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Abstract

In this paper, we study the Mordell-Weil group of an elliptic curve as a Galois
module. We consider an elliptic curve E defined over a number field K whose
Mordell-Weil rank over a Galois extension F is 1, 2 or 3. We show that E acquires
a point (points) of infinite order over a field whose Galois group is one of Cn×Cm
(n = 1, 2, 3, 4, 6, m = 1, 2), Dn×Cm (n = 2, 3, 4, 6, m = 1, 2), A4×Cm
(m = 1, 2), S4 × Cm (m = 1, 2). Next, we consider the case where E has
complex multiplication by the ring of integers O of an imaginary quadratic field
K contained in K. Suppose that the O-rank over a Galois extension F is 1 or 2.
If K 6= Q(

√
−1) and Q(

√
−3) and hK (class number of K) is odd, we show that E

acquires positive O-rank over a cyclic extension of K or over a field whose Galois
group is one of SL2(Z/3Z), an extension of SL2(Z/3Z) by Z/2Z, or a central
extension by the dihedral group. Finally, we discuss the relation of the above
results to the vanishing of L-functions.
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1 Introduction

Let E be an elliptic curve defined over a number field K. By the Mordell-Weil theorem,
the group E(K) of points of E with coordinates in K is finitely generated. We write
rank(E(K)) for the rank of E(K) modulo torsion. Let F be a finite Galois extension
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of K with group G. In this paper, we consider the Mordell-Weil group E(F ) as a Z[G]-
module. Since the torsion subgroup E(F )tors has been extensively studied (see for
example, Serre [20]), we shall restrict ourselves to the free part of E(F ). The question
of studying this as a Galois module was raised in the works of Mazur [9], Mazur and
Swinnerton-Dyer [10], Coates and Wiles [3] Rohrlich [16], and [17], to name a few.

Philosophically, it is of interest to note one basic difference between the free part
and the torsion part as Galois modules. For example, consider the Galois module of
`-torsion points E[`]. The field K(E[`]) obtained by adjoining the coordinates of points
in E[`] has Galois group contained in Aut(E[`]) ' GL2(Z/`). Serre’s theorem tells
us that if E is without complex multiplication, then for large `, it is in fact equal to
GL2(Z/`). On the other hand, let K(E(F )free) be the field generated by adjoining
the coordinates of any free Z[Gal(F/K)]-submodule of E(F ) ⊗ Q to K and suppose
that rank(E(F )) = r, then Gal(K(E(F )free)/K) is conjugate to a subgroup of GLr(Z).
This imposes two restrictions on this Galois group. Firstly, by Jordan’s theorem, a finite
subgroup of GLr(C) has a normal Abelian subgroup of index bounded by a function
of r alone. Secondly, this is an integral representation. By the work of Nori [14], there
are many restrictions on the finite subgroups of GLr(Z). Another restriction imposed
on these Galois groups arises from the fact that the height pairing on the Mordell-Weil
group is respected by the action of Galois.

In another direction, there is the connection with the L function of the elliptic
curve. A well known theorem of Coates and Wiles [3] for CM elliptic curves asserts
that if E(K) is infinite, then the L-function L(E/K, s) vanishes at s = 1. From the
work of Kolyvagin [7], a similar result is known for (modular) elliptic curves over Q.
This is in accordance with the general conjecture of Birch and Swinnerton-Dyer. Here,
we shall discuss the following:

Problem 1: Let F/K be a finite Galois extension. If E(F ) is infinite, does L(E/F, s)
vanish at s = 1?

Since the extensions of Coates-Wiles and Kolyvagin theorems to Abelian extensions
are known (due respectively to Arthaud [1], and Rubin [18] in the CM-case and Kato
(unpublished) in the modular case), we will show that the existence of an Abelian
subextension M of F/K with E(M) infinite implies a positive answer to Problem 1
(see Theorem 4). So we shall consider the following related problem.

Problem 2: Let F/K be a finite Galois extension. If E(F ) is infinite, then under
what conditions can we produce an Abelian subextension M of K (K ⊆M ⊆ F ) such
that E(M) is infinite?

We wish to draw the analogy of this question with a result of Stark [22] for Artin
L-functions. He shows that if F/K is Galois and the Dedekind zeta function ζF (s) has
a simple zero at a point s = s0, then there is a subextension K ⊆ M ⊆ F with the
property that ζM(s0) = 0 and M/K is Abelian (in fact, cyclic). Moreover, if N is any
other subfield satisfying ζN(s0) = 0, we must have M ⊆ N .
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In section 4, we consider an elliptic curve E defined over K whose Mordell-Weil
rank over a Galois extension F is 1 or 2. If the rank of E(F ) is one, we observe
(Theorem 1, (i)) that a Stark type result holds here. If the rank of E(F ) is two, we
show that E acquires two points of infinite order over a cyclic extension of K with
Galois group Cn (n = 1, 2, 3, 4, 6) contained in F or over a dihedral extension
with Galois group Dn (n = 2, 3, 4, 6). Then we establish a similar result in the
rank three case (Theorem 1, (iii)). In the case that E has complex multiplication, we
can also study the Mordell-Weil group E(F ) as an O[G]-module. Here E has complex
multiplication by the ring of integers O of an imaginary quadratic field K contained in
K. We are able to establish the analogues of the above results in the case that E(F )
has O-rank 1 or 2 (Theorems 2 and 3).

In the final section, by considering the order of vanishing of the L-function of E at
a point s = ω, we investigate some analytic analogues of our results in section 4. In
the case of a simple zero, we prove an analogue of Stark’s theorem for a certain class of
elliptic curves (Corollary 1). Also, by analogy with [13], we formulate a statement for
higher order zeros but it would depend on the holomorphy of the L-functions obtained
by twisting the L-function of E with certain Artin characters (see Proposition 6).

It is clear that much work remains to be done to elucidate the Galois module
structure of the Mordell-Weil group. We hope that the explicit results of this paper
may help in this effort.

Acknowledgement: We would like to thank Henri Darmon and Hershy Kisilevsky for
several helpful discussions. This paper was started during the CRM workshop at St.
Adele in 1992, and completed while the second author was visiting the CRM during
the special year on Arithmetic Algebraic Geometry in 1998-1999. He thanks the CRM
for its hospitality.

2 The minimal subfield

Definition: Let E be an elliptic curve defined over K and let F/K be an extension
(not necessarily Galois) of number fields. Suppose that rank(E(F )) = r, then the
minimal subfield Fr is a subfield with K ⊆ Fr ⊆ F , such that
(i) rank(E(Fr)) = rank(E(F )).
(ii) If K ⊆M ⊆ F and rank(E(M)) = rank(E(F )), then Fr ⊆M .

Proposition 1 For any finite extension F/K and elliptic curve E defined over K with
rank(E(F )) = r, Fr exists and is unique. Also, if F/K is Galois then Fr/K is Galois.

Proof: We need only prove that if K ⊆M1,M2 ⊆ F are subfields such that

rank(E(M1)) = rank(E(M2)) = r

then
rank(E(M1 ∩M2)) = r.
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Indeed, E(M1) ⊗ Q = E(M2) ⊗ Q. Hence, there is a lattice L contained in E(M1) ∩
E(M2) which is of finite index in both E(M1) and E(M2). But then L is fixed by
Gal(F̃ /M1) and by Gal(F̃ /M2) where F̃ is the normal closure of F/K. Thus, it is
fixed by Gal(F̃ /(M1 ∩M2)) and so it is contained in E(M1 ∩M2). Thus the rank of
E(M1 ∩M2) is r as claimed.

