puq
8

X

`
ż 8

X

θπt ,π̃t
puq2 log u ´ 1

u3
du

“ ´ log X

X2

ˆ
X1`iτ0´2it

1 ` iτ0 ´ 2it
` O

ˆ
X

log X

˙˙

`
ż 8

X

ˆ
u1`iτ0´2it

1 ` iτ0 ´ 2it
` O

ˆ
u

log u

˙˙
2 log u ´ 1

u3
du

“ log X

p1 ` iτ0 ´ 2itqX1´iτ0`2it
` O

ˆ
1

X

˙
.

If π fl π̃ b |det|iτ
, we have

ÿ

pąX

plog pq2

p2`2it
λπppq2 “

„
log u

u2
θπt ,π̃t

puq
8

X

`
ż 8

X

θπt ,π̃t
puq2 log u ´ 1

u3
du

“ O

ˆplog Xqα
X

˙
,

where α can be taken to be 1 ´ 1´ǫ
dd1 for any 0 ă ǫ ă 1. �

2.2. Rankin-Selberg L-functions. For a pair of automorphic representations π and π1 of GLdpAQq
and GLd1pAQq respectively, the associated Rankin-Selberg L-function is

Lps, π ˆ π1q “
ź

p

dź

j“1

d1ź

j1“1

ˆ
1 ´ α j, j1 ,πˆπ1ppq

ps

˙´1

“
8ÿ

n“1

aπˆπ1pnq
ns

,

whereℜpsq ą 1 and the parameters α j, j1 ,πˆπ1ppq are indexed so that α j, j1 ,πˆπ1ppq “ α j,πppqα j1,π1ppq
for all but finitely many primes p.

We continue with the following two results from [30].

Lemma 2.5. [30, Lemma 2.2] Let π be a cuspidal automorphic representation of GLdpAQq. Then

|λπpnq| ď
b
λπˆπ̃pnq ď 1

2
p1 ` λπˆπ̃pnqq.

Lemma 2.6. [30, Theorem 2.4] Let π be a cuspidal automorphic representation of GLdpAQq. If

Y "d Cpπ ˆ π̃q36d2

and 1 ď H ď Y
1

9d2 , then

ÿ

YănďYe
1
H

Λpnqλπˆπ̃pnq !d

Y

H
.
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Since λπˆπ̃pnq ě 0 (see [27, page 318]), then as a direct corollary of the above theorem we have

ÿ

YănďY` Y
H

Λpnqλπˆπ̃pnq ď
ÿ

YănďYe
1
H

Λpnqλπˆπ̃pnq !d

Y

H

under the conditions of Lemma 2.6 on Y and H.

2.3. Short Dirichlet polynomials. In order to prove that the values L1

L
p1 ` it, π b χDq can be

approximated by short Dirichlet polynomials outside a set of fundamental discriminants D of size

opNq, we require the following lemmas.

Lemma 2.7. Let T ą 1, 1
2

ă σ0 ă 1, and s “ σ ` it. Suppose that Lps, π b χDq has no zeros in

the region σ ě σ0 and |t| ď T. Then for all σ ě σ0 we have

L1

L
ps, πb χDq ! logpDp|t| ` 2qq

σ´ σ0

.

Proof. The result follows by adapting the proof of [19, Lemma 2.2] to the setting of quadratic

twists of automorphic L-functions. �

Lemma 2.8. Let t P R, Y "π 1, D P F pNq, and 0 ă δ ď 1
3d2 . Assume that Lps, π b χDq has no

zeros onℜpsq ą 1 ´ δ and |ℑpsq| ď Y
1

3d2 . Then, we have

(2.2) ´ L1

L
p1 ` it, πb χDq “

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` O

´
Y´ δ

3 plog Nq
¯
.

Proof. By [22, Theorem 2.1] and for c “ 1{ log Y , Y ě 2, T ě 2, and H ě 2, we have

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

“ 1

2πi

ż c`iT

c´iT

´L1

L
pw ` 1 ` it, πb χDqYw

w
dw

` O

¨
˝ ÿ

Y´ Y
H

ănďY` Y
H

Λpnq|λπpnq|
n

˛
‚` O

ˆ
HBpcq

T

˙
,

(2.3)

where Bpcq “
ř8

n“1

Λpnq|λpnq|

nc`1 . By [22, Formula (6.3)] we have Bpcq ! log Y and thus, the last error

term in (2.3) is

(2.4) O

ˆ
H log Y

T

˙
.

To handle the first error term in (2.3) observe that by Lemma 2.5 we have

ÿ

Y´ Y
H

ănďY` Y
H

Λpnq|λπpnq|
n

ď 1

2

¨
˝ ÿ

Y´ Y
H

ănďY` Y
H

Λpnq
n

`
ÿ

Y´ Y
H

ănďY` Y
H

Λpnqλπˆπ̃pnq
n

˛
‚

! 1

Y

¨
˝ ÿ

Y´ Y
H

ănďY` Y
H

Λpnq `
ÿ

Y´ Y
H

ănďY` Y
H

Λpnqλπˆπ̃pnq

˛
‚.

Now if 1 ď H ď Y
1

9d2 , then by Lemma 2.6 and the Brun-Titchmarsh inequality (e.g. see [13,

Theorem 6.6]) applied to the sums involving Λpnqλπˆπ̃ and Λpnq respectively, we have

(2.5)
ÿ

Y´ Y
H

ănďY` Y
H

Λpnq|λπpnq|
n

! 1

H
.
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Next we deal with the integral in (2.3). For δ ą 0 assume that Lpw, π b χDq does not have any

zeros in the box

Rδ :“ tpu, vq; 1 ´ δ ď u ď 1, |v| ď Tu.
Letting c0 “ ´ δ

2
and applying the residue theorem yields

1

2π

ż c`iT

c´iT

´L1

L
pw ` 1 ` it, πb χDqYw

w
dw “ ´L1

L
p1 ` it, πb χDq

´ 1

2πi

ˆż c0`iT

c´iT

p¨q ´
ż c`iT

c0´iT

p¨q ´
ż c0´iT

c0`it

p¨q
˙
.

(2.6)

We now estimate the integrals in (2.6). By employing Lemma 2.7 we have
ˇ̌
ˇ̌
ż c0´iT

c0`iT

´L1

L
pw ` 1 ` it, πb χDqYw

w
dw

ˇ̌
ˇ̌ !

ż T

´T

logp|D|p|v| ` 2qq
p1 ´ δ

2
q ´ p1 ´ δq

Y´ δ
2

b
v2 ` δ2

4

dv

!δ Y´ δ
2 logp|D|pT ` 2qq logpT ` 2q.

(2.7)

For the two remaining integrals on the right-hand side of (2.6), by using Lemma 2.7, we have

ˇ̌
ˇ̌
ż c0`iT

c`iT

´L1

L
pw ` 1 ` it, πb χDqYw

w
dw

ˇ̌
ˇ̌ !

ż 1{ log Y

´ δ
2

logp|D|p|T | ` 2qq
p1 ` uq ´ p1 ´ δq

Yu

?
u2 ` T 2

du

!δ
logp|D|pT ` 2qq

T log Y
.

(2.8)

Thus, from (2.3), (2.4), (2.5), (2.6), (2.7), and (2.8) and under the assumption that Lpw, π ˆ χDq
does not have any zero in Rδ, we get

´L1

L
p1 ` it, πb χDq “

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` O

ˆ
H log Y

T

˙
` O

ˆ
1

H

˙

` O

´
Y´ δ

2 logp|D|pT ` 2qq logpT ` 2q
¯

` O

ˆ
logp|D|pT ` 2qq

T log Y

˙
,

(2.9)

for 1 ď H ď Y
1

9d2 . The result follows by setting H “ Y
1

9d2 and T “ Y
1

3d2 in (2.9). �

We also require the following zero-density estimate which is a direct application of [12, Theo-

rem 1.1].

Lemma 2.9. Let π be a cuspidal automorphic representation of GLdpAQq with unitary central

character, and let Cpπq be the analytic conductor of π (as defined in [13, page 95]). Let T,N ě 1,

and set

NπbχD
pσ, T q “ |tρ “ β` iγ; Lpρ, πb χDq “ 0, β ě σ, |γ| ď Tu| .

