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VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES OF QUADRATIC
TWISTS OF AUTOMORPHIC L-FUNCTIONS

AMIR AKBARY AND ALIA HAMIEH

ABSTRACT. Letd € N, and let 7 be a fixed cuspidal automorphic representation of GL,(Ag) with
unitary central character. We determine the limiting distribution of the family of values —Lf/(l +
it,m ® xp) as D varies over fundamental discriminants. Here, 7 is a fixed real number and yp is the
real character associated with D. We establish an upper bound on the discrepancy in the convergence
of this family to its limiting distribution. As an application of this result, we obtain an upper bound

on the small values of LT/ (1,7 ® xp)| when r is self-dual.

1. INTRODUCTION

Bohr and Jessen showed in [3] that the values log £ (o + it) for a fixed o > % as t varies in R have
a limiting distribution with a continuous density in the complex plane. In [16], Jessen and Wintner
revisited this problem from a more general perspective using ideas from probability theory and
Fourier analysis machinery, which allowed them to reveal detailed information on the distribution
function in Bohr-Jessen’s theorem (see [16, Theorem 19]). In recent years, this line of research
was pursued further by many authors studying the distribution of log £ (o + if) in the critical strip
(e.g. [8], [9], [18] and [21]). We focus here on the work of Lamzouri, Lester, and Radziwitt [21]
in which the authors investigate the discrepancy between the distributions of log {(o- + if) and that
of an adequately chosen random series log (o, X). More precisely, let {X,}, xime be a sequence
of independent random variables uniformly distributed on the unit circle. Consider the random
Euler product {(0,X) =[], (1 - X, p~7)~" which converges almost surely for o > 1. We can
ask whether (o, X) is a good model for the Riemann zeta function. The authors of [21] answer

this question affirmatively.

Theorem 1.1. [21, Theorem 1.1] Let % < o < 1 be fixed. Then we have

1
Dy (logZ;T) = sup [Py (log (o + i) € R) — P (log (07 X) € R)| « .
RcC (log T)a-
For o =1, we have
loglog T
D, (logZ: T) := sup [Br (log (1 + if) € R) — P (log {(1,X) € R)| « —o2 .
ReC logT

Here R varies over all rectangles in C with sides parallel to the axes, and
1
Pr(f(t) e R) = Tmeas{T <t <2T: f(t) e R}.
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This improves on the result in [8] where the authors prove that for any € > 0, we have

D,(log;T) « %,

(log T) 78 —€

provided that 5 1 < o < 1. Recently Xiao and Zhai extended the result of [21], for % <o<lto
the case of L- functlons attached to Hecke eigenforms of level 1.

In another direction, Mine [24] studied the discrepancy D;(log Ly; ¢) in the value distribution
at a fixed point s = o + it of averages and harmonic averages of the values of logarithm of the
L-functions L(s) attached to the primitive cusp forms f of weight 2 and prime level ¢, as g — .
In [24, Theorem 1.4] it is proved that

(loglogg)/logg if o>1,
Dy(logLs; q) < < (loglogg)(logloglogg)/logq if o =1,
1/(logq)” if 3 <o<l,

generalizing a special case of a 1-dimensional result of Cogdell and Michel [4, Corollary 1.16]
and a 1-dimensional discrepancy estimate of Golubeva [5, Theorem 1]. The reader is referred to
[24, Equations (1.16) and (1.17)] for the exact definition of D,(log Ls; ).

Inspired by studying the small values of the Euler-Kronecker constants of the Cyclotomic fields
Q(¢,), Lamzouri and Languasco [20] proved a discrepancy estimate for the distribution of & (1 X)
where y varies over non-trivial Dirichlet characters mod ¢ (prime). By defining a suitable random
series Ld(1, X) associated to a certain random sequence X and setting

!/
Dl(L)’(/L; q) = supql1 {){#Xomodq LZ(I,X)GR} —P(Ld(1,X) e R,
where the supremum is taken over all rectangles of the complex plane with sides parallel to the
coordinate axes, they proved in [20, Theorem 1.5] that

(loglog )*
Di (L, /Ly q) <
(/L) logq

, asq — o0; g prime.

In [7], Hamieh and Mcclenagan, determined an asymptotic distribution function for the values

(o' Xxp) as D varies over all fundamental discriminants D, with |D| < N, for a fixed real number
% < o < 1, removing the dependence on GRH in a result of Mourtada and Murty [25]. Here
XD = (9) is the Kronecker symbol for D, and L(s, xp) is the associated Dirichlet L-function. In
addition, in [7, Theorem 1.3] they proved

' loglog N\ “
Dy (L, /Ly,; N) < (W) :

where /
L
D (L /L) = sup o (- 0o) < 2) ~ P (Ll ) < )
zeR
is the discrepancy between the value-distribution of quadratic twists and that of a random series
Ld(co, X) attached to a random sequence X described in the introduction of [7]. Here
!/

B (Sl <) = o [{DeF ) Tl <2

where F (N) denotes the collection of the fundamental discriminants D with |[D| < N. Note that
we have (see [6, page 1017])

F(N)| = %N +0 (N%> .
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In this paper, we consider the analogous problem for logarithmic derivatives of quadratic twists
of automorphic L-functions. Let 7 be a cuspidal automorphic representation of GL,(Ag) with uni-
tary central character. Let L(s, ) = Y-, a-(n)n"* be the associated Dirichlet series. In particular,
we have

-1
(1.1) HH( “’" ) ,
r j=1

where a;(p)’s are the Satake parameters of . Thus, a,(p) = Z?: L @z(p). By aresult of Rudnick
and Sarnak [27], we know that

(1.2) @ie(p)] < p*
forall je {1,2,...,d}. We set

d
aj.(p)" ifn=p",

(1.3) A (n) = ; !
0 otherwise.

Corresponding to a representation 7, there is a dual representation 7. The collection of the Satake
parameters for 77 coincides with the collection of the complex conjugates of the Satake parameters
for 7, and thus az(n) = a,(n). We call a cuspidal representation 7 self-dual if © ~ 7.

For R(s) > 1 and a fundamental discriminant D € F (N), we set

(1.4) L(s,m®@xp) = i —aﬂ(n)’jgl)(”)
and

L o A1) Ax(n)xn(n)
(4> — Tl m@xn) = 3 =

These functions have meromorphic continuations to the entire complex plane.
Let R be a rectangle in C with sides parallel to the coordinate axes. We denote by 1 () the
characteristic function of R. For € R we define

L 1 L
Py — +it,t® ER) 1 (—— 1+it,7® )
N( L( XD) |7_~( )| DE;N) R L( XD)

Thus, Py ( —L ~(1+it,mr®@xp) € R) is the proportion of the fundamental discriminants D for which

——( + it, n@XD)ER

Let us now introduce the probabilistic random model which we use to approximate the distri-
bution of the arithmetic values —%(1 + it,m ® xp) described above. Consider the sequence of

independent random variables {X,},, prime given by

r fg—
P(X :a): D) ifa=+1,
g 5 ifa=0.
Weset X, =[], X,V,"("), where v, (n) is the p-adic valuation of n. The sequence X = {X, },en Was

first introduced in [6] for the purpose of studying the distribution of the extreme values of L(1, xp)
as D varies over all fundamental discriminants. We denote the underlying probability measure on
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the sample space associated to X by P. For a representation 7 as above and ¢ € R, we associate the
random series

~Ld(1 + it X) = i A ()X,

n=1
Our main theorem gives an upper bound on the discrepancy between the distribution of the
random series —Ld(1 + it,7,X) and that of —£(1 + it,7 ® yp) as D varies in F(N). Notice
thatif 1 = 7 ® |det|2”, then the distribution under consideration is 1-dimensional since the values
involved are necessarily real. To see this, observe that for all primes p and all m € N, we have

nH—it

d d oo
A(p")p™" = T Y aua(p) = p Y (aj,n(p)pz”) = L(p™)p™,
j=1 j=1
which implies that A,(p™)p~™" € R. Otherwise, our distributions are 2-dimensional. We denote
the discrepancy by Dy (Lig,, /Lroy,: N) and define it as

sup
xeR

L/
Py <_z(1 +it,m® xp) < x) —P(—Ld(1 + it, 7, X) < x)

in the 1-dimensional case, and

sup
RcC

2

Py <_%(1 +it,T@ xp) € R) —P(—Ld(1 + it,n,X) € R)

where R varies over all rectangles in C with sides parallel to the coordinate axes, in the 2-dimensional
case.

Theorem 1.2. Let n be a fixed cuspidal automorphic representation of GL4(Aq) with unitary
central character. Suppose that the Satake parameters of © satisfy |a;(p)| < p® with0 < 6 < 1
forall j=1,2,---,d. Then we have
. _ (loglog N)?
Dl+it (LIT@XD/L”@XD’ N) < W

It is clear from (1.2) that the above theorem holds if d = 1. Moreover, it holds if d = 2 since
0 < 67—4 by [14]. Indeed, we get the following automorphic analogue of [21, Theorem 1.1] for
logarithmic derivatives.

