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ABSTRACT. It is known that if the negative Pell equation X2 ´ DY2 “ ´1 is solvable (in integers),
and if px, yq is its solution with the smallest positive x and y, then all of its solutions pxn, ynq are
given by the formula

xn ` yn

?
D “ ˘px` y

?
Dq2n`1

for n P Z. Furthermore, a theorem of Walker from 1967 states that if the equation aX2 ´ bY2 “ ˘1
is solvable, and if px, yq is its solution with the smallest positive x and y, then all of its solutions
pxn, ynq are given by

xn
?

a` yn

?
b “ ˘px

?
a` y

?
bq2n`1

for n P Z. We prove a unifying theorem that includes both of these results as special cases. The
key observation is a structural theorem for the non-trivial ambiguous classes of the solutions of the
(generalized) Pell equations X2 ´ DY2 “ ˘N. We also provide a criterion for determination of the
non-trivial ambiguous classes of the solutions of Pell’s equations.

1. INTRODUCTION

Consider the (generalized) Pell equation

(1) X2
´ DY2

“ ˘N

for square-free D ą 1 and N ą 0, both integers, where the sign in the right-hand side of the
equation is either positive or negative. A pair px, yq P Zˆ Z that satisfies (1) is called a solution of
(1). Let

S pD; Nq “ tpx, yq P Zˆ Z; x2
´ Dy2

“ Nu
be the set of solutions of X2 ´ DY2 “ N. This set has fascinated mathematicians for centuries,
in particular in the basic case N “ 1. This case was studied by Indian mathematicians and a
method for solving it, the so called chakravala, was developed starting by Brahmagupta in the 7th
century C.E.. About a thousand years later William Brouncker, an English mathematician, with a
method similar to chakravala solved (1) for N “ 1 and positive sign. Euler mistakenly attributed
this method to John Pell, another English mathematician, and thus, the name “Pell” stuck to this
equation. For information regarding the history of the Pell equation see [12, Chapter II, Section
XIII] and [2, Chapter XII].

We continue with a review of some known results related to solutions of (1) when N “ 1 and
the sign is either positive or negative.

2. RELEVANT PRELIMINARIES AND ASSERTIONS

It is known that the equation

(2) X2
´ DY2

“ 1

has infinitely many solutions. Moreover, the set

PpD; 1q :“ tx` y
?

D; px, yq P S pD; 1qu,
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with multiplication, forms a group generated by´1 and x1`y1
?

D, where x1`y1
?

D is of infinite
order. That is, PpD; 1q » pZ{2Zq ˆ Z. For a proof of these facts see [4, Theorems 8.5 and 8.6].

We can determine the solution px1, y1q by choosing the smallest positive x1 and y1 such that
px1, y1q P S pD; 1q. We name this unique solution in S pD; 1q, the fundamental solution of (2).
(See [3] for an informal introduction to the algorithms for finding the fundamental solution of (2),
described by the celebrated cattle problem of Archimedes as a motivating example.)

´30 ´20 ´10 10 20 30

´20

´10

10

20

(2,1)

(-2,-1)

FIGURE 1. The Pell equation X2 ´ 3Y2 “ 1, which has the fundamental solution p2, 1q.

As an example, Figure 1 illustrates the equation X2 ´ 3Y2 “ 1. Each red point is a solution
of X2 ´ 3Y2 “ 1, which has the fundamental solution p2, 1q. The solutions p1, 0q and p´1, 0q,
corresponding to Y “ 0, are called the trivial solutions of this equation.

The solutions of the negative Pell equation

(3) X2
´ DY2

“ ´1

provides another example of a structural theorem. Let S pD,´Nq and PpD,´Nq be defined similar
to the above. In this case S pD;´1q can be empty, however for the values of D for which S pD;´1q
is non-empty the solutions of (3) are intimately related to the solutions of (2). The following is
proved in [4, Theorem 8.7, p. 202].

