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BOUNDS FOR ORDERS OF ZEROS OF A CLASS OF EISENSTEIN SERIES AND

THEIR APPLICATIONS ON DUAL PAIRS OF ETA QUOTIENTS

AMIR AKBARY AND ZAFER SELCUK AYGIN

ABSTRACT. Let k be an even positive integer, p be a prime and m be a nonnegative integer. We find

an upper bound for orders of zeros (at cusps) of a linear combination of classical Eisenstein series

of weight k and level pm. As an immediate consequence we find the set of all eta quotients that are

linear combinations of these Eisenstein series and hence the set of all eta quotients of level pm whose

derivatives are also eta quotients.

1. INTRODUCTION

For an element z in the upper half-plane of the complex numbers, let q := e2πiz. The classical

Eisenstein series are defined by

Ek(z) :=
−Bk

2k
+

∑

n≥1

σk−1(n)qn, (1.1)

where k ≥ 2 is an even integer, Bk is the k-th Bernoulli number and σk−1(n) =
∑

0<d|n dk−1. (Here we

use the normalization given in [10, p. 88] for the Eisenstein series Ek(z).) Let

Ek(N) :=















〈E2(z) − dE2(dz); 1 < d | N〉Q if k = 2,

〈Ek(dz); 1 ≤ d | N〉Q otherwise.

Let Mk(Γ0(N)) be the space of modular forms of weight k for Γ0(N). Then it is known that for all

even k ≥ 2 the space Ek(N) is a subset of Mk(Γ0(N)).

Some infinite products that can be expressed explicitly as infinite sums are elements of Ek(N).

For example we have

∞
∏

n=1

(1 − q2n)20

(1 − qn)8(1 − q4n)8
= 8E2(z) − 32E2(4z),

∞
∏

n=1

(1 − q2n)2(1 − q4n)4(1 − q6n)6

(1 − qn)2(1 − q3n)2(1 − q12n)4

= 2E2(z) − 3E2(2z) + 4E2(4z) + 9E2(6z) − 36E2(12z),
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and














∞
∏

n=1

(1 − q2n)5

(1 − qn)2(1 − q4n)2















4k

=
−2k

B2k

(

(−1)k

22k − 1
E2k(z) −

((−1)k
+ 1)

22k − 1
E2k(2z) +

22k

22k − 1
E2k(4z)

)

+

∞
∑

n=1

O(nk)qn,

where the first identity can be deduced from Jacobi’s formula for the representation by four squares

[5], the second identity is from Williams’s paper [11, Table 1, No. 24], and the last one is given by

Ramanujan [8, Sec. 25] and proven by Mordell [7].

By using [1, Corollary 2.1] the first two indentities above induce the differential identities

D















q

∞
∏

n=1

(1 − q4n)8

(1 − qn)8















= q

∞
∏

n=1

(1 − q2n)20

(1 − qn)16

and

D















q2

∞
∏

n=1

(1 − q2n)3(1 − q12n)6

(1 − qn)4(1 − q4n)2(1 − q6n)3















= 2q2

∞
∏

n=1

(1 − q2n)5(1 − q4n)2(1 − q6n)3(1 − q12n)2

(1 − qn)6(1 − q3n)2
.

Here, D := q d
dq

denotes the Ramanujan differential operator. Additionally, the differential identity

E2(z)2
=

5

12
E4(z) −

1

2
D(E2(z))

appears in the works of Besge, Glaisher and Ramanujan independently (see [4] for the references).

In all these examples, one can replace z by tz (t ∈ N) and obtain another product-to-sum formula.

To avoid this triviality; and to avoid counting the same example more than once we define the set

Pk(N) := Ek(N)\Ok(N),

where

Ok(N) :=
⋃

1<d|N

(Ek(N/d) ∪ { f (dz); f (z) ∈ Ek(N/d)}) .

Let R(N) denote a complete set of inequivalent cusps of Γ0(N) and for r ∈ R(N), let vr( f ) denote

the order of vanishing of f at the cusp r. Letting f (z) ∈ Pk(pm), in this paper we find the following

upper bound for the sum of orders of vanishings of f (z) at cusps in R(pm).

Theorem 1.1. Let p be a prime and m ∈ N0 = N ∪ {0} and k ≥ 2 be even. If f (z) ∈ Pk(pm), then

we have

∑

r∈R(pm)

vr( f ) <























1 if pm
= 1,

4 if pm
= 4,

p[(m−1)/2](p(m−1)−2[(m−1)/2]
+ 1) if pm

, 1 or 4.