Corollary 1.3. Let 7 be a fixed cuspidal automorphic representation of GL1(Aq) or GLy(Aq) with
unitary central character. Then we have

(loglog N)?
logN

Remarks 1.4. (i) We give the proof of Theorem 1.2 only in the 2-dimensional case, i.e., 1 %
T® ]det\%t. The proof in the 1-dimensional case follows analogous arguments.

(i1) The condition on the bound for the Satake parameters in Theorem 1.2 is needed in the proof of
the exponential decay for the characteristic function of our random series (Proposition 6.1) which
is a crucial ingredient in our argument. In some other parts of the argument, we only require
Hypothesis H (see Section 2.1) which follows readily from the assumed bound on the Satake
parameters in our main Theorem.

(iii) Similar results can be obtained for the values of log L(1 + it, 7 ® xp) by following the proof
of Theorem 1.2.

(iv) By examining the proof of Theorem 1.2, we can see that its assertion also holds when 1 + it
is replaced by o + it with 1 — ¢, < o < 1 for some constant ¢, > 0. The expected discrepancy

Di+it (Ligyy/Lasyni N) <
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bound in this case would be of size O ((%) ) The lower bound on o is imposed by the

zero density estimate used in the proof (see Lemma 2.9 and Proposition 2.11) and the domain of
convergence of — Ld(s, m, X).

(v) In some special cases, Corollary 1.3 holds with a discrepancy bound of size O ((%)U)
for a range of o that is wider than the one indicated in the previous remark when 1 + it is replaced
by o + it. In fact, one can fix o to be much closer to % if a suitable zero density result is available
for the family L(s,7 ® yp). For instance, [10, Theorem 3] was used in [7] to prove a discrepancy
result for —%(o: xp) (which can be considered as a special case of Corollary 1.3) that is valid for
any % < o < 1. Using the zero density theorem in [26], one could achieve a similar result for

—Lf'(o', f ® xp) when f is primitive cusp form of weight 2.

We also use Theorem 1.2 to derive an asymptotic bound for the small values of } % (1 +it,m®@xp) ‘
when 7 =~ 7 ® |det|*". The following result is an analogue of [7, Corollary 1.4 ], and [20, The-

orem 1.1] where the authors investigate the small values of |£ (1, x)| for non-principal Dirichlet
characters y modulo ¢, as ¢ — o0 over the primes.

Theorem 1.5. Let t € R be fixed, and let m be a cuspidal automorphic representation of GL4(Ag)
with unitary central character such that = = 7®|det|*". Suppose that |a;(p)| < p’ with0 < 6 < :
L/

z(l + it,ﬂ®)(D)D. As N — oo, we have

forall j=1,2---,d. Let my = min (
DeF (N)

More precisely, there are at least N(loglog N)?/log N for which
(loglog N)?
logN

!/

L
z(l +it,T® xp)| <

Remark 1.6. We derive our upper bound for the small values of ‘%(1 +it,m1® )(D)‘ by an applica-
tion of Theorem 1.2 and using the positivity at the origin of the density function of the associated
distribution. The assumption of these two facts together will result in

) < DH-!'I (L:T®XD/L7T®XD;N)

/

L
z(l +it,Tt® xp)

my (1 + it) := Dg;i(r/lv) (

for 1-dimensional distributions and
my(1 + it) « \/ Ditir (Lygyy/Lrgin: N)

for 2-dimensional distributions. The restriction to 7 =~ 7 ® \det]m in Theorem 1.5 is due to the fact
that, in Lemma 8.2, we are able to prove the positivity of the density function for 1-dimensional
distributions only.

The proof of Theorem 1.5 is given in Section 8 as an application of Theorem 1.2. While our
proof of Theorem 1.2 follows the approach devised in [21], we deviate from their method in the
last step of the proof. In order to avoid the need for a large deviation result for our family, we
employ a 2-dimensional version of the classical Berry-Esseen inequality instead of the Beurling-
Selberg functions used in [21, Section 6] to relate the distribution functions under consideration
to their characteristic functions. In Section 7, we show how this 2-dimensional Berry-Esseen
inequality yields an upper bound for the discrepancy between Py (—%(1 +it,t®xp) € R) and
P (—Ld(1 + it,7, X)) in terms of the difference between their associated characteristic functions.
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In doing so, we adapt some of the ideas outlined in [24, Section 4.3]. In Section 6 we prove
a rapid decay estimate for the characteristic function of the random series — Ld(1 + it, 7, X)
which is crucial for applying the Berry-Esseen inequality. In Section 5, we prove Theorem 5.1
which shows that the characteristic function of the joint distribution of R (—%(1 +it,m® )(D))

and J (—%(1 +it,m1® )(D)) can be very well approximated by the corresponding characteristic
function of the random series — Ld(1 + it, , X). The point of departure in the proof of Theorem
5.1 1is a result asserting that —%(1 + it,m1 ® xp) can be approximated by a short Dirichlet polyno-
mial outside a set of fundamental discriminants D of size o(N). The proof of this approximation,
although mostly standard, entails few complications arising from the fact that we do not assume
the Generalized Ramanujan Conjecture in our work. We deal with these subtleties by employing
a truncated Perron’s formula for automorphic L-functions [22, Theorem 2.1], a Brun-Titchmarsh
type inequality [30, Theorem 2.4], and a recent zero density estimate [12, Theorm 1.1]. In view
of this result, Theorem 5.1 can be extracted from a key result, Proposition 4.2, that compares the
characteristic functions of short Dirichlet polynomials of the form

Z A(n)ﬂﬂl(n>XD(n) and Z A(n)/l,r(.n)X,,.
n +it nl+ll
n<Y n<Y

(1.6)

In Section 4, we prove Proposition 4.2. More precisely, we show that

1 A(n)A(n)yp(n An/l,r—nDn
) %‘”‘P(ZIZ bt , 5 <>n5_gx<>)

DeF ( n<Y n<Y

can be well approximated by

A(n)A(n)X, A(n)2:(n)X,
E [exp <Z1 ’;T + Z2;T>]
log N
(loglog N )2
range of |z;| and |z,| in Proposition 4.2 would lead to an improvement in the discrepancy bound in
Theorem 1.2. In view of the Taylor expansion of the exponential function, the proof of Proposition
4.2 requires upper bounds of integral moments of the partial sums (1.6) which we establish in

Section 2 and Section 3.

for all complex numbers z;, 7, satisfying |z;], |z2| « . We mention here that widening the

Conventions and Notation. Given two functions f(x) and g(x), we shall interchangeably use the
notation f(x) = O(g(x)) and f(x) < g(x) to mean that there exists M > 0 such that |f(x)| <
M|g(x)| for all sufficiently large x. We write f(x) = g(x) to mean that the estimates f(x) « g(x)
and g(x) « f(x) hold simultaneously. Sometimes we will use the notation f(x) «, g(x), or
alternatively f(x) = O,(g(x)) to emphasize the dependence of the O-constant on the parameter .
Most of our O-constants depend on 7 and ¢, although we sometimes drop the subscript to simplify
the exposition. We use the notation f(x) = o(g(x)) if lim,_, f(x)/g(x) = 0. Finally, the letter p
will always be used to denote a prime number.

Acknowledgements. The authors would like to thank Jesse Thorner and Asif Zaman for useful
correspondences related to this work.

2. PRELIMINARY RESULTS

In this section, we introduce some notation and preliminary results pertaining to the arithmetic
setting of automorphic L-functions, quadratic twists and logarithmic derivatives.
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2.1. Prime Number Sums. The Generalized Ramanujan Conjecture (GRC) for a cuspidal auto-
morphic representation  of GL,;(Aq) asserts that |, ,(p)| < 1forall j = 1,...,d and all primes p.
The following condition which follows from GRC is known as Hypothesis H (see [27, page 281]).

Hypothesis H: For any fixed k > 2, we have
‘2

(log p)? ‘/l,,
Z - < 0.
p
Observe that Hypothesis H holds if |a;,(p)| < p® with0 < 6 < { forall j = 1,2,---,d, which
is the assumption we make in Theorem 1.2. In this work we make frequent use of the following

prime number theorem for automorphic representations.

p

Theorem 2.1. Let & and 7’ be cuspidal automorphic representations of GL,(Aq) and GLy(Ag)
respectively, and assume that they satisfy Hypothesis H. Set

en,n’(u) = Z (log p)/ln(p)/ln’ (p)

Then for any 0 < € < 1, we have

w40 ( b ) if ' ~ @ |det|™ for some 1o € R,

1+ito log u

2.1 O (1) =
2.1 o (u) 06(

i 15) ifr 27 ® ]det\” forany T € R.