Proposition 1. If (3) is solvable, and if px, yq is its solution with the smallest positive x and y, then

u1 ` v1

?
D “ px` y

?
Dq2,

where pu1, v1q is the fundamental solution of the Pell equation

U2
´ DV2

“ 1.

Moreover, all solutions of (3) are given by the formula

xn ` yn

?
D “ ˘px` y

?
Dq2n`1

for n P Z.

As a consequence of the group structure of PpD; 1q and the above theorem, we observe that if
(3) is solvable, then PpD; 1q Y PpD;´1q, generated by ´1 and x` y

?
D, is a multiplicative group

which contains PpD; 1q as an index 2 subgroup and PpD;´1q as a coset of PpD; 1q. Note that as
an abstract group PpD; 1q Y PpD;´1q » pZ{2Zq ˆ Z.

Next, consider the Pell-type equation

(4) aX2
´ bY2

“ ˘1,

where a, b ą 1 are integers and ab is square-free . The following is proved in [11, Theorems 6 and
9].
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Proposition 2 (Walker, 1967). If (4) is solvable, and if px, yq is its solution with the smallest
positive x and y, then

u1 ` v1

?
ab “ px

?
a` y

?
bq2,

where pu1, v1q is the fundamental solution of the Pell equation

U2
´ abV2

“ 1.

Moreover, all of its solutions pxn, ynq are given by

xn
?

a` yn

?
b “ ˘px

?
a` y

?
bq2n`1

for n P Z.

In [11, p. 507], it is mentioned that the first assertion of the above proposition may have been
obtained by K. Petr [8] by use of continued fractions.

In this note we provide a general result that gives Propositions 1 and 2 as special cases. More
precisely, we describe conditions under which the solutions of a Pell or a Pell-type equation, if
exist, are in the form described in Propositions 1 and 2. We call the collection of such solutions
a non-trivial ambiguous class of solutions of a Pell or a Pell-type equation. (We will see that a
Pell equation may have solutions that are not in a non-trivial ambiguous class.) In the rest of this
article we describe a structural theorem for such solutions, moreover we show how to determine
the existence of such classes of solutions for any Pell equation.

We now briefly describe the common approach in study of solutions of the generalized Pell
equation (1) (for more details see [7, Section 58] and [9]). Two solutions px, yq, px1, y1q of (1) are
said to be associated if there exists a solution pu, vq of

(5) U2
´ DV2

“ 1

for which
x` y

?
D “ pu` v

?
Dqpx1 ` y1

?
Dq.

It can be shown that association is an equivalence relation on the solutions of (1), and that each
non-empty equivalence class, henceforth called an association class, has infinitely many elements.
A useful criterion for association is the following.

Lemma 3 ([7, page 205]). Two solutions px, yq, px1, y1q of (1) are associated if and only if N |

xy1 ´ x1y and N | xx1 ´ Dyy1.

For each non-empty association class, we can find a unique representative by first choosing the
solution px, yq in the class with the least non-negative value of y and then, if this choice is not yet
unique, choosing x ą 0. Such a representative is called the fundamental solution of the association
class. Notice that the fundamental solution of a class may be in the form px, 0q or p0, yq. We call
such solutions trivial. Any association class which contains a trivial solution will be called a trivial
class. In particular, observe that the equation (2) has the fundamental solution px1, y1q with x1 ą 0
and y1 ą 0 (in the classical sense), but it has p1, 0q as the fundamental solution of its association
class of solutions. That is, the class of solutions of (2) forms a trivial class.

Bounds on the size of of the fundamental solution of an association class are well-known.

Proposition 4 (Tchebichef, 1851). Let pu1, v1q be the fundamental solution of the equation

U2
´ DV2

“ 1

and let px, yq be the fundamental solution of an association class of equation (1) with the positive
sign. Then

(6) 0 ă |x| ď x0 “

c

pu1 ` 1qN
2

and 0 ď y ď y0 “

c

pu1 ´ 1qN
2D

.
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FIGURE 2. The lattice points on the highlighted segments of the hyperbolas X2 ´ DY2 “ ˘N are
the fundamental solutions of the association classes.The values of x0 and y0 are given in Proposition
4.