For ǫ ą 0, we have

(2.10)
ÿ

DPF pNq

NπbχD
pσ, T q !ǫ,d pCpπqNT q18dp1´σq`ǫ ,

provided that 1
2

ď σ ď 1.

Remark 2.10. An application of [12, Theorem 1.1] will give a result similar to (2.10) for NπˆχD
pσ, T q

attached to the zeros of the Rankin-Selberg L-function Lps, π ˆ χDq. We know that the local L-

functions Lpps, πˆχDq and Lpps, πbχDq coincide for primes p ∤ pqπ,Dq, where qπ is the conductor

of π. Moreover, the local parameters α j,πˆχD
(for 1 ď j ď d) satisfy the bound (1.2). Therefore,

NπˆχD
pσ, T q “ NπbχD

pσ, T q for σ ą 1
2

´ 1
d2`1

and thus (2.10) holds.
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We finally arrive at the desired approximation.

Proposition 2.11. There are positive constants δπ and ηπ (depending only on π) such that for all

but OpN
3
4 q fundamental discriminants D in F pNq, we have

(2.11) ´ L1

L
p1 ` it, πb χDq “

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` OpY´δπq,

whenever plog Nqηπ ! Y ! N3d2

.

Proof. Let T “ Y
1

3d2 where Y ! N3d2

, 0 ă δ ă mint 1
144d
, 1

3d2 u, and ǫ “ 1
4
. Then as a direct

corollary of Lemmas 2.8 and 2.9 we conclude that (2.2) holds for all but OpN
3
4 q fundamental

discriminants in F pNq. �

In the rest of the paper, we shall denote byApNq the subset of F pNq for which (2.11) holds for

some δπ and ηπ. We also define EpNq by writingApNq “ F pNqzEpNq.

2.4. More Lemmas. In what follows, we compute upper bounds for 2k-th moments of sums

associated with the short Dirichlet polynomials appearing in Proposition 2.11.

Lemma 2.12. Let 2 ď y ď z. Then, uniformly for k ď log N

6 log z
, we have

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2k

! k!

˜ ÿ

yďpďz

plog pq2|λπppq|2

p2

¸k

.

Proof. The proof closely follows [29, Lemma 3]. We have
˜ ÿ

yďpďx

plog pqλπppqχDppq
p1`it

¸k

“
ÿ

ykďnďzk

ak,y,zpnq
n1`it

,

where

ak,y,zpnq “
#`

k

α1 ,¨¨¨ ,αr

˘ śr

i“1pplog pqλπppqχDppqqαi if n “ p
α1

1
¨ ¨ ¨ p

αr
r , p1

i
s distinct, y ď pi ď z,

0 otherwise.

Thus, we get

(2.12)
1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2k

“
ÿ

ykďm,nďzk

ak,y,zpmqak,y,zpnq
pmnq1`it

¨
˝ 1

N

ÿ

DPF pNq

χDpmnq

˛
‚.

From [6, Lemma 4.1] we know that if mn is not a perfect square, then

(2.13)
ÿ

DPF pNq

χDpmnq ! N
1
2 pmnq 1

4 plog pmnqq 1
2 .

Applying this upper bound in (2.12) yields

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2k

!
ÿ

ykďnďzk

|ak,y,zpnq|2

n2

` N´ 1
2

ÿ

ykďm,nďzk

mn‰˝

|ak,y,zpmq||ak,y,zpnq|
pmnq 3

4

plogpmnqq 1
2 .

(2.14)



12 AMIR AKBARY AND ALIA HAMIEH

Observe that

2
|ak,y,zpmq||ak,y,zpnq|

pmnq 3
4

ď |ak,y,zpmq|2

m
3
2

` |ak,y,zpnq|2

n
3
2

.

By application of this inequality in the last term of (2.14), we have

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2k

!
ÿ

ykďnďzk

|ak,y,zpnq|2

n2

` N´ 1
2

ÿ

ykďnďzk

|ak,y,zpnq|2

n
3
2

ÿ

ykďmďzk

mn‰˝

plogpmnqq 1
2 .

(2.15)

We deduce from (2.15) that

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2k

!
ÿ

ykďnďzk

|ak,y,zpnq|2

n2

` N´ 1
2 z

3k
2 plogpz2kqq 1

2

ÿ

ykďnďzk

|ak,y,zpnq|2

n2

!
ÿ

ykďnďzk

|ak,y,zpnq|2

n2

(2.16)

since k ď plog Nq{p6 log zq. The desired result follows from (2.16) since by an argument similar to

the one given in the proof of [29, Lemma 3] we have

ÿ

ykďnďzk

|ak,y,zpnq|2

n2
ď k!

˜ ÿ

yďpďz

plog pq2|λπppq|2

p2

¸k

.

�

Lemma 2.13. Let A ě 1 be fixed and set Y “ plog NqA. Let k be an integer satisfying 2 ď k ď
log N

6A log log N
. Under the assumption of Hypothesis H, we have

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

ˇ̌
ˇ̌
ˇ

2k

! pC log kq2k

for some positive constant C that depends only on π.

Proof. We have

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

ˇ̌
ˇ̌
ˇ

2k

“ 1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ

ÿ

pď
k

log k

plog pqλπppqχDppq
p1`it

`
ÿ

k
log k

ăpďY

plog pqλπppqχDppq
p1`it

`
ÿ

ně2
pnďY

plog pqλπppnqχDppnq
pn`int

ˇ̌
ˇ̌
ˇ

2k

.
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It follows that

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

ˇ̌
ˇ̌
ˇ

2k

ď 9k

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ÿ

pď
k

log k

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2k

` 9k

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ÿ

k
log k

ăpďY

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ̌
ˇ̌

2k

` 9k

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

ně2
pnďY

plog pqλπppnqχDppnq
pn`int

ˇ̌
ˇ̌
ˇ̌
ˇ

2k

.

By Lemma 2.12, we know that

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ̌

ÿ

k
log k

ďpďY

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ̌

2k

! k!

¨
˝ ÿ

k
log k

ďpďY

plog pq2|λπppq|2

p2

˛
‚

k

.

Hence,

1

N

ÿ

DPF pNq

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχDpnq
n

ˇ̌
ˇ̌
ˇ

2k

! 9k

¨
˝ ÿ

pď k
log k

plog pq |λπppq|
p

˛
‚

2k

` 9kk!

¨
˝ ÿ

k
log k

ďpďY

plog pq2|λπppq|2

p2

˛
‚

k

` 9k

¨
˚̋ ÿ

ně2
pnďY

plog pq |λπppnq|
pn

˛
‹‚

2k

.

(2.17)

We have

¨
˝ ÿ

pď k
log k

plog pq |λπppq|
p

˛
‚

2k

ď

¨
˝ ÿ

pď k
log k

log p

p

˛
‚

k ¨
˝ ÿ

pď k
log k

plog pq|λπppq|2

p

˛
‚

k

ď pC1 logpk{ log kqq2k,

where C1 is a positive constant that depends only on π, and for the last inequality we use [2,

page 150] to bound
ř

pď k
log k

plog pq|λπppq|2

p
.

Now Abel’s summation formula yields

ÿ

k
log k

ďpďY

plog pq2|λπppq|2

p2
“ ApYq log Y

Y2
´ Apk{ log kq logpk{ log kq

pk{ log kq2
´

ż Y

k
log k

Aptq
ˆ

1 ´ 2 log t

t3

˙
dt,
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where Aptq “ ř
pďt log p |λπppq|2

. Since Aptq ! t (see [2, page 150]), with our choices for k and

Y , we have

ÿ

k
log k

ďpďY

plog pq2|λπppq|2

p2
ď C2

logpk{ log kq
k{ log k

,

for some positive constant C2 that depends only on π. Hence, the second sum on the RHS of (2.17)

is bounded by
k!

kk
p9C2 log k logpk{ log kqqk ď

`
9C2 log2 k

˘k
.