Remarks 1.2. (1) For pm
, 4, the proof of Theorem 1.1 more generally establishes that if

f (z) ∈ Pk(pm), then vr( f ) ≤ 1 at any cusp r ∈ R(pm). Note that

#R(pm) = p[(m−1)/2](p(m−1)−2[(m−1)/2]
+ 1),
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see [3, Corollary 6.3.24.(b)].

(2) The bounds given by Theorem 1.1 do not depend on the weight k. Therefore, by valence

formula, as the weight increases, the proportion of the zeros at the cusps compared to all

the zeros decreases.

(3) If we let the field of coefficients in the definition of Ek(N) to be C, then Theorem 1.1 holds

for

f (z) =
∑

t|pm

rtEk(tz) ∈ Pk(pm),

unless m is even and ω
rpm

r1
, −pmk/2 where ω is a certain pm/2th root of unity defined in the

proof of Lemma 3.1. In this case the bound on
∑

r∈R(pm) vr( f ) can be bigger because one of

the arguments in the proof of Lemma 3.1 may fail in certain cases.

We next describe an application of Theorem 1.1. The Dedekind eta function is defined by the

infinite product

η(z) = eπiz/12

∞
∏

n=1

(1 − e2πinz) = q1/24

∞
∏

n=1

(1 − qn).

An eta quotient of level N is defined to be of the form

f (z) =
∏

t|N

η(tz)rt , (1.2)

where the exponent rt are integers. The weight attached to this eta quotient is k =
∑

0<t|N rt/2. Notice

that we do not require level to be the lowest common multiple of t for which rt , 0, therefore the

level of an eta quotient in our approach is not unique. This gives us a certain freedom in our

discussions and does not affect the completeness of our results.

We say an eta quotient f is primitive if there is no eta quotient g such that f (z) = g(dz) for

some integer d > 1. A pair ( f , g) of eta quotients is called a dual pair if f is of weight −k and

g is of weight k + 2, for some non-negative integers k, and the (k + 1)-th derivative of f is a non-

zero constant multiple of g. In [2] the problem of finding all dual pairs of eta quotients ( f , g) on

Γ0(N) for which f is a primitive eta quotients is studied. Theorem 1.1 has an immediate application

on finding dual pairs of eta quotients ( f , g) of weight (0, 2). These are the eta quotients whose

derivatives are also eta quotients (or constant multiple of eta quotients). In [2] the set of all such

primitive eta quotients on Γ0(N) with squarefree levels N is given; in [1] a set of 203 dual pairs

of weight (0, 2) was given and conjectured to be the complete set for all N. Additionally in [1]

it is established that every such pair is induced by the eta quotients in E2(N). Since eta quotients

have all their zeros (or poles) at cusps, as a direct consequence of our Theorem 1.1 we establish the

complete set of eta quotients of prime power levels whose derivatives are also eta quotients. This

extends the results of [2] on dual pairs of weight (0, 2) for squarefree levels to prime power levels.

As noted all zeros (or poles) of eta quotients are at the cusps. Hence, by the valence formula,

for an eta quotient f (z) of level pm we have
∑

r∈R(pm) vr( f ) = k
12

(pm
+ pm−1) (see [2, Lemma 2.1]).

Therefore a comparison with the upper bound given by Theorem 1.1 and investigations among

possible pairs of (k, pm) give us the following statement.

Theorem 1.3. Let p be prime, m ∈ N0 and k ∈ N be even. Then there is no eta quotient in Pk(pm)

unless (k, pm) = (2, 4), (2, 8), (2, 9), (2, 16), (4, 2) or (4, 4).

In Corollary 1.4 below the trivial extensions mean the following:

If f (z) ∈ Ek(N), then c f (t1z) ∈ Ek(t2N) for all t2 ∈ N, t1 | t2 and c ∈ Q.

Corollary 1.4. Let p be prime, m ∈ N0.
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(1) The set of eta quotients

{

η8(z)

η4(z)
,
η8(4z)

η4(2z)
,

η20(2z)

η8(z)η8(4z)
,
η4(z)η10(4z)

η6(2z)η4(8z)
,
η10(2z)η4(8z)

η4(z)η6(4z)
,

η6(2z)η6(4z)

η4(z)η4(8z)
,
η4(z)η4(8z)

η2(2z)η2(4z)
,

η10(3z)

η3(z)η3(9z)
,
η2(z)η8(4z)η(8z)

η5(2z)η2(16z)
,

η(2z)η8(4z)η2(16z)

η2(z)η5(8z)
,
η(2z)η6(4z)η(8z)

η2(z)η2(16z)
,
η2(z)η10(4z)η2(16z)

η5(2z)η5(8z)

}

is the complete set of eta quotients in E2(pm) (up to trivial extensions).