(log u) dd”

Ifd,d < 4, then (2.1) is true without assuming Hypothesis H.
Remark 2.2. The first case of Theorem 2.1 can be found in [31, Theorem 3]. It follows from
[22, Theorem 2.3] and uses Hypothesis H to bound the contributions of composite prime powers
in the sum >, _ A(n)A;(n)A(n) by O (lol;u
dual in [22] and [31] can be removed by applying the recent zero-free region result of Humphries
and Thorner [11, Theorem 2.1]. The second case of Theorem 2.1 can be derived from [17, The-

orem 2.6] by using Hypothesis H to bound the contribution of composite prime powers. We note
that the exponent L=< can be replaced by 1 if 7 or 7’ is self-dual [31, Theorem 3].

). The condition that at least one of 7 and 7’ is self

n<u

i@
Using this theorem, we derive the following lemmas.

Lemma 2.3. Assume Hypothesis H. As X — oo, we have

Z (log p)? () = lo}g(X e ()1_() .

p>X p

Proof. The proof follows from Theorem 2.1 and an application of Abel’s summation formula. O

Lemma 2.4. Assume Hypothesis H. The following assertions hold.
(i) fr~7® ]det\h0 for some 1y € R, then

(logp)®  » log X 1
- /lﬂ = - 0 N >
Z 24-2it (p) (1 —2it 4 iTO)X1721t+l‘ro + X

p>X p

as X — 0.
(ii) If 1 % 7 ® |det|” for any T € R, then there exists 0 < a < 1 such that

3 (log p)? (o) < (log X)*

2+2it X ’

p>X p
as X — oo.
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Proof. Let 1, = n ® |det| ™" and 7, be its dual representation. Then Az (p) = A, (p) = A.(p)p".
We have

On, 7 (1) = Z(log D)Ax, (p)m = Z(logp)/ln(p)zp_Zi’.

p<u p<u

By Theorem 2.1, for any 0 < € < 1, we have

Lt 0 () itr =@ del™ forsome < K,
O, (1) = > [ (log p)az(p)*p " = / :
o = 0. (( ")I_E) if 7 % %@ |det|” forany T € R.
log u) dd’

If 7 ~ 7 ® |det|™ for some 7 € R, we have

(log p)? logu R 2logu — 1
IR LO I L PR [ RN ELL LI

p>X p X X u

IOgX Xl+irof2it X
= - —— 10
X2 \ 1 +irg—2it log X
e 1+ito—2it 21 -1
x \ 1+ ity —2it log u u’

_ log X Lo 1
(1 + ity — 2it) X iro+2ir X))’
(

If 7 % 7 ®|det|”, we have

log p)? 1 R 2logu — 1
3 S A0 = | “E 0n)| [ a0

24-2it 3
p>X p X X u

o

where « can be taken to be 1 — d 7 fforany 0 < e < 1. O

2.2. Rankin-Selberg L-functions. For a pair of automorphic representations r and 7’ of GL,(Ag)
and GL, (Ag) respectively, the associated Rankin-Selberg L-function is

57 % ) HHH( a,}nxn(l?))lzianxn;;(n),

p j=1j=1 n=1

where R (s) > 1 and the parameters @}y »« (p) are indexed so that @; j rxr (p) = @z(p)@j~(p)
for all but finitely many primes p.
We continue with the following two results from [30].

Lemma 2.5. [30, Lemma 2.2] Let 7 be a cuspidal automorphic representation of GL,;(Ag). Then

1
5(1 + Aexz(n)).
Lemma 2.6. [30, Theorem 2.4] Let rw be a cuspidal automorphic representation of GL4(Ag). If

Y 34 C(n x 7#)* and | < H < Y52, then

S A Aer(n) <o %

1
Y<n<YeH

|/17r(n)| < A/ Axxz(n) <
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Since A,«z(n) = 0 (see [27, page 318]), then as a direct corollary of the above theorem we have

D1 AM () < Y A drr(n) <<d§

Y 1
Y<n<Y+ﬁ Y<n<YeH

under the conditions of Lemma 2.6 on Y and H.

2.3. Short Dirichlet polynomials. In order to prove that the values %(1 + it,m ® xp) can be

approximated by short Dirichlet polynomials outside a set of fundamental discriminants D of size
o(N), we require the following lemmas.

Lemma 2.7. Let T > 1,1 < 0 < 1, and s = o + it. Suppose that L(s,n ® xp) has no zeros in
the region o > o and |t| < T. Then for all o > oy we have

E(snr@)m)  loe(D(r] +2))

L o — 0y

Proof. The result follows by adapting the proof of [19, Lemma 2.2] to the setting of quadratic
twists of automorphic L-functions. O

Lemma 2.8. Lett € R, Y », 1, D e F(N), and 0 < § < #. Assume that L(s,m ® xp) has no
zeroson R(s) > 1 — 6 and |J(s)| < Y32, Then, we have

L, A1) d(n)xp(n)
22) - T +inr®yp) = 3 =

n<Y

Proof. By [22, Theorem 2.1] and forc = 1/logY,Y > 2, T > 2, and H > 2, we have

A(n)A(n)yp(n | R & Yy
3 (n) ()x()__ﬁ

+0 (Y—%(log N)) .

pep 7 ——w+1+ it,n@)(D)de

n<Y

(2.3) A(n)|Ax(n)] HB(c)
+0 Z —= 14+ 0 (—> >

n T

Y Y

where B(c) = >, W By [22, Formula (6.3)] we have B(c) « logY and thus, the last error
term in (2.3) is

HlogY
(2.4) 0( T )

To handle the first error term in (2.3) observe that by Lemma 2.5 we have

A(n)|Az(n 1 A(n A1) Apxz(n
3 ()|n()|<E 3 Aln) 3 ()n()

Y Y Y Y Y Y
Y—H<VZSY+E Y—H<H<Y+H Y—H<H<Y+E

<<% DA+ D A()dga(n)

Y—L<n<y+2 Y—L<n<y+%

Nowif 1 < H < Yﬁ, then by Lemma 2.6 and the Brun-Titchmarsh inequality (e.g. see [13,
Theorem 6.6]) applied to the sums involving A(n)A,xz and A(n) respectively, we have

2.5) D Am)|A(n)| 1

n H

Y Y
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Next we deal with the integral in (2.3). For § > 0 assume that L(w, 7 ® yp) does not have any
zeros in the box
Rs:={(u,v); 1 =6<u<l, |v|<T}
Letting ¢y = —% and applying the residue theorem yields
1 c+iT L/ W /

——w+1+ it,ﬂ@)(D)de = _Z(l +it,1® xp)

Z c—iT L
1 co+iT c+iT co—iT
514 INCCES IR IC)

We now estimate the integrals in (2.6). By employing Lemma 2.7 we have

o lostDlpi+2)

r(1-%)—(1-9) \/@
«s Y2 1og(|D|(T + 2)) log(T + 2).

For the two remaining integrals on the right-hand side of (2.6), by using Lemma 2.7, we have

(2.6)

dv

co—iT / Yvw
J ——w+1+it,n®yp)—dw
co+iT w

2.7)

o[ tpliri ey,
L Or-(0-0verr
log(|D[(T +2))

TlogY

Thus, from (2.3), (2.4), (2.5), (2.6), (2.7), and (2.8) and under the assumption that L(w, 7 x xp)
does not have any zero in Rs, we get

_Lz/(l +it, T®xp) = ) Amdnheoln) | <H10gY) +0 <%)

(2 9) = nH—il T

+0 (Y*% log(|D|(T + 2)) log(T + 2)) +0 (

co+iT / Y
J ——Ww+1+it,nQxp)—dw
c+iT w

(2.8)

log(|D[(T + 2)))
TlogY ’

forl < H < Y52 . The result follows by setting H = YaZ and T = Y37 in (2.9). O

We also require the following zero-density estimate which is a direct application of [12, Theo-
rem 1.1].

Lemma 2.9. Let nt be a cuspidal automorphic representation of GL,(Aq) with unitary central
character, and let C(r) be the analytic conductor of r (as defined in [13, page 95]). Let T,N > 1,
and set

Nego (05 T) = [{p = B+ iy; L(p,n®@xp) = 0, B= 0, |y| < T}.
For € > 0, we have

(2.10) D1 Nagyp (0. T) e (C(m)NT)'¥0= e,
DeF (N)

provided that % <o<l.

Remark 2.10. An application of [12, Theorem 1.1] will give a result similar to (2.10) for N, , (o, T)
attached to the zeros of the Rankin-Selberg L-function L(s, 7 x xp). We know that the local L-
functions L, (s, 7 x yp) and L, (s, 1®yp) coincide for primes p 1 (g,, D), where g, is the conductor
of m. Moreover, the local parameters @ ;,,, (for I < j < d) satisfy the bound (1.2). Therefore,

Nrsyp (0 T) = Nygy, (0, T) for o > 3 — 7= and thus (2.10) holds.
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We finally arrive at the desired approximation.