For the last sum in (2.17), we use the inequality

(2.18) |λπpnq| ď 1

2
p1 ` |λπpnq|2q

and [2, Equation (2)] to get

ÿ

ně2
pnďY

plog pq |λπppnq|
pn

ď 1

2

ÿ

ně2
pnďY

log p

pn
` 1

2

ÿ

ně2
pnďY

plog pq |λπppnq|2

pn

“ Op1q.
In this argument, Hypothesis H is required for the application of [2, Equation (2)]. Combining all

these estimates gives the desired result. �

We end this section by providing an upper bound for the second moment of the values L1

L
p1 `

it, πb χDq as D varies in the setApNq which was introduced after Proposition 2.11. This result is

used in the proof of Theorem 1.2 in Section 7.

Lemma 2.14. Assume Hypothesis H. As N Ñ 8, we have

1

|ApNq|
ÿ

DPApNq

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

!π 1.

Proof. Let D P ApNq. By Proposition 2.11, there exist δπ, ηπ ą 0 such that

(2.19)

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

“
ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχD

n1`it

ˇ̌
ˇ̌
ˇ

2

` O

˜
Y´δπ

ÿ

nďY

Λpnq |λπpnq|
n

¸
` OpY´2δπq,

provided that plog Nqηπ ! Y ! N3d2

. It follows from (2.18) and (2.19) that

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

“

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

pďY

plog pqλπppqχDppq
p1`it

`
ÿ

pnďY
ně2

plog pqλπppnqχDppnq
pn`nit

ˇ̌
ˇ̌
ˇ̌
ˇ

2

` O

˜
Y´δπ

ÿ

nďY

Λpnq
n

¸
` O

˜
Y´δπ

ÿ

nďY

Λpnq |λπpnq|2
n

¸
` OpY´2δπq.

Since
ř

nďY

Λpnq

n
and

ř
nďY

Λpnq|λπpnq|2

n
are both Oplog Yq by Mertens’ bound and [2, Equation (3)]

respectively, we get

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

!
ˇ̌
ˇ̌
ˇ
ÿ

pďY

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2

`

ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

pnďY
ně2

plog pqλπppnqχDppnq
pn`nit

ˇ̌
ˇ̌
ˇ̌
ˇ

2

` OpY´νπq,



VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES OF QUADRATIC TWISTS 15

for some νπ ą 0 depending on π. Assuming Hypothesis H, by (2.18) we have
ˇ̌
ˇ̌
ˇ̌
ˇ

ÿ

pnďY
ně2

plog pqλπppnqχDppnq
pn`nit

ˇ̌
ˇ̌
ˇ̌
ˇ

2

!

¨
˚̋ ÿ

pnďY
ně2

plog pq |λπppnq|
pn

˛
‹‚

2

!

¨
˚̋ ÿ

pnďY
ně2

log p

pn
`

ÿ

pnďY
ně2

plog pq |λπppnq|2

pn

˛
‹‚

2

!π 1.

Hence, under Hypothesis H we have

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

!
ˇ̌
ˇ̌
ˇ
ÿ

pďY

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2

` Oπp1q.

Taking the average overApNq gives

1

|ApNq|
ÿ

DPApNq

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

! 1

|ApNq|
ÿ

DPApNq

ˇ̌
ˇ̌
ˇ
ÿ

pďY

plog pqλπppqχDppq
p1`it

ˇ̌
ˇ̌
ˇ

2

` Oπp1q

!
ÿ

pďY

plog pq2|λπppq|2

p2
` Oπp1q.

Since, by (1.2), |λπppq| ! pθ with 0 ď θ ă 1
2
, from the above we get

1

|ApNq|
ÿ

DPApNq

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

!π 1

as desired. �

3. THE RANDOM MODEL

Recall the definition of the random model X “ tXnunPN given by

Xn “
ź

p|n

X
νppnq
p ,

where νppnq is the p-adic valuation of n, and tXpup prime is the sequence of independent random

variables given by

(3.1) P
`
Xp “ a

˘
“

#
p

2pp`1q
if a “ ˘1,

1
p`1

if a “ 0.

The random variables Xn satisfy

(3.2) E rXns “
#ś

p|n

´
p

p`1

¯
if n is a square,

0 otherwise.

The random sum ´ Ldp1 ` it, π,Xq given by

(3.3) ´ Ldp1 ` it, π,Xq “
8ÿ

n“1

ΛpnqλπpnqXn

n1`it
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can be written as
ř

p

plog pqλπppqXp

p1`it ` Op1q, and the latter sum is almost surely convergent by the

Menshov-Rademacher Theorem (see for example [15, Proposition B.10.5]). Moreover, the random

sum

(3.4)

dÿ

j“1

ÿ

p

α j,πppqXp log p

p1`it ´ α j,πppqXp

is almost surely convergent by Kolmogorov’s Theorem (see for example [15, Proposition B.10.1]).

More generally, let τ ą 1 ´ 1
d2`1

, and let Uτ “ ts P C;ℜpsq ą τu. It follows from the Menshov-

Rademacher theorem that the random series

(3.5)

8ÿ

n“1

ΛpnqλπpnqXn

ns

is almost surely convergent on Uτ, and so it defines an almost surely holomorphic function there.

We also consider the random series

(3.6)

dÿ

j“1

ÿ

p

plog pqα j,πppqXp

ps ´ α j,πppqXp

,

which, by Kolmogorov’s theorem, is almost surely convergent on Uτ, and so it defines a holomor-

phic function there. One could easily verify that the series (3.5) and (3.6) are equal for all s with

ℜpsq ą 1. By analytic continuation, we see that

8ÿ

n“1

ΛpnqλπpnqXn

ns
“

dÿ

j“1

ÿ

p

plog pqα j,πppqXp

ps ´ α j,πppqXp

almost surely in Uτ. In particular, we have

´ Ldp1 ` it, π,Xq “
8ÿ

n“1

ΛpnqλπpnqXn

n1`it
“

dÿ

j“1

ÿ

p

plog pqα j,πppqXp

p1`it ´ α j,πppqXp

.

In what follows we will be considering the partial random sums

ÿ

nďY

ΛpnqλπpnqXn

n1`it
.

We need the following lemmas involving sums of the above form.

Lemma 3.1. Let 2 ď y ď z. Then, uniformly for any positive integer k we have

E

»
–

ˇ̌
ˇ̌
ˇ

ÿ

yďpďz

plog pqλπppqXp

p1`it

ˇ̌
ˇ̌
ˇ

2k
fi
fl ! k!

˜ ÿ

yďpďz

plog pq2|λπppq|2

p2

¸k

.

Proof. The proof of this lemma is similar to the proof of Lemma 2.12 where we use (3.2) in lieu

of the Polya-Vinogradov type inequality (2.13). �

Lemma 3.2. Let A ě 1 be fixed and set Y “ plog NqA. Let k ě 2 be any integer. Under Hypothesis

H, we have

E

»
–

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqXn

n1`it

ˇ̌
ˇ̌
ˇ

2k
fi
fl ! pC log kq2k

,

for some positive constant C that depends only on π.

Proof. This lemma follows an argument similar to the one used in the proof of Lemma 2.13. We

use Lemma 3.1 in lieu of Lemma 2.12. �
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Lemma 3.3. Suppose that |λπppq| ! pθ for some 0 ď θ ă 1
2
. Let 0 ă ǫ ă 1

2
´ θ be given. Then if

u and v are real numbers such that |u| ` |v| ď Y
1
2

´pθ`ǫq, we have

E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs

“ E
«

exp

˜
iuℜ

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸
` ivℑ

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸¸ff
` O

ˆ |u| ` |v|
Y

1
2

´pθ`ǫq

˙
.

Proof. To simplify the exposition, we demonstrate the argument for E rexp piuℜ p´ Ldp1 ` it, π,Xqqqs
rather than E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs, for otherwise the expres-

sions would become quite lengthy. We have

E rexp piuℜ p´ Ldp1 ` it, π,Xqqqs

“ E

»
—–exp

¨
˚̋

iuℜ

¨
˚̋ ÿ

pmďY

plog pqλπppmqXpm

pmp1`itq
`

ÿ

pąY

plog pqλπppqXp

p1`it
`

ÿ

mě2
pmąY

plog pqλπppmqXpm

pmp1`itq

˛
‹‚

˛
‹‚

fi
ffifl .

It follows that, for ǫ ą 0,

ÿ

mě2
pmąY

plog pqλπppmqXpm

pmp1`itq
!