If, instead, the sign in (1) is negative, then

(7) 0 ď |x| ď x0 “

c

pu1 ´ 1qN
2

and 0 ă y ď y0 “

c

pu1 ` 1qN
2D

.

The above proposition was first proved by Tchebichef [10] and later rediscovered by Nagell
([7, Theorems 108 and 108a]). Note that as a direct corollary of this proposition we conclude that
the number of association classes is finite.

Recently Matthews, Robertson, and Srinivasan [6] proved that the conditions given in Proposi-
tion 4 is also sufficient. More precisely, Theorem 4.1 of [6] states the following assertions.

Proposition 5 (Matthews-Robertson-Srinivasan, 2015). (i) The lattice points on the highlighted
segment of the horizontal hyperbola X2 ´ DY2 “ N in Figure 2 are the fundamental solutions of
the association classes of the solutions of X2 ´ DY2 “ N.

(ii) The lattice points on the highlighted segment of the vertical hyperbola X2 ´ DY2 “ ´N in
Figure 2 are the fundamental solutions of the association classes of the solutions of X2 ´ DY2 “

´N.

Note that the above proposition provides an effective algorithm for finding the fundamental
solutions (and thus all solutions) of (1). In addition it states that, the number of association classes
are equal to the number of lattice points on the highlighted segments in Figure 2.

We next observe that any solution px, yq with x ą 0, y ą 0 of (1) determines four solutions of
(1): px, yq itself, its two conjugates p´x, yq and px,´yq, and its negation, p´x,´yq. Since p´1, 0q
is a solution of (5), a solution px, yq of (1) is always associated with p´x,´yq. On the other hand,
if px, yq is in the same class as p´x, yq1, then we say that this class is ambiguous. Certainly, every
trivial class is ambiguous.

1Equivalently, in the same class as px,´yq.
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FIGURE 3. The equation 17X2 ´ 3Y2 “

20 has two association classes. The
two fundamental solutions are p2, 4q and
p´2, 4q.

´100 ´50 50 100

´40

´20

20

40

FIGURE 4. The equation 2X2 ´ 7Y2 “

25 has three association classes. Solu-
tions in the class with the fundamental
solution p10, 5q are associated with their
conjugates, while those in the classes
with the fundamental solutions p4, 1q or
p´4, 1q are not.

Figure 3 describes an equation with two non-ambiguous association classes. An example of
an equation with an ambiguous class is given in Figure 4, in which one of the three association
classes is an ambiguous class. With the help of Propositions 4 and 5, one may tabulate the number
of association classes among the solutions of (1) for fixed N and D, and classify them according
to if they are ambiguous or not. Table 5 provides such a tabulation, where, for pairs of N and D
we record in the pair pC, Aq, the total number of association classes C, the number of ambiguous
classes A, and mark the occurrence of the trivial classes with an asterisk. The values are computed
using MapleTM 2 [5].

FIGURE 5. For N and square-free D fixed, the pair pC, Aq lists the number of classes C and ambigu-
ous classes A of (1). If one of the ambiguous classes is trivial, A is marked with an asterisk.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ´N : D : N 1 2 3 4 5 6 7 8 9 10
(0,0) (1,1) (1,1*) (2,0) (0,0) (0,0) (1,1) (0,0) (1,1*) (1,1) 2 (1,1*) (1,1) (0,0) (1,1*) (0,0) (0,0) (2,0) (1,1) (1,1*) (0,0)
(0,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (1,1*) (1,1) (0,0) 3 (1,1*) (0,0) (0,0) (1,1*) (0,0) (1,1) (0,0) (0,0) (1,1*) (0,0)
(0,0) (1,1) (0,0) (0,0) (0,0) (1,1*) (3,1) (0,0) (0,0) (1,1) 5 (1,1*) (0,0) (0,0) (3,1*) (1,1) (0,0) (0,0) (0,0) (1,1*) (0,0)
(0,0) (0,0) (1,1) (0,0) (1,1*) (2,0) (0,0) (0,0) (1,1) (0,0) 6 (1,1*) (0,0) (1,1) (1,1*) (0,0) (0,0) (0,0) (0,0) (1,1*) (2,0)
(0,0) (0,0) (0,0) (1,1*) (2,0) (0,0) (0,0) (2,0) (0,0) (0,0) 7 (1,1*) (1,1) (0,0) (1,1*) (0,0) (0,0) (0,0) (1,1) (3,1*) (0,0)