(2) The set of eta quotients

{

η16(2z)

η8(z)
,

η40(2z)

η16(z)η16(4z)
,
η8(z)η8(4z)

η8(2z)
,
η16(z)

η8(2z)

}

is the complete set of eta quotients in E4(pm) (up to trivial extensions).

(3) If k > 4, then there are no eta quotients in Ek(pm).

It is known that the eta quotients in E2(N) are intimately related to the eta quotients of level N

whose derivatives are eta quotients. More precisely, Lemma 2.1 of [1] establishes a one-to-one

correspondence between the eta quotients of the form
∑

1<δ|N rδ (E2(z) − δE2(δz)) ∈ E2(N) and the

eta quotients
∏

0<δ|N η
rδ(δz) with r1 = −

∑

1<δ|N rδ whose derivatives are also eta quotients.

Corollary 1.5. Let p be prime, m ∈ N0. The set of eta quotients

{

η8(z)η16(4z)

η24(2z)
,

η3(2z)

η2(z)η(4z)
,
η8(4z)

η8(z)
,
η4(z)η2(4z)η4(8z)

η10(2z)
,

η5(4z)

η2(z)η(2z)η2(8z)
,

η2(2z)η4(8z)

η4(z)η2(4z)
,
η7(2z)η2(8z)

η2(z)η7(4z)
,
η3(9z)

η3(z)
,
η2(z)η2(4z)η2(16z)

η5(2z)η(8z)
,

η(2z)η5(8z)

η2(z)η2(4z)η2(16z)
,
η(2z)η2(16z)

η2(z)η(8z)
,
η5(2z)η2(16z)

η2(z)η5(8z)

}

is the complete set (up to trivial extensions) of eta quotients of level pm whose derivatives are also

eta quotients.

In Corollary 1.5 the trivial extensions mean the following:

If f (z) is an eta quotient whose derivative is also an eta quotient (or a constant multiple of

an eta quotient), then f ℓ(tz) is an eta quotient whose derivative is also an eta quotient (or a

constant multiple of an eta quotient) for all t, ℓ ∈ N.

There is a previously known example of an eta quotient whose second derivative is also an eta

quotient

D2

(

η2(2z)

η4(z)

)

= 4
η18(2z)

η12(z)
.

From Corollary 1.4(2) we see that

(

η18(2z)

η12(z)

)

/

(

η2(2z)

η4(z)

)

=
η16(2z)

η8(z)
∈ E4(4).
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This is not a coincidence. In fact we will show that any integer solution (r1, r2, r4) of the system


































r1 + r2 + r4 = −2,
5

12
r2

1
+

1
3
r1r2 = s1,

5
3
r2

2 +
4
3
r1r2 +

1
2
r1r4 +

4
3
r2r4 = s2,

20
3

r2
4
+

8
3
r1r4 +

16
3

r2r4 = s4,

where
∑

0<δ|4 sδE4(δz) ∈ E4(4), gives rise to an eta quotient of weight −1 and level 4 for which

its second derivative is an eta quotient. As a consequence of this we classify all the level 4 eta

quotients whose second derivatives are also eta quotients.

Theorem 1.6. Up to trivial extensions the only level 4 eta quotient whose second derivative is also

an eta quotient is
η2(2z)

η4(z)
.

The trivial extensions in Theorem 1.6 mean the following:

If f (z) is an eta quotient whose second derivative is also an eta quotient (or a constant

multiple of an eta quotient), then f (tz) is an eta quotient whose second derivative is also an

eta quotient (or a constant multiple of an eta quotient) for all t ∈ N.

The arguments we use to prove Theorem 1.6 will not hold for eta quotients in most of the levels

other than 4 because formulas analogous to (4.6)–(4.8) in other levels almost always involve cusp

forms of weight 4. So the second derivative of an eta quotient in general may not be in E4(N).

