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Abstract. Let S be a monoid of endomorphisms of a quasiprojective variety V defined over a
global field K. We prove a lower bound for the size of the reduction modulo places of K of the
orbit of any point α ∈ V (K) under the action of the endomorphisms from S. We also prove a
similar result in the context of Drinfeld modules. Our results may be considered as dynamical
variants of Artin’s primitive root conjecture.

1. Introduction

Artin’s primitive root conjecture asserts that if a ∈ Z and a 6= −1 or a square, then the set of
primes p for which a (mod p) is a primitive root has positive density. Pappalardi [20] and Erdös
and R. Murty [8] proved variants of Artin’s conjecture for finitely generated subgroups of Q∗.
More precisely, it is proved in [20] that for a subgroup Γ of rank r ≥ 1 of Q∗, the set of primes
p, for which the reduction Γp of Γ modulo p has less than p

r
r+1 elements, has natural density 0.

More precisely, Pappalardi proved that for all but o(x/ log x) primes p ≤ x, we have

|Γp| ≥ p
r

r+1 exp (logτ p) for some τ ∼ 0.15.

Similar results were proved for finitely generated subgroups of elliptic curves (see [13], [1])
and for finitely generated subgroups of arbitrary algebraic groups (see [16]).

There are two dynamical interpretations of these results. Firstly, each finitely generated
subgroup Γ of Q∗ may be viewed as the image of 1 ∈ Q∗ under the subgroup S of automorphisms
of Gm/Q generated by the finitely many translation maps given by x 7→ ai · x, where a1, . . . , ar
is an arbitrary (finite) set of generators for Γ. Denoting by OS(1) the orbit of 1 ∈ Gm(Q)
under the maps from S, the results of Pappalardi, Erdös and R. Murty offer information about
the size of the reduction of OS(1) modulo various primes p. Similarly, the results for Artin’s
conjecture in the context of elliptic curves can be phrased in terms of orbits under subgroups
of automorphisms generated by finitely many translation maps. In this paper, we replace S by
a monoid generated by finitely many endomorphisms of an arbitrary quasiprojective variety V
defined over a global field (see Section 2).

We state below a special case of our results when S is a cyclic monoid (see Section 2 for our
general setup, and also Theorems 2.1 and 2.3 for our more general results). In order to state
Theorem 1.1 we define the degree of an endomorphism.

Let V ⊂ PM be a quasiprojective variety defined over a field K, and let Φ : V −→ V be an
endomorphism defined over K. Thus V is a finite union of Zariski open subsets V` of projective
subvarieties of PM such that Φ` := Φ |V`

can be written as [F`0 : · · · : F`M ], where the F`i are
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relatively prime homogeneous polynomials of degree d` which do not vanish simultaneously on
V`; hence we may view Φ` as a rational map on PM of degree d`. We define the degree of Φ as

deg(Φ) := max
`
d`.

For any endomorphism Φ of V , and for any α ∈ V , we let O〈Φ〉(α) be the Φ-orbit of α, i.e. the
set of all Φn(α) for n ∈ N (where by Φn we denote the n-th iterate of Φ, and as always N denotes
the set of nonnegative integers). Also, in general, we denote by 〈Φ〉 the monoid (semigroup with
identity) generated by Φ.

Theorem 1.1. Let V be a quasiprojective variety defined over a global field K, and let Φ :
V −→ V be an endomorphism of V defined over K. Let α ∈ V (K) be a nonpreperiodic point
for Φ (i.e., the Φ-orbit O〈Φ〉(α) of α is infinite). We have

(i) If deg(Φ) > 1 then for each ε < 1/log deg(Φ), the natural density of the set of places v
of K for which the reduction of O〈Φ〉(α) modulo v has less than ε log N(v) elements equals zero
(where N(v) represents the size of the residue field modulo v).

(ii) If deg(Φ) = 1 then for each γ < 1/2, the natural density of the set of places v of K for
which the reduction of O〈Φ〉(α) modulo v has less than N(v)γ elements equals zero.

Remark 1.2. Actually, we prove a stronger statement, i.e., for each x > 0, the set of places v
of K such that N(v) ≤ x which do not satisfy (i) or (ii) is less than π(x)α for some α < 1, where
π(x) is the number of all places v of K satisfying N(v) ≤ x.