(1,1*) (3,1) (0,0) (0,0) (2,0) (0,0) (1,1) (0,0) (0,0) (1,1) 10 (1,1*) (0,0) (0,0) (1,1*) (0,0) (2,0) (0,0) (0,0) (3,1*) (1,1)
(2,0) (0,0) (1,1) (2,0) (0,0) (0,0) (0,0) (0,0) (1,1) (0,0) 11 (1,1*) (0,0) (0,0) (1,1*) (2,0) (0,0) (0,0) (0,0) (1,1*) (0,0)
(0,0) (3,1) (0,0) (0,0) (0,0) (0,0) (3,1) (2,0) (0,0) (1,1) 13 (1,1*) (0,0) (2,0) (3,1*) (0,0) (0,0) (0,0) (0,0) (3,1*) (0,0)
(2,0) (0,0) (0,0) (1,1) (0,0) (2,0) (0,0) (0,0) (0,0) (0,0) 14 (1,1*) (1,1) (0,0) (1,1*) (0,0) (0,0) (0,0) (1,1) (1,1*) (0,0)
(0,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) 15 (1,1*) (0,0) (0,0) (1,1*) (0,0) (0,0) (0,0) (0,0) (1,1*) (1,1)
(0,0) (1,1) (2,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (1,1) 17 (1,1*) (0,0) (0,0) (1,1*) (0,0) (0,0) (0,0) (2,0) (1,1*) (0,0)
(2,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (2,0) (1,1) (0,0) 19 (1,1*) (0,0) (0,0) (1,1*) (2,0) (2,0) (0,0) (0,0) (3,1*) (0,0)

3. THE MAIN RESULT

The upper bounds in (6) and (7) of Proposition 4 are crucial in the identification of non-trivial
ambiguous classes. The following is our main result.

Theorem 6. For equation
X2
´ DY2

“ ˘N
the following hold:

2Maple is a trademark of Waterloo Maple, inc.



6 AMIR AKBARY AND FORREST J. FRANCIS

(i) A non-trivial ambiguous class has the fundamental solution px, yq if and only if px, yq is a
solution with x ą 0 that attains the upper bounds of Proposition 4.

(ii) All solutions pxn, ynq in a non-trivial ambiguous class with the fundamental solution px, yq
are given by the formula

xn ` yn

?
D “

˘px` y
?

Dq2n`1

Nn ,

where n is any integer.

Proof. We give the proof for the case that the sign in (1) is positive, the arguments can be easily
adjusted for the case that the sign in (1) is negative.

(i) Let px, yq be a solution given by

x “

c

pu1 ` 1qN
2

and y “

c

pu1 ´ 1qN
2D

.

Then x2 ` Dy2 “ Nu1 and 2xy “ N |v1|. Since the right-hand sides of both of these equations
are divisible by N, Lemma 3 establishes that px, yq and p´x, yq are associated (that is, px, yq is a
solution in an ambiguous class). Now, suppose px1, y1q is the fundamental solution of this class and
px1, y1q ‰ px, yq. (Note that since this class is ambiguous, x1 ą 0 and y1 ě 0.) Then we have

(8) x` y
?

D “ px1 ` y1
?

Dqpu1 ` v1

?
Dqi

for some positive integer i ě 1. This, in turn, implies that there must exist a solution pw, zq for
which

(9) w` z
?