Proposition 2.11. There are positive constants 8, and 1, (depending only on rt) such that for all
but O(N?) fundamental discriminants D in F (N), we have

@.11) = Lz/(l +it,T®xp) = . A(n)ﬂ,;(fg)m(n)

n<Y

+O0(Y %),

whenever (log ) « Y « N3,

1
Proof Let T = Y3* where ¥ « N*', 0 < § < min{-L-, 5}, and € = 1. Then as a direct

1

e
corollary of Lemmas 2.8 and 2.9 we conclude that (2.2) holds for all but O(N %) fundamental
discriminants in ¥ (N). i

In the rest of the paper, we shall denote by A(N) the subset of ¥ (N) for which (2.11) holds for
some &, and 17,. We also define &(N) by writing A(N) = F(N)\E(N).

2.4. More Lemmas. In what follows, we compute upper bounds for 2k-th moments of sums
associated with the short Dirichlet polynomials appearing in Proposition 2.11.

Lemma 2.12. Let 2 < y < z. Then, uniformly for k < 92N e have

6logz
1
N

* (log )24, (p) P\
< k! Z gp 2”p )
DeF (N) p

<Pz

3 (log p)A(p)xp(p)

1+it
p

YSPp<Z

Proof. The proof closely follows [29, Lemma 3]. We have

(2 <logp>ﬁg>)m<p>)": 3 Guelr)

y<p<x W<n<
where
) (0 o) Tz ((og p)ax(pxn(p))™ i n = pi*--- pi, pisdistinct, y < pi <z,
ak,y,z(n) - 0 .
otherwise.
Thus, we get
I (1og D) (Pxo(p) | (m)age(n) [ 1
og p)A-\P)XD\P Ay \M)Ag y -\
(2.12) N Z Z pitit - 2 , (mn) 1+ N Z Xp(mn)
DeF (N) [y<p<z yE<m,n<zk DeF (N)
From [6, Lemma 4.1] we know that if mn is not a perfect square, then
(2.13) > xp(mn) < N (mn) (log (mn))?.
DeF (N)

Applying this upper bound in (2.12) yields

3

2k

2
a n
« z: | k,y,z( )|

3 (log p)A(p)xp(Pp)

1+ 2
(2.14) DeF(N) lyspsz P y<n<t "
' a m)l||a n
+ N—% Z | k,y,z( )|| f’y’Z( )| (log(mn))%
ye<mn<zt <mn> !

mn#o
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Observe that

o lasya(mllanye ()] _ agye(ml® | |anys(n)P
—.
2

(mn)% h m3

n
By application of this inequality in the last term of (2.14), we have

2k

1 1 Ar , 2
Loy |y Gospteloboe)[* 5 ot
N p1+1t n2
DeF (N) |y<p<z y<n<k
(215) 1 ’(lk l’l)’z 1
+N72 Y = N (log(mn))?.
ye<n<zk n: Ye<m<k
mn#o
We deduce from (2.15) that
2k )
1 D (log p)A=(p)x(p)| 3 |aky(n)]
N plir n2
DeF (N) |ysp<z yh<n<zk
2
(2.16) F N log(@)! Y (2y(m)
ye<n< "

« Z ‘ak,y,z (n) ‘2
2
W<n<gF n

since k < (log N)/(6log z). The desired result follows from (2.16) since by an argument similar to
the one given in the proof of [29, Lemma 3] we have

3 Lo ( 5 <1ogp>2a,r<p>2)k_

y<n<zk YS<p<z p

O

Lemma 2.13. Let A > 1 be fixed and set Y = (log N)*. Let k be an integer satisfying 2 < k <
92N __ " Under the assumption of Hypothesis H, we have

6AloglogN*
1
)
DeF (N)

2k

Z A(n)A-(n)xp(n) < (Clog k>2k

nH—it

n<Y
for some positive constant C that depends only on .
Proof. We have

Y

DeF (N)

D A(n)dx(n)xp(n)

n1+1t

v (log p)A(p)xp(p)

p1+it

2 |

0,2,

n<Y k
PSTogk

(log p)A=(p)xp(p) S (log p)A(p")xp(p")

+

1+it n—+int
k < p n=2 p

2k
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It follows that
2%k

2 ,,,1+,),XD % ; D (log p)A=(p)xp(p)

Z

pli
e pglo];k
2k
9 (log p)A:(p)xn(p)
T 2 Z pl+it
DeF (N) @<p<y
2%
9 3 (log p)A=(P")xn(P")
+ pn+int
DeF (N) | n=2
PIsY
By Lemma 2.12, we know that
2% k
1 log p)A, log p)?|4(p)|?
Lyl ¥y (log p) 1(p))m(p) < k! (log p)*| ()|
p+tt ' p2
DT (N) | e <p<Y osg <P<Y
Hence,
" 2k
1 A(n)A 1 Ar
1 Z 2 (n)Ax(n)xp(n) « OF Z (log p) |4x(p)|
DefF (N) |n<Y n P<ior p
k
(log p)*|4:(p)I?
(2.17) + 9Fk! 5
r <p<Y p
2k
lo A(p"
po [ 3 toen) An(pr)
n=2 p
[)’ISY
We have
2k k k
lo Ay lo log p)|A,.(p)]?
Y (log p) [:(p)] <3 gp 3 (log p)|4:(p)] < (Cy log(k/ log k).
P<iot P P<Tt P PS<Tot P

where C is a positive constant that depends only on 7z, and for the last inequality we use [2,
2
page 150] to bound Zpgﬁ (og p)lAx(p)|”
ogk

)4
Now Abel’s summation formula yields

(log p)*|A4=(p)I> . logY oo ) 08K/ Togk) (7 1 —2log?
. = A() T~ Alk/logh) = e fL A(Y) <—¢3 ) dt,

k
logk $p§Y
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where A(1) = > logp |4.(p)|*. Since A(r) « t (see [2, page 150]), with our choices for k and
Y, we have

(log p)*|4=(p)* _ ., log(k/logk)
p? k/logk

for some positive constant C; that depends only on 7. Hence, the second sum on the RHS of (2.17)
is bounded by

k! k
0 (9C, logklog(k/logk))* < (9C;log?k)" .
For the last sum in (2.17), we use the inequality
1
(2.18) [Ax(m)] < 51+ |4x(n))
and [2, Equation (2)] to get
(logp) [4=(p")] _ 1 5 logp 1 < (logp) | A(p")]°
2 <3 2

n = 2 n 2 n
n=2 p n=2 p n=2 p
p"SY p"SY p”gy

— o(1).

In this argument, Hypothesis H is required for the application of [2, Equation (2)]. Combining all
these estimates gives the desired result. O

We end this section by providing an upper bound for the second moment of the values %(1 +
it,m1 ® xyp) as D varies in the set A(N) which was introduced after Proposition 2.11. This result is
used in the proof of Theorem 1.2 in Section 7.

Lemma 2.14. Assume Hypothesis H. As N — oo, we have
2
&g 1.

!/

L
z(l +it,Tt® xp)

1
[AWN)] 2

DeA(N)

Proof. Let D € A(N). By Proposition 2.11, there exist 6, 77, > 0 such that

L0 <Y—5,, 2 A(n) ‘/ln(n)‘> + Oy,

n<Y n

/ 2

L1+ ing)| - |3 Akl

nl+it

(2.19)

n<Y

provided that (log N)™ « Y « N3¢t follows from (2.18) and (2.19) that
2

log p)A:(p)xp log p)A:(p")xp(p"
:Z( gp)A(p)x (p)+Z( gp) (P xn(p")

/ 2

L :
z(l +it,1® xp)

= pl+it = pn+m’t
n=2
A An) |4, (n)]?
n<Y n n<Y n

Since .y Afl") and ), _, %”(")‘2 are both O(log Y) by Mertens’ bound and [2, Equation (3)]

respectively, we get
2

3 (log p)A(p")xp(p")

pn+nit

/ 2

L
z(l +it,T® xp)

mem@mwz

< p1+il
p<Y

+ O(Y ™),

[)MSY
n=2
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for some v, > 0 depending on 7. Assuming Hypothesis H, by (2.18) we have

2 2
1 A(p" n 1 A(p"
v (logp) (p_))m(p) <« (log p) [4(p")|
n+nit n
<Y p =Y p
n=2 n=2

5> logp | 5 (log p) | 4:(p")[*

n n
plng p p)l<Y p
n=2 n=2

&g 1.
Hence, under Hypothesis H we have

/ 2

5 (o p)u(pico(r) i

L
—(1+it,n®xp)| « l. + O,(1).
L = p1+ t
Taking the average over A(N) gives
2
! 5 o1 (log p)Ax(P)xp(p)
—(1+it,n®xp)| « l. + O.(1)

log p)?|A,.(p)|?
<<Z( gp)’[4:(p)|

2

+ O,(1).
p<Y p

Since, by (1.2), [4:(p)| « p? with 0 < 6 < 1, from the above we get

2

<, 1

!/

L :
Z(l +it,T1® xp)

as desired. O

3. THE RANDOM MODEL

Recall the definition of the random model X = {X,},cy given by
Xn == H X;p(n)’
pln

where v, (n) is the p-adic valuation of n, and {X,}, pime is the sequence of independent random
variables given by

P 3 -

3.1) P(X, = a) = { 20+ o=l
ﬁ ifa = 0.