The area of algebraic dynamics was pioneered by Northcott (see [19]); later, Silverman (see
[24] for a comprehensive treatment of this subject) greatly developed all aspects of the theory
of algebraic dynamics. Silverman [23], and Call and Silverman [5] constructed canonical heights
associated to polarizable endomorphisms of general varieties, which gave rise to several directions
of research in algebraic dynamics (see [17, 18], for example). Later, Zhang [27] proposed a series
of conjectures for algebraic dynamical systems, many of which are natural analogs of classical
theorems for abelian varieties. Recently, various authors proved a number of new algebraic
dynamic results; these include equidistribution results (see [2, 6, 9]), and analogs of the Mordell-
Lang and the Bogomolov conjectures (see [11, 3, 4, 10]).

In [25] Silverman proved a weaker version of the above Theorem 1.1 for number fields; this
constituted the inspiration for our present paper. More precisely, for a number field K, he
proved the following result ([25, Theorem 2]).

Theorem 1.3 (Silverman). Let K/Q be a number field with the ring of integers RK and let
V , Φ and O〈Φ〉(α) be as described in part (i) of Theorem 1.1. Let p denote any nonzero prime
ideal of RK and N(p) denote the norm of p. We have

(a) For each γ < 1, the logarithmic analytic density of the set of prime ideals p of RK for
which the reduction of O〈Φ〉(α) modulo p has less than (logN(p))γ elements equals zero.

(b) There is a constant C = C(K,V,Φ, α) so that for all ε > 0 the upper logarithmic analytic
density of the set of prime ideals p of RK for which the reduction of O〈Φ〉(α) modulo p has less
than ε logN(p) elements, is less than Cε.

Recall that all but finitely many places of a number field K correspond to non-zero prime
ideals of RK . Also note that for each ε > 0 and for each γ < 1, for all but finitely many
prime ideals p, we have (log N(p))γ < ε log N(p). So part (i) of Theorem 1.1 implies part (a)
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of Silverman’s result as a set with natural density zero has also logarithmic analytic density
zero (see [26, Chapter III.1]). Moreover, if ε < 1/log deg(Φ), part (i) of Theorem 1.1 leads to a
stronger result than part (b) of Theorem 1.3.

In Theorems 2.1 and 2.3 we generalize the result of Theorem 1.1 to the case of orbits under
a monoid generated by finitely many endomorphisms of V .

A second interpretation of the results of Pappalardi, Erdös and R. Murty on Artin’s primitive
root conjecture is as follows. We let ρ : (Z,+, ·) −→ (End(Gm/Q), ·, ◦) be the usual Z-algebra
homomorphism such that ρk := ρ(k) is the k-th power map for each integer k, i.e. ρk(x) = xk

for any x. Hence Z acts on Gm(Q) through the endomorphisms induced by ρ. Then each
finitely generated subgroup Γ ⊂ Q∗ may be viewed as the finitely generated Z-module, under
the action of ρ, generated by some x1, . . . , xr ∈ Q∗, and thus we are interested in the size of the
reduction of this Z-module modulo various primes. We can develop a similar construction for
the additive group scheme Ga/K where K is a global field. We observe that in characteristic p
any finitely generated submodule of the additive group considered as a Z-module is finite and
so the size of the reduction of such submodule is uniformly bounded. So for the correct setting,
in characteristic p, we should consider Ga/K as an Fp[t]-module. In Section 5 we consider
such construction which is described naturally in the context of Drinfeld modules. Indeed,
each Drinfeld module defined over a function field K (of characteristic p) corresponds to a ring
homomorphism ρ : (Fp[t],+, ·) −→ (End(Ga/K),+, ◦), and thus we are interested in the size of
the reduction modulo various primes of a finitely generated Fp[t]-module under the action of ρ.
We prove the following result (see Section 5 for more details about Drinfeld modules).

Theorem 1.4. (i) Let K be a finite extension of Fp(t), and let ρ : Fp[t] −→ End(Ga/K) be a
Drinfeld module of rank n. Let Γ ⊂ K be a free Fp[t]-submodule of rank r ≥ 1 under the action
of ρ. Then for each γ < r/(n+ r), the natural density of the set of places v of K such that the
reduction of Γ modulo v has less than N(v)γ elements equals zero.