The organization of the rest of the paper is as follows. In the next section we derive the Fourier

series expansions of Ek(tz) at each cusp using the expansion at i∞ of Ek(z) and some matrix re-

lations. We employ these expansions and use the description of the Eisenstein series in Pk(pm)

to prove Theorem 1.3. In Section 3 we prove Theorems 1.1 and 1.3, and Corollaries 1.4 and 1.5

by using the results of Section 2. Finally in Section 4 we work on the second derivatives of eta

quotients and prove Theorem 1.6.

2. THE FOURIER SERIES EXPANSIONS OF Ek(tz) AT CUSPS a/c

Let t ∈ N. To prove Theorem 1.1 we need to derive the Fourier series expansion of Ek(tz) at a/c

where a, c ∈ Z satisfy gcd(a, c) = 1. We follow an approach similar to the proof of [6, Proposition

2.1] where constant terms of Dedekind eta function is calculated. For notational convenience let us

denote

Ek,t(z) := Ek(tz) =
−Bk

2k
+

∑

n≥1

σk−1(n)qtn.

Define

ιk :=















1 if k = 2,

0 otherwise.

Set

qc,N := e2πi gcd(c2 ,N)z/N ,

and

ωM,t :=















1 if c ≡ 0 (mod t),

e(
−2πi gcd(t,c)d f

t
) if c . 0 (mod t),

where M =

(

a b

c d

)

∈ SL2(Z).
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Lemma 2.1. Let a/c be a rational cusp of Γ0(N), where (a, c) = 1. Let b and d be two integers such

that M =

(

a b

c d

)

∈ SL2(Z). If f (z) ∈ Ek(N), then the Fourier series expansion of f (z) =
∑

t|N rtEk(tz)

at the cusp a/c is given by

(cz + d)−k f (Mz) = (cz + d)−k
∑

t|N

rtEk,t(Mz)

=

∑

t|N

∑

n≥0

an(c, t)rtω
n
M,tq

n gcd(t,c)2 N/t gcd(c2,N)

c,N
,

where an(c, t) , 0 are rational numbers given explicitly in the proof below.

Proof. It is known that

Ek(Mz) = Ek

(

az + b

cz + d

)

= (cz + d)kEk(z) + ιk
ic

4π
(cz + d) (2.1)

for all M =

(

a b

c d

)

∈ SL2(Z) (see [3, Corollary 5.2.17.(b)]). We have

Ek,t(Mz) = Ek(tMz) = Ek

(

atz + bt

cz + d

)

. (2.2)

Now let e := at
gcd(t,c)

and g := c
gcd(t,c)

. It is clear that e, g ∈ Z and since gcd(e, g) = 1, there exists

f , h ∈ Z such that

eh − f g = 1. (2.3)

Therefore

(

e f

g h

)

∈ SL2(Z). Hence using (2.3) we obtain

(

at bt

c d

)

=

(

e f

g h

) (

aht − c f bht − d f

0 −bgt + de

)

. (2.4)

Putting (2.2) and (2.4) together we obtain

Ek,t(Mz) = Ek

((

e f

g h

) (

aht − c f bht − d f

0 −bgt + de

)

z

)

.

Let

zM :=
(aht − c f )z + (bht − d f )

−bgt + de
.

Then using aht − c f = gcd(t, c) we get

gzM + h =
gcd(t, c)

t
(cz + d). (2.5)

Observe that

−bgt + de = t/ gcd(t, c). (2.6)

Now, by employing (2.5), (2.6), and (2.1) we have

Ek,t(Mz) =

(

gcd(t, c)

t

)k

(cz + d)kEk

(

gcd(t, c)2z − gcd(t, c)d f

t

)

+ ιk
ic

4πt
(cz + d),

where in the calculations we use (2.3) and

E2(z + 1) = E2(z).
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Additionally, if c ≡ 0 (mod t), then gcd(t, c)d f ≡ 0 (mod t). That is, we have

Ek,t(Mz) =











































(

gcd(t,c)

t

)k
(cz + d)kEk

(

gcd(t,c)2z

t

)

+ιk
ic

4πt
(cz + d), if c ≡ 0 (mod t),

(

gcd(t,c)

t

)k
(cz + d)kEk

(

gcd(t,c)2z−gcd(t,c)d f

t

)

+ιk
ic

4πt
(cz + d), if c . 0 (mod t).