If F/K is Galois, we can apply this argument to M and a conjugate of M , and
from this, we see that the minimal subfield is necessarily Galois over K. 2

Now we give another description of the minimal subfield. Let F/K be a finite Galois
extension, then since Gal(F/K) acts on E(F ) ⊗ Q, we have a representation

ρ : Gal(F/K)→ Aut(E(F ) ⊗ Q) ' GLr(Q)

where rank(E(F )) = r. Then, there exists a free submodule of E(F ) ⊗ Q of rank r
on which Gal(F/K) acts. For example, if m = |E(F )tors|, then we can take mE(F ).
Each such submodule X (say) gives a representation

ρX : Gal(F/K)→ Aut(X) ' GLr(Z).

Moreover, different choices of X yield representations isomorphic over Q. In particular,
Ker(ρX) is equal to Ker(ρ) and is independent of X. Thus, the field K(X) obtained
by adjoining the coordinates of points in X to K is independent of the choice of X.
We denote this field by K(E(F )free).

Proposition 2 Let F/K be a finite Galois extension. If rank(E(F )) = r ≥ 1, then
(i) there is a subextension M , Galois over K such that E(M) ⊗ Q = E(F ) ⊗ Q and
the representation

ρf : Gal(M/K)→ Aut(E(M)⊗Q)

is faithful. Moreover, Im(ρf ) is conjugate to a finite subgroup of GLr(Z).
(ii) M = K(E(F )free).
(iii) M is the minimal subfield defined in the beginning of the section.

Proof: (i) Suppose that ρ is the representation of Gal(F/K) in E(F ) ⊗ Q. Let M be
the fixed field of kerρ. Since

(E(F ) ⊗ Q)Kerρ = (E(F ) ⊗ Q)Gal(F/M) = E(M)⊗Q

(see [16], p. 126) and since M is the fixed field of kerρ, Gal(F/M) acts trivially on
E(F ) ⊗ Q. This shows that E(F ) ⊗ Q = E(M)⊗Q and ρf is faithful. The argument
before the proposition shows that Im(ρf ) is conjugate to a finite subgroup of GLr(Z).

(ii) This is clear from the argument before the proposition.

(iii) Let K ⊆ L ⊆ F and rank(E(L)) = rank(E(F )), then from the proof of
Proposition 1, we know that rank(E(L ∩ M)) = rank(E(M)) and E(M) ⊗ Q =
E(L ∩M) ⊗ Q. This shows that Gal(M/(L ∩M)) acts trivially on E(M) ⊗ Q and
therefore it is contained in the kernel of the representation ρf . But kerρf = {id},
which implies that Gal(M/(L ∩M)) = {id}. Thus L ∩M = M and therefore M ⊆ L.
This proves that M is the minimal subfield. 2
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Proposition 3 Let F/K be a finite Galois extension, then the degree of the minimal
subfield Fr over K is bounded as a function of r alone.

Proof: By Proposition 2, we can consider Gal(Fr/K) as a finite subgroup of GLr(Z)
(and therefore GLr(C)). By Jordan’s theorem a finite subgroup of GLr(C) has a normal
Abelian subgroup G1 whose index is bounded by a function of r alone. So it is enough
to prove that the order of G1 is bounded by a function of r alone.

Now, let L be the fixed field of G1 in Fr/K, and let ρ1 be the restriction of the
representation ρf (defined in Proposition 2) to G1 = Gal(Fr/L). Then

ρ1 = ψ1 ⊕ ψ2 ⊕ ...⊕ ψr

where ψi’s are one dimensional characters of G1. Since the values of the ψi satisfy a
degree r polynomial over Q, if ψi takes values in Q(ζmi), we must have φ(mi) ≤ r.
Since ρ1 is faithful, this implies that the order of G1 is bounded by a function of r
alone. 2

3 Group theoretic lemmas

In this section, we collect some group theoretic results which will be needed in the
sequel.

Lemma 1 Let the representation ρ : G→ GL2(Z) be faithful, then
(i) if ρ is reducible, G is cyclic Cn (n = 1, 2, 3, 4, 6) or G ' Z/2Z⊕ Z/2Z ' D2.
(ii) if ρ is irreducible, G is dihedral Dn (n = 3, 4, 6).

Proof: (i) Suppose that ρ is reducible. Let χ be the character of ρ. Then χ = ψ1 +ψ2

over C, where ψ1 and ψ2 are one dimensional characters of G. As the characteristic
polynomial of ρ has coefficients in Z, we must have ψ1 = ψ2 or ψ1 and ψ2 characters
of order 2. Since ρ is faithful, in the latter case, G ' Z/2 or G ' Z/2⊕Z/2 ' D2 and
in the former case, G is cyclic.

Now if r is a generator of the cyclic group G and ord(r) = n, then ρ(r) is conjugate
to a diagonal matrix over C like (

e
2πih
n 0

0 e−
2πih
n

)

where 0 ≤ h < n and (h, n) = 1. Here, e
2πih
n is a primitive n-th root of unity which is

also a root of a quadratic polynomial over Z (i.e. the characteristic polynomial of the

above matrix). Therefore φ(n) = [Q(e
2πih
n ) : Q] ≤ 2 and so n = 1, 2, 3, 4, 6.

(ii) Since ρ is faithful, we can consider G as a finite subgroup of GL2(R). We
know that a finite subgroup of GL2(R) is conjugate to a subgroup of O2(R) and is
therefore cyclic or dihedral (see [15], p. 22, Theorem 9). As ρ is irreducible, G ' Dn =
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〈r, s; rn = 1, s2 = 1, srs = r−1〉. Let H = 〈r〉, then χ|H = ψ1 + ψ2 over C, where

ψ1(r) = e
2πih
n and ψ2(r) = e−

2πih
n (see [19], p. 37), so by reasoning similar to part (i),

ord(H) = n = 1, 2, 3, 4, 6. Moreover, n 6= 1, 2 since in these cases Dn is Abelian. 2

Let H1 and H2 be subgroups of a group G and let x ∈ G. Set

J(H1, H2, x) = H2 ∪ {xg| g ∈ H1, g 6∈ H2}.

Lemma 2 Let H1 and H2 be subgroups of a group G such that H2 ⊂ H1 and [H1 :
H2] = 2. Let x ∈ G −H2 be an element of order 2 which commutes with all elements
of H1. Then
(i) J(H1, H2, x) is a subgroup of G.
(ii) H1 ' H2 × C2 if x ∈ H1.
(iii) H1 ' J(H1, H2, x) if x 6∈ H1.

Proof: It is straightforward. 2

Lemma 3 Let the representation ρ : G→ GL3(Z) be faithful, then G is isomorphic to
one of the following:

Cn × Cm, Dp × Cm, A4 × Cm, S4 × Cm

where n = 1, 2, 3, 4, 6, p = 2, 3, 4, 6 and m = 1, 2.