(ii) Let K be a global field. Let A = Z, if the characteristic of K is zero, and A = Fp[t], if the
characteristic of K is p. Let ρ : A −→ End(Ga/K) be such that ρa(x) = a · x for each a ∈ A,
and for each x ∈ K. Let Γ ⊂ K be a nontrivial A-submodule under the action of ρ. Then for
each γ < 1, the natural density of the set of places v of K such that the reduction of Γ modulo
v has less than N(v)γ elements equals zero.

Because each Drinfeld module ρ : Fp[t] −→ End(Ga/K) induces a dynamical system on the
affine line, the proof of Theorem 1.4 is similar with the proof of Theorem 1.1; however, because
(Fp[t], ·) is not finitely generated, no cyclic Fp[t]-module under the action of ρ, may be represented
as the orbit OS(α) of a point α under a finitely generated monoid S of endomorphisms of the
affine line. More precisely, if S is generated by any finite subset of maps ρf(t) := ρ(f(t)) (for
some f(t) ∈ Fp[t]), then OS(α) is a proper subset of the cyclic Fp[t]-module generated by α
under the action of ρ; this explains why the conclusion of our Theorem 1.4 is much stronger
than the conclusion of its counterpart result from Theorem 1.1.

We sketch briefly the plan of our paper. In Section 2 we set the notation for our main result
for arbitrary endomorphisms. We continue in Section 3 by stating basic properties of heights
over global fields. Then we prove in Section 4 our main results for arbitrary endomorphisms of
a quasiprojective variety (Theorems 2.1 and 2.3), while in Section 5 we prove our main result
for Drinfeld modules (Theorem 5.2). Our main theorems are proved by using combinatorial
arguments and the height inequalities of Section 3.
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2. Statement of our main results for arbitrary endomorphisms

A global field is either a number field or a function field of transcendence degree 1 over the
prime field Fp (i.e., it is a finite extension of Fp(t)). Let K be a global field; let RK be the ring
of algebraic integers of K (if K is a number field), or the integral closure of Fp[t] in K (if K is
a function field). In both the number field case and the function field case, we say that RK is
the ring of integers of K; it is known that RK is a Dedekind domain. If K is a function field,
we let Fq be the algebraic closure of Fp inside K; we also call Fq the constant field of K.

By a finite place of K, we mean a place of K which corresponds to a nonzero prime ideal
of RK . By abuse of notation, we identify any finite place v of K with its corresponding prime
ideal of RK . We denote by MK the set of all places of K. In particular, MK contains the finite
places of K, but also the archimedean places (if K is a number field), or the places of K lying
over the place at infinity from Fq(t) (if K is a function field); note that all but finitely many
places in MK are finite places of K.

Let V ⊂ PM be a quasiprojective variety defined over K, let Φ1, . . . ,Φr be endomorphisms
of V defined over K, and let α ∈ V (K). We denote by S the monoid generated by Φ1, . . . ,Φr,
and we let OS(α) be the orbit of α under the maps contained in S. Moreover we assume that
for every distinct tuples (m1, · · · ,mr) and (n1, · · · , nr) of nonnegative integers, we have

(2.1) Φm1
1 · · ·Φ

mr
r (α) 6= Φn1

1 · · ·Φ
nr
r (α).

The above condition (2.1) replaces the condition that α is not preperiodic for Φ1 in the case
r = 1 (see Theorem 1.1). In the case of a cyclic monoid S (i.e. r = 1), we need to impose the
condition that α is not preperiodic for Φ1, otherwise the orbit OS(α) would be finite and our
problem would be vacuous. On the other hand, if (2.1) does not hold for all endomorphisms
Φ1, . . . ,Φr, but it does hold for a subset Φ1, . . . ,Φs of them, then we may replace our monoid S
with the submonoid generated by Φ1, . . . ,Φs.

Let kv be the residue field corresponding to any finite place v of K. Then kv is finite; we set
N(v) := #kv, which we call the norm of v. We extend the notation N(a) to denote the size of
RK/a for any nonzero ideal a of RK .