The random variables X,, satisfy

(32) B[X,] = [ (#) if n is a square,

0 otherwise.
The random sum — Ld(1 + it, w, X)) given by
A(n)A,(n)X,

(3.3) —Ld(1 +it,m,X) = >

pltit
n=1
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can be written as ), % + O(1), and the latter sum is almost surely convergent by the
Menshov-Rademacher Theorem (see for example [15, Proposition B.10.5]). Moreover, the random

sum

am p)X,logp
34 IS

j=1p
is almost surely convergent by Kolmogorov s Theorem (see for example [15, Proposition B.10.1]).
More generally, let 7 > 1 — 1=, and let U, = {s € C; R(s) > 7}. It follows from the Menshov-
Rademacher theorem that the random series
i A(n)A,(n)X,

nS

(3.5)
n=1

is almost surely convergent on U, and so it defines an almost surely holomorphic function there.

We also consider the random series

3.6) 22 (log p)a;.(p)X,

lep_a/” PX,

which, by Kolmogorov’s theorem, is almost surely convergent on U, and so it defines a holomor-
phic function there. One could easily verify that the series (3.5) and (3.6) are equal for all s with
R (s) > 1. By analytic continuation, we see that

i A(n)2 fZ log p)a - (p)X,

n=1 j=1 p p _a,]”( )XP

almost surely in U.,. In particular, we have

' o0 A( lng a’}n(p XP
—Ld(1 +it,n,X) = Z n1+zz ZZ piit — . (p)X,’

n=1 j=1p

In what follows we will be considering the partial random sums

Z A(n)A,(n)X,
ot

We need the following lemmas involving sums of the above form.

Lemma 3.1. Let 2 < y < z. Then, uniformly for any positive integer k we have

il ( 5 <1ogp>;|jﬂ<p>|2> |

YSPp<Z

y (log p)A:(p)X,

E pl+it

YSPp<Z

Proof. The proof of this lemma is similar to the proof of Lemma 2.12 where we use (3.2) in lieu
of the Polya-Vinogradov type inequality (2.13). O

Lemma 3.2. Let A > 1 be fixed and set Y = (log N). Let k > 2 be any integer. Under Hypothesis
H, we have

5 A (X, [

E e « (Cloghk)*

n<Y

for some positive constant C that depends only on .

Proof. This lemma follows an argument similar to the one used in the proof of Lemma 2.13. We
use Lemma 3.1 in lieu of Lemma 2.12. |
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Lemma 3.3. Suppose that |A,(p)| < p’ for some 0 < 6 < 5. Let 0 < € < 3 — 0 be given. Then if
u and v are real numbers such that |u| + |v| < Y2~ we have

E [exp (iuR (— Ld(1 + it, 7, X)) + iv3 (— Ld(1 + it, 7, X)))]

& op (i (AL ) (3 AR ) o (M0,

Proof. To simplify the exposition, we demonstrate the argument for E [exp (iuR (— Ld(1 + it, 7, X)))]
rather than E [exp (iuR (—Ld(1 + it, 7, X)) + iv3 (— Ld(1 + it, 7, X)))], for otherwise the expres-
sions would become quite lengthy. We have

E [exp (iuR (—Ld(1 + it, 7, X)))]

. (log p) Az (p") X (log p)A:(p)X, (log p) A (p") X
=E |exp | R 2 m(1-+if) * 2 1+ir T 2 m(1-+if)
prn<y p p>Y p m=2 p
pr>Y
It follows that, for € > 0,
(log p p
Z pm(1+1t Z Z m(l 0—¢)
m=2 m>2
[)m>Y p>Ym
1
< Z
Hm\m(l-0-¢€) —1
1 Y9+E
« YOrelys Z — < —.
m=2 m Y:

Hence,

E [exp (iuR (— Ld(1 + it, 7, X)))]

G g [exp <% <2 <1og12'j(,:<£?>xpm £y <logp>an,<p>xp) . 0< |u ))] |

14it
1489 ¢ p>Y p

Now if [u| < Y2 %€and p > Y, then

(3.8)
msg m (log p)Ax (l’)
log p) A, (p)X 1 o (iu)"R" ( ——m—"
E[exp (iu%((ogp)lf.(p) p))} =E 1+iu‘R<(0gp)1+ ) + ( L )
p it p it — m)
(log p)uf®

It follows from (3.7) and (3.8) that

(3.9
E [exp (iuR (—Ld(1 + it, 7, X)))]

1 ﬂ.ﬂ- m X n 1 2
=E [exp <iu?§ < Z ( ng)m(lgft) %, ) + Z log (1 + 0 <—( og2p7)2|9u| )) + 0 ( 1|itl_e>>] :
p<yY p p>Y p Y2
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1 2 |
p _

p>Y

Now since

by (3.9), we get

E [exp_(iu?% (—Ld(1 + it, 7, X)))]

=E |exp | iu —A(n)/l,,(n)Xn u
(3.10) " P ( " (é nt ) Ho <Y%“)>]
=E |exp (iu‘R (Z %))

One can easily check that the above argument applied to

E [exp (iuR (—Ld(1 + it, 7, X)) + iv3 (— Ld(1 + it, 7, X)))]
yields the desired result.

4. BRIDGING LEMMAS

In this section, we prove two results which serve a crucial role as a bridge between the arithmetic
setting and the probabilistic random setting developed in the previous sections.

Lemma 4.1. Let A > 1 be fixed and set Y = (log N). Then for any positive integers j, € such that
j+L€< —6A11§§1}ZgN’ we have

1 AW Lo\ (o Ao\
i 3 (g (3 )

DefF (N) \n<Y n<Y ni
J —_— 4 i . 1
A(m)A(n)%, A() LM%, (¥} log ¥)"*(log N)*
=E (Z it Z it +0 N :
n<Y n<Y
Proof. We have
4.1)
j S ¢
1 Z Z A(n)A-(n)xp(n) Z A(n)A-(n)xp(n)
’T(N)’ DeF (N) \n<Y nH_” n<Y nl—ll
5 (logp1) - - (log p;) (logq1) - - - (10g q¢) Ax(P}") - - A(P") Ax(q)') - - An(qy’)
my i mj(1+it) nj(1—i ne(1—i
p)]ﬂl’___’p;”ng pl (1+[) pj( +[)q1 (1 t) qgf(l t)
q'lll’___’q';(’gy
1 mn n ne
Z XD (pT] ...p_lqll ..q[[)_
’T(N)’ DeF (N) ’
Note that
6 1
4.2) N )= Y 1=2N <%) + O(N*r(m)).
DeF (N) DeF (N) plm p



VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES OF QUADRATIC TWISTS 19

where 7(m) is the divisor function (see for example [6, page 1017]). In view of (3.2) and (4.2), we
see that (4.1) equals

o (g 2 (e,

n<Y n<Y

[T, (log py) (p?) TT._, (logg,) A(47")

m1(1+it) mj(l-i-l'l) nl(lfit) n/(lfit)
ml,~~~,p';1j<)’ 1 .. pj ql P q[

_l’_

1 h{' Y
‘71 s"'ﬂ[ <
' J 4
Py "'pj qy 4, #0

p'}”q’l’l ~--q;’) +0 (N_%> .