Proof: Since ρ is faithful we consider G as a finite subgroup of O3(R). First suppose
that G ⊂ SO3(R). Then it is known that G is either cyclic, dihedral, A4, S4 or A5 (see
[15], p. 35, Theorem 11). Note that in this case if A ∈ G, then there is an orthonormal
matrix P such that

P−1AP =

 cosα − sinα 0
sinα cosα 0

0 0 1


(see [15], p. 35, corollary 1), with tr(P−1AP ) ∈ Z. Therefore 2 cosα ∈ Z. It is easily
seen from here that if G ⊂ SO3(R), the order of any element of G must be 2, 3, 4 or
6, and therefore G must be one of the following

Cn (n = 1, 2, 3, 4, 6), Dp (p = 2, 3, 4, 6), A4, S4. (∗)

Now suppose that G 6⊂ SO3(R). Let Gs = G ∩ SO3(R) and note that −I (I is
the identity matrix) is an element of order 2 in O3(R) which is not in Gs and it
commutes with all elements of G. Therefore, by Lemma 2, either G ' Gs × C2 or
G ' J(G,Gs,−I). Gs and J(G,Gs,−I) are finite subgroups of SO3(R) and therefore
they are in the list given in (∗). This completes the proof. 2

Now let O denote the ring of integers of an imaginary quadratic field K. We fix an
embedding K ↪→ C.

Notation. We denote the center of a group G by Cent(G).
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Lemma 4 Let G be a group with a normal subgroup H of prime index. Let ρ : G →
GL2(O) be a faithful and irreducible representation of G, and let χ be the character of
ρ. Then
(i) either χ = IndG

H
ψ, ψ(1) = 1 or χ|H is irreducible.

In the case that χ = IndG
H
ψ, ψ(1) = 1, let us set N = Ker ψ.

(ii) If N = {id}, then H ' Cn (n = 2, 3, 4, 6, 8, 12).
(iii) If N 6= {id} and [G : H] = 2 then for all σ ∈ G−H we have N ∩ σ−1Nσ = {id}.

Proof: (i) By Proposition 24 of [19] (p. 61), there exists a subgroup J of G, unequal
to G and containing H such that either χ = IndG

J
ψ, ψ(1) = 1 or χ|J is isotypic. Since

H has prime index in G then J = H.

If χ|H is isotypic and reducible then H ⊂ Cent(G). But G/H is cyclic and therefore
G/Cent(G) is also cyclic. This implies that G is Abelian which is a contradiction since
G has a two dimensional irreducible representation. The only other possibility is that
χ|H is irreducible.

(ii) Since ψ is faithful, H is isomorphic to a finite subgroup of C× and therefore
is cyclic. A characteristic polynomial argument similar to the one in Lemma 1 shows
that the order n, say, of this group can only be 2, 3, 4, 5, 6, 8, 10 or 12 (n 6= 1, since
G cannot be Abelian). Since H is cyclic, χ|H = ψ + ψ′.

Now if n = 5, ψ and ψ′ take values in the group of 5-th roots of unity, and therefore
χ|H takes values in Q(ζ5) ∩ K = Q. The characteristic polynomial of ρ|H has real
coefficients and so either ψ and ψ′ are both real or ψ′ is the complex conjugate of ψ.
Since ψ has order 5, the first case cannot occur. Hence, we are in the second case, and
this implies that the character χ|H takes values in Q(ζ5)+ which is not Q and this is a
contradiction. Therefore, n 6= 5. In a similar way, we can show that n 6= 10.

(iii) If N 6= {id} then N cannot be normal in G. Indeed, if N /G then N ⊂ Ker χ
and this is not possible as ρ is faithful. Now [G : H] = 2 and therefore there exists
exactly one conjugate of N , say N ′ = σ−1Nσ. Then N ∩N ′ = {id} because N ∩N ′ ⊂
Ker χ, N ∩N ′ / G and ρ is faithful. 2

Remark 1. If K 6= Q(
√
−1) and Q(

√
−3), in part (ii) of Lemma 2, we can prove that

n is not equal to 8 and 12. This is true since in these cases χ|H takes values in Q(ζ8)+

or Q(ζ12)+ which are not Q.

Lemma 5 Let 5 6 |dK (discriminant of K). Then, the order of any finite subgroup of
GL2(O) is not divisible by 5.

Proof: Let G be a finite subgroup of GL2(O). By Dirichlet’s theorem on primes in
arithmetic progressions, there are infinitely many primes q ≡ 2 (mod 5 ) such that q
splits completely in O. Let q = q1q2 in O. We choose q large enough such that the
restriction of the reduction map

GL2(O)→ GL2(O/q1O)

7



to G is injective. But Card(GL2(O/q1O)) = Card(GL2(Z/qZ)) = (q2−1)(q2−q) ≡ 1
(mod 5). This proves the lemma. 2

Lemma 6 Let G be a subgroup of GL2(O), then either G is Abelian or Cent(G) '
{id}, Z/2Z, Z/3Z, Z/4Z, Z/6Z.

Proof: We consider G as a subgroup of GL2(K). Let

C(G) = {α ∈ GL2(K) : αγ = γα for all γ ∈ G} .

Then, G is either Abelian or

C(G) =

{(
c 0
0 c

)
: c ∈ K∗

}
(see [21], p. 179, problem 2.6. (a)). Now the lemma follows from the facts that

Cent(G) = C(G) ∩G

and O∗ ' {id}, Z/2Z, Z/4Z, Z/6Z. 2

4 E(F ) of Z-rank 1, 2, 3 or O-rank 1 or 2

In this section, we assume that E(F ) is infinite of either Z-rank ≤ 3 or O-rank ≤ 2. We
apply the results of the previous section to determine the minimal subfield in the case
that E(F ) has Z-rank 1, 2 or 3. We also consider the case that E has multiplication
by the ring of integers O of an imaginary quadratic field K and E(F ) has O-rank 1 or
2. In the latter situation, we are able to determine the minimal subfield in all cases
but one.

Theorem 1 Let E be an elliptic curve defined over K and let F be a finite Galois
extension of K. Let M be the minimal subfield.
(i) If rank(E(F )) = 1, then M is a cyclic subextension of K and [M : K] = 1 or 2.
(ii) If rank(E(F )) = 2, then M is either a cyclic subextension of K and [M : K] =
1, 2, 3, 4, 6 or a dihedral subextension of K and [M : K] = 4, 6, 8, 12.
(iii) If rank(E(F )) = 3, then Gal(M/K) is one of the following:

Cn × Cm, Dp × Cm, A4 × Cm, S4 × Cm

where n = 1, 2, 3, 4, 6, p = 2, 3, 4, 6 and m = 1, 2.

Proof: (i) M/K is the subextension given in Proposition 2. It is clear that since ρf
is faithful, Gal(M/K) is isomorphic to a subgroup of GL1(Z) ' Z∗ = {±1} which is
cyclic and has order 1 or 2.
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(ii), (iii) Let ρf be the faithful representation given in Proposition 2. Applying
Lemmas 1 and 3 on ρf imply the results. 2

Now we show that in part (ii) of Theorem 1, M cannot be a dihedral extension
of degree 12 of K, if we assume the Birch and Swinnerton-Dyer conjecture and some
other assumptions.