For all but finitely many finite places v of K, both V and each Φi for i = 1, . . . , r have good
reduction modulo v. In particular this means that there exists a model V of V , and corresponding
models for each Φi for i = 1, . . . , r over RK such that for all but finitely many finite places v of
K, the corresponding reductions modulo v of each Φi induces a kv-endomorphism of the special
fibre Vv of V over v. Choosing different models affects only finitely many places v; therefore,
from now on we assume that we fixed a model V of V over RK , and we also fixed corresponding
models for Φi as endomorphisms of the Spec(RK)-scheme V.

There is a nonzero ideal IK ⊂ RK such that if v - IK then the reduction PM (K) → PM (kv)
modulo v is well defined (see [25, Lemma 9] for a proof if K is a number field; however, the
same proof works also in the case of function fields using that modulo principal ideals, there
are finitely many representatives for the ideal class group of RK). More precisely, each point in
PM (K) has a representation as [x0 : · · · : xM ], where each xi ∈ RK and the ideal (x0, . . . , xM )
divides IK . In addition, at the expense of replacing IK with a larger non-unit ideal of RK , we
may assume that for each v - IK , both V and each Φi has good reduction at v. Thus, for each
v - IK we define OSv (α) be the reduction of the S-orbit OS(α) of α modulo v; in particular,
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OSv (α) consists of all points Ψv(αv) ∈ Vv(kv) for Ψ ∈ S, where for each such Ψ ∈ S, we denote
by Ψv its reduction modulo v to an endomorphism of Vv, and we also let αv denote the reduction
of α modulo v. Finally, note that each time when we refer to a place v which either divides, or
it does not divide IK , we implicitly assume that v is a finite place.

In order to state our main results we need to define the natural density for a set of finite
places. We say that a subset P of finite places of K has natural density dP if we have

dP := lim
x→∞

#{v ∈ P : N(v) ≤ x}
#{v : N(v) ≤ x}

.

Theorem 2.1. With the above notation, and under the condition (2.1), assume in addition that
D := max{deg(Φ1), . . . ,deg(Φr)} ≥ 2. Then for each ε < 1/(r logD)r, the set of finite places
v - IK such that #OSv (α) < ε (log N(v))r has natural density equal to 0.

Remark 2.2. It is immediate to see that Theorem 2.1 yields that for each γ < 1, the set of
finite places v - IK such that #OSv (α) < (log N(v))rγ has natural density equal to 0. To see this,
note that for each ε > 0, and for each γ < 1 there exists C(ε, γ) > 0 such that for each place v
satisfying N(v) > C(ε, γ), we have (log N(v))rγ < ε (log N(v))r (also note that there are at most
finitely many places v satisfying N(v) ≤ C(ε, γ)).

Theorem 2.3. With the above notation, and under condition (2.1), assume in addition that
deg(Φi) = 1 for each i = 1, . . . , r. Then for each γ < r/(2r + 1), the set of finite places v - IK
such that #OSv (α) < N(v)γ has natural density equal to 0.

If we assume in addition that S is commutative, then the above result holds for γ < r/(r + 1).

Remark 2.4. Actually, our proofs of Theorems 2.1 and 2.3 yield a stronger result: for each
x > 0, the set of places v of K such that N(v) ≤ x for which the conclusion of either Theorem 2.1
or Theorem 2.3 does not hold has less than π(x)α elements, for some α < 1, where π(x) is the
number of all places v of K satisfying N(v) ≤ x.

Finally, we note that in Theorem 2.3 if S is a set generated by finitely many translations on an
algebraic group, we recover previous variants of the Artin’s conjecture as proved in [1, 8, 16, 20].

3. Heights over global fields

We continue with the notation from Section 2.
Any global field K comes equipped with a standard set MK of places and their associated

absolute values | · |v which satisfy a product formula∏
v∈MK

|x|nv
v = 1, for every x ∈ K∗,

where nv is the local degree at place v (see [15] for more details). Furthermore, without loss
of generality, we may assume that the normalization of the absolute values | · |v and of the
local degrees nv was made such that for each nonarchimedean place v, and for each uniformizer
πv ∈ K at v we have |πv|nv

v ≤ 1
2 .