ÿ

mě2

1

m

ÿ

pąY
1
m

1

pmp1´θ´ǫq

!
ÿ

mě2

1

m

˜
Y

1
m

´p1´θ´ǫq

mp1 ´ θ ´ ǫq ´ 1

¸

! Yθ`ǫ´1Y
1
2

ÿ

mě2

1

m2
! Yθ`ǫ

Y
1
2

.

Hence,

E rexp piuℜ p´ Ldp1 ` it, π,Xqqqs

“ E
«

exp

˜
iuℜ

˜ ÿ

pmďY

plog pqλπppmqXpm

pmp1`itq
`

ÿ

pąY

plog pqλπppqXp

p1`it

¸
` O

ˆ |u|
Y

1
2

´θ´ǫ

˙¸ff
.

(3.7)

Now if |u| ď Y
1
2

´θ´ǫ and p ą Y , then

E

„
exp

ˆ
iuℜ

ˆplog pqλπppqXp

p1`it

˙˙
“ E

»
–1 ` iuℜ

ˆplog pqλπppqXp

p1`it

˙
`

8ÿ

m“2

piuqmℜm

´
plog pqλπppqXp

p1`it

¯

m!

fi
fl

“ 1 ` O

ˆplog pq|u|2

p2´2θ

˙
.

(3.8)

It follows from (3.7) and (3.8) that

E rexp piuℜ p´ Ldp1 ` it, π,Xqqqs

“ E
«

exp

˜
iuℜ

˜ ÿ

pmďY

plog pqλπppmqXpm

pmp1`itq

¸
`

ÿ

pąY

log

ˆ
1 ` O

ˆplog pq|u|2

p2´2θ

˙˙
` O

ˆ |u|
Y

1
2

´θ´ǫ

˙¸ff
.

(3.9)
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Now since
ÿ

pąY

log

ˆ
1 ` O

ˆplog pq|u|2

p2´2θ

˙˙
! |u|2Y´1`2θ`ǫ ! |u|Y´ 1

2
`θ,

by (3.9), we get

E rexp piuℜ p´ Ldp1 ` it, π,Xqqqs

“ E
«

exp

˜
iuℜ

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸
` O

ˆ |u|
Y

1
2

´θ´ǫ

˙¸ff

“ E
«

exp

˜
iuℜ

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸¸ff
` O

ˆ |u|
Y

1
2

´θ´ǫ

˙
.

(3.10)

One can easily check that the above argument applied to

E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs
yields the desired result. �

4. BRIDGING LEMMAS

In this section, we prove two results which serve a crucial role as a bridge between the arithmetic

setting and the probabilistic random setting developed in the previous sections.

Lemma 4.1. Let A ě 1 be fixed and set Y “ plog NqA. Then for any positive integers j, ℓ such that

j ` ℓ ď log N

6A log log N
, we have

1

|F pNq|
ÿ

DPF pNq

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸ℓ

“ E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl ` O

˜
pY

1
4 log Yq j`ℓplog Nq 1

2

N
1
2

¸
.

Proof. We have

1

|F pNq|
ÿ

DPF pNq

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸ℓ

“
ÿ

p
m1
1
,¨¨¨ ,p

m j

j
ďY

q
n1
1
,¨¨¨ ,q

nℓ
ℓ

ďY

plog p1q ¨ ¨ ¨ plog p jq plog q1q ¨ ¨ ¨ plog qℓq λπpp
m1

1
q ¨ ¨ ¨λπpp

m j

j
qλπpq

n1

1
q ¨ ¨ ¨ λπpq

nℓ
ℓ

q

p
m1p1`itq
1

¨ ¨ ¨ p
m jp1`itq

j
q

n1p1´itq
1

¨ ¨ ¨ q
nℓp1´itq
ℓ

ˆ 1

|F pNq|
ÿ

DPF pNq

χD

´
p

m1

1
¨ ¨ ¨ p

m j

j
q

n1

1
¨ ¨ ¨ q

nℓ
ℓ

¯
.

(4.1)

Note that

(4.2)
ÿ

DPF pNq

χDpm2q “
ÿ

DPF pNq
pD,mq“1

1 “ 6

π2
N

ź

p|m

ˆ
p

p ` 1

˙
` O

`
N

1
2τpmq

˘
,
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where τpmq is the divisor function (see for example [6, page 1017]). In view of (3.2) and (4.2), we

see that (4.1) equals

“ E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl

`
ÿ

p
m1
1
,¨¨¨ ,p

m j

j
ďY

q
n1
1
,¨¨¨ ,q

nℓ
ℓ

ďY

p
m1
1

¨¨¨p
m j

j
q

n1
1

¨¨¨q
nℓ
ℓ

‰˝

ś j

s“1
plog psq λπpp

ms
s q śℓ

s“1 plog qsq λπpq
ns
s q

p
m1p1`itq
1

¨ ¨ ¨ p
m jp1`itq

j
q

n1p1´itq
1

¨ ¨ ¨ q
nℓp1´itq
ℓ

ˆ 1

|F pNq|
ÿ

DPF pNq

χD

´
p

m1

1
¨ ¨ ¨ p

m j

j
q

n1

1
¨ ¨ ¨ q

nℓ
ℓ

¯
` O

´
N´ 1

2

¯
.

Let us now analyze the contribution of non-squares. By (2.13), we get

ÿ

p
m1
1
,¨¨¨ ,p

m j

j
ďY

q
n1
1
,¨¨¨ ,q

nℓ
k

ďY

p
m1
1

¨¨¨p
m j

j
q

n1
1

¨¨¨q
nℓ
ℓ

‰˝

ś j

s“1
plog psq λπpp

ms
s q śℓ

s“1 plog qsq λπpq
ns
s q

p
m1p1`itq
1

¨ ¨ ¨ p
m jp1`itq

j
q

n1p1´itq
1

¨ ¨ ¨ q
nℓp1´itq
ℓ

ˆ 1

|F pNq|
ÿ

DPF pNq

χD

´
p

m1

1
¨ ¨ ¨ p

m j

j
q

n1

1
¨ ¨ ¨ q

nℓ
ℓ

¯

! pp j ` ℓq log Yq 1
2

N
1
2

ÿ

p
m1
1

¨¨¨p
m j

j
ďY

q
n1
1

¨¨¨q
nℓ
ℓ

ďY

p
m1
1

¨¨¨p
m j

j
q

n1
1

¨¨¨q
nℓ
ℓ

‰˝

ś j

s“1
plog psq |λπpp

ms
s q| śℓ

s“1 plog qsq |λπpq
ns
s q|

p
3
4

m1

1
¨ ¨ ¨ p

3
4

m j

j
q

3
4

n1

1
¨ ¨ ¨ q

3
4

nℓ

ℓ

.

(4.3)

Observe that (4.3) is

! pp j ` ℓq log Yq 1
2

N
1
2

˜ ÿ

pmďY

log p |λπppmq|
p

3
4

m

¸ j`ℓ

! pp j ` ℓq log Yq 1
2

N
1
2

˜ ÿ

pmďY

log p |λπppmq|2

pm

¸ j`ℓ
2

˜ ÿ

pmďY

log p

p
m
2

¸ j`ℓ
2

.

Since
ř

pmďY

log p|λπppmq|2

pm “ Oplog Yq (see [2, Equation (3)]) and
ř

pmďY

log p

p
m
2

“ OpY
1
2 log Yq, we

conclude that (4.3) is

! pY
1
4 log Yq j`ℓ pp j ` ℓq log Yq 1

2

N
1
2

! pY
1
4 log Yq j`ℓplog Nq 1

2

N
1
2

.

�

Proposition 4.2. Let A ě 1 and Y “ plog NqA. Assume Hypothesis H. Then there exist positive

constants b0 “ b0pAq and c0 “ c0pAq such that for all complex numbers z1, z2 with |z1|, |z2| ď
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c0
log N

plog log Nq2 , we have

1

|F pNq|
ÿ

DPF pNq

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` z2

ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸

“ E
«

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqXn

n1`it
` z2

ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ff
` O

ˆ
exp

ˆ
´b0

log N

log log N

˙˙
.

Proof. Let k “ maxp|z1|, |z2|q and M “
”

log N

c log log N

ı
, where c is a suitably large positive constant.