Let us now analyze the contribution of non-squares. By (2.13), we get

[T, (log p,) A<(ps*) TT;_, (logqs) Ax(4:)

mi(1+it) m](lJrzt)qn](l—it) o qng(l—it)

DET (N)

RIS 1 j 1 ¢
q' qZ"éY
Py g e
43) ‘ — > )(D(p P, ---q"")
. 1 €
’T(N)’ DeF (N)
. 1 1 mg £ ng
« (G +0logy): 3 7_, (log p,) | A (p, )|Hs  (log g,) | 4:(q7"))|
i 3m 30 )
N A<y i) g
ql q""<Y

Observe that (4.3) is

1 Jj+t
i+ £)log ¥)? log p |4, (p"
« ((J )log ) Z 0gp!3 (rm)|
A77 pl?lgy pz’n
jt+e j+e
1 m2\ 2 =
G+ 0logy)! 5 logp ") ( 5 1ogp)
N% pmgy pm pmgy p7

1
p

Since >,y log plla(pE = O(logY) (see [2, Equation (3)]) and > .y IO‘%’%” O(YzlogY), we
= p
conclude that (4.3) is

« (Y¥logY)/+! i+ Hlogh)
Nz

« (Y3 log ¥)/* (log N)%
N

(ST

O

Proposition 4.2. Let A > 1 and Y = (logN)*. Assume Hypothesis H. Then there exist positive
constants by = by(A) and ¢y = co(A) such that for all complex numbers zy,z, with |z1|, |z2| <
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log N
CO0Tioglog N2> W€ have

1 An)A(n)xp(n An/l,r—nDn
e Y exp<zl2 LEZ0I “,fﬁ"”)

DeF (N) n<y n<y

=E [exp <z1 Z % +222 %)] + 0 <exp (_bob;%)> .

n<Y n<Y

Proof. Let k = max(|z1|, |z2]) and M = [Clé(;%é\; N], where c is a suitably large positive constant.
We have

1 A(n)A(n)yp(n A(n)A(n)xp(n
) exp<zl2 WAeole) | 5 <>n1<_3x<>>

(4 4) DeF (N) n<Y n<Y
. i i 4
di 1 A mxn(n)\ [« Ar)a(mxn(n)
_ / - + Eq,
j+[Z<:M jle! |¢( )| DE;N) <r§ pl+it ) (% nl—it ) 1
where
. i £
g A mxo(n)\ [« A (n)xn(n)
E = - - )
1 ]+;M J!f! ’7—“( )’ D;;N) (é nltit > (}Z; nl—it )

Observe that for Y = (log N)* we have

5 Ao _

pl+it =

n<Y

< A S
n<Y n n<Y n

< CploglogN,

N =
[
>
5
+
| =
g
>
S
>
S
)
S~

where Cj is a positive constant that depends only on A and 7. Hence,

E| « 2 CologlogN)H[
j+€>M
Z 2C0k10g10gN)
n>M

e

where we used the identity >’ =0 ( ) = 2". By Stirling’s inequality i, < (—)" , we get

2Coekloglog N\"
be Y (20 ;gog).

n>M

log N
%82 where we choose ¢y < <, we deduce that

Assuming k < COW

6C’

4.5) E, « Z (6ccoCo)" « e ™.,

n>M
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To analyze the main term of (4.4), note that, by Lemma 4.1, we have

n)A, D g An/l,r—nDng
- N‘ Z (2 <>n§+zx<>> (Z (n) <>x<>>

n<Y n<Y nliit
/ _ 4 1 . 1
A A(m)X, ALK (o Y)"*(log N)*
n<Y nH—zt = nl—it N%
for j + ¢ < M. Hence, we have
1 A(n)ax(n)xp(n) A(n)Ax(n)xp(n)
exp | 2 - + 22 =
|T(N)| DG;N) ( r;, nltit ’Z;/ nl—it
; ¢
Jt
1% A(n)A
Z WE (Z n1+1t ) (Z nl it )
JHtsM n<y <Y
o ( Z 275 (Y3 log Y)7*(log N) %>
2 jie! N:
Observe that

3 27, (Yilog Y)it!(log N)? _ (Y3 logY)"(log N)? y (2k)"
= Ni h N

n<M
« Y~ Mexp(2k)

€A log N
< ——1logN + 2co—7—7+ | »
o (=S oa + 2t
provided that Nz » Y(*9M which is possible by choosing c suitably large. It follows that

1 An)A(n)yp(n An/l,r—nDn
Y p(zZ WAeoln) |, 57 A <>x<>)

=

n!

1—i
DeF (N) n<¥ nt
4.6) ¥ 4%y ZA(n)ﬂn(n)Xn ZA(n)ﬂn(n)Xn
=y e P pltit P it
€A log N
0 L og N +2¢——E20 1)),
! (p( c BT C°<loglogzv>2))

Now the main term in (4.6) can be written as

. i - ¢
7z A ()X, \ [ A (n)X,
(4.7) j+;M WE (é ni ) 2 '

= nl—it
A(n)A,(n)X, A(n)A,(n)X,
(). (s ) .
n<Y n<Y

1—it
n<Y n<Y n

12 ALK, AL,
E2=—'+;M%E (2%) (ZJM)
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Observe that
j+e
kf” A(n)2:(n)X,
E; « 2 jer v 2 plit
JH>M n<y
1
) 2040 1\ 2
ARd A(n)2(n)X,
« Z e Z 1+i
JjHt>M jie! n<Y e
Using Lemma 3.2 we get
E, « )"
m>M

By Stirling’s formula and our choices for k and M, we deduce that

kl " logNlog M\"
(4.8) E, « Z (M) « Z (6CCO e 08 ) < Z (6Ccco)™ « e,

m>M m m>M M(lOg log N)2 m>M
where the last inequality follows from choosing ¢y < %.
From (4.4), (4.5), (4.6), (4.7), and (4.8) we obtain the desired result. O
5. THE CHARACTERISTIC FUNCTION
We set
O () (u, v) ! Zep('%( L,(1+'t ® )) S(LI(th ® )))
Fv) (U, V) 1= xp | iu —— it,TQ xp iv it, T Xp
T 22, L L
and
1 . L . L’
Dan)(u,v) 1= Z exp|wR | ——(1 +it,nQxp) | +ivI ( —— (1 +it, tQ® xp)
‘ﬂ( )‘ DeA(N) L L

where A(N) is the set of fundamental discriminants introduced after Proposition 2.11. We also
define

®pana (1, v) := E [exp (iuR (— Ld(1 + it, 7, X)) + iv3 (— Ld(1 + i1, 7, X)))].
Theorem 5.1. Let A > 1 be fixed. Under the assumption of the Hypothesis H, there exists a

positive constant ¢y = co(A) such that for |u, |v| < Coﬁ, we have
1
5.1 () V) = Oppa(u,v) + O .
G- ron(iV) = PanaltV) (aog Tog M2 (log N>A)

Moreover, the asymptotic formula (5.1) holds if we replace @y (u,v) by @z (u, v).

Proof. From Proposition 2.11 we know that for all but O(N7) elements D € F(N), there are
positive constants &, and 7, such that for (log N)"* <« ¥ « N3* we have

(5.2) - %(1 +it,x®xp) = A(")A”Zf'jz)")(") oY),

n<Y

Recall that A(N) is the set of elements for which (5.2) holds. Let 0 < 6 < 1 be such that [1,(p)| «

p’ (such 6 exists because of (1.2)). Let 0 < € < 1 — 6, and choose 0 < § < min(3 — 6 — €,6,)
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such that 4+ > 5 and set Y = (log )"+ *. Applying (5.2) and the inequality lei — | < |b—al,
we get
(5.3)
Or vy (u, v) ! Z exp( ‘R( Ll( 1+it,n®y ))—i—'vﬁ( LI(1+'t7r®)( )))
FN) (U, V) = 117) 1 D l -7 I, D
T 2, L L
+O(N¥)
1 . A(n)Ax(n)xp(n) | A(n)Ax(n)xp(n)
- ’T(N)’ Z exp (lu‘R (Z nltit +ivJ Z nltit
DeA(N) n<y n<Y

0 ((jul + v)Y~?) + O(N~Y).
Notice that
exp (O ((lul + V) Y™°) =1+ O ((|u] + ’V‘)(logN)—(AH))

whenever |u| + |v] < (log N)A*!. If we assume further that |u| + |v| <
from (5.3), we get

Qg (w)(u, v) = |T(1N)| Z exp (iu‘R (2 A(n)ﬂ;ffi)[XD(")) v (Z A(")ﬂﬁfﬁ)@(ﬂ)))

DefF (N) n<Y n<Y

log
COW for some Cy > 0,

¢ (<1og EREC: N>A) |

Here we used the fact that |# (N)\A(N)| = O(N#) by Proposition 2.11.

Next, since |ul, [v] < ¢ L

0—(10;05;/1\/)2’ Proposition 4.2 with z; = 5(u + iv) and 2, = %(u — iv) gives

nH—il nl—it

Dg vy (u,v) = B |exp | 2
n<Y n<Y

1 log N
[0 [0 —by———
<<10g10gN>z<1ogN>A) " <p< °1og10gN))

for some by > 0. Now employing Lemma 3.3 in (5.4) yields
Do) (1, v) = E [exp (iR (— Ld(1 + it, 7, X)) + iv3 (- Ld(1 + it,7,X)))]
B —— )
(loglog N)?(log N) 5 (3-0-)-!1 (loglog N)*(log N)

The desired error term is achieved since we assume that § < % —0—e.

5 A dn(n)%, Ly A(n)/l,r(n)Xn)

(5.4)

The same asymptotic formula holds for @z (y)(u, v) since Og ) (1, v) = g (u,v) + O(N~ i),
O

6. THE EXPONENTIAL DECAY

In this section we prove a decay bound for ®,,,q(u,v). Recall that we are working under the
assumption that the distributions are 2-dimensional, hence, 7 % T ® |det|2”. The following propo-
sition implies among other things that the distribution function associated with our random series
admits a smooth density function.
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Proposition 6.1. Let z = u + iv and assume that |A,(p)| < p? for some 0 < 6 < }—l. Let 0 < € <

2 — 86 be given. Then there exist positive constants C. and a. depending only on € such that for |z
large enough we have

Dpna(u,v) < exp (—Celz|*) .