Let M be a dihedral extension ofQ and let C be the fixed field of the cyclic subgroup
H of the dihedral Galois group in M/Q. So [C : Q] = 2 and [M : C] = n (say) (n ≥ 3).
We have

L(E/M, s) = L(E/C, s)
∏
i

L(E/Q⊗ IndG
H
ψi, s)

2

where ψi are characters of H = Gal(M/C). Since G is dihedral, the twisted L-function
L(E/Q ⊗ IndG

H
ψi, s) has root number ±1, depending on the parity of the order of

vanishing of the twisted L-function at s = 1.

Now assume that the Birch and Swinnerton-Dyer conjecture is true. Then the
assumption that rank(E(M)) = 2, and the above factorization of L-functions implies
that we have the following possibilities:

(i) L(E/C, 1) = 0
(ii) exactly one of the factors L(E/Q ⊗ IndGHψi, s) has a simple zero at s = 1. In

the first case, we must have L(E/C, s) vanishing to order 2 at s = 1 and none of the
two-dimensional twists vanishes. In particular, all the root numbers must satisfy

w(E/Q⊗ IndGHψi) = 1

for all i. In the second case, L(E/C, 1) 6= 0 and there is a unique i such that L(E/Q⊗
IndGHψi, 1) = 0. Since this zero is simple

w(E/Q⊗ IndGHψi) = −1.

Moreover, as none of the others vanish, all of the other root numbers are equal to +1.
Now it is clear that if M is the minimal subfield then (i) cannot be true and thus

we are in the situation (ii).

Proposition 4 Let E be a modular elliptic curve of conductor N defined over Q and
suppose that the Birch and Swinnerton-Dyer conjecture is true. Also with the above
notation assume that N and conductor of IndGHψi’s are relatively prime and for all i,
χi = det(IndGHψi) is even. Then, in part (ii) of Theorem 1 (for K = Q) the minimal
subfield M cannot be a dihedral extension of degree 12.

Proof: Let M be the minimal subfield in Theorem 1 and follow the notations before
the proposition. By a result of Rohrlich (see [16], p. 125, Proposition 1), the root
number can be calculated as follows. Let χi be the determinant of IndGHψi. If χi is
even, then

w(E/Q⊗ IndGHψi) = χi(N).
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Now, χi is a quadratic character which can be computed by the following formula:

χi = εψi ◦ Ver

where ε is the character of C/Q and Ver is the transfer map (Verlagerung) given by

Ver(g) =

{
g2 if g 6∈ H
g.δgδ−1 if g ∈ H.

Here, δ is a fixed element of G−H of order 2. Now, ψ(δgδ−1) = ψ(g) and so ψ ◦ Ver
is trivial on H. Moreover, Ver(δ) = 1. Hence, ψi ◦ Ver = 1 and χi = ε is a quadratic
character independent of ψi. Thus, the root numbers w(E/Q⊗IndGHψi)’s are all equal.
But from the argument before the proposition, we know that there is a unique i such
that w(E/Q ⊗ IndGHψi) = −1 and all of the others are +1. Now since the number of
irreducible two dimensional characters of Dn is n−1

2
if n is odd and n−2

2
if n is even, we

have ε(N) = −1 and n = 3 or 4. 2

Now let E be an elliptic curve defined over a number field K which has complex
multiplication by O, the ring of integers of an imaginary quadratic number field K

contained in K (K ⊆ K), and let F be a finite Galois extension of K. (We fix once
and for all an embedding K ↪→ C.) Since E has complex multiplication by O and E is
defined over K, we can fix an isomorphism between the ring of endomorphisms of E
and O and equip E(F ) with an O action. (Note that all the endomorphisms of E are
defined over K.)

We consider the submodule mE(F ) of the O-module E(F ), where m is the order
of the O-torsion submodule of E(F ), then mE(F ) is a finitely generated torsion free
module over O which is projective since O is a Dedekind domain. Moreover, there
exist free O-modules M1 and M2, such that

M1 ⊂ mE(F ) ⊂M2

and M1 and M2 have the same rank. We call this common rank, the O-rank of
E(F ). (For the above algebraic facts, see [8], p. 168, Problems 11 and 13.) Note
that 2 rankO(E(F )) = rank(E(F )).

Remark 2. If the field of complex multiplication K is not contained in K, still we can
consider E(F ) as an O-module if we assume that KK ⊂ F . Also, we want to mention
that the upcoming results in this section are also valid for elliptic curves with complex
multiplication by a non-maximal order in K.

Now we can consider the K-module mE(F )⊗O K = E(F ) ⊗O K as a representation
space for Gal(F/K) to get the following representation:

ρ : Gal(F/K)→ Aut(E(F ) ⊗O K) ' GLr(K)

where r = rankO(E(F )). It is clear that we can define an O-analogue of the minimal
subfield and establish an O-analogue of Propositions 1, 2 and 3. Note that in the
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O-analogue of Proposition 2, we have to assume that r and hK (the class number of
K) are relatively prime to make sure that Im(ρf ) is conjugate to a finite subgroup of
GLr(O). (For more explanation about this condition see [4], Theorem 23.17, p. 530.)
Also note that if rankO(E(F )) = r then the O-minimal subfield is the same as the
minimal subfield F2r defined in the beginning of Section 2.

Proposition 5 If rankO(E(F )) = 1, then the minimal subfield is a cyclic subextension
M of K and [M : K] = 1, 2, 3, 4 or 6.

Proof: Since (hK, 1) = 1, the argument before the proposition implies that Im(ρf )
can be considered as a subgroup of GL1(O). Now the proof is exactly the O-analogue
of part (i) of Theorem 1. Note that GL1(O) ' O∗ which is cyclic and has order 1, 2,
4 or 6. 2

If rankO(E(F )) = 2 and hK is odd, then ρ(Gal(F/K)) is isomorphic to a finite
subgroup of GL2(O). We apply the group theoretic lemmas of the previous section to
obtain some useful information about the representation ρ and the group Gal(F/K).

Theorem 2 Suppose that hK is odd and rankO(E(F )) = 2. Then there is a Galois
subextension K ⊆ S ⊆ F with rankO(E(S)) > 0 such that G = Gal(S/K) is one of the
following:
(i) G is cyclic of order 1, 2, 3, 4 , 6 , 8 , or 12.
(ii) G/Cent(G) ' Dn. More precisely G satisfies one of the following:

(a) G ' D3.
(b) Cent(G) ' Z/2Z and G/Cent(G) ' Dn (n = 2, 3, 4, 6, 8).
(c) Cent(G) ' Z/3Z and G/Cent(G) ' Dn (n = 2, 3, 4, 6).
(d) Cent(G) ' Z/4Z and G/Cent(G) ' Dn (n = 2, 3, 4).
(e) Cent(G) ' Z/6Z and G/Cent(G) ' Dn (n = 2, 3, 6).

(iii) Cent(G) 6= {id} and G/Cent(G) ' A4 or S4.
In (ii) and (iii), rankO(E(S)) = 2. In fact, S is the minimal subfield in these cases.