We have

1

|F pNq|
ÿ

DPF pNq

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` z2

ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸

“
ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!

1

|F pNq|
ÿ

DPF pNq

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸ℓ
` E1,

(4.4)

where

E1 “
ÿ

j`ℓąM

z
j

1
zℓ

2

j!ℓ!

1

|F pNq|
ÿ

DPF pNq

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸ℓ
.

Observe that for Y “ plog NqA we have

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

ˇ̌
ˇ̌
ˇ ď

ÿ

nďY

Λpnq |λπpnq|
n

ď
˜

1

2

ÿ

nďY

Λpnq
n

` 1

2

ÿ

nďY

Λpnq |λπpnq|2

n

¸

ď C0 log log N,

where C0 is a positive constant that depends only on A and π. Hence,

E1 !
ÿ

j`ℓąM

k j`ℓ

j!ℓ!
pC0 log log Nq j`ℓ

ď
ÿ

nąM

p2C0k log log Nqn

n!
,

where we used the identity
řn

j“0

`
n

j

˘
“ 2n. By Stirling’s inequality 1

n!
ď

`
e
n

˘n
, we get

E1 ď
ÿ

nąM

ˆ
2C0ek log log N

n

˙n

.

Assuming k ď c0
log N

plog log Nq2 , where we choose c0 ď e´1

6cC0
, we deduce that

E1 !
ÿ

nąM

p6cc0C0qn ! e´M .(4.5)
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To analyze the main term of (4.4), note that, by Lemma 4.1, we have

1

|F pNq|
ÿ

DPF pNq

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸ℓ

“ E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl ` O

˜
pY

1
4 log Yq j`ℓplog Nq 1

2

N
1
2

¸

for j ` ℓ ď M. Hence, we have

1

|F pNq|
ÿ

DPF pNq

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` z2

ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸

“
ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!
E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl

` O

˜ ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!

pY
1
4 log Yq j`ℓplog Nq 1

2

N
1
2

¸
.

Observe that

ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!

pY
1
4 log Yq j`ℓplog Nq 1

2

N
1
2

ď pY
1
4 log YqMplog Nq 1

2

N
1
2

ÿ

nďM

p2kqn

n!

! Y´ǫM expp2kq

! exp

ˆ
´ǫA

c
log N ` 2c0

log N

plog log Nq2

˙
,

provided that N
1
2 " Yp1`ǫqM which is possible by choosing c suitably large. It follows that

1

|F pNq|
ÿ

DPF pNq

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` z2

ÿ

nďY

ΛpnqλπpnqχDpnq
n1´it

¸

“
ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!
E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl

` O

ˆ
exp

ˆ
´ǫA

c
log N ` 2c0

log N

plog log Nq2

˙˙
.

(4.6)

Now the main term in (4.6) can be written as

ÿ

j`ℓďM

z
j

1
zℓ

2

j!ℓ!
E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl

“ E
«

exp

˜
z1

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸
` z2

˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸¸ff
` E2,

(4.7)

where

E2 “ ´
ÿ

j`ℓąM

z
j

1
zℓ

2

j!ℓ!
E

»
–

˜ÿ

nďY

ΛpnqλπpnqXn

n1`it

¸ j ˜ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ℓfi
fl .
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Observe that

E2 !
ÿ

j`ℓąM

k j`ℓ

j!ℓ!
E

»
–

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqXn

n1`it

ˇ̌
ˇ̌
ˇ

j`ℓ
fi
fl

!
ÿ

j`ℓąM

k j`ℓ

j!ℓ!

¨
˝E

»
–

ˇ̌
ˇ̌
ˇ
ÿ

nďY

ΛpnqλπpnqXn

n1`it

ˇ̌
ˇ̌
ˇ

2p j`ℓq
fi
fl

˛
‚

1
2

.

Using Lemma 3.2 we get

E2 !
ÿ

mąM

p2kqm

m!
pC log mqm

.

By Stirling’s formula and our choices for k and M, we deduce that

(4.8) E2 !
ÿ

mąM

ˆ
6Ck log m

m

˙m

!
ÿ

mąM

ˆ
6Cc0 log N log M

Mplog log Nq2

˙m

!
ÿ

mąM

p6Ccc0qm ! e´M ,

where the last inequality follows from choosing c0 ď e´1

6cC
.

From (4.4), (4.5), (4.6), (4.7), and (4.8) we obtain the desired result. �

5. THE CHARACTERISTIC FUNCTION

We set

ΦF pNqpu, vq :“ 1

|F pNq|
ÿ

DPF pNq

exp

ˆ
iuℜ

ˆ
´L1

L
p1 ` it, πb χDq

˙
` ivℑ

ˆ
´L1

L
p1 ` it, πb χDq

˙˙

and

ΦApNqpu, vq :“ 1

|ApNq|
ÿ

DPApNq

exp

ˆ
iuℜ

ˆ
´L1

L
p1 ` it, πb χDq

˙
` ivℑ

ˆ
´L1

L
p1 ` it, πb χDq

˙˙
,

where ApNq is the set of fundamental discriminants introduced after Proposition 2.11. We also

define

Φrandpu, vq :“ E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs .
Theorem 5.1. Let A ě 1 be fixed. Under the assumption of the Hypothesis H, there exists a

positive constant c0 “ c0pAq such that for |u|, |v| ď c0
log N

plog log Nq2 , we have

ΦF pNqpu, vq “ Φrandpu, vq ` O

ˆ
1

plog log Nq2plog NqA

˙
.(5.1)

Moreover, the asymptotic formula (5.1) holds if we replace ΦF pNqpu, vq by ΦApNqpu, vq.

Proof. From Proposition 2.11 we know that for all but OpN
3
4 q elements D P F pNq, there are

positive constants δπ and ηπ such that for plog Nqηπ ! Y ! N3d2

, we have

(5.2) ´ L1

L
p1 ` it, πb χDq “

ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

` OpY´δπq.

Recall thatApNq is the set of elements for which (5.2) holds. Let 0 ď θ ă 1
2

be such that |λπppq| !
pθ (such θ exists because of (1.2)). Let 0 ă ǫ ă 1

2
´ θ, and choose 0 ă δ ă minp 1

2
´ θ ´ ǫ, δπq
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such that A`1
δ

ě ηπ, and set Y “ plog Nq A`1
δ . Applying (5.2) and the inequality |eia ´ eib| ď |b ´ a|,

we get

ΦF pNqpu, vq “ 1

|F pNq|
ÿ

DPApNq

exp

ˆ
iuℜ

ˆ
´L1

L
p1 ` it, πb χDq

˙
` ivℑ

ˆ
´L1

L
p1 ` it, πb χDq

˙˙

` OpN´ 1
4 q

“ 1

|F pNq|
ÿ

DPApNq

exp

˜
iuℜ

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸
` ivℑ

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸¸

` O
`
p|u| ` |v|qY´δ

˘
` OpN´ 1

4 q.

(5.3)

Notice that

exp
`
O pp|u| ` |v|qq Y´δ

˘
“ 1 ` O

`
p|u| ` |v|qplog Nq´pA`1q

˘

whenever |u| ` |v| ă plog NqA`1. If we assume further that |u| ` |v| ď c0
log N

plog log Nq2 for some c0 ą 0,

from (5.3), we get

ΦF pNqpu, vq “ 1

|F pNq|
ÿ

DPF pNq

exp

˜
iuℜ

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸
` ivℑ

˜ÿ

nďY

ΛpnqλπpnqχDpnq
n1`it

¸¸

` O

ˆ
1

plog log Nq2plog NqA

˙
.

Here we used the fact that |F pNqzApNq| “ OpN
3
4 q by Proposition 2.11.

Next, since |u|, |v| ď c0
log N

plog log Nq2 , Proposition 4.2 with z1 “ i
2
pu ` ivq and z2 “ i

2
pu ´ ivq gives

ΦF pNqpu, vq “ E
«

exp

˜
z1

ÿ

nďY

ΛpnqλπpnqXn

n1`it
` z2

ÿ

nďY

ΛpnqλπpnqXn

n1´it

¸ff

` O

ˆ
1

plog log Nq2plog NqA

˙
` O

ˆ
exp

ˆ
´b0

log N

log log N

˙˙(5.4)

for some b0 ą 0. Now employing Lemma 3.3 in (5.4) yields

ΦF pNqpu, vq “ E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs

` O

˜
1

plog log Nq2plog Nq A`1
δ

p 1
2

´θ´ǫq´1

¸
` O

ˆ
1

plog log Nq2plog NqA

˙
.