If K is a global field, and if M ≥ 1, the logarithmic Weil height of x := [x0 : x1 : · · · : xM ] ∈
PM (K) (relative to K) is defined as (see [15])

hK(x) =
∑
v∈MK

log
(

M
max
i=0
|xi|nv

v

)
.
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Also for x ∈ K we set hK(x) = hK([x : 1]) where [x : 1] ∈ P1(K).
In the case that K is a function field, using that each v ∈ MK is nonarchimedean, for any

x, y ∈ K we have

(3.1) hK(x+ y) ≤ hK(x) + hK(y).

Let x := [x0 : x1 : · · · : xM ] and y := [y0 : y1 : · · · : yM ] ∈ PM (K) be two different points, such
that each xj and yj is in RK , and (x0, . . . , xM , y0, . . . , yM ) | IK . Let D = (xiyj − xjyi)0≤i<j≤M
be the ideal of RK generated by elements xiyj − xjyi. Then, as proved in [25, Proposition 7],
we have

(3.2) logN(D) ≤ hK(x) + hK(y) + C0,

where C0 depends only on K and M (this result is proven in [25] for number fields, but the
proof follows identically for any global field).

Let Ψ := [F0 : · · · : FM ] be any rational map on PM given by (M + 1) relatively prime
polynomials of degree d = deg(Ψ). Letting ZΨ be the closed subset of PM where all Fi vanish
simultaneously, we have the following elementary height estimate

(3.3) hK(Ψ(α)) ≤ deg(Ψ)hK(α) + C(Ψ),

for all α ∈ (PM \ ZΨ)(K) (see [14, Theorem B.2.5 (a)]), where C(Ψ) is a positive constant
depending only on Ψ. Inequality (3.3) easily extends to any endomorphism Φ of a quasiprojective
subvariety V ⊂ PM (see the definition of degree of such an endomorphism from Section 1); thus
we obtain

hK(Φ(α)) ≤ deg(Φ)hK(α) + C(Φ),

for every α ∈ V (K). An easy inductive argument yields that if D := deg Φ ≥ 2, then

(3.4) hK(Φn(α)) ≤ Dn(hK(α) + C(Φ)), for each n ∈ N,

while if deg(Φ) = 1, then

(3.5) hK(Φn(α)) ≤ hK(α) + nC(Φ).

The following two results are used in the proofs of our theorems.

Lemma 3.1. Let K be a global field, and let RK be its ring of integers (as defined in Section 2).
Then for each nonzero ideal a of RK , the number ωK(a) of nonzero prime ideals of RK which
divide a is bounded above by logN(a)/ log (2).

Proof. Let a =
∏m
i=1 pei

i be the decomposition in prime ideals of a. Taking norms, and then
applying the logarithm (note that the norm function is completely multiplicative), we obtain

logN(a) =
m∑
i=1

ei logN(pi)

≥ log (2) · ωK(a),

which yields the desired conclusion. �

Lemma 3.2. If K is a global field, then for each nonzero x ∈ K, the number ωK(x) of finite
places v ∈MK such that |x|v < 1 is bounded above by hK(x)/ log(2).
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Proof. Using the product formula and the definition of the logarithmic Weil height, we immedi-
ately obtain that hK(x) = hK(x−1). Hence

hK(x) = hK(x−1)

≥
∑

v is a finite place

log max{|x−1|nv
v , 1}

≥
∑

v is a finite place
|x|v<1

(−nv log |x|v)

≥ log(2) · ωK(x),

where in the last inequality we used the fact that for each nonarchimedean place v ∈ MK such
that |x|v < 1, we have |x|nv

v ≤ 1
2 . �

4. Endomorphisms of quasiprojective varieties

In this section, we have the following setting: K is a global field, V ⊂ PM is a quasiprojective
variety defined over K, and Φ1, . . . ,Φr are endomorphisms of V defined over K. Let D :=
max{deg(Φ1), . . . ,deg(Φr)}. In addition, we let α ∈ V (K) and assume that for every distinct
tuples (m1, . . . ,mr) and (n1, . . . , nr) of nonnegative integers, we have

(4.1) Φm1
1 · · ·Φ

mr
r (α) 6= Φn1

1 · · ·Φ
nr
r (α).

We let S be the monoid generated by Φ1, . . . ,Φr, and denote by OS(α) the orbit of α under the
action of the endomorphisms of V contained in S. We continue with the same notation for RK ,
IK , OSv (α) (for finite places v - IK) as in Section 2.