(2.7)

Applying (1.1) in (2.7) we obtain the following Fourier series expansion of Ek(tz) at a/c:

Ek,t(Mz)

=











































(

gcd(t,c)

t

)k
(cz + d)k

(

−Bk

2k
+

∑

n≥1 σk−1(n)e2πin gcd(t,c)2z/t
)

+ιk
ic

4πt
(cz + d), if c ≡ 0 (mod t),

(

gcd(t,c)

t

)k
(cz + d)k

(

−Bk

2k
+

∑

n≥1 σk−1(n)e2πin(
gcd(t,c)2z−gcd(t,c)d f

t
)

)

+ιk
ic

4πt
(cz + d), if c . 0 (mod t).

(2.8)

Note that the width of the cusp a/c in Γ0(N) is given by N
gcd(c2 ,N)

([3, Corollary 6.3.24.(a)]) and recall

that we define

qc,N = e2πi gcd(c2,N)z/N .

Employing this in (2.8), we obtain

(cz + d)−kEk,t(Mz)

=















∑

n≥0 anq
n gcd(t,c)2N/t gcd(c2 ,N)

c,N
+ ιk

ic
4πt(cz+d)

if c ≡ 0 (mod t),
∑

n≥0 ane(
−2πin gcd(t,c)d f

t
)q

n gcd(t,c)2N/t gcd(c2,N)

c,N
+ ιk

ic
4πt(cz+d)

if c . 0 (mod t),
(2.9)

where, for a fixed k, an depends on c and t and given by

an := an(c, t) =



































(

gcd(t, c)

t

)k

·
−Bk

2k
if n = 0,

(

gcd(t, c)

t

)k

σk−1(n) if n > 0,

(2.10)

and hence an(c, t) ∈ Q and an(c, t) , 0 for all n ∈ N0. Now recall that

ωM,t =















1 if c ≡ 0 (mod t),

e(
−2πi gcd(t,c)d f

t
) if c . 0 (mod t).

Using this and noting that an(c, t) is a function of c, t and k, we write (2.9) as

(cz + d)−kEk,t(Mz) =
∑

n≥0

an(c, t)ωn
M,tq

n gcd(t,c)2N/t gcd(c2 ,N)

c,N
+ ιk

ic

4πt(cz + d)
. (2.11)

Now, let f (z) ∈ Ek(N), then we have

f (z) =
∑

t|N

rtEk(tz), (2.12)

where, when k = 2, rt satisfy
∑

t|N

rt

t
= 0, (2.13)
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and ιk = 0 for all even k ≥ 4, that is, for all even k ≥ 2 we have

ιk

∑

t|N

rt

ic

4πt(cz + d)
= ιk

ic

4π(cz + d)

∑

t|N

rt

t
= 0.

Therefore from (2.11) and (2.12) we have the desired result. �

3. PROOF OF THEOREM 1.1

In this section we let N = pm for p a prime and m a positive integer. Then for any f (z) ∈ Ek(pm)

we have

f (z) =
∑

t|pm

rtEk,t(z),

where rt ∈ Q and should satisfy (2.13) when k = 2. Let M =

(

a b

c d

)

∈ SL2(Z). Then for all c | pm,

by Lemma 2.1, we have

(cz + d)−k f (Mz) =
∑

t|pm

∑

n≥0

an(c, t)rtω
n
M,tq

n gcd(t,c)2 pm/t gcd(c2,pm)

c,pm .

Since all divisors of pm are of the form pi, for 0 ≤ i ≤ m we have

(piz + d)−k f (Mz) =

m
∑

j=0

∑

n≥0

an(pi, p j)rp jωn
M,p jq

n gcd(p j ,pi)2 pm/p j gcd(p2i,pm)

pi,pm . (3.1)

On the other hand we have

ωM,p j =















1 if pi ≡ 0 (mod p j)

e−2πi gcd(p j ,pi)d f /p j

if pi
. 0 (mod p j)

=















1 if i ≥ j,

e−2πid f /p j−i

if i < j,

and

gcd(p j, pi)2 pm/p j gcd(p2i, pm) =



































p j if i ≥ j and i ≥ m/2,

p2i− j if i < j and i ≥ m/2,

pm+ j−2i if i ≥ j and i < m/2,

pm− j if i < j and i < m/2.

We put these into (3.1) to obtain

(piz + d)−k f (Mz) =







































































∑

i≥ j

∑

n≥0

an(pi, p j)rp jq
np j

pi,pm

+

∑

i< j

∑

n≥0

an(pi, p j)rp je−2πind f /p j−i

q
np2i− j

pi,pm if i ≥ m/2,

∑

i≥ j

∑

n≥0

an(pi, p j)rp jq
npm+ j−2i

pi,pm

+

∑

i< j

∑

n≥0

an(pi, p j)rp je−2πind f /p j−i

q
npm− j

pi,pm if i < m/2.