Proof: Let ρ : Gal(F/K)→ GL2(O) be the representation of Gal(F/K) in E(F ) ⊗O K

and χ be its character. By the O-analogue of Proposition 2, we can assume that ρ is
faithful. Also we know that G/Cent(G) is isomorphic to a finite subgroup of PGL2(C)
and therefore (see [20]) is isomorphic to Cn, Dn, A4, S4 or A5. By Lemma 5, G/Cent(G)
cannot be isomorphic to A5. Note that since hK is odd, K = Q(

√
−p) for prime p with

−p ≡ 1 (mod 4) or K = Q(
√
−1),Q(

√
−2), and therefore 5 6 |dK.

If ρ is reducible, let χ be the character of ρ. We have χ = ψ1 + ψ2 over C, where
ψ1 and ψ2 are one dimensional characters of G. Let S be the fixed field of Ker ψ1 in
F/K. Then ψ1 is a faithful and irreducible character of Gal(S/K), which implies that
Gal(S/K) is cyclic and rankO(E(S)) 6= 0. Indeed, (see [16], p. 126)

(E(F )⊗OC)Gal(F/S) = E(S)⊗OC.

Now a characteristic polynomial argument similar to the one in Lemma 1 implies that
[S : K] = 1, 2, 3, 4, 6, 8 or 12.
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Thus, we may suppose that ρ is irreducible. Then, sinceG is not AbelianG/Cent(G)
cannot be cyclic. Suppose that G/Cent(G) is isomorphic to A4 or S4. In this case, we
must have Cent(G) 6= {1}. Indeed, G is not isomorphic to A4, since A4 does not have
any 2-dimensional irreducible representation. This also implies that if G ' S4, and χ
is the character of ρ then χ = Ind S4

A4
ψ, ψ(1) = 1 (see part (i) of Lemma 4). But it is

known that any 1-dimensional representation of A4 is trivial on the Klein 4-group V4

(see [19], p. 42). Since V4 / S4, we have

V4 ⊂ Ker(Ind
S4

A4

ψ) = Ker χ.

However, χ is the character of the faithful representation ρ. This is a contradiction.
Therefore, G is not isomorphic to S4.

It remains to analyze the possibilityG/Cent(G) ' Dn. LetA be the cyclic subgroup
of order n in Dn. Let L be the fixed field of Cent(G) in F/K and M be the fixed field
of A in L/K. If H = Gal(F/M) then H/Cent(G) ' A is cyclic and therefore H is
Abelian. Clearly H has index 2 in G, thus by part (i) of Lemma 4, χ = IndG

H
ψ,

ψ(1) = 1. Let N = Ker ψ.

By part (ii) of Lemma 4 if N = {id}, then H ' Cn (n = 2, 3, 4, 6, 8, 12). By
Lemma 6, Cent(G) ' {id}, Z/2Z, Z/3Z, Z/4Z or Z/6Z. As Cent(G) ⊆ H, we have
the following possibilities. If Cent(G) ' {id} then G ' Dn. In this case n must be
odd, since Cent(Dn) 6= {id} for n even. This proves that G ' D3. If Cent(G) ' Z/2Z
then G/Cent(G) ' Dn (n = 1, 2, 3, 4, 6). But n 6= 1 since in that case G is Abelian.
Similarly, if Cent(G) ' Z/3Z then G/Cent(G) ' Dn (n = 2, 4), if Cent(G) ' Z/4Z
then G/Cent(G) ' Dn (n = 2, 3) and if Cent(G) ' Z/6Z then G/Cent(G) ' Dn

(n = 2).

Now suppose that N 6= {id}. First note that since χ = IndG
H
ψ, ψ(1) = 1, then

χ|H = ψ+ψσ where σ ∈ G−H and ψσ(x) = ψ(σ−1xσ) for x ∈ H (See [19], Proposition
22, p. 58). This shows that Ker ψσ = σ−1Nσ 6= {id}. Let R be the fixed field
of N in F/M , since F is the minimal subfield and K ⊂ R ( F , it is clear that
rankO(E(R)) = 1. In a similar way, we can show that rankO(E(Rσ)) = 1 (Rσ is the
fixed field of σ−1Nσ in F/M).

Now since rankO(E(R)) = 1, the action of Gal(R/M) on E(R) ⊗O K is given by
ψ. This shows that R is the minimal subfield and therefore it is cyclic of degree 1, 2,
3, 4, 6 (Proposition 5). A similar statement holds for Rσ.

By part (iii) of Lemma 4,

Ker ψ ∩Ker ψσ = N ∩ σ−1Nσ = {id}.

This implies that F = RRσ. Hence,

|H| = [F : M ] =
[R : M ][Rσ : M ]

[R ∩Rσ : M ]
=

[R : M ]2

[R ∩Rσ : M ]
.
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An easy calculation implies that [F : M ] = 4, 8, 9, 12, 16, 18, 36, which can be
checked from the following table:

Table 1

[R : M ] [R ∩Rσ : M ] [F : M ]
2 1 4
3 1 9
4 1, 2 8, 16
6 1, 2, 3 12, 18, 36.

Note that [R : M ] 6= 1, since otherwise R = Rσ = M .

By Lemma 6, Cent(G) ' {id}, Z/2Z, Z/3Z, Z/4Z or Z/6Z. If |Cent(G)| = 1 then
G ' Dn, this implies that N / G and therefore N ⊂ Ker χ which is a contradiction
since N 6= {id} and χ is faithful. If |Cent(G)| = 4 and N 6= {id}, then the proof of
Lemma 6 shows that K = Q(

√
−1) and therefore [R : M ] = 2, 4, thus [F : M ] = 8, 16

and so G/Cent(G) ' Dn (n = 2, 4). If |Cent(G)| = 6 and N 6= {id}, then [F : M ] =
12, 18, 36 and so G/Cent(G) ' Dn (n = 4, 6, 12).

If |Cent(G)| = 2, we can refine the above argument to show that [F : M ] cannot
be 9, 18 or 36. Since H = Gal(F/M) contains Cent(G), the order of H is even and
so [F : M ] 6= 9. To show that [F : M ] 6= 18 or 36, recall that N 6= {id} and
|Cent(G)| = 2. We first claim that N is a 2-group (in fact, it is a cyclic 1 2-group).
This is true, because as N and H are Abelian, they can be written as a direct sum of
their Sylow subgroups

N = N2 ⊕Nodd, H = H2 ⊕Hodd

whereN2 (respectivelyH2) is the 2-primary part ofN (respectivelyH). SinceH/Cent(G)
is cyclic and |Cent(G)| = 2, it follows that Hodd is cyclic. Moreover, Hodd / G, and
since Nodd ⊂ Hodd and Hodd is cyclic, Nodd / G. This shows that for σ ∈ G−H

Nodd ⊂ N ∩ σ−1Nσ = {id}

and therefore N = N2.

Now let M2 be the fixed field of H2 in F/M . Since N is a subgroup of H2, it
is clear that R (the fixed field of N in F/M) is a Galois extension of M2, and since
R/M is cyclic with [R : M ] = 1, 2, 3, 4, 6, R is a cyclic extension of M2 and
[R : M2] = 1, 2, 4. A similar statement holds for Rσ/M2. We have

|H| = [F : M2][M2 : M ] =
[R : M2]2

[R ∩Rσ : M2]
[M2 : M ].

The following table summarizes the possibilities for [F : M ] in this case.