The desired error term is achieved since we assume that δ ă 1
2

´ θ ´ ǫ.
The same asymptotic formula holds for ΦApNqpu, vq since ΦF pNqpu, vq “ ΦApNqpu, vq ` OpN´ 1

4 q.
�

6. THE EXPONENTIAL DECAY

In this section we prove a decay bound for Φrandpu, vq. Recall that we are working under the

assumption that the distributions are 2-dimensional, hence, π fl π̃b |det|2it
. The following propo-

sition implies among other things that the distribution function associated with our random series

admits a smooth density function.
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Proposition 6.1. Let z “ u ` iv and assume that |λπppq| ! pθ for some 0 ď θ ă 1
4
. Let 0 ă ǫ ă

2 ´ 8θ be given. Then there exist positive constants Cǫ and aǫ depending only on ǫ such that for |z|
large enough we have

Φrandpu, vq ! exp p´Cǫ |z|aǫq .

Proof. By employing (3.1), we get that

Φrandpu, vq “
ź

p

Mppu, vq,

where

Mppu, vq “ 1

p ` 1
` p

2pp ` 1q exp

˜
i plog pqℜ

˜
dÿ

j“1

zα j,πppq
p1`it ´ α j,πppq

¸¸

` p

2pp ` 1q exp

˜
´i plog pqℜ

˜
dÿ

j“1

zα j,πppq
p1`it ` α j,πppq

¸¸
.

We observe that

ˇ̌
ˇ
ś

p Mppu, vq
ˇ̌
ˇ ď ś

pąX |Mppu, vq| since |Mppu, vq| ď 1 for all p. Moreover,

α j,πppq
p1`it ´ α j,πppq ´ α j,πppq

p1`it
“

α2
j,π

ppq
p1`itpp1`it ´ α j,πppqq “ O

ˆ |α j,πppq|2

p2

˙
.

Hence,

Mppu, vq “ 1

p ` 1
` p

2pp ` 1q exp

˜
i plog pqℜ

˜
dÿ

j“1

zα j,πppq
p1`it

¸¸

` p

2pp ` 1q exp

˜
´i plog pqℜ

˜
dÿ

j“1

zα j,πppq
p1`it

¸¸
` O

˜
plog pq|z|

p2

dÿ

j“1

|α j,πppq|2

¸
.

Next by using the Taylor expansion of the exponential function and simplifying the resulting

expressions, from the above we get

Mppu, vq “ 1 ´ p

2pp ` 1qplog pq2
ℜ

2

˜
dÿ

j“1

zα j,πppq
p1`it

¸

` O

˜
|z|4plog pq4

p4

dÿ

j“1

|α j,πppq|4 ` plog pq|z|
p2

dÿ

j“1

|α j,πppq|2

¸
,
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provided that plog pq
ˇ̌
ˇℜ

´řd

j“1

zα j,πppq

p1`it

¯ˇ̌
ˇ ă 1. Hence, for sufficiently large X, we have

ź

pąX

Mppu, vq “
ź

pąX

exp

˜
log

˜
1 ´ p

2pp ` 1qplog pq2
ℜ

2

˜
dÿ

j“1

zα j,πppq
p1`it

¸

` O

˜
|z|4plog pq4

p4

dÿ

j“1

|α j,πppq|4 ` plog pq|z|
p2

dÿ

j“1

|α j,πppq|2

¸ ¸¸

ď exp

˜
´

ÿ

pąX

p

2pp ` 1qplog pq2
ℜ

2

ˆ
zaπppq
p1`it

˙

` O

˜
|z|4

ÿ

pąX

plog pq4

p4

dÿ

j“1

|α j,πppq|4 ` |z|
ÿ

pąX

log p

p2

dÿ

j“1

|α j,πppq|2

¸ ¸
,

where in the above estimations we used logp1 ´ xq ď ´x for all 0 ă x ă 1. In order to estimate

this expression, we need to first consider the sum
ÿ

pąX

p

2pp ` 1qplog pq2
ℜ

2

ˆ
zaπppq
p1`it

˙
. To simplify

exposition, we will consider instead the sum
ÿ

pąX

plog pq2

p2
ℜ

2

ˆ
zaπppq

pit

˙
. Observe that

ÿ

pąX

plog pq2

p2
ℜ

2

ˆ
zaπppq

pit

˙
“ 1

2
|z|2

ÿ

pąX

plog pq2

p2
|aπppq|2

` 1

4
z

2
ÿ

pąX

plog pq2

p2`2it
aπppq2 ` 1

4
z2

ÿ

pąX

plog pq2

p2´2it
aπppq

2

.

Note that by Lemma 2.3 we have

1

2
|z|2

ÿ

pąX

plog pq2

p2
|aπppq|2 “ 1

2
|z|2

ˆ
log X

X

˙
` O

ˆ |z|2

X

˙
.

If π fl π̃ b |det|iτ
for any τ P R, then Lemma 2.4 gives

1

4
z

2
ÿ

pąX

plog pq2

p2`2it
aπppq2 ` 1

4
z2

ÿ

pąX

plog pq2

p2´2it
aπppq

2

! |z|2 plog Xqα
X

,

for some 0 ă α ă 1, and so

ÿ

pąX

plog pq2

p2
ℜ

2

ˆ
zaπppq

pit

˙
— |z|2 log X

X
.

If π – π̃ b |det|iτ0 for some τ0 P R, then Lemma 2.4 gives

1

4
z

2
ÿ

pąX

plog pq2

p2`2it
aπppq2 ` 1

4
z2

ÿ

pąX

plog pq2

p2´2it
aπppq

2

“ 1

4
z

2

ˆ
log X

p1 ´ 2it ` iτ0qX1´2it`iτ0

˙

` 1

4
z2

ˆ
log X

p1 ` 2it ´ iτ0qX1`2it´iτ0

˙
` O

ˆ |z|2

X

˙
.

In this case, we get

ÿ

pąX

plog pq2

p2
ℜ

2

ˆ
zaπppq

pit

˙
“ 1

2
|z|2 log X

X

ˆ
1 `ℜ

ˆ
z

z
¨ X2it´iτ0

1 ´ 2it ` iτ0

˙˙
` O

ˆ |z|2

X

˙
.
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Note that 1 `ℜ
´

z
z

¨ X2it´iτ0

1´2it`iτ0

¯
— 1 since τ0 ‰ 2t (notice that if τ0 “ 2t, then the distribution is

1-dimensional). Hence, in all cases, we have

ÿ

pąX

plog pq2

p2
ℜ

2

ˆ
zaπppq

pit

˙
— |z|2 log X

X
.(6.1)

Next, we note that

|z|4
ÿ

pąX

plog pq4

p4

dÿ

j“1

|α j,πppq|4 ! |z|4
ÿ

pąX

plog pq4

p4´4θ
! |z|4 plog Xq3

X3´4θ
(6.2)

and

|z|
ÿ

pąX

log p

p2

dÿ

j“1

|α j,πppq|2 ! |z|
ÿ

pąX

plog pq4

p2´2θ
! |z|

X1´2θ
.(6.3)

Thus, choosing X “ |z| 2`2ǫ
2´4θ in (6.1), (6.2) an (6.3) guarantees that

ź

p

Mppu, vq ď
ź

pąX

Mppu, vq ! expp´Cǫ |z| 2´8θ´2ǫ
2´4θ q,

for some positive constant Cǫ . Since 0 ď θ ă 1
4
, we have the desired result. �

7. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2 in the case when the distributions are 2-dimensional. Our

proof of Theorem 1.2 follows from Theorem 5.1 by an application of a 2-dimensional version of

Berry-Esseen inequality which we state in Proposition 7.1. The proof of Theorem 1.2 in the 1-

dimensional case follows the same argument and uses the more common 1-dimensional version

of Berry-Esseen inequality (see for example [23]). We denote by BpS q the collection of the Borel

sets of a topological space S .