Proof. By employing (3.1), we get that

Drana(1t,v) = [ [ M, (w.v),

p

where

1 p d Z(ljn
M - 1
o) p+1+2(p+1)eXp< °&P) <Z it — a; (p)>)

]:l
p - Z(I
+ — (1 inP .
2(p+1)eXp< ng <Z l+lt+a/ p)))

]=1

We observe that ‘Hp M, (u, v)) < [[,ox IMy(u,v)| since [M,,(u,v)| < 1 for all p. Moreover,

aulp)  aulp) LB, (letrl),

p1+it _ aj,n(P) p1+it - p1+it(p1+it _ aj,n(P)) pz

Hence,

1 . ‘ 20,x(p)
My(u0) =~ + 5 e < (log p) R <Z e ))

p . A Zja(p) (logp)l2| < 2
+ WCXP <—l (Ing)‘R (Z p1+it )) + 0 (T; |aj,7r(p)| ) .

j=1

Next by using the Taylor expansion of the exponential function and simplifying the resulting
expressions, from the above we get

M,(u,v) =1— —2(pp (log p)*R? (Z zaj’”(P )>

+ 1) = pl-‘rll

|z|*(log p)* (logp Z logp IZI
| jﬂ Z| j7r s
P’
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provided that (log p) )R (Z?:l z‘;’(ﬂf{’ )> ‘ < 1. Hence, for sufficiently large X, we have

2002 a _a’j,ﬂ< )
[ [ M,(u.v) =] [exp <log< 20 u 1)(10gp) R (ZZpr)

p>X p>X j=1

e (@ D laselp)lt + CEE S ra,;,,<p>\2> ))

p>X

0 (% B2 oo+ 3 %82 o) ).

p>X j=1 p>X

where in the above estimations we used log(l — x) < —xforall 0 < x < 1. In order to estimate

this expression, we need to first consider the sum Z P (log p)*R? Za”(l.)> . To simplify
2(p+1) p'
p>X
(lo Za,
exposition, we will consider instead the sum 2 gp)” — = R? (@) Observe that
=X p* p
(log p)? za,r logp
2, ¥ ) ax(p)’
p>X p>X
} 1 (log p)*——2
2 2 2
n 71 + =z 9 aﬂ(p) :
l;( p2+21t 4 = p2 2it

Note that by Lemma 2.3 we have

logp log X |z
31 3 S o) - 51 (255 +o ().

p>X

If 7 2 7 ® |det|™ for any 7 € R, then Lemma 2.4 gives

1, < (log p)? (log p)*—— (log X)*
a3 Z <=5

24-2it ” 2 2it ”
p>X p p>X

for some 0 < @ < 1, and so

5 loB )y (M) _ ploeX

' p2 ptt X

If 7 =~ 7 ® |det|™ for some 7 € R, then Lemma 2.4 gives

1, (log p)? (log p)? 2 1, log X
ZZ Z 2+ 2it ar( Z p22it tan( - ZZ (1 — 2it + ito) X' -2+
p>X p p>X L ITo
1, log X 2|
- — ol — ).
gt ((1 20— iTO)X1+2”’TO) * ( X
In this case, we get

1 2 = . 1 loe X = XZit—i‘ro 2
Z(ng> pe (ZanlP)) _ L plosX [ g (2 X NY L (Y
p? p 2 X z 1 =2it+ ity X

p>X
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Note that 1 + R (Z X ) = 1 since 7( # 2t (notice that if 7o = 21, then the distribution is

z  1=2it+iry
1-dimensional). Hence, in all cases, we have
(log p)? Zax(p) log X
(6.1) MR () =2 -
p>X P

Next, we note that

(log p)* (log X)?
6.2) 2| pI* <l 3, g < kg
p>X j=1 p>X
and
logp (log p)* kd
(6.3) |z |Z 2 @ (p)]* <« |z |Z P22 leze'

p>X p>X
Thus, choosing X = |z|27_42 in (6.1), (6.2) an (6.3) guarantees that

HMp(u, v) < H Mp(u, v) « exp(—C; \Z\22894926),
P

p>X

for some positive constant C. Since 0 < 0 < %, we have the desired result. O

7. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2 in the case when the distributions are 2-dimensional. Our
proof of Theorem 1.2 follows from Theorem 5.1 by an application of a 2-dimensional version of
Berry-Esseen inequality which we state in Proposition 7.1. The proof of Theorem 1.2 in the 1-
dimensional case follows the same argument and uses the more common 1-dimensional version
of Berry-Esseen inequality (see for example [23]). We denote by B(S) the collection of the Borel
sets of a topological space S .

Proposition 7.1. [28, Theorem 1] Let u and v be probability measures on (R?, B(R?)) with distri-
bution functions

Fx,y) = pu((=o0,x] x (=o0,3])  and  G(x,y) = v ((=90,x] x (=0, y]).
Suppose that G is partially differentiable, and put

A; = sup Gu(x,y) and A; = sup Gy(x,y).
(x.y)ER? (x,y)ER?

Denote by f and g the characteristic functions associated with u and v respectively. Let f (u,v) =
f(u,v) — f(u,0)£(0,v) and g(u,v) = g(u, v) - g(u, O)g(O, v). Then we have

sup |F(x,y) — G(x,y gw.v) du dv

(xy)eR?

f(0,v) — ¢(0,v)

1%

dv

L2 f(uo) gw.0) 2 :
+ESJ\;§+4\/§L;24)2(AI+;2)JR
T R

forany R > 0.
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Recall that A(N) is the subset of F (N) for which (2.11) holds. We define the probability space
(A, C, B(C)) where the probability measure p4(y)(A) is given by

Hany(A) = ]&Z((lN)] Z 1,4 (—Lzl(l + it,ﬂ@)(D)) )

DeA(N)

We also define a probability space (tang, C, B(C)), where the probability measure f,,yq is given by
Urand(A) =P (—=Ld(1 +it,n1,X) € A).

Let Fan)(x,y) and Grana(x,y) be the distribution functions associated with f14(y) and ptrang respec-
tively. Their characteristic functions are given by

D () (11, v) = ]ﬂ(lN)] D exp (m‘R( LLI( +zt7r®)a))) zvﬂ( LL/( +zt7r®)a))))

DeA(N)

and

®pana(u,v) = E [exp (iuR (— Ld(1 + it, 7, X)) + iv3 (— Ld(1 + it, 7, X)))] .
It follows from Proposition 6.1 that the distribution function Gy,q(x,y) admits a smooth density
function M,,nq(u, x) (see [1, Theorem 2.1]) such that

Xy
Grand<xa y) = J J Mrand(u, v) dl/t dV.
—00 J—00

Hence, G4na(x, ) is partially differentiable. Moreover, A; = sup G.(x,y)andA, = sup G,(x,y)
(x,y)eR? (x,y)eR?

JJ Miana (1, v) du dv = 1.
R2

Now we have all the tools to prove our main theorem.

are finite in view of the identity

Proof of Theoem 1.2. Applying Proposition 7.1 with u = pgy) and v = g by identifying C
with R?, we get

R @) (14, v) = Brpa(u, V)
sup |Faw)(%,y) = Grana(x, )| < f f - du dv
(xy)eR -R J-R
R
(71) + J q)ﬂ(N)(u’ 0) - q)rand(ua 0) ‘ u
R u
k1@ 0,v) — @ppa(0, v 1
+f Aw) (0, ) aOv)p 1
_R 1% R
for any R > 0. We take R = CO(]o;ﬁW as in Theorem 5.1. We have
DA u,v (i;m\ u,v
I, = f f ) (#.Y) = a(t.v) du dv
~RJ—-R uy
() u,v D
(7.2) JJ ﬂ(N)( ) — d( V) du dv
R.R] 2\C uy
N JJ V - q)rand(u, V) du dv
C(r) uy ,

where we take r = =557 N) for some B > 1 and C(r) = {(u,v) € [-R,R)*: |u| < ror |[v| < r}.
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n-
[=R.RI2\C(r)
RN\ 2
I « <10g (—)) sup
r (u,v)E[—R.R]?

Moreover, we have
‘@\@t V) rand(u, V)‘
}q)ﬂ(N) (l/l V) A(N) (M, )q)?((N) (O V) - q)rand(u V) + (Drand(u, O)q)rand(o, V)}

0
< }q)?((N)(u’ V) rand(u’ V)} + ‘(Dﬂ M O)q)?((N) (O V) rand(u’ O)(Drand((), V)‘
< | @) (14, V) — Prana (14, V)| + | @eaiary (1, 0) — Prana (14, 0) | + [ @y (0, 1) — Prana (0, V)]

We set

—

(D?((N) (l/l, V) - (Drand(u, V)
uy

du dv.

Observe that

1)

) (1, V) — Prana (1, v)|.