We will use in our proofs the usual notation f(x) = o(g(x)) to denote that

lim
x→∞

f(x)/g(x) = 0.

Also we write f(x) ∼ g(x) if f(x) = g(x) + o(g(x)).
The following result is the key ingredient in the proofs of Theorems 2.1 and 2.3.

Proposition 4.1. For each y > 1, let

Ty := {v - IK : #OSv (α) < y}.

(i) If D ≥ 2, then #Ty ≤ C · y2Dry
1
r , where C is a positive constant depending only on V ,

S and α.
(ii) If D = 1, then #Ty ≤ C · y2+ 1

r , where C is a positive constant depending only on V , S
and α.

(iii) If D = 1 and S is commutative, then #Ty ≤ C · y1+ 1
r , where C is a positive constant

depending only on V , S and α.

Proof. Let v ∈ Ty; by the pigeonhole principle, there exist two distinct tuples (m1, . . . ,mr) and
(n1, . . . , nr) such that

(1) Φm1
1 · · ·Φmr

r (α) and Φn1
1 · · ·Φnr

r (α) have the same reduction modulo v; and
(2) 0 ≤ mi, ni ≤ [y1/r] for each i = 1, . . . , r,
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where [z] represents the integer part of the real number z.
According to our assumption (4.1), Φm1

1 · · ·Φmr
r (α) 6= Φn1

1 · · ·Φnr
r (α), which by combination

with (1) means that

(1’) the ideal D := (Am,iAn,j −An,iAm,j)0≤i<j≤M is nonzero; and
(2’) v | D,

where Φm1
1 · · ·Φmr

r (α) = [Am,0 : · · · : Am,M ] and Φn1
1 · · ·Φnr

r (α) = [An,0 : · · · : An,M ], while each
Am,j and An,j is in RK , and (Am,0, . . . , Am,M , An,0, . . . , An,M ) | IK .

(i) Assume D ≥ 2. By employing (3.2) and (3.4), we have

logN(D) ≤ hK(Φm1
1 · · ·Φ

mr
r (α)) + hK(Φn1

1 · · ·Φ
nr
r (α)) + C1

≤ C2 ·Dry
1
r ,

where the constants C1 and C2 depend only on Φ1, . . . ,Φr and α. Using (2’) and Lemma 3.1 and

noting that there are at most
(

[y
1
r ] + 1

)2r
≤ 22ry2 pairs of tuples (m1, . . . ,mr) and (n1, . . . , nr)

satisfying (2) above, we obtain the desired conclusion.
(ii) Assume D = 1. By employing (3.2) and (3.5), we have

logN(D) ≤ hK(Φm1
1 · · ·Φ

mr
r (α)) + hK(Φn1

1 · · ·Φ
nr
r (α)) + C1(4.2)

≤ C2 · y
1
r ,

where the constants C1 and C2 depend only on r, Φ1, . . . ,Φr and α. Using Lemma 3.1 and
noting that there are at most 4ry2 pairs of tuples (m1, . . . ,mr) and (n1, . . . , nr) satisfying (2)
above, we obtain the desired conclusion.

(iii) Now, if S is commutative (still assuming D = 1), then we may refine our application of
the pigeonhole principle. Indeed, besides (1) and (2) above, we may also consider

(3) for each i = 1, . . . , r, either mi = [y1/r] or ni = [y1/r].

We may add condition (3) to the previously stated conditions (1) and (2) because for each
tuples (m1, . . . ,mr) and (n1, . . . , nr) satisfying conditions (1) and (2), and for each i = 1, . . . , r
we obtain that also

Φ[y1/r]−max{mi,ni}
i (Φm1

1 · · ·Φ
mr
r (α)) and Φ[y1/r]−max{mi,ni}

i (Φn1
1 · · ·Φ

nr
r (α))

have the same reduction modulo v (here we also use the fact that Φi has good reduction modulo
v - IK). There are at most 2r ·

(
[y1/r] + 1

)r ≤ 4ry pairs of tuples (m1, . . . ,mr) and (n1, . . . , nr)
satisfying conditions (2) and (3). This observation together with (4.2) will finish the proof. �

Using Proposition 4.1 we obtain immediately Theorems 2.1 and 2.3. We prove below Theo-
rem 2.1; the proof of Theorem 2.3 is similar.