1Note that N∩Cent(G) = {id} and N ' N/N ∩ Cent(G) ' NCent(G)/Cent(G) ⊂ H/Cent(G) '
A, where A is the cyclic subgroup of order n in Dn.
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Table 2

[R : M2] [R ∩Rσ : M2] [M2 : M ] [F : M ]
2 1 1, 3 4, 12
4 1, 2 1 8, 16.

So if |Cent(G)| = 2 and N 6= {id}, then [F : M ] = 4, 8, 12, 16 and so
G/Cent(G) ' Dn (n = 2, 4, 6, 8). Similarly, if |Cent(G)| = 3 and N 6= {id}, we can
prove that N = Nodd, and [F : M ] = 9, 18 and so G/Cent(G) ' Dn (n = 3, 6).

Now it is easy to verify the list given in part (ii) of the statement of the theorem.
This completes the proof. 2

Remark 3. It might be of interest to note that a group G with cyclic center Cent(G)
having the property that G/Cent(G) ' Dn is necessarily a product HK with H and
K Abelian, with H ∩K = Cent(G). Moreover, if Cent(G) has order m, then H has
order mn and K has order 2m. In some cases, we can say more. For example, if n = 3
and m = 2, 3, 4, then G ' Cent(G) × Dn.

Definition: The generalized quaternion group Q4n is defined with the following pre-
sentations:

Q4n = 〈x, y : x2n = 1, xn = y2, yxy−1 = x−1〉

Theorem 3 Suppose that hK is odd and rankO(E(F )) = 2 and K 6= Q(
√
−1), Q(

√
−3).

Then there is a Galois subextension S with K ⊆ S ⊆ F and rankO(E(S)) > 0 such
that G = Gal(S/K) is one of the following:
(i) G is cyclic of order 1, 2, 3, 4 or 6.
(ii) G is isomorphic to Dn (n = 3, 4, 6) or Q4n (n = 2, 3).
(iii) G ' SL2(Z/3Z) or G is isomorphic to an extension of SL2(Z/3Z) by Z/2Z with
Cent(G) ' Z/2Z. This can occur only if dK 6≡ 1 (mod 8).
In (ii) and (iii), rankO(E(S)) = 2. In fact, S is the minimal subfield in these cases.

Proof: First note that since K 6= Q(
√
−1), Q(

√
−3) in part (ii) of Lemma 4, n 6=

8, 12 (see Remark 1). Applying this fact in the proof of Theorem 2 implies (i) if ρ
(defined in the proof of Theorem 2) is reducible. In the case that ρ is irreducible and
G/Cent(G) ' Dn, from the assumptions of the theorem, we conclude that G ' D3 or
Cent(G) ' Z/2Z and G/Cent(G) ' Dn(n = 2, 3)2. Now it is easy to verify the list
given in part (ii) of the statement of the theorem, by referring to the list of non-Abelian
groups of order 8 and 12 (see for example [5], Appendix B, p. 238).

So, we may suppose that ρ is irreducible and G/Cent(G) is isomorphic to either A4

or S4 and that Cent(G) ' Z/2Z.

2Note that Cent(G) ' Z/2Z, however, n = 4, 6, 8 never occur. This is true since K 6=
Q(
√
−1), Q(

√
−3) and therefore in the proof of Theorem 2 if N = {id}, then H ' Cn(n = 2, 3, 4, 6)

and if N 6= {id}, then in Table 1, [R : M ] = 2.
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Let G/Cent(G) ' A4. Suppose that L is the fixed field of Cent(G) in F/K and
M is the fixed field of V4 (Klein’s 4-group) in L/K. Set H ' Gal(F/M). Since
H/Cent(G) ∼= V4 and V4 / A4, it follows that H / G, also it is clear that [G : H] = 3.
Suppose that χ|H is reducible. Then, by part (i) of Lemma 4, χ = IndG

H
ψ, ψ(1) = 1.

This can never happen because [G : H] = 3 and χ is 2 dimensional.

Thus χ|H is irreducible. Note that H is the 2-Sylow subgroup of G and it is of order
8. As it is necessarily non-Abelian, it is isomorphic to either D4 or Q8 (the quaternion
group of order 8). In either case, G is the semidirect product of H and Z/3Z.

If H ' Q8, then G ' SL2(Z/3Z). This group has three 2-dimensional irreducible
representations. For two of these, the character takes values in Q(

√
−3) (see for ex-

ample [12], p. 61) and hence we can exclude these. The remaining representation has
character values in Z. If the restriction of this representation to Q8 is irreducible (as
we are assuming), it is a representation of Schur index 2 (see [19], p. 94, Exercise 12.3)
and it is realizable over K if and only if K can be embedded in the quaternion algebra
D over Q which is ramified at 2 and ∞. But if dK ≡ 1 (mod 8), then K cannot be
embedded in D as the prime 2 splits in this field. Thus, if dK ≡ 1 (mod 8) this case
cannot occur.

If H ' D4, then let J be the cyclic subgroup of order 4. Let A be a 3-Sylow
subgroup of G. It acts by conjugation on J (as J contains all elements of order 4 in
D4). Moreover, it must act trivially as Aut(J) is cyclic of order 2. Hence, AJ is cyclic
of order 12. Let P be the quadratic extension of K which is fixed by AJ . Restricting
our representation ρ to AJ , we find it is reducible and given by two characters ψ1 and
ψ2 (say). ψ1 and ψ2 take values in the group of 12-th roots of unity. The character of ρ
on H thus takes values in Q(ζ12)∩K = Q (as K 6= Q(

√
−1),Q(

√
−3)). In particular,

it is real and so either ψ1 and ψ2 are both real or ψ2 is the complex conjugate of ψ1.
Since ρ|H is faithful, the first case cannot occur as it would imply that H has order at
most 4. Hence, we are in the second case, and this implies that ψ1 is of order 12. But
then, the character takes values in Q(ζ12)+ which is not Q and this is a contradiction.
Thus, this case also cannot occur.

Let G/Cent(G) ' S4. Again let L be the fixed field of Cent(G) in F/K, M be
the fixed field of A4 in L/K and H = Gal(F/M). Suppose first that χ|H is reducible.
Then by part (i) of Lemma 4, χ = IndG

H
ψ, ψ(1) = 1. Let N = Ker ψ. It is clear that

N 6= {id}, since otherwise by part (ii) of Lemma 4, H is cyclic which is impossible.
Let R be the fixed field of N , then rankO(E(R)) > 0. Since ρ is faithful, we must have
rankO(E(R)) = 1. This implies that R is the minimal subfield and therefore it is cyclic
of order 1 or 2 (Proposition 5). Since N ∩σ−1Nσ = {id}, we have F = RRσ and then
by a calculation similar to one used in the proof of Theorem 2, we deduce [F : M ] = 4
and hence [F : K] = 8, contradicting our assumption that G/Cent(G) ' S4.