(3.2)

Lemma 3.1. Let f (z) ∈ Ek(pm) where pm
, 4. If va/pi( f (z)) > 1 for some 0 ≤ i ≤ m, then either

r1 = 0 or rpm = 0.
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Proof. Let f (z) ∈ Ek(pm). Let 0 ≤ i < m/2. By (3.2) the Fourier series expansion of f (z) at a/pi is

given by

(piz + d)−k f (Mz) =
∑

i≥ j

∑

n≥0

an(pi, p j)rp jq
npm+ j−2i

pi,pm

+

∑

i< j

∑

n≥0

an(pi, p j)rp je−2πind f /p j−i

q
npm− j

pi,pm .

If va/pi( f (z)) > 1, then the coefficient of q1
pi,pm in the Fourier series expansion of f (z) at a/pi is 0,

i.e., a1(pi, pm)rpme−2πind f /pm−i

= 0. Since a1(pi, pm)e−2πind f /pm−i

, 0, we must have rpm = 0. Arguing

similarly we obtain

rpm = 0 if i < m/2,

r1 = 0 if i > m/2,

a1(pm/2, 1)r1 + a1(pm/2, pm)e−2πid f /pm/2

rpm = 0 if i = m/2.

Since, in notation of Lemma 2.1, c = pm/2, t = pm, ad − bc = 1, and eh − f g = 1, we have

gcd(d f , p) = 1. Therefore when p , 2 and m , 2, e−2πid f /pm/2

is not a real number. Now since

a1(pm/2, 1), a1(pm/2, pm) ∈ Q we have r1 = 0 and rpm = 0. Therefore the statement follows.

�

Proof of Theorem 1.1. Assume pm
, 4. Let f (z) ∈ Pk(pm). Assume, for sake of contradiction, that

va/pi( f (z)) > 1 for some cusp a/pi where 0 ≤ i ≤ m and gcd(a, pi) = 1. Then by Lemma 3.1 we have

either r1 = 0 or rpm = 0. If r1 = 0, then there exists a g(z) ∈ Ek(pm−1) such that f (z) = g(pz), that

is, f (z) ∈ Ok(pm). This contradicts to f (z) being in Pk(pm). If rpm = 0, then f (z) ∈ Ek(pm−1) again a

contradiction with f (z) being in Pk(pm). Therefore we must have va/pi( f (z)) ≤ 1 for all cusps a/pi

where 0 ≤ i ≤ m and gcd(a, pi) = 1. Since f is not a cusp form, for at least one r ∈ R(pm) we have

vr( f (z)) = 0. Then the theorem follows from observing

#R(pm) = p[(m−1)/2](p(m−1)−2[(m−1)/2]
+ 1),

see [3, Corollary 6.3.24.(b)], together with the fact that all r ∈ R(pm) can be chosen to be in the

form a/pi.

Now we prove the case p = 2 and m = 2. In this case let us fix

R(4) =

{

1

1
,

1

2
,

1

4

}

.

By arguments similar to the proof of Lemma 3.1 if v1/1( f (z)) > 1 or v1/4( f (z)) > 1, then r1 = 0 or

r4 = 0, that is, f (z) cannot be in Pk(4). Therefore, we must have v1/1( f (z)) ≤ 1 and v1/4( f (z)) ≤ 1.

On the other hand if v1/2( f (z)) > 2, then from the expansion at 1/2, formula (3.2) for p = 2, m = 2,

i = 1, we have

(2z + d)−k f (Mz) =
∑

n≥0

an(2, 1)r1qn
2,4

+

∑

n≥0

an(2, 2)r2q2n
2,4 +

∑

n≥0

an(2, 4)r4e−2πind f /2qn
2,4.

Observing that d f ≡ 1 (mod 2) yields

a0(2, 1)r1 + a0(2, 2)r2 + a0(2, 4)r4 = 0,

a1(2, 1)r1 − a1(2, 4)r4 = 0,

a2(2, 1)r1 + a1(2, 2)r2 + a2(2, 4)r4 = 0.
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Putting the values of an’s from (2.10) in the the above equations and simplifying them we have

r1 + r2 + r4/2
k
= 0,

r1 − r4/2
k
= 0,

(1 + 2k−1)r1 + r2 + (1 + 2k−1)r4/2
k
= 0.