D “ px1 ` y1
?

Dqpu1 ` v1

?
Dqi´1.

Clearly, pw, zq is in the same class as px, yq and w ą 0, z ě 0. Furthermore, from (8) and (9), and
u2

1 ´ Dv2
1 “ 1, we have

px` y
?

Dqpu1 ´ v1

?
Dq “ w` z

?
D,

and so z “ u1y´ v1x. However, noting that v1 “

b

pu2
1 ´ 1q{D,

z “ u1y´ v1x “

c

pu1 ´ 1qN
2D

ˆ

u1 ´

b

pu1 ` 1q2
˙

“ ´y ă 0.

This is a contradiction since z was known to be non-negative. Therefore, px, yq is the fundamental
solution of its (ambiguous) class. Since u1 ‰ ˘1, then this class is also non-trivial.

For the converse, suppose that px, yq is the fundamental solution of a non-trivial ambiguous
class. Note that this implies that x ą 0 and y ą 0. Then there must be some solution pu, vq to
U2 ´ DV2 “ 1 for which

x` y
?

D “ pu` v
?

Dqpx´ y
?

Dq.
Thus,

(10) px` y
?

Dq2 “ Nu` Nv
?

D.

Comparing the rational and irrational parts on both sides of the previous equation, we determine
that

(11) x2
` Dy2

“ Nu and 2xy “ Nv.

Since x2 ´ N “ Dy2, the first equation in (11) implies that x “
b

pu`1qN
2 . By Proposition 4 we

have x ď x0 “

b

pu1`1qN
2 and thus u ď u1. Hence, u must either be u1 or 1, since pu1, v1q is the

fundamental solution of U2 ´ DV2 “ 1. However, if u “ 1, then v “ 0, so (11) implies that
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y “ 0, which contradicts the assumption that px, yq was the fundamental solution of a non-trivial
ambiguous class. Therefore, u “ u1 and, consequently, v “ v1. (Note that v ą 0, since 2xy “ Nv
and xy ą 0.) Solving

˜

c

pu` 1qN
2

¸2

´ Dy2
“ N

for y shows that y “
b

pu1´1qN
2D , and therefore px, yq “

ˆ

b

pu1`1qN
2 ,

b

pu1´1qN
2D

˙

. This completes

the proof of part (i) if the sign in (1) is positive.
(ii) Let px, yq be the fundamental solution of a non-trivial ambiguous class. So, by the steps

similar to the above argument leading to (10) and the arguments after that, we have

(12)
px` y

?
Dq2

N
“ u1 ` v1

?
D,

where pu1, v1q is the fundamental solution of the equation U2 ´ DV2 “ 1. Any solution px1, y1q in
the same class as px, yq must satisfy, for some integer n,

x1 ` y1
?

D “ ˘pu1 ` v1

?
Dqnpx` y

?
Dq.

Therefore, by employing (12), we have

(13) x1 ` y1
?

D “
˘px` y

?
Dq2n`1

Nn .

�

4. COROLLARIES OF THEOREM 6

We now describe some consequences of Theorem 6.

Corollary 7. If a Pell equation has only one association class which is also non-trivial, then the
class is a non-trivial ambiguous class and thus the solutions of this equation are given by the
formula stated in part (ii) of Theorem 6. In particular, this is true for the equation X2 ´ DY2 “ p,
where p is a prime that divides 2D and for X2 ´ DY2 “ ´p, where p ‰ D is a prime dividing 2D,
provided these equations have solutions.

Proof. If a Pell equation has only one association class, then all of its solutions are associated.
Therefore every solution is associated with its conjugate, i.e., the class is ambiguous. If this class
is also non-trivial, then Theorem 6 establishes that these solutions have the specified form. The
second claim is a consequence of the fact that, by Theorem 110 of [7], each of the stated equations
have only one association class which is also non-trivial. �

The following provides a generalization of the group structure assertion stated after Proposition
1.