Proposition 7.1. [28, Theorem 1] Let µ and ν be probability measures on pR2,BpR2qq with distri-

bution functions

Fpx, yq “ µ pp´8, xs ˆ p´8, ysq and Gpx, yq “ ν pp´8, xs ˆ p´8, ysq .
Suppose that G is partially differentiable, and put

A1 “ sup
px,yqPR2

Gxpx, yq and A2 “ sup
px,yqPR2

Gypx, yq.

Denote by f and g the characteristic functions associated with µ and ν respectively. Let pf pu, vq “
f pu, vq ´ f pu, 0q f p0, vq and pgpu, vq “ gpu, vq ´ gpu, 0qgp0, vq. Then we have

sup
px,yqPR2

|Fpx, yq ´ Gpx, yq| ď 2

p2πq2

ż R

´R

ż R

´R

ˇ̌
ˇ̌
ˇ

pf pu, vq ´ pgpu, vq
uv

ˇ̌
ˇ̌
ˇ du dv

` 2

π

ż R

´R

ˇ̌
ˇ̌ f pu, 0q ´ gpu, 0q

u

ˇ̌
ˇ̌ du ` 2

π

ż R

´R

ˇ̌
ˇ̌ f p0, vq ´ gp0, vq

v

ˇ̌
ˇ̌ dv

`
ˆ

3
?

2 ` 4
?

3 ` 24

π

˙
2pA1 ` A2q

R

for any R ą 0.
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Recall thatApNq is the subset of F pNq for which (2.11) holds. We define the probability space

pµApNq,C,BpCqq where the probability measure µApNqpAq is given by

µApNqpAq “ 1

|ApNq|
ÿ

DPApNq

1A

ˆ
´L1

L
p1 ` it, πb χDq

˙
.

We also define a probability space pµrand,C,BpCqq, where the probability measure µrand is given by

µrandpAq “ P p´ Ldp1 ` it, π,Xq P Aq .
Let FApNqpx, yq and Grandpx, yq be the distribution functions associated with µApNq and µrand respec-

tively. Their characteristic functions are given by

ΦApNqpu, vq “ 1

|ApNq|
ÿ

DPApNq

exp

ˆ
iuℜ

ˆ
´L1

L
p1 ` it, πb χDq

˙
` ivℑ

ˆ
´L1

L
p1 ` it, πb χDq

˙˙

and

Φrandpu, vq “ E rexp piuℜ p´ Ldp1 ` it, π,Xqq ` ivℑ p´ Ldp1 ` it, π,Xqqqs .
It follows from Proposition 6.1 that the distribution function Grandpx, yq admits a smooth density

function Mrandpu, xq (see [1, Theorem 2.1]) such that

Grandpx, yq “
ż x

´8

ż y

´8

Mrandpu, vq du dv.

Hence, Grandpx, yq is partially differentiable. Moreover, A1 “ sup
px,yqPR2

Gxpx, yq and A2 “ sup
px,yqPR2

Gypx, yq

are finite in view of the identity ż ż

R2

Mrandpu, vq du dv “ 1.

Now we have all the tools to prove our main theorem.

Proof of Theoem 1.2. Applying Proposition 7.1 with µ “ µApNq and ν “ µrand by identifying C

with R2, we get

sup
px,yqPR2

ˇ̌
FApNqpx, yq ´ Grandpx, yq

ˇ̌
!

ż R

´R

ż R

´R

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv

`
ż R

´R

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du

`
ż R

´R

ˇ̌
ˇ̌ΦApNqp0, vq ´ Φrandp0, vq

v

ˇ̌
ˇ̌ dv ` 1

R

(7.1)

for any R ą 0. We take R “ c0
log N

plog log Nq2 as in Theorem 5.1. We have

I1 “
ż R

´R

ż R

´R

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv

“
ż ż

r´R,Rs2zCprq

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv

`
ż ż

Cprq

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv,

(7.2)

where we take r “ 1
plog NqB for some B ą 1 and Cprq “ tpu, vq P r´R,Rs2 : |u| ď r or |v| ď ru.
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We set

I11 “
ż ż

r´R,Rs2zCprq

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv.

Observe that

I11 !
ˆ

log

ˆ
R

r

˙˙2

sup
pu,vqPr´R,Rs2

ˇ̌
ˇ{ΦApNqpu, vq ´ zΦrandpu, vq

ˇ̌
ˇ .

Moreover, we haveˇ̌
ˇ{ΦApNqpu, vq ´ zΦrandpu, vq

ˇ̌
ˇ

“
ˇ̌
ΦApNqpu, vq ´ ΦApNqpu, 0qΦApNqp0, vq ´ Φrandpu, vq ` Φrandpu, 0qΦrandp0, vq

ˇ̌

ď
ˇ̌
ΦApNqpu, vq ´ Φrandpu, vq

ˇ̌
`

ˇ̌
ΦApNqpu, 0qΦApNqp0, vq ´ Φrandpu, 0qΦrandp0, vq

ˇ̌

ď
ˇ̌
ΦApNqpu, vq ´ Φrandpu, vq

ˇ̌
`

ˇ̌
ΦApNqpu, 0q ´ Φrandpu, 0q

ˇ̌
`

ˇ̌
ΦApNqp0, vq ´ Φrandp0, vq

ˇ̌

! 1

plog NqA
,

where the last estimate follows from Theorem 5.1. Hence,

(7.3) I11 ! 1

plog NqA

˜
log

˜
c0

log N

plog log Nq2

plog NqB

¸¸2

! plog Nq´Aplog log Nq2.

Next we set

I12 “
ż ż

Cprq

ˇ̌
ˇ̌
ˇ
{ΦApNqpu, vq ´ zΦrandpu, vq

uv

ˇ̌
ˇ̌
ˇ du dv

in (7.2). We have

{ΦApNqpu, vq “ pΦApNqpu, vq ´ ΦApNqpu, 0q ´ ΦApNqp0, vq ` 1q ´ pΦApNqpu, 0q ´ 1qpΦApNqp0, vq ´ 1q

“
ż ż

R2

peixu ´ 1qpeiyv ´ 1q dµApNqpx, yq

´
ˆż ż

R2

peixu ´ 1q dµApNqpx, yq
˙ ˆż ż

R2

peiyv ´ 1q dµApNqpx, yq
˙
.

Notice that eiθ ´ 1 ! |θ| for any θ P R. Thus,

{ΦApNqpu, vq ! |uv|
ż ż

R2

|xy| dµApNqpx, yq ` |uv|
ˆż ż

R2

|x| dµApNqpx, yq
˙ ˆż ż

R2

|y| dµApNqpx, yq
˙

! |uv|
ż ż

R2

px2 ` y2q dµApNqpx, yq ` |uv|

¨
˝ 1

|ApNq|
ÿ

DPApNq

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌
2

˛
‚

! |uv|,
where the last estimate follows from Lemma 2.14. Similarly, we haveΦrandpu, vq ! |uv|. It follows

that

(7.4) I12 ! measpCprqq ! rR “ plog Nq´B log N

plog log Nq2
! plog Nq´B`1.

Hence, by (7.3) and (7.4), we have

(7.5) I1 ! maxpplog Nq´B`1, plog Nq´Aplog log Nq2q.
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Let us now estimate

I2 “
ż R

´R

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du.

We have

I2 “
ż ´r

´R

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du `

ż R

r

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du

`
ż r

´r

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du.

Observe that ż ´r

´R

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du `

ż R

r

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du

! log

ˆ
R

r

˙
sup

uPr´R,Rs

ˇ̌
ΦApNqpu, 0q ´ Φrandpu, 0q

ˇ̌

! plog Nq´A log log N.