Thus r1, r2, r4 = 0. Therefore, if v1/2( f (z)) > 2, then f (z) = 0.

Hence, if f (z) ∈ Pk(4), then v1/1( f (z)) ≤ 1, v1/4( f (z)) ≤ 1 and v1/2( f (z)) ≤ 2. Also since f (z) is

not a cusp form vr( f (z)) has to be 0 for at least one r ∈ R(4). Thus, we have
∑

r∈R(4) vr( f (z)) < 4. �

Proof of Theorem 1.3. Let f ∈ Pk(pm) be an eta quotient. Then we have

∑

r∈R(pm)

vr( f ) =























k

12
if m = 0,

k

12
(pm
+ pm−1) if m , 0,

see [2, Lemma 2.1].

We observe that
∑

r∈R(pm) vr( f ) is greater than or equal to the upper bound given by Theorem

1.1 unless (k, pm) = (2, 1), (4, 1), (6, 1), (8, 1), (10, 1), (2, 2), (2, 4), (2, 8), (2, 16), (4, 2), (4, 4),

(6, 2), (6, 4), (2, 3), (2, 9), (4, 3), (2, 5), (2, 25), (2, 7). This means unless (k, pm) is one of the pairs

above, f ∈ Pk(pm) will have at least one zero in the upper half-plane, that is, f cannot be an eta

quotient. We run the algorithms given in [1] and see that there are no eta quotients in Pk(pm) when

(k, pm) = (2, 1), (4, 1), (6, 1), (8, 1), (10, 1), (2, 2), (6, 2), (6, 4), (2, 3), (4, 3), (2, 5), (2, 25), (2, 7). �

Proof of Corollary 1.4. Notice that for any f ∈ Ek(pm) there is a g ∈ Pk(pm′) such that 0 ≤ m′ ≤ m

and f is a trivial extension of g. By Theorem 1.3, we have

(k, pm′) ∈ {(2, 4), (2, 8), (2, 9), (2, 16), (4, 2), (4, 4)}.

Now we can derive the finite set of all the eta quotients of weight k and level pm′ in Pk(pm′) by

employing Algorithm 4.2 in [1]. �

Proof of Corollary 1.5. By Lemma 2.1 of [1] the desired set can be obtained by finding the an-

tiderivatives of the eta quotients given in part (1) of Corollary 1.4. Now Algorithm 4.3 of [1]

derives the required antiderivatives. �

4. SECOND ORDER DERIVATIVES

In this section we prove Theorem 1.6. We start by determining the weight of an eta quotient

whose second derivative is also an eta quotient.

Proposition 4.1. If f is an eta quotient of weight k for which D2( f )/ f is an eta quotient of weight

ℓ, then k = −1 and ℓ = 4.

The following lemma is needed for the proof of this proposition.

Lemma 4.2. Let f be a nonzero holomorphic function defined on the upper half-plane. Suppose

that for an M =

(

a b

c d

)

∈ SL2(Z) we have

f (Mz) = ψM(cz + d)k f (z), (4.1)

where k is an integer and ψM is a root of unity depending on M. Then

(cz + d)−4 D2( f (Mz))

f (Mz)
=

D2( f (z))

f (z)
+

k + 1

πi

D( f (z))

f (z)

(

c

cz + d

)

−
k(k + 1)

4π2

(

c

cz + d

)2

. (4.2)
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Proof. This is a consequence of differentiation of (4.1) twice and employing the transformation

property (4.1). (For a general formula for the m-th derivative of a modular form see [9, Proposition

3.1].) �

Proof of Proposition 4.1. Since f is an eta quotient of weight k, then (4.1) holds for any M ∈ Γ0(R)

for a suitable non-negative integer R and for corresponding 24-th roots of unity ψM’s. Thus (4.2)

holds for such M’s. Now assume that D2( f )/ f is also an eta quotient of weight ℓ. Suppose that this

eta quotient has level N (a multiple of R) and thus satisfies

D2( f (Mz))

f (Mz)
= χM(cz + d)ℓ

D2( f (z))

f (z)
(4.3)

for some 24-th root of unity χM , depending on M, and for all matrices M =

(

a b

c d

)

∈ Γ0(N). Now,

for a fixed z in the upper half-plane, applying (4.3) in (4.2) and rearranging the terms yields