Corollary 8. If X2 ´ DY2 “ N2 has exactly one association class and X2 ´ DY2 “ ´N2 has
exactly one association class, then

p1{NqPpD; N2
q Y p1{NqPpD;´N2

q » pZ{2Zq ˆ Z.

Proof. Note that since D is square-free then any association class of X2 ´ DY2 “ ´N2 is non-
trivial. Now if X2 ´ DY2 “ ´N2 has only one association class, then by Corollary 7 this class is a
non-trivial ambiguous class and thus, by Theorem 6, all of its solutions are given in integer n by

(14)
˘px` y

?
Dq2n`1

N2n ,
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where px, yq is the fundamental solution of the association class of X2 ´ DY2 “ ´N2. From (12),
we recall px`y

?
Dq{N2 “ u1`v1

?
D, where pu1, v1q is the fundamental solution of U2´DV2 “ 1.

On the other hand, any equation of the form X2 ´ DY2 “ N2 must have a trivial association class
with the fundamental solution pN, 0q. If this is the only association class, then all solutions of
X2 ´ DY2 “ N2 have the form

(15) ˘ pN ` 0
?

Dqpu1 ` v1

?
Dqn “ ˘N

px` y
?

Dq2n

N2n

for integer n. Hence, we have, from (14) and (15), that

1
N

PpD; N2
q Y

1
N

PpD;´N2
q “

#

˘
px` y

?
Dqi

N i ; i P Z

+

is a multiplicative group generated by ´1 and px` y
?

Dq{N. �

Note that Corollary 8 for N “ 1 gives the structural result derived from Proposition 1 together with
the group structure of PpD; 1q.

Next we consider the equation

(16) X2
´ abY2

“ ˘ac,

for integers a, b ą 1, c ą 0, and square-free ab, a special case of (1). It can be checked that the
solutions px, yq of (16) are in one-to-one correspondence with the solutions px{a, yq of

(17) aX2
´ bY2

“ ˘c.

Additionally, we can define the concept of the association class for the solutions of (17). We
call two solutions px, yq and px1, y1q of (17) associated, if pax, yq and pax1, y1q are two associated
solutions of (16). This leads to association classes of the solutions of (17). An association class
of (17) is called an ambiguous association class and with the fundamental solution px, yq if the
solutions of (16) associated to the solution pax, yq is an ambiguous association class of solutions
of (16) with the fundamental solution pax, yq. The trivial and non-trivial association classes of
(17) can be defined in a similar manner. Therefore, we may extend the results of Theorem 6 to
equations of the form (17). In particular, we have the following structural result for a non-trivial
ambiguous class of (17).

Corollary 9. If px, yq is the fundamental solution of a non-trivial ambiguous class of (17), then all
of the solutions pxn, ynq in it are given by

xn
?

a` yn

?
b “

˘px
?

a` y
?

bq2n`1

cn

where n is an integer.

Proof. Let px, yq be the fundamental solution of a non-trivial association class of (17). Then, pax, yq
is the fundamental solution of a non-trivial association class of (16). Thus, by part (ii) of Theorem
6, we have

axn ` yn

?
ab “

˘pax` y
?

abq2n`1

pacqn

for any integer n. Simplifying the above formula yields the result. �

If c “ 1, the conditions in Lemma 3 hold for any two solutions of (16) (Note that for any
solution px, yq of (16), we have a | x). Therefore, (17) must have at most one association class,
which is ambiguous and non-trivial. Thus, for c “ 1, Corollary 9 reduces to the second assertion
of Proposition 2. Therefore, Corollary 9 provides a generalization of [11, Theorem 9].
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The explicit expression of the solutions of the Pell-type equation (4) has been applied in several
number theoretical problems over the years. For example in [1] the expression is used in studying
a conjecture of Erdős on the density of the consecutive square-full numbers. As a natural direction
for further investigations, one may explore the applications of the explicit expression given in
Corollary 9 in certain problems related to square-full numbers.
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