Also notice that

ΦApNqpu, 0q ´ Φrandpu, 0q “
ż ż

R2

peixu ´ 1q dµApNqpx, yq ´
ż ż

R2

peixu ´ 1q dµrandpx, yq

! |u|
ˆż ż

R2

x2 dµApNqpx, yq
˙ 1

2

` |u|
ˆż ż

R2

x2 dµrandpx, yq
˙ 1

2

! |u|.
For the last estimate, we used the bound

1

|ApNq|
ÿ

DPApNq

ℜ
2

ˆ
L1

L
p1 ` it, πb χDq

˙
! 1,

which follows from Lemma 2.14. Therefore,
ż r

´r

ˇ̌
ˇ̌ΦApNqpu, 0q ´ Φrandpu, 0q

u

ˇ̌
ˇ̌ du ! r “ plog Nq´B,

and so

(7.6) I2 ! maxpplog Nq´B, plog Nq´A log log Nq.
Similarly, we have

(7.7) I3 ! maxpplog Nq´B, plog Nq´A log log Nq.
Taking A “ B “ 2 and applying the estimates (7.5), (7.6), and (7.7) in (7.1) give

sup
px,yqPR2

|FApNqpx, yq ´ Grandpx, yq| ! plog log Nq2

log N
.

Next let R “ ra, bs ˆ rc, ds, then we can write

|µApNqpRq ´ µrandpRq| ď |FApNqpb, dq ´ Grandpb, dq| ´ |FApNqpa, dq ´ Grandpa, dq|
´ |FApNqpb, cq ´ Grandpb, cq| ` |FApNqpa, cq ´ Grandpa, cq|.

It follows that

sup
RĂC

|µApNqpRq ´ µrandpRq| ! plog log Nq2

log N
,(7.8)
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where R varies over all rectangles in C with sides parallel to the axes.

Finally sinceApNq “ F pNqzEpNq and, by Theorem 2.9, EpNq ! N
3
4 , we have

sup
RĂC

|µF pNqpRq ´ µrandpRq| “ sup
RĂC

ˇ̌
ˇ̌
ˇ̌

1

|F pNq|
ÿ

DPEpNq

1R

ˆ
´L1

L
p1 ` it, πb χDq

˙ˇ̌
ˇ̌
ˇ̌

` sup
RĂC

ˇ̌
ˇ̌
ˇ̌
|ApNq|{|F pNq|

|ApNq|
ÿ

DPApNq

1R

ˆ
´L1

L
p1 ` it, πb χDq

˙
´ µrandpRq

ˇ̌
ˇ̌
ˇ̌

! N´ 1
4 ` sup

RĂC

ˇ̌
ˇ̌
ˇ̌

1

|ApNq|
ÿ

DPApNq

1R

ˆ
´L1

L
p1 ` it, πb χDq

˙
´ µrandpRq

ˇ̌
ˇ̌
ˇ̌ .

(7.9)

Now from (7.8) and (7.9), we conclude that

sup
RĂC

|µF pNqpRq ´ µrandpRq| ! plog log Nq2

log N
.

�

8. PROOF OF THEOREM 1.5

In this section, we prove Theorem 1.5. We need the following lemmas, the second of which

(Lemma 8.2) asserts that the smooth density function Mrand associated with µrand is positive. For

the proof of Lemma 8.2, we follow in parts the idea sketched in the remark on [16, page 60]. We

use the notion of convolution and infinite convolution of distribution functions, the definitions of

which can be found in [16, Sections 2, 4] or [1, Section 2] among other references.

Lemma 8.1. Let
ř

xn be a conditionally convergent series of real numbers. Let α and ǫ ą 0 be

fixed. Then there exists a series
ř

yn, where yn P t0, xn,´xnu such that

|
ÿ

yn ´ α| ă ǫ.
Proof. Let α ą 0 and 0 ă ǫ ă 2α be given. By our assumptions, there exist positive integers k

and N large enough such that

α ´ ǫ
2

ď
kÿ

n“N

|xn| ď α` ǫ
2

and

´ ǫ
2

ď
8ÿ

n“k`1

xn ď ǫ
2
.

We get the desired result by choosing

yn “

$
’&
’%

0 if 1 ď n ď N ´ 1,

|xn| if N ď n ď k,

xn if n ě k ` 1.

If α ă 0, we get the result by applying the previous argument to ´α. Finally, if α “ 0 we set

yn “
#

0 if 1 ď n ď N ´ 1,

xn if n ě N,

where N is chosen so that ´ǫ ď
ř8

n“N xn ď ǫ. �
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Lemma 8.2. Let Xp be a sequence of discrete random variables such that

PpXp “ aq “
#

ap if a “ ˘1,

bp if a “ 0,

where 0 ă ap, bp ă 1 and 2ap ` bp “ 1. Let f pzq “
ř8

k“1 lkz
k be an analytic function in a disk

|z| ă ρ. Consider the random series ÿ

p

λp f prpXpq,

where the sequences tλpu and trpu are such that 0 ă |rp| ă ρ and λp f prpXpq P R. Assume that

this random series is almost surely convergent with distribution function F. In addition, assume

that

F “ ˚pFp “ p˚pPP1
Fpq p˚pPP2

Fpq
is the infinite convolution of the distribution functions attached to the random variables λp f prpXpq,

and P1 and P2 are two disjoint subsets of primes such that P1 Y P2 is the set of all prime numbers.

Assume that F, ˚pPP1
Fp, and ˚pPP2

Fp are absolutely continuous with continuous density functions

h, h1 and h2 respectively. If
ř

p

ř8
k“1 |lkλprk

p| is divergent, then hpxq ą 0 for all x P R.

Remark 8.3. Note that a sufficient condition for the divergence of
ř

p,kě1 |lkλprk
p| is that l1 ‰ 0,ř

p |λprp| “ 8, and
ř

p,kě2 |lkλprk
p| ă 8.

Proof of Lemma 8.2. Since
ř

p,kě1 |lkλprk
p| is divergent and

ř
p λp f prpXpq is almost surely conver-

gent, then #ÿ

p

λp f prpXpq ă 8, Xp P t´1, 0, 1u
+

is dense in R by Lemma 8.1. Thus, by [15, Proposition B.10.8], the support of
ř

p λp f prpXpq is

all of R. Therefore,
şb

a
hpxq dx ą 0 for all a, b P R with a ă b. Hence, hpuq is not identically

zero on any interval pa, bq. Now since
ř

p

ř8
k“1 |lkλprk

p| is divergent, we can assume without loss

of generality that
ř

pPP1

ř8
k“1 |lkλprk

p| is divergent as well. By another application of Lemma 8.1

and [15, Proposition B.10.8], we have that h1puq is not identically zero on any interval pa, bq. By

our assumption, we have

hpxq “
ż

R

h1px ´ uqh2puq du.

Since
ş
R

h2puq du “ 1 and h2 is continuous, there is an interval pc, dq such that h2puq ą 0 on pc, dq.

Since also h1px ´ uq ą 0 on some subinterval pc1, d1q of pc, dq, then

hpxq “
ż

R

h1px ´ uqh2puq du ě
ż d1

c1

h1px ´ uqh2puq du ą 0.

Thus, hpxq ą 0 for any x P R. �

Applying this lemma to the random series

´Ldp1 ` it, π,Xq “
ÿ

p

log p

dÿ

j“1

α j,πppq

p1`it Xp

1 ´ α j,πppq

p1`it Xp

yields:

Corollary 8.4. Let t P R be fixed, and let π be a cuspidal automorphic representation of GLdpAQq
with unitary central character such that π – π̃b |det|2it

. Then ´Ldp1 ` it, π,Xq has an absolutely

continuous distribution with a positive density function.
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We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let η “ ηpNq be a positive parameter which will be chosen so that ηpNq Ñ
0 as N Ñ 8. Let

ΨNpηq “
ˇ̌
ˇ̌
"

D P F pNq :

ˇ̌
ˇ̌L1

L
p1 ` it, πb χDq

ˇ̌
ˇ̌ ď η

*ˇ̌
ˇ̌ .

By Theorem 1.2, we have

ΨNpηq
|F pNq| “ µrand pp´η, ηqq ` O

ˆplog log Nq2

log N

˙
.

Let Mrand be the smooth density function associated with µrand. By Corollary 8.4, we know that

Mrandpxq ą 0 for all x P R. It follows that

µrand pp´η, ηqq “
ż η

´η

Mrandpxq dx " η.

Choosing η “ C
plog log Nq2

log N
for some large enough positive constant C yields

ΨNpηq
|F pNq| " plog log Nq2

log N
.

Hence, we get mN ! plog log Nq2

log N
as desired. �
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[2] M. Avdispahić and L. Smajlović, On the Selberg orthogonality for automorphic L-functions, Archiv der Mathe-

matik 94 (2010), 147–154.
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