Proof of Theorem 2.1. Let ε < 1/(r logD)r. We prove first the number field case and then
the function field case.

(i) If K is a number field, let

Rε,x := {v - IK : N(v) ≤ x and #OSv (α) < ε (log N(v))r}.
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So by Proposition 4.1

#Rε,x ≤ #Tε(log x)r

≤ C (ε(log x)r)2Dr(ε(log x)r)
1
r

= Cε2(log x)2r · xr log(D)ε
1
r

= o (x/ log x) ,

because ε < 1/(r logD)r. Note that in a number field, the number of places v with N(v) ≤ x is
asymptotic to x/ log x, which finishes our proof.

(ii) If K is a function field with constant field Fq, we have

#{v ∈MK : N(v) ≤ q`} ∼ q

q − 1
· q

`

`
,

as `→∞, where ` is a variable taking values in positive integers (see [22, Theorem 5.12]).
Let

Rε,q` := {v - IK : N(v) ≤ q` and #OSv (α) < ε (log N(v))r}.
So, similar to part (i), by Proposition 4.1 we have

#Rε,q` ≤ #Tε(log q`)r = o

(
q`

`

)
,

if ε < 1/(r logD)r. Therefore

#Rε,q` = o

(
q

q − 1
· q

`

`

)
as desired. �

5. The case of Drinfeld modules

We begin by defining a Drinfeld module (for more details, see [7, 12, 22]). Let p be a prime
and let q be a power of p. Let K be a function field with constant field Fq, and let K be a
fixed algebraic closure of K. We let τ be the Frobenius on Fp, and we extend its action on K

(i.e., τ(x) = xp for each x ∈ K). The ring End(Ga/K) of endomorphisms of the additive group
scheme over K is isomorphic to the skewed ring K{τ} of polynomials in the operator τ with
coefficients in K; more precisely, each f ∈ End(Ga/K) is of the form

∑r
i=0 aiτ

i with ai ∈ K,
and f(x) =

∑r
i=0 aix

pi
for each x ∈ K.

Let A := Fp[t]. A Drinfeld module is a ring homomorphism

ρ : A → K{τ}
f(t) 7→ ρf(t)

such that ρt := tτ0 + a1τ
1 + · · ·+ anτ

n,

with ai ∈ K, and an 6= 0 where n ≥ 1. We call n the rank of the Drinfeld module ρ.
For every field extension K ⊂ L, the Drinfeld module ρ induces an action of Fp[t] on Ga(L)

by f(t)∗x := ρf(t)(x), for each f(t) ∈ Fp[t]. We call Fp[t]-submodules subgroups of Ga(K) which
are invariant under the action of ρ. Because from now on we will work with a fixed Drinfeld
module ρ, we simply call Fp[t]-submodule any Fp[t]-submodule Γ under the action of ρ. We
define the rank of such an Fp[t]-submodule Γ be dimFp(t) Γ⊗Fp[t] Fp(t).
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We note that usually, in the definition of a Drinfeld module, A is the ring of functions defined
on a projective nonsingular curve C defined over a finite field Fpm (for some m ≥ 1), regular away
from a closed point η ∈ C. For our definition of a Drinfeld module, C = P1

Fp
and η is the usual

point at infinity on P1. On the other hand, every ring of regular functions A as above contains
Fp[t] as a subring, where t is a nonconstant function in A. So, in particular, any A-submodule
is also an Fp[t]-submodule; therefore, our results for Fp[t]-submodules (see Theorem 5.2) can be
used to infer results about arbitrary A-submodules under the action of any Drinfeld module.

A point α ∈ K is torsion for the Drinfeld module action if and only if there exists f(t) ∈
Fp[t] \ {0} such that ρf(t)(α) = 0. In other words, α is a torsion point if and only if it generates
a finite cyclic Fp[t]-submodule.

For each finite place v of K such that the coefficients of ρt are v-adic integers, we reduce each
ρf(t) modulo v (it is immediate to see that for each f(t) ∈ Fp[t], also each coefficient of ρf(t) is
a v-adic integer); we denote by Sρ,K the set of all these finite places v of K.