(

χM(cz + d)ℓ − (cz + d)4
) D2( f (z))

f (z)
= (k + 1)

(

kc2α(cz + d)2
+ cβ(cz + d)3

)

(4.4)

for some fixed constants α, β ∈ C. (Note that since z is fixed, the value of D( f (z))/ f (z) is absorbed

in β.) Next assume that ℓ ≥ 0 and ℓ , 4. Observe that the set S of matrices M =

(

∗ ∗

N d

)

∈ Γ0(N)

for which χ0(Nz + d)ℓ − (Nz + d)4
, 0, for one of the 24-th roots of unity χ0, is infinite. Assuming

that k , −1, the equation (4.4), for c = N and M ∈ S , can be re-written as

1

k + 1

D2( f (z))

f (z)
=

kN2α(Nz + d)2
+ Nβ(Nz + d)3

χ0(Nz + d)ℓ − (Nz + d)4
. (4.5)

Now for a fixed z in the upper half-plane, the right-hand side of (4.5) is equal to a fixed non-

zero complex number γ for infinitely many values of d. This is a contradiction as the non-trivial

polynomial equation

(kN2α)X2
+ (Nβ)X3 − (γχ0)Xℓ

+ γX4
= 0

has finitely many solutions. The other cases can be analyzed in a similar fashion to conclude that if

both f and D2( f )/ f are eta quotients, then k = −1, ℓ = 4, and χM = 1. �

We continue with listing some identities that will be useful in the proof:

E2(z)2
=

5

12
E4(z) −

1

2
D(E2(z)), (4.6)

E2(z)E2(2z) =
1

12
E4(z) +

1

3
E4(2z) −

1

8
D(E2(z)) −

1

4
D(E2(2z)), (4.7)

and

E2(z)E2(4z) =
1

48
E4(z) +

1

16
E4(2z) +

1

3
E4(4z) −

1

16
D(E2(z)) −

1

4
D(E2(4z)), (4.8)

first of which is due to Besge, Glaisher and Ramanujan independently and for the latter two see

[4, Theorems 2 and 4]. Additionally we note that using (4.6) and replacing z by 2z we obtain

E2(2z)2
=

5

12
E4(2z) −

1

4
D(E2(2z)), (4.9)

using (4.6) and replacing z by 4z we obtain

E2(4z)2
=

5

12
E4(4z) −

1

8
D(E2(4z)), (4.10)
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and using (4.7) and replacing z by 2z we obtain

E2(2z)E2(4z) =
1

12
E4(2z) +

1

3
E4(4z) −

1

16
D(E2(2z)) −

1

8
D(E2(4z)). (4.11)

Now we prove Theorem 1.6.

Proof of Theorem 1.6. If f (z) = ηr1(z)ηr2(2z)ηr4(4z), then by taking logarithmic derivative two times

and employing the identity

D(log(η(z))) = −E2(z)

we obtain

D2( f (z))

f (z)
= D(−r1E2(z) − 2r2E2(2z) − 4r4E2(4z))

+ (−r1E2(z) − 2r2E2(2z) − 4r4E2(4z))2.

Next we use (4.6)–(4.11) and obtain

D2( f (z))

f (z)
= E4(z)

(

5

12
r2

1 +
1

3
r1r2

)

+ E4(2z)

(

5

3
r2

2 +
4

3
r1r2 +

1

2
r1r4 +

4

3
r2r4

)

+ E4(4z)

(

20

3
r2

4 +
8

3
r1r4 +

16

3
r2r4

)

+ D(E2(z))

(

−r1 −
1

2
r1(r1 + r2 + r4)

)

+ D(E2(2z)) (−2r2 − r2(r1 + r2 + r4))

+ D(E2(4z)) (−4r4 − 2r4(r1 + r2 + r4)) .

Noting that, by Proposition 4.1, r1 + r2 + r4 = −2 must hold, we have

D2( f (z))

f (z)
= E4(z)

(

5

12
r2

1 +
1

3
r1r2

)

+ E4(2z)

(

5

3
r2

2 +
4

3
r1r2 +

1

2
r1r4 +

4

3
r2r4

)

+ E4(4z)

(

20

3
r2

4 +
8

3
r1r4 +

16

3
r2r4

)

.

Therefore
D2( f (z))

f (z)
∈ E4(4). The result follows by investigating all the eta quotients in E4(4) that are

found by using the algorithms given in [1]. �
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