Now consider the case χ1 = χ|H is irreducible. We argue as in the A4 case. Let
us set H1 to be the 2-Sylow subgroup of H. Note that it is a normal subgroup. Now,
if we have χ1|H1 reducible, this would force ρ1 to be the induction of a character from
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H1 to H (by part (i) of Lemma 4) contradicting the fact that ρ1 is a 2-dimensional
representation. On the other hand, if χ1|H1 is irreducible, then H1 is either the quater-
nion group of order 8 or the dihedral group of order 8 and both of these cases are dealt
with as in the A4 case using the fact that our representation has to be realizable over
K. This shows that if dK 6≡ 1 (mod 8), then H ' SL2(Z/3Z) and therefore G is an
extension of SL2(Z/3Z) by Z/2Z. This completes the proof of the theorem. 2

5 Vanishing of L-functions

5.1 Non-CM case

Let E be an elliptic curve defined over Q and let L(E/Q, s) be the L-function of E
over Q. Kolyvagin [7] proved that for a (modular) elliptic curve E if rank(E(Q)) ≥ 1
then L(E/Q, 1) = 0 (see [6], p. 356, Theorem 20.5.2. (b)). This result is generalized
to any finite Abelian extension of Q by Kato (unpublished).

Theorem 4 Let E be a modular elliptic curve defined over Q and let F be a finite
solvable extension of Q. Suppose that rank(E(F )) ≥ 1.
(i) If E(F ) ⊗ Q is an Abelian Gal(F/Q) module then L(E/F, 1) = 0.
(ii) If rank(E(F )) = 1 then L(E/F, 1) = 0.
(iii) If rank(E(F )) = 2 then either L(E/F, 1) = 0 or the minimal subfield is a dihedral
extension of Q of degree 6, 8 or 12.
(iv) If rank(E(F )) = 3 then either L(E/F, 1) = 0 or Gal(M/K) (M is the minimal
subfield) is one of the following:

A4, S4, A4 × C2, S4 × C2.

Proof: (i) Since E(F ) ⊗ Q is an Abelian Galois module, by Proposition 2, there is an
Abelian subextension M of Q such that rank(E(M)) ≥ 1. Now Kato’s generalization
of Kolyvagin’s theorem implies the vanishing of L(E/M, s) at s = 1. By Theorem 2
of [11], L(E/F, s) is divisible by L(E/M, s). Hence, L(E/F, s) also vanishes at s = 1.
This completes the proof.

(ii) By part (i) of Theorem 1, E(F ) ⊗ Q is a cyclic Galois module, and the result
follows from part (i).

(iii) It follows from part (ii) of Theorem 1 and (i).

(iv) Let ρf : Gal(M/K) → GL3(Z) be the faithful representation given in Propo-
sition 2. We prove that if ρf is reducible then L(E/F, 1) = 0. Let ρf be reducible,
then since its degree is 3, ρf has a one dimensional representation ψ of Gal(M/K) as
a direct summand. Let M1 be the fixed field of ker ψ in M/K. It is clear that E
has a point of infinite order on M1 and M1 is at most quadratic over Q. As in (i), we
conclude that L(E/M1) = 0 which implies L(E/F, 1) = 0.
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Now note that in part (iii) of Theorem 1, the only groups with a possible three
dimensional irreducible representation, are those given in the statement of the theorem.
This completes the proof. 2

Remark 4. If M/Q is a dihedral extension of degree 2n such that the fixed field C of
the cyclic subgroup of order n of Gal(M/Q) is imaginary quadratic and of discriminant
prime to the conductor of E, and (E(M)⊗C)χ 6= 0 is infinite (χ is a two dimensional
character of Gal(M/Q)), then by recent work of Bertolini and Darmon [2], L(E/Q ⊗
χ, 1) = 0. Applying this with the factorization of the L-function of E over M (see the
paragraph before Proposition 4) and part (ii) of Theorem 1, we deduce that if F is
a finite solvable extension of Q such that any quadratic subfield is imaginary and of
discriminant prime to the conductor of E, and rank(E(F )) = 2 then L(E/F, 1) = 0.

5.2 CM case

Let E be an elliptic curve defined over an imaginary quadratic field K and having
complex multiplication byO, the ring of integers ofK. Let L(E/K, s) be the L-function
of E over K. It is known that L(E/K, s) is the product of two Hecke L-series of K
(see [21], p. 175, Theorem 10.5) and therefore it is defined on the whole complex plane.
Coates and Wiles [3] proved that if rank(E(K)) ≥ 1 then L(E/K, 1) = 0. Arthaud [1]
generalized this result to any finite Abelian extension of K. She proved that if F is
a finite Abelian extension of K such that rank(E(F )) ≥ 1 then L(E/F, 1) = 0. The
work of Rubin [18] established this under some conditions even if E is not defined over
K.

Theorem 5 Let E be an elliptic curve defined over an imaginary quadratic field K
and having complex multiplication by O, the ring of integers of K. Let F/K be a finite
Galois extension and let rankO(E(F )) ≥ 1.
(i) If E(F )⊗O K is an Abelian K[G]-module then L(E/F, 1) = 0.
(ii) If rankO(E(F )) = 1 then L(E/F, 1) = 0.
(iii) If rankO(E(F )) = 2 and K 6= Q(

√
−1),Q(

√
−3), then either L(E/F, 1) = 0 or

the Galois group of the minimal subfield over K is isomorphic to one of the following:
a) Dn (n = 3, 4, 6), Q4n (n = 2, 3).
b) SL2(Z/3Z) or an extension of SL2(Z/2Z) by Z/2Z with Cent(G) ' Z/2Z. This

can occur only if K 6= Q(
√
−7).

Proof: (i) By the O-analogue of Proposition 2, there is an Abelian subextension M of
K such that rankO(E(M)) ≥ 1. Now by Arthaud’s theorem [1], L(E/M, 1) = 0. By
Theorem 1 of [11], L(E/F, s) is divisible by L(E/M, s). Hence L(E/F, 1) = 0.

(ii) By Proposition 5, E(F ) ⊗O K is a cyclic K[G]-module, and the result follows
from part (i).

(iii) It follows from Theorem 3 and (i). Note that since the j-invariant j(E) ∈ K
then hK = 1, and K = Q(

√
−7) is the only imaginary quadratic number field with

hK = 1 that for it dK ≡ 1 (mod 8). 2
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6 Elliptic analogue of Stark’s theorem

In this section, we investigate the analytic analogue of the minimal subfield. In this, we
are guided by the results of Stark [22] about simple zeros of Dedekind zeta functions.

Definition: Let E be an elliptic curve defined over K and let F be an extension of
K. For each zero ω of L(E/F, s), the analytic minimal subfield Fω is a subfield over
K with K ⊆ Fω ⊆ F such that
(i) ords=ωL(E/Fω, s) = ords=ωL(E/F, s).
(ii) If K ⊆M ⊆ F and ords=ωL(E/M, s) = ords=ωL(E/F, s), then Fω ⊆M .

Proposition 6 Let F/K be a Galois extension with Galois group G, and suppose that
L(E/K ⊗χ, s) is holomorphic at s = ω for any irreducible character χ of G. Then the
analytic minimal subfield Fω exists and it is Galois over K.

Proof: We have the factorization

L(E/F, s) =
∏

χ∈Irr(G)

L(E/K ⊗ χ, s)χ(1)

where Irr(G) is the set of irreducible characters of G. Consider the set

Zω = {χ| L(E/K ⊗ χ, ω) = 0}.

Define

Hω =

⋂
χ ∈ Zω

Ker χ.