1
< TogM)*”
where the last estimate follows from Theorem 5.1. Hence,
1 Co log N 2
(loglog N)? —_A 2
7.3 I« —— (1 _ < (logN)™"(loglog N)-.
( ) 11 (10gN)A <Og< (lOgN)B )) (Og ) (Og Og )
Next we set
Doy ity V) — Dyana (11, v
I, — ff A (U, ) a(u,v) dudv
c(r) uy
in (7.2). We have
© v, (u, ) u,v) = Qagw) (u,0) — Q) (0,v) + 1) = (P (1, 0) — 1)(@an(0,v) — 1)

JJ zxu . ’yv — 1) dﬂy{(N)(x’y)

([ o) ([

Notice that ¢ — 1 « |6] for any 6 € R. Thus,

S 8) < ][ [ ool duaon ) + ool [ [ 1 o ) ([ [ bl dno)

1 2
« v f f (2 +32) it (6,9) + Jv] | e

L/
z(l +it,T® xp)

< |uv,

where the last estimate follows from Lemma 2.14. Similarly, we have ®,q4(u, v) < |uv|. It follows
that
log N

(74) I, « meas(C(r)) L rR = (10gN)7Bm

« (log N)~B+1,

Hence, by (7.3) and (7.4), we have
(7.5) I, « max((logN)"2™, (log N)™*(loglog N)?).
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Let us now estimate

Rk (D ) 0 - q)ran s 0
I - f aw) (u,0) a(u )‘ .
_R u
We have
- (D O ran ,O R (D ,0 _(Dran ,0
I = J AW (u )~ a(u,0) du —i—J (1, 0) alu )‘ u
R u r u
() u, 0) — ran u, 0
_, u
Observe that

du

u u

q)ﬂ(N) (l/t, O) - (Drand<u’ O) ' du + JR (Dfﬂ(N) (l/t, 0) - q)rand(ua 0) ‘

I,
R
<« log (7) sup | @) (i, 0) — @rana (11, 0)|

€[-R.R]

« (logN)*loglogN.

Also notice that

@) 1:0) = Bna(0) = [ [ (e = 1) ditmon(e) = [ [ (€ 1) dita(x)
R R:

il ([ ]2 annten)) <t ([ [ 2 dten)

& |ul.

For the last estimate, we used the bound

( +lt7T®)(D)) « 1,

De?{(N)
which follows from Lemma 2.14. Therefore,
fr (Dﬂ(N)<u’ O) - q)rand(u, 0) ‘

du < r= (logN)®,

u
and so
(7.6) I, « max((logN) %, (log N)*loglog N).

Similarly, we have
(7.7) I; « max((logN) %, (log N) " loglog N).

Taking A = B = 2 and applying the estimates (7.5), (7.6), and (7.7) in (7.1) give

(loglog N)?
(xi})lfRz |Faw) (%) = Grana (%, )| < “logN

Next let R = [a, D] x [c,d], then we can write
Ay (R) — trand(R)] < |Fawy (b, d) — Grana(b, d)| — |Fawy(a,d) — Grana(a, d)|
— |Famw) (b, ¢) — Grana(b, ¢)| + |Fawy(a, ¢) — Grna(a, ¢)|.
It follows that

(loglog N)?
7.8 R) — trana (R S e —
(7.8) ;gg!m(m( ) — Hrana(R)] « log N
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where R varies over all rectangles in C with sides parallel to the axes.
Finally since A(N) = F(N)\E(N) and, by Theorem 2.9, &(N) « N3, we have
(7.9)

sup |ty (R) — frana(R)
RcC

1 r
- —— > g —Z(1+i
ree | [F V)] ( L' *”’”@”‘D))

De&(N)
[AN)|/IF (N)] ( L . )
+ su 1 —_— 1+lt,7T® — Mran R
ch \?{(N)\ D;;N) R L< XD) H d( )

!/

i 1 L
&K N™% + sup AN Z 1 <—z(1 + it,ﬂ@)(D)) — frana(R) |-
)

ReC DeA(N

Now from (7.8) and (7.9), we conclude that

(loglog N)?
R) — ran R EEEE———
sup [ (R) = peana(R)] « =25

8. PROOF OF THEOREM 1.5

In this section, we prove Theorem 1.5. We need the following lemmas, the second of which
(Lemma 8.2) asserts that the smooth density function M,,,q associated with t.,q is positive. For
the proof of Lemma 8.2, we follow in parts the idea sketched in the remark on [16, page 60]. We
use the notion of convolution and infinite convolution of distribution functions, the definitions of
which can be found in [16, Sections 2, 4] or [1, Section 2] among other references.

Lemma 8.1. Let >, x, be a conditionally convergent series of real numbers. Let a and € > 0 be
fixed. Then there exists a series Y. y,, where y, € {0, x,, —x,} such that

|Zy,,—oz| <e.

Proof. Let @ > 0 and 0 < € < 2a be given. By our assumptions, there exist positive integers k
and N large enough such that

k
€ €
a/—§<2‘xn‘<a’+§
n=N
and
€ - €
AT
n=k+1
We get the desired result by choosing
0 ifl<n<N-1,
Yo =12 |x| IfN<n<k,
x, ifn=k+1

If @ < 0, we get the result by applying the previous argument to —a. Finally, if @ = 0 we set
0 ifl<n<N-1,
Yn =

~
x, ifn>=N,

where N is chosen so that —e < Y-\ x, < €. O



VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES OF QUADRATIC TWISTS 31

Lemma 8.2. Let X, be a sequence of discrete random variables such that
a, ifa==lI,

P(sza)z{b ifa—-0
p

where 0 < a,,b, < 1 and2a, + b, = 1. Let f(z) = >,;_, k7" be an analytic function in a disk
|z| < p. Consider the random series
Z pf(rpX,)
P

where the sequences {1,} and {r,} are such that 0 < |r,| < p and A,f(r,X,) € R. Assume that
this random series is almost surely convergent with distribution function F. In addition, assume
that
F=x,F,= (*pePle) (*pePsz)

is the infinite convolution of the distribution functions attached to the random variables A, f (r,X,),
and Py and P, are two disjoint subsets of primes such that P, U P, is the set of all prime numbers.
Assume that F, pep F ), and xpcp,F), are absolutely continuous with continuous density functions
h, hy and hy respectively. If 3, >3, | |lkdprh| is divergent, then h(x) > 0 for all x € R.

Remark 8.3. Note that a sufficient condition for the divergence of }; , [ld,r ] is that /; # O,
2|4ty =0, and 3 1o, [, k| < oo.

Proof of Lemma 8.2. Since 3, -, [kd,ry| is divergent and 3 A, f(r,X,) is almost surely conver-

gent, then
{Z/lpfrp ) <o, X, €{- 101}}

is dense in R by Lemma 8.1. Thus, by [15, Proposition B.10.8], the support of Zp A,f(r,X,) is
all of R. Therefore, Ss h(x) dx > 0 for all a,b € R with a < b. Hence, h(u) is not identically
zero on any interval (a,b). Now since },, Yy [led,rk] is divergent, we can assume without loss
of generality that >, _p, Yoy [edprh] is divergent as Well By another application of Lemma 8.1

and [15, Proposition B.10.8], we have that 4 («) is not identically zero on any interval (a, b). By
our assumption, we have

h(x) = th(x —u)hy(u) du.

Since § 712(u) du = 1 and h; is continuous, there is an interval (c, d) such that i, (u) > 0 on (¢, d).
Since also A (x — u) > 0 on some subinterval (¢, d’) of (¢, d), then
d/

h(x) = J}Rhl(x —u)hy(u) du > J hi(x — u)hy(u) du > 0.

C/

Thus, i(x) > 0 for any x € R. o
Applying this lemma to the random series
d @jx(P) X
H—n‘
—Ld(1 + it, 7, X) Zlogpz —
j=1 1 ];T+zr Xp

yields:

Corollary 8.4. Let t € R be fixed, and let w be a cuspidal automorphic representation of GL,(Aq)

with unitary central character such thatm =~ 1 ® |det|2”. Then —Ld(1 + it, 7, X)) has an absolutely
continuous distribution with a positive density function.
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We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Letn = n(N) be a positive parameter which will be chosen so that n(N) —
0as N — oo. Let
< n}‘ .

(loglog N)?
)] Hrana ((—=17,7m)) + O <W) :

Let M,,,q be the smooth density function associated with p,,q. By Corollary 8.4, we know that
Mana(x) > 0 for all x € R. It follows that

/

L
Yy(n) = '{D e F(N): ‘z(l +it,T® xp)
By Theorem 1.2, we have

Yn(n)

Mrand ((—77, 77)) = J_n Mrand<x) dx >» n.

. (loglog N)? ” .
Choosingn = C gV for some large enough positive constant C yields
W(n)  (loglogN)?
|7 (N)] logN
Hence, we get my « (logl(l(;—g]\;\/)z as desired. O
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