Let r be a positive integer, and let Γ ⊂ K be a free Fp[t]-submodule of rank r (according to
[21], the field K is the direct sum of a finite torsion Fp[t]-submodule with a free Fp[t]-submodule
of rank ℵ0). There are only finitely many places v ∈ Sρ,K such that the elements of Γ are not
integral at v. Indeed, if x1, . . . , xr ∈ K is a fixed set of generators for the free Fp[t]-submodule
Γ, then each element of Γ is integral at places v ∈ Sρ,K whenever each xi is integral at v. For
each such finite place v, we denote by Γv the corresponding reduction of Γ. We let SΓ,ρ,K be
the set of all such finite places of K for which there exists a corresponding reduction Γv of Γ;
note that SΓ,ρ,K contains all but finitely many places of K.

The following result is the counterpart for Drinfeld modules of Proposition 4.1.

Proposition 5.1. For each positive integer ` ≥ 1, let

T̃` := {v ∈ SΓ,ρ,K : #Γv ≤ q`}.

There exists a constant C depending only on ρ, Γ and K such that

#T̃` ≤ C · q`(1+n/r).

Proof. First we let e be a positive integer such that q = pe.
Let v ∈ T̃`; then a simple application of the pigeonhole principle yields that there exist

polynomials f1(t), . . . , fr(t) ∈ Fp[t], not all zero, such that

(i) |
∑r

i=1 ρfi(t)(xi)|v < 1, and
(ii) deg(fi(t)) ≤ (e`)/r, for each i = 1, . . . , r.

According to Lemma 3.2 (also note that
∑r

i=1 ρfi(t)(xi) 6= 0 because Γ is a free Fp[t]-module
and not all fi(t) are zero), the number of places v satisfying (i) is bounded above by

1
log(2)

· hK

(
r∑
i=1

ρfi(t)(xi)

)
.

We rewrite
∑r

i=1 ρfi(t)(xi) as
∑m

j=0 ρtj (yj), for some positive integer m ≤ (e`)/r, where each
yj is an Fp-linear combination of the xi’s; thus there are finitely many possibilities for the yj ’s.
Now, using (ii), the triangle inequality for heights (3.1), and inequality (3.4) applied to ρt (which
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has degree pn), we obtain that

1
log(2)

· hK

(
r∑
i=1

ρfi(t)(xi)

)
≤ C1p

ne`/r,

where C1 depends only on ρ and x1, . . . , xr. We conclude that #T̃` is bounded above by∑
deg(a1),...,deg(ar)≤(e`)/r

C1 · pne`/r ≤ C2 · q`(1+n/r),

as desired. �

Now we are ready to prove our main result for Drinfeld modules, which is part (i) of Theo-
rem 1.4.

Theorem 5.2. With the above notation for K, ρ and Γ, let γ < r/(r + n). Then the natural
density of the set of places v ∈ SΓ,ρ,K such that #Γv < N(v)γ equals 0.

Proof. Let

R̃γ,` =
{
v ∈ SΓ,ρ,K : N(v) ≤ q` and #Γv < (N(v))γ

}
.

Observe that

#R̃γ,` ≤ #T̃γ`

where T̃γ` is defined in Proposition 5.1. Now an application of Proposition 5.1 yields

#R̃γ,` ≤ #T̃γ` ≤ C · qγ`(1+n/r),

where C depends on ρ, Γ, and K. Since γ < r/(r + n), we conclude that

#R̃γ,` = o

(
q

q − 1
· q

`

`

)
,

as desired. �

Part (ii) of Theorem 1.4 follows similarly. For example, in the case of a trivial Fp[t]-action on
the function field K given by t ∗ x := tx, the result of Proposition 5.1 changes to

(5.1) #T̃` ≤ Cε · q`(1+ε),

for any ε > 0, where Cε is a constant depending only on ε, ρ, Γ and K. Indeed, now the action
of Fp[t] on K is given by linear maps, and thus the height of f(t) ∗x grows linearly with respect
to deg(f(t)). Using (5.1) one immediately obtains the conclusion of part (ii) in Theorem 1.4 for
any nontrivial Fp[t]-submodules (the case of Z-modules under the trivial action of Z given by
k ∗ x := kx follows similarly).
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