Then Hω is a normal subgroup of G and we let Fω denote its fixed field, which
is Galois over K. Using the holomorphy of L(E/K ⊗ χ, s), it is easy to see that
ords=ωL(E/F, s) = ords=ωL(E/Fω, s).

Now let M be any field between F and K. Put H = Gal(F/M) and let 1H be the
identity character of H. We have

Ind
G

H
1H =

∑
χ∈Irr(G)

aχχ, 0 ≤ aχ ≤ χ(1), aχ ∈ Z.

Thus,

L(E/M, s) = L(E/K ⊗ IndG
H

1H , s) =
∏

χ∈Irr(G)

L(E/K ⊗ χ, s)aχ .

This shows that if ords=ωL(E/M, s) = ords=ωL(E/F, s), then∑
aχnχ =

∑
χ(1)nχ
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where nχ denotes the order of L(E/K ⊗ χ, s) at s = ω. Hence, aχ = χ(1) for all
χ ∈ Zω. We have

aχ = 〈IndG
H

1H , χ〉G = 〈1H , χ|H〉H =
1

|H|
∑
g∈H

χ(g).

Now if aχ = χ(1), then as |χ(g)| ≤ χ(1), we must have χ(g) = χ(1) for all g ∈ H and
therefore H ⊂ Ker χ and this holds for all χ ∈ Zω. In other words H ⊂ Hω. This
proves that Fω ⊆M . 2

Definition. We say that E satisfies the Taniyama conjecture over a field K if the
L-function L(E/K, s) is the L-function L(π, s) of an automorphic representation of
GL2(AK), where AK is the adèle ring of K.

Proposition 7 Suppose that E satisfies the Taniyama conjecture over K. Let F be a
solvable extension of K and let χ be a character of G = Gal(F/K). Then, L(E/K ⊗
χ, s) is holomorphic at s = ω if ω is a simple zero of L(E/F, s).

Proof: Let H be a subgroup of G and let χ and ψ denote irreducible characters of G
and H. Set

θG =
∑
χ

nχχ, θH =
∑
ψ

nψψ

where nχ and nψ denote the orders of zeros of L(E/K ⊗ χ, s) and L(E/FH ⊗ ψ, s) at
s = ω respectively (FH is the fixed field of H in F/K). By Proposition 1 of [11]

θG|H = θH . (∗)

Suppose g is an element of G and let H = 〈g〉 be the cyclic group generated by g.
Then, L(E/FH ⊗ ψ, s) is analytic (see [11], p. 492, Proof of Theorem 2) and since

L(E/F, s) =
∏
ψ

L(E/FH ⊗ ψ, s)ψ(1)

and ords=ωL(E/F, s) = 1, then θH = ψ for some irreducible character ψ of H. From
(∗), θG(g) is a root of unity and therefore

∑
χ

nχ
2 =

〈∑
χ

nχχ,
∑
χ

nχχ

〉

=
1

|G|
∑
g∈G

|θG(g)|2 = 1.

This shows that all nχ’s except one are 0. By taking H = 〈1〉, we have θG(1) = 1 and
thus the remaining nχ is 1. This proves that L(E/K ⊗ χ, s) is analytic at s = ω. 2
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Corollary 1 Under the assumptions of the above proposition Fω exists. Moreover, Fω
is a cyclic extension of K. If ω is real, [Fω : K] ≤ 2.

Proof: By the previous proposition L(E/K ⊗ χ, s) is holomorphic at s = ω, thus if
ords=ωL(E/F, s) = 1 then there is a χ ∈ Irr(G) such that ords=ωL(E/K ⊗ χ, s) = 1
and χ(1) = 1. Now by Proposition 6, Fω is the fixed field of Ker χ. Since χ is one
dimensional Fω is a cyclic extension of K. Moreover, if ω is real

ords=ωL(E/K ⊗ χ, s) = ords=ωL(E/K ⊗ χ, s).

Hence, χ = χ. 2

Remark 5. Let F be a Galois extension of K, then Corollary 1 is still true if E is
an elliptic curve with complex multiplication. Note that in this case, we can remove
the hypothesis that F/K is solvable, as E satisfies the Taniyama conjecture over any
Galois extension of K (see [11], p. 488, Lemma 2).

Corollary 2 Let E be an elliptic curve defined over a number field K. Suppose that E
has complex multiplication by an order in an imaginary quadratic field contained in K.
Let F be a Galois extension of K and let χ be a character of G = Gal(F/K). Then,
L(E/K ⊗ χ, s) is holomorphic at s = ω if ω is a double zero of L(E/F, s), and ω is
real. Moreover, Fω exists and Fω is a cyclic extension of K.

Proof: We have the factorization

L(E/K, s) = L(ψK , s)L(ψK , s)

where ψK is a Hecke character of K. Over F ,

L(E/F , s) = L(ψF , s)L(ψF , s)

where ψF denotes the restriction of ψK to Gal(F/F ). As ω is real, both factors on the
right vanish at s = ω. As ords=ωL(E/F, s) = 2, it follows that

ords=ωL(ψF , s) = ords=ωL(ψF , s) = 1.

Now the argument of Proposition 7 implies that all L(ψK ⊗ χ, s) are holomorphic at
s = ω and that Fω exists and is a cyclic extension of K. 2

Finally, we show that we can replace the assumption of holomorphy in the state-
ment of Proposition 6, with a milder condition if we assume that E has complex
multiplication and F is contained in a solvable extension of K (F/K is not necessarily
Galois).

Proposition 8 Suppose that F/K has solvable normal closure, and let E be an elliptic
curve defined over K which has complex multiplication. Suppose that for any two
subfields M1 and M2 with the property that

ords=ωL(E/M1, s) = ords=ωL(E/M2, s) = ords=ωL(E/F, s)
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the quotient
L(E/M1M2, s)L(E/M1 ∩M2, s)

L(E/M1, s)L(E/M2, s)

is holomorphic at s = ω. Then the analytic minimal subfield Fω exists.

Proof: Let S be the set of subfields M of F with

ords=ωL(E/M, s) = ords=ωL(E/F, s).

We prove that S is closed under intersections and thus has a minimal element. Let M1

and M2 be in S, then by the hypothesis

L(E/M1M2, s)L(E/M1 ∩M2, s)

L(E/M1, s)L(E/M2, s)

is holomorphic at ω. Moreover, by the main result of [11] (see Theorem 1), L(E/M1, s)
divides L(E/M1M2, s) and L(E/M1M2, s) divides L(E/F, s). Thus,

ords=ωL(E/M1, s) ≤ ords=ωL(E/M1M2, s) ≤ ords=ωL(E/F, s)

and therefore we have equality throughout. Hence,

ords=ωL(E/M1 ∩M2, s) ≥ ords=ωL(E/F, s).

The reverse inequality also holds (as L(E/M1∩M2, s) divides L(E/F, s)). This proves
that S has a minimal element Fω. 2

Remark 6. Note that the assumption of holomorphy in the previous proposition is
implied by the holomorphy of L(E/K ⊗ χ, s) at s = ω (see [22], p. 151, Lemma 12).

Remark 7. Proposition 8 is also true, in the case that E satisfies the Taniyama
conjecture over K and F is a solvable extension of K.
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